
FEBRUARY 2002 423N O T E S A N D C O R R E S P O N D E N C E

q 2002 American Meteorological Society

NOTES AND CORRESPONDENCE

A Conservative Quasi-Monotone Semi-Lagrangian Scheme

RODOLFO BERMEJO
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ABSTRACT

A conservative quasi-monotone semi-Lagrangian scheme is developed in this paper. Mass conservation is
achieved via Lagrange multipliers. The new scheme is computationally efficient. Numerical examples with linear
and nonlinear advection problems illustrate the properties of the scheme.

1. Introduction

We present in this paper a new conservative version
of the quasi-monotone semi-Lagrangian (QMSL)
scheme of Bermejo and Staniforth (1992). The idea of
constructing the QMSL scheme was inspired by Zale-
sak’s approach (Zalesak 1979) to improve the first flux-
corrected transport scheme of Boris and Book (1973).
Hereafter, whenever we refer to a numerical method as
mass conservative, or simply conservative, we mean
that is so with respect to # u dx, where u is the exact
solution of the problem at hand. It is recognized that
mass conservation is a desirable property that numerical
methods, which are used in long-term simulations such
as climate studies and ocean circulation, should possess.
Priestley (1993) developed an algorithm to endow con-
servation to the QMSL scheme of Bermejo and Stani-
forth. Although excellent results have been reported in
the literature using Priestley’s scheme (see, e.g., Gravel
and Staniforth 1994; Priestley 1993), there are some
pathological cases in which such an algorithm may not
achieve conservation. The new conservative QMSL
achieves global conservation via a variational formu-
lation of the conservation property and, what is more
interesting, is easy to implement. The layout of this note
is as follows. In section 2, we describe the theoretical
formulation of the new scheme, whereas section 3 is
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devoted to illustrating its behavior with some numerical
tests. The main conclusions are presented in section 4.

2. The conservative QMSL scheme

To make the presentation of the new scheme as simple
as possible, let us consider the linear advection equation
for a scalar u(x, t) in a bounded domain V with bound-
ary G:

]u
1 a · =u 5 0, in V 3 [0, T ],

]t

u(x, 0) 5 u (x) in V, (1)0

and appropriate boundary conditions such that

u(x, t) dx 5 u (x) dx, (2)E E 0

V V

whenever the velocity vector a(x, t) is divergence free.
We shall consider below the case when = ·a(x, t) ± 0.
[0, T] denotes the time interval for the integration of
(1) and (2), and u0(x) is the initial condition for u(x, t).
To compute a numerical solution of (1) and (2) the do-
main V is covered by a grid and the interval [0, T] is
substituted by the discrete set {tn, 0 # n # N; t0 5 0
and tN 5 T}. To make things simple, we assume that
for all n, Dt 5 tn 2 tn21 is the constant time step, and
V is a two-dimensional rectangular domain that is cov-
ered by a uniform grid. We denote by h the distance
between consecutive grid points in each coordinate di-
rection. Let K be the number of grid points in V and
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{xk}, where k 5 1, 2, . . . , K, is the set of such grid
points. Each xk can be identified by its coordinates as

x [ (x , y ) 5 [x 1 (i 2 1)h, y 1 (j 2 1)h],k i j 1 1

where i and j are integers that satisfy 1 # i # I, 1 #
j # J, and K 5 I 3 J. The pair (i, j) and the index k
satisfy, for example, the relationship

k 5 (i 2 1)J 1 j.

Hereafter, we use the notations and to denoten nu Uk k

the exact and approximate solutions of (1) and (2), re-
spectively, at (xk, tn). For all k, the numerical semi-
Lagrangian solution at (xk, tn11) is then

n11 n nU 5 U (X ),k k (3)

where denotes an approximate value of X(xk, tn11;nXk

tn), which is the departure point at time tn of a particle
that moving with velocity a will arrive at the grid point
xk at tn11. Here, X(xk, tn11; tn) is the solution of the
differential equation,

dX(x , t , t )k n11 n 5 a[X(x , t ; t ), t], t # t # t ,k n11 n n n11dt

X(x , t ; t ) 5 x ,k n11 n11 k (4)

under fairly mild assumptions about a. In general, nXk

is not a grid point, so that Un( ) has to be computednXk

by some interpolation procedure from the known values
at grid points that surround . The most commonn nU Xj k

interpolation procedure used in semi-Lagrangian meth-
ods is Lagrange polynomial interpolation of a degree
higher than one, in particular cubic interpolation since
it represents a good compromise between accuracy and
computational efficiency. Other interpolation proce-
dures such as cubic splines and cubic Hermite poly-
nomials are also used. The solution obtained by any
interpolation procedure is, in general, not conservative,
and if its degree is higher than one, then the solution
will exhibit strong oscillations in the vicinity of regions
of rapid spatial variations. Bermejo and Staniforth
(1992) invented the QMSL scheme to suppress such
oscillations and restore to the numerical solution the
positivity properties of the exact solution, but the QMSL
scheme does not have the property of mass conserva-
tion. In this paper we provide mass conservation to the
QMSL scheme through the following two stages.

a. The QMSL stage

This stage is essentially the QMSL scheme as is de-
scribed in section 2 of Bermejo and Staniforth (1992).
However, for completeness of this note we furnish a
brief description of it, and refer the interested reader to
that paper for further details. Let { , , . . . , }n n nU U Uk1 k2 kp

be the gridpoint values of Un at the vertices of the grid
element where the departure point is located, and letnXk

and be the values of a low-order solution andn11 n11U ULk Hk

a high-order solution at , respectively; is ob-n n11X Uk Lk

tained from Un by Lagrange polynomial interpolation
of degree one, which is known to be shape preserving,
whereas is calculated by an interpolation proceduren11UHk

of a degree higher than one, which, in general, is not
shape preserving because it may exhibit an oscillatory
behavior. The QMSL stage combines both solutions in
a clever way to yield a nonoscillatory solution. As is
shown in Bermejo and Staniforth (1992), the QMSL
stage can be formulated as follows.

At each instant tn11, n 5 0, 1, . . ., N, and for k 5 1,
2, . . ., K, perform the following steps.

Step 1. Compute and identify the grid elementnXk

where such a point is located.
Step 2. Calculate and as mentioned above.n11 n11U ULk Hk

Step 3. Evaluate U1 and U2 defined as

1 n n nU 5 max{U , U , . . . , U } andk1 k2 kp (5)
2 n n n5U 5 min{U , U , . . . , U }.k1 k2 kp

Step 4. Set

1 n11 1U 5 U if U . U , ork Hk

2 n11 2U 5 U if U , U , ork Hk

n11U 5 U otherwise.k Hk

b. The conservation stage

The QMSL solution computed in the previous stageU
will not in general conserve mass, or equivalently, at
each time step tn

U S ± C,O k k
k

where C is a constant defined as

C 5 u S , (6)O 0k k
k

which is a numerical approximation to the initial mass
# u0 dx. Here, Sk is the area associated with node k. In
a uniform grid, Sk 5 hd for all k, with d being the
dimension of the space. The case of a nonuniform grid
is illustrated in Fig. 1. Inspired by a postprocessing
procedure devised by Sasaki (1976), which has recently
been used by Hansbo (2000) to conserve mass in adap-
tive finite elements, we create a method to restore the
lost mass in the QMSL stage. Basically, this method
consists of finding a new grid function V 5 {V1, V2,
. . . , VK} such that a weighted mean square error be-
tween V and is minimum and Sk VkSk 5 C. Mathe-U
matically, this idea can be formulated as a constraint
minimization problem as follows. Let Un be the quasi-
monotone and conservative solution (C 5 Sk Sk) atnU k

instant tn, and let be the QMSL solution (noncon-U
servative) at instant tn11. The constrained minimization
problem is as follows:
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FIG. 1. The shaded area is the area Sk associated with grid point xk

on a nonuniform grid.

FIG. 2. (a) Slotted cylinder at t 5 0. (b) Cross section of (a) at
y 5 0.

At each instant tn, n 5 1, 2, . . . , N, find a grid
function V such that

21 (V 2 U )k k S 5 min!O k2 wk k (7)
n V S 5 U S 5 C,O Ok k k k k k

where wk are gridpoint values of a nonnegative weight
function w that is used in order to make V quasi-mono-
tone too. Note that the first equation in (7) means that
the grid function V is such that the weighted root-mean
square of V 2 is a minimum. Since (7) represents anU
optimization problem with constraints, then a practical
method to find its solution is to formulate it as a saddle
point problem by using the method of Lagrange mul-
tipliers. To do so, we define the function

21 (V 2 U )k k nF(V, l) 5 S 2 l (V 2 U )S ,O Ok k k k2 wk kk

where the parameter l is the Lagrange multiplier of the
mass conservation constraint. Next, we wish to find V
and l such that the pair (V, l) is a critical point of F.
This is equivalent to finding (V, l) from the equations

]F ]F
5 0 for all k, and 5 0.

]V ]lk

In so doing, one can easily obtain

V 5 U 2 lw for all k, and (8)k k k

n(U 2 U )S U S 2 CO Ok k k k k
k kl 5 5 . (9)

w S w SO Ok k k k
k k

Note that by virtue of (8) and (9), and as long as wk

± 0 for some k, the conservation of mass is fully
achieved regardless the values of the weights wk. To
determine these values we further require V to be quasi-
monotone as is . Note that in the process of makingU
the quasi-monotone solution be conservative, the qua-U
si-monotone property can be lost. So, to determine V
we shall try to match in an optimal way requirements

such as accuracy, conservation, and quasi-monotonicity.
It is relatively easy to get accuracy and quasi-mono-
tonicity as the QMSL stage does, see Bermejo (2001),
but to calculate the grid function V possessing these
three properties together is not straightforward, because
they are somehow opposite. In order to match conser-
vation and accuracy in V we consider (8) and use the
property proved in Bermejo (2001), which says that in
regions where the exact solution u is sufficiently smooth

behaves as the high-order solution in such regions,U
that is, the numerical error is very small; whereas in
those regions of low smoothness of u, the error u 2

is large. Hence, we calculate the weights wk in suchU
a way that they are very small in the regions where u
is sufficiently smooth, whereas in the regions where u
is not smooth we allow wk to be large. An expression
for wk satisfying these requirements might be wk 5
( 2 )p, where p is an integer to be determinedn11 n11U UHk Lk

below. To match now the quasi-monotonicity ingredient
with conservation and accuracy we recall (see Bermejo
and Staniforth 1992) that the QMSL solution can also
be expressed for all k and for all tn11, as k 5 1n11U ULk
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FIG. 3. (a) Slotted cylinder after six revolutions. (b) Cross section
of (a) at y 5 0.

Ck( 2 ), where Ck is a limiting coefficient thatn11 n11U UHk Lk

satisfies 0 # Ck # 1; then, in order to obtain a similar
expression for Vk, we write (8) for all k and for all
tn11, as

n11 n11 n11 n11 n11 pV 5 U 1 C (U 2 U ) 2 l(U 2 U )k Lk k Hk Lk Hk Lk

n11 n11 n11 p21 n11 n115 U 1 [C 2 l(U 2 U ) ](U 2 U ),Lk k Hk Lk Hk Lk

(10)

where p is an integer $1. Note that in (10), Ck 2
l( 2 )p21 may be considered as a modifiedn11 n11U UHk Lk

limiting coefficient at node k such that V is both quasi-
monotone and conservative.

It remains to be determined whether p is an odd or
even number. To determine this, we argue in the fol-
lowing manner. In (9), let

Dm 5 U S 2 C.O k k
k

If Dm , 0 (loss of mass), then l , 0, so that we
propose restoring mass at those grid points where

2 , 0. On the contrary, if Dm . 0 (gain ofn11 n11U UHk Lk

mass) implies that l . 0, and we propose removing the
excess of mass from those grid points where 2n11UHk

. 0. Since by definition wk $ 0 for all k, then byn11ULk

considering (10) we see that a convenient way of re-
storing or removing mass according to the aforemen-
tioned argument is taking

n11 n11 pw 5 max[0, sgn(Dm)(U 2 U ) ], for all k. (11)k Hk Lk

Hence, p has to be odd and greater than 1. A good
value for p is 3, because we want l( 2 )p21n11 n11U UHk Lk

to be a high-order perturbation to the limiting coefficient
Ck. Since in Bermejo (2001) it is proved that (in regions
where the solution is sufficiently smooth) Ck 5 1 2
O(h2) and max | 2 Un11

Lk | 5 O(h2), it follows thatn11UHk

a convenient value is p 5 3. In summary, the new con-
servative QMSL (CQMSL) scheme can be formulated
as follows:

For k 5 1, 2, . . . , K, Sk and u0k are known.

Step 1. Compute at to

C 5 (u ) S .O 0 k k
k

For n 5 1, 2, . . . , N do the following.
Step 2. Apply the QMSL stage to compute , , andnU UL

.nUH

Step 3. Compute

Dm 5 U S 2 C.O k k
k

If Dm 5 0, then set l 5 0 and wk 5 0 for all k 5 1,
2, . . . , K. Go to step 6.
Step 4. For k 5 1, 2, . . . , K calculate

n n 3w 5 max[0, sgn(Dm)(U 2 U ) ].k Hk Lk

Step 5. Compute

Dm
l 5 .

w SO k k
k

Step 6. For k 5 1, 2, . . . , K set
nU 5 U 2 lw .k k k

If in step 4 wk 5 0 for all k, then set l 5 0 and go to
step 6.

c. The CQMSL algorithm for advection equations
written in conservation form

We now describe how to apply the CQMSL algorithm
to the advection equations written in conservation form
in which = ·a is not necessarily zero. Thus, we consider
the equation

]u
1 = · (au) 5 0, in V 3 [0, T ],

]t

u(x, 0) 5 u (x) in V, (12)0
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and appropriate boundary conditions such that #V = · (au)
dx 5 #G n · au ds 5 0. Recalling that the Jacobian de-
terminant J(x, s; t) 5 det{[]X(x, s; t)]/]x} satisfies the
equation (see, e.g., Chorin and Marsden 1990; Raviart
1985)

dJ(x, s; t)
5 J= · a[X(x, s; t)] J(x, s; s) 5 1, (13)

dt

the solution of which is

t

J(x, s; t) 5 exp = · a[X(x, s; t)] dt , (14)E5 6
s

then, it is easy to see that (12) becomes

DJu
5 0, in V 3 [0, T ],

Dt

u(x, 0) 5 u (x) in V. (15)0

Hence, if we take s 5 tn11 and t 5 tn in the above
equations, it follows that the semi-Lagrangian solution
to (15) is

n11 n n nU 5 J U (X ),k k k (16)

where [ J(xk, tn11; tn) is obtained by approximatingnJ k

the integral of (14) by some quadrature rule, as for
example the trapezoidal rule, which yields 5nJ k

exp[2D t= · an1(1/2) ( )]. Here, = · an1(1/2) ( )n1(1/2) n1(1/2)X Xk k

can be calculated by interpolation from the values of
= ·an1(1/2) at the grid points. If we compare (16) with
(3), it is clear how we have to modify the CQMSL
algorithm when it is applied to compute the numerical
solution to (12). In fact, besides the computation of = ·a
at the grid points at each time step, we have to modify
step 1 and step 2 of the QMSL algorithm in the follow-
ing way.

Modified step 1. Compute and , and identify then nX Jk k

element where is located.nXk

Modified step 2. Calculate 5 ( ) andn11 n n nU J U XLk k L k

5 ( ), where ( ) and ( ) denoten11 n n n n n n nU J U X U X U XHk k H k L k H k

low- and high-order solutions, respectively, at .nXk

The other steps in algorithm QMSL and algorithm
CQMSL remain unchanged.

Some remarks are now in order. First, with these mod-
ifications, it is straightforward to apply the CQMSL
algorithm to calculate a numerical solution of the con-
tinuity equation Dr/Dt 1 r= ·a 5 0, r being the fluid
density, when the incompressibility assumption does not
hold. So that, if q denotes a mixing ratio, one can apply
the CQMSL algorithm to calculate q when the flow is
not divergence free, by solving the equation Drq/Dt 1
rq= ·a 5 0 plus the continuity equation. Moreover, if
at t 5 0, q 5 K [ constant, the mixing ratio q will
remain constant all the time due to the following rea-
sons: (i) by virtue of (16) and the equations for r and
rq we have that at t 5 t1, [ 5 (rq)0( )1 1 1 0 0(rq) r q J Xk k k k k

and 5 r( ), respectively, (ii) it is well known in1 0 0r J Xk k k

interpolation theory that a constant function remains

unchanged by any interpolation procedure, so that
5 (rq)0( ) 5 r0( )K 5 K, hence 5 K.1 1 0 0 0 0 1 1r q J X J X r qk k k k k k k k

This argument can be applied to the solution at the next
time step t 5 t2 to get 5 K and so on for any time2qk

step tn. Second, there are other approaches to construct
conservative semi-Lagrangian schemes such as the one
proposed by Rančič (1992), who, based on the piecewise
parabolic method of Colella and Woodward (1984), de-
vised a local conservative semi-Lagrangian scheme; that
is, a semi-Lagrangian scheme in which the average val-
ue of the dependent variable U at time tn11 in each cell
of the fixed grid is equal to the average value of U at
time tn in the corresponding cell of the grid generated
by the departure points. This implies that global con-
servation of the semi-Lagrangian solution is achieved
via local conservation at the deformed grid. This strat-
egy to get global conservation is different from the one
proposed in this paper, where global conservation is
imposed as a constraint on the grid values of the semi-
Lagrangian solution. In nonlinear conservation laws in
which the solution (weak solution) develops shocks,
which, roughly speaking, are jump discontinuities that
move with a given velocity satisfying the so-called Ran-
kine–Hugoniot relation, and such that the solution is
smooth on both sides of the discontinuity, global con-
servation is needed for the shocks to move with the
right velocities (see LeVeque 1992, and references
therein); so that only conservative schemes are able to
locate the shocks properly. The additional property of
such schemes of being also locally conservative may
be a bonus as far as the accuracy of locating the shocks
is concerned. Summarizing, we may say that for those
conservation problems where it is feasible to use semi-
Lagrangian schemes, the CQMSL algorithm will give
the right position (within an approximation error) of the
jump discontinuities.

3. Numerical tests

To illustrate the behavior of the CQMSL scheme we
have run some of the tests of Bermejo and Staniforth
(1992). We use cubic Lagrange interpolation for all the
results shown in this note. The first test is the passive
advection of the ‘‘slotted’’ cylinder in the domain [21/2,
1/2] 3 [21/2, 1/2] covered by a uniform grid of step
h 5 0.01. The initial condition is defined by the slotted
cylinder of radius 15h and height 4 centered at (21/4,
0), and is depicted in Fig. 2. The width of the slot is
6h and its depth is 22h. The velocity a 5 v(2x, y),
with v 5 0.3636 3 1024 s21, and the time step Dt 5
1800s. So that, it is necessary to perform 96 time steps
to complete a revolution. To monitor the behavior of
the numerical solution we compute the quantities
[Sk Sk]/[Sk (u0)kSk] and [Sk ( )2Sk]/[Sk ( )kSk].n n 2U U uk k 0

These quantities measure the ‘‘mass’’ and ‘‘energy’’
conservation properties of a numerical scheme, respec-
tively. As in Bermejo and Staniforth (1992) we also
monitor the maximum and minimum of the numerical
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TABLE 1. Slotted cylinder using CQMSL scheme with cubic
Lagrange interpolation.

Time
step
(s)

#U
# u0

2#U
2# u0

Max
(U)

Min
(U) EDISS EDISP

96
192
288
384
576

1.000
1.000
1.000
1.000
1.000

0.81
0.77
0.75
0.73
0.70

4.0
4.0
4.0
4.0
4.0

0.0
0.0
0.0
0.0
0.0

0.10 (21)
0.15 (21)
0.19 (21)
0.22 (21)
0.28 (21)

0.80 (21)
0.92 (21)
0.10
0.11
0.12

FIG. 4. A 2D CQMSL solution of the inviscid Burgers equation at t 5 1.5 s. (a) Three-dimensional view. (b) A
cross section along the main diagonal. (c) Level curves.

solution as well as the dissipation EDISS and dispersion
EDISP errors. Note that EDISS 1 EDISP 5 Sk ( 2 )2Sk,n nu Uk k

which is the discrete mean square error. Table 1 shows
the results given by the CQMSL scheme. These results
should be compared with those of Table 3 of Bermejo
and Staniforth (1992). We note that the CQMSL scheme
is conservative, quasi-monotone, and slightly more dis-
sipative than the QMSL scheme. Figures 2 and 3 show
the initial condition and the numerical solution after six
revolutions. Again, we note the excellent results given
by the CQMSL scheme. As a final comment for this
test, we have computed the departure points by scheme

2 of Temperton and Staniforth (1987), instead of using
the exact solution of (4).

Our second test is the inviscid Burgers equation:

]u ]u ]u
1 u 1 5 0, in [22, 2] 3 [22, 2] and1 2]t ]x ]y

t . 0,

1 1 p
u (x, y) 5 1 sin (x 1 y),0 4 2 2

and periodic boundary conditions. (17)

It is well known that the analytical solution u(x, y, t)
5 uo(x 2 ut, y 2 ut) develops shocks at time T* 5 2/p.
For t . T*, the method of characteristics does not work,
or equivalently, the conventional semi-Lagrangian
schemes will produce incorrect solutions. However,
matters can be improved if we use the CQMSL scheme,
because monotonicity ensures convergence and conser-
vation will guarantee a correct shock location (LeVeque
1992), so that the CQMSL solution converges to a weak
solution of the conservation law. Nevertheless, an en-
tropy condition is still needed to prove the convergence
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FIG. 5. A 2D CQMSL solution of the inviscid Burgers equation at t 5 2.5 s. (a) Three-dimensional view. (b) A
cross section along the main diagonal. (c) Level curves.

of the CQMSL solution to the correct weak solution of
the problem, or in other words, to the correct physical
one. At T* the shocks start developing at the lines x 1
y 5 62. Some time after their development, the shocks
interact with the expansion wave and this causes a rapid
decay of the solution. In Figs. 4 and 5 we observe clearly
the shocks located at the right positions and their dis-
placement, as well as the decay of the solution with
time. To obtain the results of these figures we have used
h 5 0.0125 and Dt 5 0.005. A few remarks are now
in order.

1) Observe that in (12) u[(]u/]x) 1 (]u/]y)] can be
written as a(u) · =u, where a(u) 5 [a1(u), a2(u)],
with a1(u) 5 a2(u) 5 [] f (u)]/]u, and f (u) 5 (1/2)u2.
Here, a(u) is the characteristic velocity and f is the
flux function. The Rankine–Hugoniot condition
(LeVeque 1992) establishes that if uR and uL denote
the states to the right and left sides of the shock,
then the shock velocity is given by the quotient

f (u ) 2 f (u )R L .
u 2 uR L

So that, based on this condition, we approximate
the velocity a(u) as

1 1
n 2 n 2(u ) 2 (u )k11 k212 2

n na (u) 5 a (u) 51 k 2 k n nu 2 uk11 k21

1
n n5 (u 1 u ).k11 k212

Since u is constant along the characteristics, we
have determined the departure points simply by Eu-
ler’s method:

n nX 5 x 2 a(u) Dt.k k k

2) In linear problems, such as the slotted cylinder test,
the Courant–Freidrichs–Lewy (CFL) number can
take fairly large values and the numerical solution
can still be very good. However, this may not be the
case in nonlinear problems such as (17). For in this
case, the numerical solution is good for CFL num-
bers # 0.4, whereas for the one-dimensional version
of (17) excellent results (not shown in this paper)
were obtained with CFL numbers larger than 1.0.
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3) Based on our own limited experience, we hope that
the CQMSL scheme improves the numerical solution
obtained by conventional semi-Lagrangian schemes
in atmospheric models as demonstrated by Gravel
and Staniforth (1994) in their numerical results of
the shallow water equations on the sphere.

4. Conclusions

We have introduced in this paper a conservative ver-
sion of the QMSL scheme of Bermejo and Staniforth
(1992). From a practical point of view there are a num-
ber of features that make the new CQMSL scheme very
attractive. First, the CQMSL scheme can be incorpo-
rated into any semi-Lagrangian code very easily. Sec-
ond, the new scheme is conservative, so that it could
be very useful in long-term computations where loss
(or gain) of conserved quantities is a relevant issue.
Finally, the CQMSL scheme possesses excellent mul-
tidimensional shock-capturing properties, which makes
the CQMSL scheme more widely applicable.
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