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Temporal variability is an important feature of climate, comprising system-5

atic variations such as the annual cycle, as well as residual temporal variations6

such as short-term variations, spells and variability from interannual to long-term7

trends. The EU-COST Action VALUE developed a comprehensive framework to8

1

Page 1 of 47

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review
 O

nly

evaluate downscaling methods. Here we present the evaluation of the perfect pre-9

dictor experiment for temporal variability. Overall, the behaviour of the different10

approaches turned out to be as expected from their structure and implementa-11

tion. The chosen regional climate model adds value to reanalysis data for most12

considered aspects, for all seasons and for both temperature and precipitation.13

Bias correction methods do not directly modify temporal variability apart from14

the annual cycle. However, wet day corrections substantially improve transition15

probabilities and spell length distributions, whereas interannual variability is in16

some cases deteriorated by quantile mapping. The performance of perfect prog-17

nosis statistical downscaling methods varies strongly from aspect to aspect and18

method to method, and depends strongly on the predictor choice. Unconditional19

weather generators tend to perform well for the aspects they have been calibrated20

for, but underrepresent long spells and interannual variability. Long-term tem-21

perature trends of the driving model are essentially unchanged by bias correction22

methods. If precipitation trends not well simulated by the driving model, bias23

correction further deteriorates these trends. The performance of PP methods to24

simulate trends depends strongly on the chosen predictors.25

1 Introduction26

Downscaling is a common - often necessary - step in assessing regional climate change and27

its impacts: the resolution of global coupled atmosphere-ocean general circulation models28

(GCMs) is typically too coarse to represent many regional- or local-scale climate phenomena.29

Therefore the output of GCMs is downscaled to provide high resolution simulations over a30

limited target area. The EU Cooperation in Science and Technology (COST) Action ES110231

VALUE was established to comprehensively evaluate different downscaling methods (Maraun32

et al., 2015). Three experiments have been defined: a so-called perfect predictor experiment33

to isolate downscaling skill in present climate; a GCM predictor experiment to evaluate the34

overall skill to simulate present-day regional climate; and a pseudo reality experiment to35

evaluate the skill of downscaling methods to represent future climates.36

In a community effort, researchers from 16 European institutions participated in the per-37

fect predictor experiment, and more than 50 different statistical downscaling methods have38

been evaluated at 86 stations across Europe. The evaluation comprises the representation of39

marginal aspects (such as the mean or variance; (Gutiérrez and coauthors, 2017)), temporal40

aspects (such as spell length distributions; this contribution), spatial aspects (such as spatial41

decorrelation lengths; (Widmann and coauthors, 2017)), and multivariable aspects (such as42

the relationship between temperature and precipitation; Page et al., in preparation). Extreme43

events as well as an evaluation conditional on relevant synoptic and regional phenomena have44

been, owing to their importance, considered separately by Hertig and coauthors (2016) and45

Soares and coauthors (2017). Here we present the evaluation of temporal aspects.46

To illustrate different aspects of temporal variability, Figure 1 shows a selected year of47

precipitation at the participating rain gauge in Graz, Austria. On 18th of July (orange spike),48

several districts were flooded. The city’s streams burst their banks following the heavy rainfalls49

prior to the event, but a major contributor was the long wet spell in the end of June (red50

2
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methods); and unconditional weather generators, which are calibrated on local data and do78

not include any meteorological predictors.79

The basic driver of the residual, regional-scale temporal variability is the propagation of80

planetary and synoptic waves, which is essentially prescribed by GCMs. This continental-scale81

variability is modulated by regional-scale dynamical processes, influences of the orography, and82

feedback mechanisms such as soil-moisture-temperature, soil-moisture-precipitation feedbacks83

and snow-albedo feedbacks (Schär et al., 1999; Seneviratne et al., 2006; Fischer et al., 2007;84

Hall et al., 2008). As a result, regional-scale temporal variability simulated by RCMs may85

diverge from the prescribed large-scale variability (Alexandru et al., 2007). Local temporal86

variability is often - in particular for precipitation and wind - not fully determined by larger-87

scale variability, but exhibits additional - essentially random - fluctuations. PP statistical88

downscaling inherits the variability of the large-scale predictors and typically does not add89

any local short-term variations. Some methods, however, explicitly model local variability by90

randomisation (von Storch, 1999; Chandler and Wheater, 2002; Volosciuk et al., 2017). Such91

stochastic models might simply generate white noise, but may also include weather genera-92

tors (see below) to model short-term temporal dependence by Markov-chain-type components93

(Maraun et al., 2010). Also bias correction typically does not explicitly add local temporal94

variability to the driving model, but only subtly modulates temporal variability via its effect95

on the marginal distribution. For instance wet day frequencies are adjusted, which indirectly96

affects the representation of spells (Rajczak et al., 2016). Some bias correction methods also97

attempt to explicitly adjust the temporal structure (Vrac and Friederichs, 2015; Cannon, 2016,98

e.g.) but at the cost of destroying the temporal consistency with the driving dynamical model.99

Unconditional weather generators (i.e., weather generators that do not use meteorological pre-100

dictors) do not provide sequences which are synchronised with the driving models. Instead,101

the only temporal structure they represent is explicitly modelled, typically by Markov chains102

(Maraun et al., 2010). Most statistical models - PP and MOS - have an explicit description of103

the annual cycle, e.g., by being calibrated to each calender day, month or season individually,104

or (in case of PP) by including the day-of-the year as predictor.105

Of the temporal aspects studied in this paper, perhaps the annual cycle has been the106

most frequent target of validation: many RCM studies as well as studies of both kinds of107

statistical downscaling (PP and MOS) and of WGs include a validation of the annual cycle,108

although it usually is not their main topic (e.g. Frei et al., 2003; Moberg and Jones, 2004;109

Kilsby et al., 2007; Turco et al., 2011; Schindler et al., 2007; Soares et al., 2012; Warrach-110

Sagi et al., 2013; Kalognomou et al., 2013; Martynov et al., 2013; Keller et al., 2015; Favre111

et al., 2016). Also studies evaluating precipitation (dry/wet) spells and precipitation transi-112

tion probabilities (wet/wet, dry/wet) as well as interannual variability have been relatively113

numerous (e.g. Semenov et al., 1998; Charles et al., 1999; Giorgi et al., 2004; Kilsby et al.,114

2007; Jacob et al., 2007; Schmidli et al., 2007; Frost et al., 2011; Bürger et al., 2012; Turco115

et al., 2011; Hu et al., 2013; Gutmann et al., 2014; Keller et al., 2015; Rajczak et al., 2016).116

Much less attention has, on the other hand, been paid to validation of temperature spells and117

day-to-day temperature changes; only a few studies have been published that focus on these118

characteristics (Huth et al., 2001; Bürger et al., 2012; Vautard et al., 2013; Huth et al., 2015;119

Lhotka and Kyselý, 2015).120

The vast majority of validation studies addressing also temporal issues focused on a single121

downscaling approach or, at best, provide a comparison for models from one family such as122

Kotlarski et al. (2014); Gutmann et al. (2014). Exceptions are Wilby et al. (1998), who where123

4
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the first to systematically evaluate temporal aspects in PP methods and unconditional weather124

generators; the STARDEX project, which assessed temporal aspects of extreme events in PP125

and a simple MOS method (Haylock et al., 2006; Goodess et al., 2010); the study by Frost126

et al. (2011), who compared the representation of spell lengths and interannual variability in127

an RCM, a bias correction method, a PP method and two weather generators; the study by128

Hu et al. (2013), who carried out a similar intercomparison for a PP method and two weather129

generators; the study by Bürger et al. (2012), who compared extreme spells in several PP130

and MOS methods; and the recent study by Huth et al. (2015), which investigated temporal131

aspects in both statistical and dynamical downscaling methods. But all these studies still132

include only a rather limited range of methods.133

Even though extremely important for climate change studies (Pielke and Wilby, 2012),134

evaluation studies of trends in downscaled data are scarce (Benestad and Haugen, 2007; Lorenz135

and Jacob, 2010; Bukovsky, 2012; Ceppi et al., 2012; Huth et al., 2015). These studies broadly136

indicate a rather limited ability of downscaling methods to reproduce trends.137

In brief, a substantial research gap exists. The performance of many downscaling and138

bias correction methods to represent temporal aspects - both individually and relative to139

each other - is largely unknown. This study takes a first step to close this gap. In a perfect140

predictor experiment we analysed the performance of one raw RCM and 48 statistical methods141

to represent day-to-day variability, spells, seasonality, interannual and long-term variability142

including trends. Aspects of temporal variability specifically addressing extreme events, such143

as long heatwaves or meteorological drought, are addressed in the companion paper on extreme144

events (Hertig and coauthors, 2016, in this issue). The considered experiment was conducted145

for daily values, hence we cannot evaluate sub-daily variations.146

VALUE is a community effort, the participation in this experiment (and its evaluation) was147

unpaid. The participating methods thus form an ensemble of opportunity. In particular no148

systematic set of predictor variables or domains has been prescribed. Thus statements about149

optimal predictor choice are limited to a few comparisons of similar (or identical) methods150

with different predictors. A detailed set of metadata has, however, been collected for all151

participating methods. These meta data describe structural aspects of all methods and often152

allow for quite detailed interpretations of the individual performance. In the paper we will153

discuss selected examples in more detail, and additionally give a broad overview of the different154

model families. The metadata and complete results for individual methods are available from155

the VALUE portal www.value-cost.eu/validationportal for further investigation.156

The aim of the perfect predictor experiment is to evaluate the isolated skill of the raw RCM157

and the statistical models. Consequently, this study cannot give a conclusive assessment of158

the skill to simulate regional future climates. The skill of a full regional modelling system,159

comprising the full modelling chain from GCM to RCM and/or statistical model, as well as160

the downscaling performance in future climates will be considered in additional experiments161

(Maraun et al., 2015).162

In the following section we will briefly review the experimental setup, the considered di-163

agnostics and the participating methods. In Section 3 we will present the results for different164

diagnostics and methods. An overall discussion of the results will follow in the final section.165
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2 Experiment, Diagnostics and Methods166

The experimental design follows the VALUE perfect predictor experiment with station data167

as target. As (approximately) perfect predictors and perfect boundary conditions, we use168

ERA-Interim data from 1 Jan 1979 to 31 Dec 2008 (Dee et al., 2011). The MOS methods169

use ERA-Interim data at their native resolution of 0.75◦ as input, the PP methods ERA-170

Interim predictors at 2◦, which resembles a typical GCM resolution. Furthermore, most MOS171

methods also use ERA-Interim, downscaled with the RCM RACMO (van Meijgaard et al.,172

2008), as input to represent a typical RCM bias correction situation. Apart from the resolution,173

some important differences between these two MOS settings exist: in the first case, internal174

variability at the grid-box scale is closely tied to real world internal variability, whereas the175

RCM develops its own internal variability within the RCM domain. Furthermore, observed176

temperatures have been assimilated into the ERA-Interim reanalysis; the resulting predictors177

are thus essentially bias free at the grid-box scale and differences with station observations178

mainly result from the scale gap. RCM temperatures inside the domain, however, are only179

mildly constrained by the boundaries and are thus typically affected by biases. Precipitation180

is in both cases calculated by model parameterisations, without any reference to observed181

precipitation. It is thus affected by scale-gap and biases.182

As predictand data, time series from 86 stations from the publicly available ECA data base183

were used (Klein Tank et al., 2002). These stations were selected to cover the different Euro-184

pean climates, covering mediterranean, maritime, continental, alpine and sub-polar climates.185

For details refer to Gutiérrez and coauthors (2017) and the supplementary information.186

In this manuscript, we consider daily maximum and minimum temperature and daily187

precipitation only. A dedicated analysis of other variables will be carried out separately for188

a set of stations in Germany (Page et al., in preparation). For the statistical methods a five-189

fold cross validation with non-overlapping 6-year blocks is carried out. Further details about190

the protocol can be found in Maraun et al. (2015), Gutiérrez and coauthors (2017) and on191

www.value-cost.eu/validation#Experiment 1a.192
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Index Variables Performance Resolution Description

measure

short-term variability

ACF1 Tmax, Tmin bias seasonal lag-1 autocorrelation
ACF2 Tmax, Tmin bias seasonal lag-2 autocorrelation
WWprob precipitation bias seasonal probability of wet-wet transition
WDprob precipitation bias seasonal probability of wet-dry transition

Spells

WarmSpellMean Tmax bias seasonal mean of the warm (> 90th percentile) spell length distribution
ColdSpellMean Tmin bias seasonal mean of the cold (< 10th percentile) spell length distribution
WetSpellMean precipitation bias seasonal mean of the wet (≥ 1mm) spell length distribution
DrySpellMean precipitation bias seasonal mean of the dry (< 1mm) spell length distribution

Interannual to long-term variability

VarY Tmax, Tmin, rel. error seasonal variance of seasonally/annually averaged data
precipitation

Cor.1Y Tmax, Tmin, bias seasonal correlation with observations of seasonally/annually averaged data
precipitation

Cor.7Y Tmax, Tmin, correlation seasonal correlation with observations of seasonally/annually averaged and filtered data
precipitation

Trend Tmax, Tmin, trends themselves seasonal long-term (relative) trend of seasonally/annually averaged data
precipitation

Annual cycle

AnnualCycleAmp Tmax, Tmin bias annual Amplitude of the annual cycle
AnnualCycleRelAmp precipitation rel. error annual Relative amplitude of the annual cycle
AnnualCyclePhase Tmax, Tmin circular bias annual Phase of highest peak 2

Table 1: Diagnostics considered. Diagnostics only shown in the supplementary information are plotted in grey. For details see
http://www.value-cost.eu/validationportal/app#!indices and click on “details” for the underlying R-Code (note that regis-
tration is required).
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Table 1 lists the diagnostics we considered: the indices to measure a specific aspect of193

temporal variability, the corresponding performance measure to quantify the mismatch with194

observations and the temporal resolution (seasonal, annual) at which the evaluation has been195

carried out. In two cases, we assessed correlations between observed and downscaled local196

time series, namely at the interannual and seven year time scales. In this case, the diagnostic197

consists of a performance measure - the correlation - only.198

Detailed descriptions of these diagnostics can be found in the supplementary information.199

The code used to calculate these diagnostics is available from200

http://www.value-cost.eu/validationportal/app#!indices (registration required).201

In this analysis, we compare methods from the PP, MOS and unconditional weather gen-202

erator approaches with raw ERA-Interim output, and dynamically downscaled ERA-Interim.203

Tables 2 and 3 list the methods participating in the experiment (many methods are iden-204

tical for the different variables, but in several cases differences exist in the implementation205

for different variables. Therefore, we decided not to list the methods in a single table). The206

MOS methods are listed prior to the PP methods to ease comparison with the raw RCM and207

ERA-Interim data.208

PP methods are calibrated purely on observed predictors and predictands. The statistical209

model is then applied to climate model predictors. In a climate change context, the approach210

is based on three major assumptions Maraun and Widmann (2018): first, that the GCM211

predictors are perfectly simulated (hence the name) in present and future climate. As a212

consequence, predictors are typically taken from large-scale fields of the free atmosphere.213

Second, the predictors should be informative of local variability and climate change. And214

third, the model structure should well describe local variability, and allow for at least moderate215

extrapolations under climate change. Our evaluation experiment employs perfect predictors216

to isolate downscaling skill in present climate. It can therefore be used to assess whether the217

chosen predictors are informative of local variability and observed changes, and whether the218

model structure well describes observed local variability and changes. The perfect prognosis219

assumption and performance under future climate change, however, cannot be assessed.220

The participating PP methods broadly represent widely used approaches - analogue, re-221

gression and weather-type methods. Some of regression methods apply variance inflation222

(MLR-ASI, MLR-AAI, GLM-P), some are stochastic (see Tables). The ESD methods down-223

scale at the monthly scale, thus no diagnostics are considered that involve daily values. The224

ESD-EOF implementation differs from the standard ESD version in that the predictand values225

are filtered by PCA Benestad et al. (2015b).226

All stochastic methods use, conditionally on the predictors, independent noise, i.e., they227

do not have an explicit Markov component implemented to simulate short-term persistence.228

For precipitation, some of the participating PP methods have been included for illustrative229

purposes only (MLR-RAN, MLR-RSN, MLR-ASW, MLR-ASI). In fact, it is well known that230

simple multiple linear regression methods are not suitable to model daily precipitation. Yet231

they do participate in the intercomparison to highlight the problems associated with them232

(marked in grey in Table 3). Two of the stochastic methods (GLM and SWG) are based233

on generalised linear models, with a logistic regression for the occurrence process, and a234

generalised linear regression on the gamma distribution parameters for the amounts process.235

GLM-WT and WT-WG condition the distribution parameters for occurrence and amounts on236

weather types.237

MOS methods are calibrated between model simulations and observations. The approach238
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can thus in principle adjust biases (in fact, in climate science, these are almost exclusively bias239

correction methods, i.e., predictor and predictand have the same physical dimension), but has240

to be calibrated individually to the chosen model. MOS is based on three major assumptions241

(which make up the so-called stationarity assumption), similar to those of the PP approach242

Maraun and Widmann (2018) : first, the predictors have to be credibly (but not necessarily243

bias free) simulated. Second, the predictors need to be representative of the local variable.244

And third, as in PP, the structure of the transfer function needs to be suitable. Again, the245

first assumption cannot be tested with perfect predictors, only the second and third, and only246

for present day climate.247

The participating MOS methods comprehensively span the range of widely used methods,248

and also cover some more experimental recent developments such as stochastic bias correction249

(VGLMGAMMA Wong et al., 2014). None of the participating MOS methods modifies resid-250

ual temporal dependence directly, but only indirectly via changes in the marginal distribution.251

The CDFt method calibrates a statistical distribution also in the validation period. As this252

is only 6 years in our experiment (in a climate change experiment, one would typically use a253

30 year time slice), we expect a broad spread for the resulting performance measures due to254

sampling variability.255

Unconditional weather generators are not conditioned on meteorological predictors, but256

stochastically simulate marginal and temporal aspects, sometimes also spatial. They are257

calibrated to observed weather statistics. Under climate change, the model parameters (or258

the observed weather statistics) are adjusted by so-called change factors derived from climate259

models. The underlying assumptions are thus similar to those for MOS Maraun and Widmann260

(2018): first, the change factors have to be credibly simulated, and all relevant change factors261

have to be included; second, the simulated change factors have to representative of local262

changes; and third, the model structure has to be suitable. In the chosen experiment, no263

change factors are applied between calibration and validation period; thus only the suitability264

of the model structure can be evaluated. Some climatic statistics may have changed between265

calibration and validation period, but resulting systematic biases cancel out under cross-266

validation.267

The SS-WG and MARFI unconditional weather generators are of the Richardson type268

Richardson (1981), i.e., they use a Markov chain to simulate precipitation occurrence, and269

an autoregressive model to simulate temperature. A major difference between the tow is270

the wet-day threshold: the SS-WG uses 1 mm, the MARFI models use 0.5 mm (note that271

the evaluation indices are in any case based on a 1 mm threshold). The GOMEZ weather272

generators are based on resampling.273

Diagnostics have been calculated for each method and each station. They can be down-274

loaded from the VALUE portal (www.value-cost.eu/validationportal/app#!validation).275

For stochastic methods, an ensemble of 100 realisations have been uploaded. The performance276

measures have been derived for each realisation and then averaged across the ensemble.277

When interpreting the evaluation results, it has to be acknowledged whether a specific278

index is calibrated or emerges from the model. For instance, a good representation of the279

annual cycle could result from including meteorological predictors that describe the annual280

cycle, or trivially from fitting a statistical model separately to each month. In particular,281

weather generators by construction resemple many marginal and temporal aspects. In this282

study, only spell lengths and interannual variability are not calibrated. In Tables 2 and 3 we283

therefore also list whether short-term dependence (AC) and seasonality (SE) are calibrated or284

9
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not. For further details on the contributing methods see Gutiérrez and coauthors (2017) or285

the VALUE portal (www.value-cost.eu/validationportal/app#!downscalingmethod).286

3 Results287

Figure 2 illustrates selected temporal aspects for precipitation in Graz, Austria, and how288

corresponding model performance has been quantified in this study. The top panel shows the289

dry spell length distribution. Observations are shown in bold solid black, the results for five290

different statistical methods are shown in color. Methods in red and orange are MOS, in blue291

PP, and the method shown in magenta is an unconditional weather generator. One index that292

can be derived from the distribution is the mean spell length (which is quantified in this study293

for all the participating methods and all selected weather stations). Dashed vertical lines show294

this index for observations and statistical models. The performance of a model is given by the295

difference between the modelled and observed mean, i.e., the mean spell length bias. Similarly,296

the bottom panel shows the annual cycle of daily mean precipitation. Here, two indices are297

considered: first, the relative amplitude (for temperature the absolute amplitude) defined as298

the difference between maximum and minimum value (horizontal dashed lines), relative to the299

mean of these two values. Second, the phase of the annual cycle, defined as the day of the300

annual cycle maximum4 (vertical dashed lines). The performance for the first is measured as301

the relative error between modelled and observed relative amplitude, for the second as the302

circular bias between modelled and observed phase (circular in the sense that the difference303

between, say, 31st of December and 1st of January is -1 day, not 364 days).304

In the following, we present the results, separately for temperature and precipitation. To305

keep the number of figures at a reasonable level, we selected a suite of relevant diagnostics for306

short-term variability, spells, monthly to interannual variability, and the annual cycle. Often,307

only one season is shown, in case of temperature, only either daily minimum or maximum308

temperature. A more comprehensive catalog of plots can be found in the supplementary309

information. The figures for all diagnostics are organised similarly, see Fig. 3 as an example.310

In this example, one diagnostic is shown for daily maximum and minimum temperature. In311

the top row, the observed indices are shown - here auto-correlation of daily maximum (left)312

and minimum (right) temperatures. Note that correlations on interannual and 7-year time313

scales have no corresponding observed indices, consequently no maps are drawn. The two314

panels below show the performance measures for these indices (top: maximum temperature,315

bottom: minimum temperature). Each box-whisker-plot represents one method: the raw316

driving data (ERA-Interim at the 2◦ resolution used as predictor for PP methods, at the317

native 0.75◦ resolution and the RACMO2 RCM), the MOS methods, the PP methods and the318

unconditional weather generators. The individual box-whisker-plots summarise the results for319

all 86 stations: the boxes give the 25%-75% range, the whiskers the maximum value within320

1.5 times the interquartile range; values outside that range are plotted individually. The thick321

colored horizontal bars show the medians for the individual PRUDENCE regions (Christensen322

and Christensen, 2007). Note that the number of stations entering these calculations differs323

from region to region (ranging from 3 in France to 21 in Scandinavia, typically around 10).324

A red asterisk indicates that values lie outside the plotted range. Results for individual325

4In some cases, the annual cycle of precipitation has two maxima. We will discuss below how the phase is

defined in this case.
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stations are - depending on the index - substantially affected by noise, but the median over all326

considered stations in general provides a robust estimate of the overall performance of a given327

method. Furthermore, the diagnostic is solely defined between observations and simulations,328

thus no observed indices exist.329

For a given index, all methods are shown for which the index may sensibly be calculated.330

That is, methods producing only monthly output are not shown for any indices based on daily331

values. Otherwise, all indices are presented, even though a method might not be designed to332

reproduce them. Such results are not intended to denounce specific methods, but rather to333

highlight the consequences of using a method in such a context. These situations will be made334

explicit to avoid misinterpretation of the results.335

As mentioned in the introduction, the methods participating in the experiment form an336

ensemble of opportunity. Also we have a list of candidate predictors for each method, but337

the actually selected set of predictors might be much lower for individual stations. To fully338

attribute differences in model performance to the approach, the particular implementation339

and the choice of predictors, dedicated sensitivity studies would be required. In many cases,340

conclusions may be drawn for groups of methods. For instance, all analog methods often be-341

have similarly independent of the different predictors and implementations. Thus, conclusions342

about analog-type methods as a whole can often be drawn. A discussion of differences within343

this type, however, would be very speculative, because the individual methods often differ344

both in the implementation and choice of predictors. The level of detail in our interpretation345

will thus differ from case to case. In some cases, any discussion would be too speculative - we346

then restrict ourselves to a description of the findings.347

3.1 Temperature348

short-term variability Figure 3 shows the results for lag-1 autocorrelation of summer349

daily maximum and minimum temperature as a measure of short-term persistence. The top350

row shows observations for daily maximum (left) and minimum (right) temperature. The351

corresponding plots for winter can be found in the supplementary information. For Tmax,352

summer persistence is relatively evenly distributed across Europe; for Tmin, persistence is353

notably lower over many regions. The bottom panels show the performance of the individual354

models.355

The spatial averaging of ERA-Interim results in a moderate overestimation of summer356

persistence of Tmax (upper panel), these biases are reduced by the RCM. Almost all MOS357

methods inherit the skill of the predictor data set, in particular the added value of the RCM.358

The regression based MOS method (MOS-REG) includes averaging across several grid boxes359

and thus overestimates persistence. All analog methods underestimate persistence of temper-360

ature. The reason might be twofold: first, the spatial predictor variability might be strongest361

for circulation-based predictors. Thus, analogs may be selected that best constrain circula-362

tion (and in turn precipitation, see Section 3.2). And second, large-scale analogs might be363

sufficiently dissimilar at local scales to deteriorate day-to-day variations. Understanding this364

problem requires further detailed analysis. The ANALOG-ANOM method uses predictors365

defined at a continental scale, which likely explains the low performance.366

As expected, all deterministic regression models overestimate persistence, as not all local367

variability is explained by large-scale predictors. This problem cannot be mitigated by inflated368

regression (MLR-ASI, MLR-AAI). All stochastic regression models randomise with white noise369
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(MLR-ASW, MLR-AAW; though conditional on the predictors) and thus underestimate per-370

sistence. The low performance of the SWG method may partly be explained by the use of371

continental-scale predictors in combination with a stochastic white-noise randomisation. The372

WT-WG method performs worst, as it is stochastic and additionally uses only sea level pres-373

sure as predictor. For the Iberian Pensinula and the UK, ERA-Interim overestimates summer374

persistence of Tmax, the RCM reduces the bias. Conversely, for Eastern Europe ERA-Interim375

is almost bias free, but the RCM reduces persistence. This performance is again inherited by376

many statistical methods.377

For Tmin (lower panel), the performance is consistently worse for all approaches, whith a378

strong tendency to overestimate summer persistence. The RCM, however, performs slightly379

worse than ERA-Interim. The relative performance across most other methods is similar to380

that for Tmax. The ISIMIP method, driven with ERA-Interim, is a notable exception - it381

has the lowest bias of all MOS methods. Most MOS methods leave the persistence bias es-382

sentially unchanged, the methods driven with reanalysis data have a lower bias, the methods383

driven with the RCM a higher. Interestingly, however, some QM-based bias correction meth-384

ods moderately improve the representation of persistence indirectly by adjusting marginal385

distributions. The persistence of summer Tmin is overestimated in the British Isles. But in386

contrast to the overall behaviour, this bias is reduced by the RCM (and again, this reduction387

is inherited by the MOS methods). The performance for most methods is best in the Alps.388

Spells Overall, the performance to simulate spells is similar to the performance to simulate389

short-term variability. The results for summer temperature spells are shown in Figure 4,390

measured in terms of the mean spell length. Recall that temperature-related spells are not391

defined by exceedances of absolute thresholds (e.g., 30◦C), but by the 90th percentile of392

daily maximum temperature, which varies from station to station and will be much lower in393

Scandinavia than in the Mediterranean (Table 1). The longest summer warm spells occur394

in Scandinavia, the shortest in the western Mediterranean. Summer cold spells are generally395

much shorter shortest in Northern Europe, and longest in the Mediterranean.396

ERA-Interim simulates slightly too long warm spells of Tmax (upper panel), in particular397

for the area averaged version. The RCM, again, adds value. MOS inherits the predictor398

performance (by construction, as the percentile-based spells are invariant to bias correction).399

Owing to the predictor averaging, the regression based MOS (MOS-REG) again performs400

considerably worse. Also the behavior of the PP methods is broadly consistent with that401

for short-term persistence: analog methods and stochastic white noise methods (MLR-ASW,402

MLR-AAW, WT-WG, SWG) simulate too short spells. This holds in particular WT-WG,403

driven only with sea level pressure. Weather generators slightly underestimate mean spell404

lengths, in particular those who underestimate short-term persistence. Persistence of summer405

warm spells of Tmax is consistently overestimated over the Mediterranean, a bias which is406

much improved by the RCM.407

The persistence for summer cold spells of Tmin (lower panel), consistent with the results408

for short-term persistence, is generally too high. The RCM deteriorates the performance of409

ERA-Interim. This performance is, again trivially, unchanged by the MOS methods. The410

PP methods perform similar as for warm spells, though with a tendency towards higher411

persistence. All weather generators perform well, consistent with the results for short-term412

persistence. Cold spells of summer Tmin are too long for the British Isles and (but to a lesser413

extent) the Mediterranean. Performance is best for the Alps.414
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Seasonality The amplitude of the annual cycle of Tmax (Figure 5) is small towards the415

Atlantic and the Mediterranean, and large in the continental climates of eastern Scandinavia416

and Eastern Europe. It peaks in July in continental central and eastern Europe, and slightly417

later in August towards the Atlantic. ERA-Interim slightly underestimates the amplitude418

of the seasonal cycle (upper panel) - likely linked to its resolution, as the further averaging419

increases the bias. The RCM in general adds value, but also increase spread across stations.420

Being seasonally trained, most MOS methods trivially capture the annual cycle well. Note,421

however, that also the quantile mapping methods without an explicity annual cyle perform422

well (GPQM, EQM, EQM-WT) for most stations. The authors do not understand the strong423

drop in performance of the MOS-REG method when driven with the RCM instead of ERA-424

Interim. Most PP methods perform reasonably well, even those without seasonal training,425

because the physical link between the predictors (including temperature) and the predictand426

is close. Only the WT-WG method sticks out: it is not seasonally trained and uses only427

sea level pressure as predictor. Thus, seasonality in circulation patterns is captured, but not428

the changes in temperature within these patterns. The weather generators perform well by429

construction.430

The phase of the seasonal cycle (lower panel) is captured by most methods. ERA-Interim431

peaks a day too late, the RCM increases the spread across stations. MOS methods perform432

well, even those with an explicit model of the seasonal cycle (GPQM, EQM, EQM-WT) are433

within ±2 days (apart from the MOS-REG method, when driven with the RCM). The analog434

methods perform reasonably well, although the version without seasonal training (ANALOG)435

has a comparably broad spread across seasons. For regression models, no seasonal training is436

required if the predictors are standardised (e.g., MLR-AAN, MLR-AAI compared to MLR-437

RAN). Biases in the ESD methods are caused by the monthly resolution of the data. Again,438

weather generators perform well by construction.439

Interannual Variability and Long-Term Trends Interannual variability of summer440

daily maximum temperature, measured by the variance of summer mean values, is lowest in441

the Mediterranean and Scotland, and consistently higher in Central and Eastern Europe and442

Scandinavia (Figure 6). ERA-Interim slightly underestimates interannual variability, again443

likely linked to the area averaging. The performance varies widely across stations. The RCM444

adds moderate value (high in the Mediterranean), but also spread. Simple additive MOS445

(RaiRat-M6) leaves interannual variability unchanged. Variances of the daily distribution are446

underestimated by ERA-Interim (see Gutiérrez and coauthors (2017)). The resulting correc-447

tion by quantile mapping inflates interannual variability, in particular for the Mediterranean,448

where it is overestimated by around 50%. MOS-REG underestimates interannual variability,449

in particular when driven with ERA-Interim, because it uses predictors averaged over several450

grid-boxes.451

All analog methods underestimate interannual variability, consistent with the results for452

short-term persistence. The ANALOG-ANOM method searches for continental-scale analogs453

within a one-month window around the calendar day of interest - this likely restricts the454

number of analogs and in turn also the represented variability. Interestingly, most regression455

methods dramatically underestimate interannual variability. The worst performing meth-456

ods are those without a seasonal cycle and non-standardised predictors (MLR-RAN), those457

without temperature predictors (ESD-EOFSLP, ESD-SLP, WT-WG) and those with white458

noise randomisation (MLR-ASW, MLR-AAW, WT-WG, SWG). Note also that both the ESD459

13

Page 13 of 47

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review
 O

nly

methods and the SWG method are defined on continental-scale predictors, which may not be460

suitable to capture local variations. Inflated regression by construction slightly increases the461

variance at interannual scales. WGs do not model long-term variations and thus underestimate462

interannual variability.463

In addition to considering the variance at the interannual scale, we also investigate the464

correlation between the downscaled time series and observations at the interannual scale.465

Prior to calculating correlations, the time series are linearly detrended. This analysis provides466

additional insight into the predictors required to explain longer-term variations. These cor-467

relations can only be calculated when simulated and observed time series are in synchrony.468

The RCM develops its own internal variability and thus reduces synchronicity. Therefore we469

have not shown results for the RCM and RCM-driven MOS. Equivalently, the unconditional470

weather generators are not in synchrony with observations and hence not shown. Correlations471

for ERA-Interim and essentially all deterministic MOS methods are high. It is not clear to472

the authors why CDFt and EQMWIC658 are so little synchronised - they deterministically473

transform the ERA-Interim predictors and should thus only marginally affect the temporal474

sequence.475

Also PP methods perform well in general. Exceptions are the ANALOG-ANOM method,476

the ESD methods, the WT-WG and the SWG method. Recall that ANALOG-ANOM takes477

analogs from a 30 day window around the calender day of interest - the identified analogs might478

therefore have a rather strong mismatch at the local scale and thus destroy synchronicity.479

Also, analogs of this method are defined over the whole European domain, which might result480

in additional discrepancies at the local scales. The ESD methods, which use either 2m-481

temperature or sea level pressure as predictor, perform worse compared to other regression482

models; again, also the ESD method uses predictors defined over the whole of Europe. The483

WT-WG and SWG methods perform rather bad, likely because they are based on white noise484

randomisation. The WT-WG additionally only uses sea level pressure as predictand, the SWG485

predictors are defined at the continental scale.486

To characterise decadal scale variations, we considered correlations between simulated and487

observed time series at the 7-year scale. The seasonal aggregated time series are filtered with488

a 7-year Hamming filter. Correlations are calculated on the filtered time series without any489

further detrending. The choice of 7 years is a compromise between the desired information490

about long time scales, and the limited length of the time series. The effective number of data491

points is thus low for each series (of the order of 5 per series), but still a coherent picture492

emerges when investigating larger regions.493

Figure ?? presents the results for summer (top panel) and winter (bottom panel) daily494

maximum temperature. The results are overall similar to those for interannual variability.495

Correlations are in general slightly lower during summer, in particular for ESD-SLP and496

WT-WG (driven by sea level pressure only) for which correlations are consistently negative.497

Correlations are lower on the Iberian Peninsula, for winter for the whole Mediterranean.498

Finally, we investigate the representation of long-term temperature trends by the different499

methods. Figure 8 displays the results for winter daily maximum temperatures in selected500

regions. Of course, no results for weather generators are shown, as these do not include any501

predictors or change factors to represent long-term changes. Note that in this experiment it is502

not relevant whether the trends are statistically significant, because long-term variations are503

imprinted by the ERA-Interim predictors - the right predictor choice should therefore capture504

large-scale forced trends. It is, however, relevant whether the simulated trends are statistically505
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distinguishable from the observed trends. Thus, we calculated 95% confidence intervals of the506

trend estimates, marked as grey shading in the panels. As trends differ very much across507

Europe, we calculated average trends across the PRUDENCE regions. The variations of508

trends within a region is indicated by whiskers; these denote 1.96 times the variance of all509

trend estimates across the region.510

Observed winter trends are highest in Scandinavia and lowest in the Mediterranean, which511

is consistent with polar amplification. ERA-Interim performs mostly fine, but overestimates512

trends in Central Europe, the Alps and the Meditrerranean (but note that the underlying513

ECA-D data are not homogenised, so a definite answer as to which trends are more realis-514

tic is impossible). The RCM underestimates trends in particular in Scandinavia, but also515

in the Alps and the Mediterranean. These trends are inherited by additive bias correction516

(RaiRat-M6), but notably modified by many quantile mapping methods due to inflation of517

daily variances. Note that also the ISI-MIP method, which is designed to perserve mean518

trends, modifies trends in some regions. These trend variations are substantial, but within the519

range of uncertainty of the observed trend estimates. The performance of PP methods again520

depends mainly on the predictor choice. Methods using only sea level pressure or temperature521

(but not both; ESD-EOFSLP, ESD-SLP, ESD-T2, WT-WG) tend to perform badly, although522

filtering of stations by PCA appears to strongly increase the link with the temperature pre-523

dictor on decadal scales (ESD-EOFT2). The ANALOG-ANOM, again, uses rather narrowly524

defined analogs (continental scale, within one month), the SWG method combines a white-525

noise stochastic approach with continental-scale predictors. The best performing methods526

(ANALOG-MP, ANALOG-SP, MO-GP, MLR, MLR-WT) all include circulation predictors527

and 2m temperature. Note, however, that 2m temperature is likely not well simulated by528

GCMs (see the discussion in Section 4).529

Summer trends of daily maximum temperatures (see supplementary information) are high-530

est in Eastern Europe and the Alps. ERA-Interim in general captures these trends, but un-531

derestimates them in the Alps and overestimates them in the Mediterranean. The RCM un-532

derestimates summer trends everywhere, in particular in the Alps where the simulated trend533

is not consistent with the observations. The performance of the statistical post-processing534

methods is similar to that for winter.535

3.2 Precipitation536

short-term variability As a measure of persistence in precipitation, we consider wet-wet537

and dry-wet transition probablities (Figure 9. Short-term persistence in precipitation amounts538

has not been investigated. Winter Wet-wet transition probabilities (top left panel) are low in539

southern Europe and high along the Atlantic coasts as well as in high mountains. Winter dry-540

wet transition probabilities (top right panel) are generally lower than wet-wet probabilities,541

with low values in southern Europe.542

Because it represents area average precipitation, ERA-Interim overestimates wet-wet prob-543

abilities, in particular when further averaged. Here the RCM adds substantial value. MOS544

methods perform consistently well. Interestingly, the simple rescaling by the method RaiRat-545

M6 appears to perform en par with explicit wet day corrections by quantile mapping (note546

that the BC method only treats zero precipitation as dry). MOS-AN defines analogs based on547

simulated large-scale precipitation fields - these may not discriminate well between local dry548

and wet days. MOS-GLM and VGLMGAMMA are both stochastic methods with white noise549
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randomisation and consequently simulate too weak wet persistence. The 4-grid-box-averaging550

of the MOS-GLM input appears to considerably improve the performance though. Yet difficul-551

ties in regression-based MOS techniques are evident from the low performance of MOS-GLM552

when driven with RCM data: the RCM strongly perturbs the local day-to-day correspondence553

between observations and simulation, which is required for a successful calibration.554

The analog methods perform well for wet-wet transitions, most deterministic regression555

models fail. In fact, simple linear regression models (MLR-RAN/RSN/ASW/ASI) are by556

construction not capable of simulating daily precipitation variability - still the corresponding557

results are included for illustration and comparison. Only the deterministic generalised linear558

model (GLM) performs reasonably well. Most stochastic methods with white noise randomi-559

sation (GLM-WT, WT-WG, SWG) slightly underestimate wet-day-persistence, in particular560

WT-WG, which uses only sea level pressure, but no humidity predictors. The stochastic GLM561

with predictors of the circulation as well as temperature and specific humidity at cloud base is562

the best performing PP method. Interestingly, the structurally similar GLM-P (at least for the563

occurrence process) method with similar predictors performs substantially worse. One reason564

might be that the former defines predictors at the synoptic scale, the latter at the grid-box565

scale. For wet-day occurrence, vertical velocities are important which can be determined from566

horizontal convergence or divergence. Grid box pressure or velocities, however, do not carry567

such information. Still, further analyses comparing different predictor choices are required to568

fully understand the performance of specific predictors.569

Dry-wet transition probabilities are well represented by ERA-Interim. The RCM has a570

slightly positive bias. Surprisingly, however, MOS appears to reduce dry-wet transitions (by571

wet day adjustments). Thereby it induces a negative bias for ERA-Interim, but removes the572

positive RCM bias. Only for the UK, the positive RCM bias is even increased by many meth-573

ods. Stochastic MOS (MOS-GLM, VGLMGAMMA) simulate too many dry-wet transitions,574

but the averaging of simulated precipitation across grid-boxes seems to substantially improve575

the problem (MOS-GLM-E vs. VGLMGAMMA-E). The performance of the different PP576

methods depends strongly on both their structure and the chosen predictors. The authors577

do not fully understand the differences in performance of different implementations. The two578

best performing methods are ANALOG-ANOM and GLM. Both methods include circulation579

based predictors (which should indirectly give information about lifting) and, at least indi-580

rectly, measures of relative humidity (dew point temperature depression; specific humidity581

in combination with temperature). Other methods, however, include similar predictors, but582

perform worse. Recall, however, that we only know the candidate predictors used for cali-583

bration, not the finally selected predictors at the given stations. The SS-WG and GOMEZ584

weather generators slightly overestimate dry-wet transitions, even though this aspect is ex-585

plicitly calibrated. Recall that the MARFI weather generator uses a wet-day threshold of 0.5586

mm, resulting in a strong overestimation of dry-wet transitions when evaluated against a 1587

mm threshold.588

Spells The behaviour of mean spell lengths - as well as the corresponding method perfor-589

mance - is closely tied to that of transition probabilities (Figure 10). Mean winter wet-spell590

lengths (top left) are high along the along the Atlantic west coasts and mountain ranges, and591

short in Eastern Europe and the Mediterranean. Summer dry spells (top right) are short in592

Central and Northern Europe, and long in the Mediterranean.593

ERA-Interim underestimates winter wet spells because of spatial averaging (upper panel).594
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At first sight, the RCM adds no value. Yet the RCM reduces the ERA-Interim bias of too595

many wet-days Gutiérrez and coauthors (2017) as well as the bias in too high a wet-wet596

transition probability (see above). As a result, the RCM implicitly adds value in the sub-597

sequent bias correction, in particular over the Iberian Peninsula. Quantile mapping without598

seasonal training (GQM, GPQM, EQM) overestimates winter wet spell lengths. Interestingly,599

conditioning on weather types (EQM-WT) essentially has the same effect as an explicit sea-600

sonal training (EQMs), indicating that biases are circulation dependent and translate into601

seasonally-dependent biases, because the frequency of weather types changes throughout the602

year. The MOS-AN, MOS-GLM and VGLMGAMMA perform very similar as with regard to603

short-term persistence. In particular the averaging of predictors across 4 grid boxes in the604

stochastic methods (MOS-GLM-E vs. VGLMGAMMA-E) seems to be crucial to increase skill.605

The performance of the PP methods scatters widely, as already for short term persistence.606

Only the ANALOG-ANOM and GLM perform well. The SS-WG and GOMEZ Weather gen-607

erators slightly underestimate wet spell lengths. Again, the MARFI weather generator sticks608

out because of the different wet day threshold.609

The performance for summer dry spells is overall similar to that for winter wet spells.610

ERA-Interim spells are again too short, but here the RCM adds substantial value, likely due611

to a reduction of the area-average-related drizzle effect. MOS appears to increase the length of612

dry spells as a consequence of the wet day correction. For ERA-Interim this leads to unbiased613

results, whereas the RCM performance is deteriorated towards too long dry spells. This614

problem occurs in particular for quantile mapping methods, which are not seasonally trained615

(GQM, GPQM, EQMs, EQM-WT). Analog methods perform slightly better for dry- than for616

wet spells, the GLM performs worse than for wet spells, but still reasonably well. Weather617

generators perform slightly better for dry- than for wet spells. Owing to the different wet-day618

threshold, the MARFI weather generator is slightly more biased and has a much higher spread619

across stations. In general, the length of dry spells is overestimated in the Mediterranean and620

France.621

Seasonality Seasonality of precipitation is measured by the relative amplitude (defined622

as the difference between precipitation in the maximum and minimum of the seasonal cycle,623

relative to the annual mean) and phase (defined as the position of the maximum of the seasonal624

cycle). Although the calculation is identical to that of the seasonal cycle of temperature,625

some details will be relevant in particular for precipitation. In fact, the seasonal cycle of626

precipitation has two peaks in many regions, sometimes even shoulders or peaks that may be627

artefacts of sampling variability. Following Favre et al. (2016), we therefore filter the seasonal628

cycle by four harmonics - this model is flexible enough to capture smooth - likely physical -629

variations, but at the same time filters out residual noise (see Figure 2). The amplitude of630

the seasonal cycle is simply defined as the difference between maximum and minimum. For631

the phase definition, further steps have been carried out. They are a compromise between632

being simple and transparent, but at the same time capturing the complex seasonal behaviour.633

First, secondary peaks with an amplitude (defined as the difference between the closest local634

minimum and the peak itself) of less than 10% of the total amplitude have been removed,635

as well as neighboring peaks with a minimum in between that is less than 10% of the total636

amplitude lower than the mean height of the two peaks. The two peaks are then replaced637

by a single peak by averaging their height as well as phase. The first step removes all minor638

peaks, the second step removes dips in an overall broad maximum, which are both likely an639
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artefact of sampling variability. Visual inspection of observed seasonality for all 86 stations640

corroborates that this definition conforms with expert judgment. We then record the phase641

of the remaining highest and second highest peak for observations and all simulations. The642

observed phase is then defined as that of the highest peak. The simulated phase is defined as643

the phase of that of the two highest peaks, which is closest to the observed. The latter definition644

avoids that, if highest and second highest peak have similar height and are swapped in the645

simulation, an artifically large phase bias is calculated. Apart from this phase definition we646

considered other measures for characterising the timing of the seasonal cycle, but rejected all647

other possibilites. We considered, e.g,. correlations between simulated and observed seasonal648

cycle, but this measure is difficult to interpret in terms of an actual mismatch in timing.649

Additionally, we also considered to calculate phases of secondary peaks, but concluded that a650

plain and transparent presentation of performance across Europe would be difficult.651

Seasonality of precipitation (Figure 11) has a strong north-south gradient, ranging from652

less than 50% of annual mean precipitation in central-west Europe to more than 200% in653

southern Spain and southern Greece. The annual cycle peaks in winter along the Atlantic and654

the Mediterranean, and in summer in Central and eastern Europe and eastern Scandinavia.655

Reanalysis and RCM underestimate the amplitude of the annual cycle, although the RCM656

adds considerable value. MOS generally performs well, although methods without seasonal657

training (GQM, GPQM, EQM, EQM-WT) overestimate the relative amplitude by about 20%.658

Note, however, that conditioning the correction on weather types (EQM-WT) substantially659

reduces this bias. PP performance again depends on the method-type, the treatment of660

seasonality, and the choice of predictors. The analog methods perform reasonably well, linear661

regression models all underrepresent the relative amplitude (MLR-RAN/RSN/ASW/ASI).662

The good performance of the GLM method indicates that a sensible model structure and663

predictor choice (circulation and humidity) may allow to capture the seasonal cycle without664

an explicit model. The phase of the seasonal cycle is well captured by most methods. The665

bad performance of WT-WG indicates that sea level pressure alone does not determine the666

seasonal cycle.667

Interannual Variability and long-term trends Interannual variability of precipitation668

varies unsystematically in space (Figure 12). Values, however, tend to be higher at higher ele-669

vations. As for temperature, reanalysis data underrepresent interannual variability, especially670

at low resolution. But in contrast to temperature, the RCM succeeds in reducing the overall671

bias, in particular over the Mediterranean. Deterministic MOS methods suffer strongly from672

variance inflation, which in cases doubles the internnual variance. Regression based MOS by673

contrast tends to underestimate interannual variability, consistent with the driving model.674

The performance of PP methods, again, varies considerably. Note, however, that all well675

performing methods include not only circulation-based predictors, but also measures of hu-676

midity (ANALOG-ANOM, ANALOG, ANALOG-SP, GLM-det, GLM, GLM-WT). Weather677

generators, as expected, underestimate interannual variability - even more so for the MARFI678

weather generator because of the different wet-day threshold.679

Interannual correlations are, as expected, lower for precipitation than for temperature:680

only about 50% of the local variability (∼ 0.72) seems to be explained by the area average,681

the rest is due to local variability. Deterministic MOS methods do not modify this correlation682

(again, we cannot explain the performance of EQM-WIC658). For the stochastic MOS meth-683

ods, the value of averaging simulated precipitation across neighboring grid boxes is evident684
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(compare MOS-GLM-E and VGLMGAMMA-E). All PP methods explain substantially less685

of the interannual variability than the grid-box ERA-Interim. The worst performing methods686

are ANALOG-ANOM (analogs searched within 30 day window only, continental scale pre-687

dictors and analogs), MLR-ASW (Gaussian white noise radomisation), WT-WG (stochastic,688

only sea level pressure as predictors) and SWG (stochastic, continental scale predictors). Note689

the substantial difference between the - structurally similar - GLM and SWG models. GLM690

defines predictors on a national scale, SWG on a continental scale.691

Seven year correlations betweeen simulations and observations are similar to interannual692

correlations; they are much higher though in winter than in summer (see supplementary693

information).694

Finally, we investigate the performance in representing relative trends in seasonal mean695

precipitation. Figure 13 presents the results for summer and selected regions. All observed696

trends are essentially zero and insignificant, with moderately positive values in Central Europe.697

We nevertheless show the results to demonstrate the behaviour of the different methods. ERA-698

Interim captures the observed trends in some regions, but simulates a zero trend for Central699

Europe, and a negative trend for the Alps. The RCM simulates positive trends for the British700

Isles, Central Europe, Scandinavia and the Alps, although all these are within the range of701

sampling uncertainty. The MOS methods tend to inflate the wrong RCM trends, as well as the702

wrong negative ERA-Interim trends in the Alps. Many PP methods capture observed trends703

quite well, although the performance changes substantially - and not for obvious reasons - from704

region to region. Idenifying necessary predictors appears to be much less straight forward than705

in case of temperature trends.706

4 Discussion and Conclusions707

We have systematically evaluated how different types of downscaling and bias correction ap-708

proaches represent temporal aspects. These aspects comprise systematic seasonal variations709

and residual temporal dependence such as short-term persistence, spell length distributions710

and interannual to long-term variability variability. Additionally, we considered long-term711

trends, which are a superposition of long-term internal climate variability and forced trends.712

Our results complement, corroborate and extend earlier findings, in particular by Frost et al.713

(2011), Hu et al. (2013), Benestad and Haugen (2007) and Huth et al. (2015).714

Overall, the behaviour of the different approaches turned out to be as expected from their715

structure and implementation. For the interpretation of the results, it has to be acknowledged716

whether a particular aspect of a model is explicitly calibrated - a good performance is then717

more or less trivial - or emerges from the model, e.g., by well chosen meteorological predictors.718

A summary of the results (apart from correlations and long-term trends) can be found in719

Figure 14. The raw ERA-Interim data are typically biased compared to observed station data,720

stronger so for the spatially aggregated 2◦ version. Note, however, that these discrepancies are721

not neccesarily bias in the sense of model errors, but simply reflect the scale-gap between area722

averages and point values (Volosciuk et al., 2015). The chosen RCM adds value to reanalysis723

data for most considered aspects, for all seasons and for both temperature and precipitation.724

Note, however, that we included just one RCM in our validation study. One should be careful725

in generalising these results because RCMs may differ considerably in their ability to reproduce726

temporal characteristics (Kotlarski et al., 2014; Huth et al., 2015).727
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The MOS methods considered in this intercomparison do not explicitly change the resid-728

ual temporal dependence (and it is questionable whether they should explicitly do so, as such729

changes would destroy the temporal consistency with the driving model). However, quantile730

mapping approaches modifying the marginal distribution (including wet day probabilities)731

do indirectly improve temporal variability. For temperature, some implementations slightly732

improve short-term persistence, but in particular for precipitation, the representation of tran-733

sition probabilities as well as wet and dry spells is substantially improved. Interestingly,734

dry-wet transitions and dry-spell lengths are much better for the bias-corrected RCM than735

for bias-corrected reanalyses, even though the added value of the RCM for these indices was736

marginal only. Interannual and long-term variability is typically inflated by MOS. Moder-737

ately for temperature, but substantially for precipitation. These findings corroborate earlier738

results of adverse inflation effects by quantile mapping (Maraun, 2013). long-term trends are739

inherited from the driving model, but may be substantially deteriorated by further variance740

inflation. The annual cycle is improved by almost all MOS methods - but recall that most741

methods are seasonally trained. Conditioning on weather types (EQM-WT) seems to a suc-742

cessful - and physically more defensible - variant to better represent the annual cycle. In743

any case, our results clearly show that - for many but not all temporal aspects - dynamical744

downscaling prior to the bias correction substantially improves the results compared to a di-745

rect bias correction from the global model5. The reason of course is that the bias correction746

does not improve the representation of meso-scale processes. Thus, depending on the context,747

dynamical downscaling may be advisable or even essential.748

The performance of the participating PP methods varies strongly from aspect to aspect749

and method to method. Analogue methods show difficulties representing temperature vari-750

ability, but perform quite well for precipitation variability. Two reasons may contribute to751

the low performance for temperature: first, predictors describing circulation and humidity752

have much stronger spatial-temporal variability than temperature fields and therefore domi-753

nate the definition of the analogs. Second, predictors and analogs are often defined on large754

scales. Locally, differences between actual weather and analogs may be substantial. Thus,755

even if analogs may describe a smooth temperature evolution at large scales, the resulting756

local sequence might be too noisy.757

Deterministic linear regression models perform fairly well for temperature, but overesti-758

mate short-term persistence and spell lengths. White noise randomisation deteriorates the759

representation of these aspects. Linear regression models, in any variant, are far too sim-760

plistic for precipitation downscaling. They strongly overestimate wet-wet transitions and the761

length of wet spells, while stochastic methods underestimate these aspects. Biases for dry-762

wet transitions and dry-spell lengths tends to be opposite to those for wet-wet transitions763

and wet-spell lenghts, but they are substantial for almost all PP methods. Only a stochastic764

generalised linear model with suitable predictors has shown to perform well (GLM). A struc-765

tually similar model (SWG) - with similar predictor variables, but defined on the continental766

scale - performs notably bad. The representation of the annual cycle depends strongly on767

the individual method; whether or not a method is seasonally trained plays a minor role -768

the choice of reasonable predictors seems to be a key factor. For temperature, temperature769

related predictors are required; for precipitation, circulation and humidity based predictors.770

There is evidence that biases in interannual variability of temperature mainly depend on the771

5Note in this context, that the ERA-Interim is an “ideal” GCM in the sense that it is forced to closely follow

the observed large-scale weather.
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method type (again, analog methods and white noise randomisation underestimate internal772

variability), on the predictor variables (all well performing methods combine circulation and773

temperature predictors) and the domain size (all methods using continental-size predictor774

domains perform badly). For precipitation, the inclusion of predictors that represent both775

circulation and humidity appears to be crucial. long-term trends in temperature are cap-776

tured by models with surface temperature predictors (see the critical discussion below), for777

precipitation no conclusions can be drawn based on the available ensemble, and the rather778

low signal-to-noise ratio. Overall, white-noise randomisation with continental-scale predictors779

turned out to perform weakly. Apparently, the variance explained by predictors at such large780

scales is rather low, such that the residual white noise is too strong to retain the overall781

temporal dependence.782

Unconditional weather generators tend to perform well for the aspects they have been783

calibrated for: they only slightly underestimate short-term temperature persistence and wet-784

wet transitions, but slightly overestimate dry-wet transitions. Nevertheless also many non-785

calibrated aspects are faily well represented. Temperature spell lengths are slightly underes-786

timated, in particular for winter cold spells and summer warm spells. Wet spell lengths are787

well represented, dry spell lengths underestimated. Only interannual variability is substan-788

tially underrepresented. These effects are well known issues (Wilks and Wilby, 1999) and are789

relevant also for decadal variability. Seasonality is, by construction, well simulated.790

Overall, the performance is similar in different seasons - but recall that in particular most791

MOS methods and all weather generators are calibrated to do so. These explicit seasonal792

models, however, may be questioned for being used in a future climate: seasonally varying793

biases indicate that seasonal biases may also change differently on long time scales.794

Our findings highlight a series of open research questions, and the need for a range of795

improvements. MOS methods perform overall very well. Some key issues, however, remain796

to be addressed: the inflation (or potentially deflation) of interannual and long-term vari-797

ability and trends is of course directly tied to the simplicity of quantile mapping compared798

to MOS methods in weather forecasting and the PP methods presented here: whereas the799

latter express physical relationships between large and local scales at least rudimentarily as800

regression models and thereby can distinguish between forced and local internal variability,801

quantile mapping adjusts only long-term distributions of daily values without any physical802

basis. This calibration is especially problematic when a scale gap between predictand and803

predictor is to be bridged (Maraun, 2013). The reason for the calibration, of course, is that804

regression models cannot easily be calibrated in a free running climate model, which is not in805

synchrony with observations Maraun et al. (2010). More research is needed to understand the806

link between biases in short-term variability and long-term variability. Some methods have807

been developed to separate variability on different scales, and to adjust them independently,808

other methods have been developed to preserve climate model trends to various degrees (Li809

et al., 2010; Haerter et al., 2011; Hempel et al., 2013; Pierce et al., 2015). The physical as-810

sumptions underlying these different methods need to be better understood. In any case, our811

results show that any bias correction relies on climate models that simulate realistic trends.812

In case of downscaling to a finer resolution, it might be useful to separate the bias correction813

from the downscaling, i.e., apply a correction against gridded observational data, and then814

implement a stochastic downscaling model against point data (Volosciuk et al., 2017). Re-815

gression based MOS methods have been presented as further alternatives (MOS-REG/GLM,816

VGLMGAMMA), but these cannot be calibrated to standard climate model simulations. The817
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results show that even typical RCM hindcast simulations (where the RCM is driven with a818

reanalysis, MOS-REG-R and MOS-GLM-R) are not sufficiently synchronous to ensure a suc-819

cessful calibration. A way out might be to condition bias correction on weather types, such820

as demonstrated by EQM-WT.821

Various research strands are possible and necessary to better understand and to improve822

PP methods. For analog methods, in particular in case of temperature, a way forward could823

be based on defining the analogs not on a single day, but rather on a sequence of days (e.g.824

Beersma and Buishand, 2003). Such approaches, however, require long time series. Note, how-825

ever, that analog methods cannot represent substantial climatic changes, where no analogs826

might be available to sample from Gutiérrez et al. (2013). An obvious improvement of regres-827

sion models is a better representation of residual variability - for temperature the in linear828

models for temperature, and generalised linear models for precipitation. Here, conditional829

weather generators are promising that extend the white noise randomisation (both for tem-830

perature and precipitation) by a Markov component. For instance, one may include not only831

meteorological predictors, but also simulated predictand values from previous days as predic-832

tors (Chandler and Wheater, 2002; Yang et al., 2005).833

The crucial questions regarding the PP approach are, however, not an improvement in834

model structure, but a better understanding of predictor choice. Unfortunately, the available835

model ensemble did not allow for a stringent identification of suitable predictors. Nevertheless,836

the results highligh a couple of issues. Note that these are questions of physics more than of837

statistics. First, what is a suitable domain size? The GLM-P and GLM methods include a838

structurally similar rainfall occurrence process and a - at first sight - similar set of predictors.839

But the GLM method performs far better than GLM-P in simulating all occurrence-related840

aspects. A major difference between the two implementations is that GLM uses synoptic841

scale predictors, whereas GLM-P relies on grid-box predictors. Precipitation occurrence is842

controlled by relative humidity and vertical velocity. The latter is typically represented by843

predictors of the horizontal circulation. The underlying reasoning is that horizontal divergence844

and convergence determines vertical descent and ascent. Convergence and divergence, in845

turn, may be implicit in large-scale pressure fields, but they are not represented by grid-box846

pressure values. Thus, the choice of predictor variables depends on the domain size. Many847

methods with limited performance, in particular for temperature, where based on continental-848

scale predictors. Thus, there is evidence that such predictor domains are simply too large to849

successfully represent local variability. Here one has to trade-off between downscaling across850

large areas and precision at local scales. In fact, we see the main strength of PP methods not in851

competing with RCMs across whole continents, but rather in providing tailored region-specific852

projections.853

Second, which predictors are required for representing long-term trends? We demonstrated854

that model performance for the same set of predictors differed substantially for short-term per-855

sistence and long-term changes. The reason of course is that downscaling methods are cali-856

brated to day-to-day-variability, but are intended to work on long-term variability (Huth et al.,857

2015). For temperature, a combination of temperature and circulation predictors appeared858

to faily well explain long-term trends. Precipitation, however, is a more complex nonlinear859

process, and no method convincingly captured trends in all considered regions. A further860

complicating issue is the low signal to noise ratio: all trends, and all misrepresentations, are861

still within the sampling uncertainty.862

Weather generators do have an explicit model of the short-term temporal dependence,863
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but those variants participating in this intercomparison did not include any meteorological864

predictors. As a result, these methods underestimated long-term variability - it was not865

explicity modelled. Also here improvements are possible, e.g., by conditioning the weather866

generator on monthly aggregates (being generated by the separate monthly WG or taken from867

the driving data - e.g. GCM, RCM or reanalysis) to improve the representation of interannual868

variability (Dubrovský et al., 2004).869

This study was based on a perfect predictor setting to isolate downscaling skill. Therefore,870

we did not investigate the performance with imperfect predictors or boundary conditions from871

free running GCMs. Downscaling methods - apart from unconditional weather generators -872

to a large extent inherit the errors in representing temporal variability of the driving models873

(Hall, 2014). The downscaling performance may, therefore, drop considerably, when driven by874

imperfect forcing from a GCM. For MOS, the issue is rather subtle: marginal biases in present875

climate are by construction removed, hence it is difficult to identify fundamental GCM errors876

such as the misrepresentation of the large-scale circulation and its temporal structure. Thus,877

also non-calibrated aspects, in particular the temporal aspects, should thus be evaluated.878

For PP one typically assumes that large-scale predictors from the free atmosphere fulfill879

the PP assumption. This assumption should be tested for GCMs. Again, evaluating temporal880

aspects might be more informative than evaluating marginal aspects - often, predictors are881

based on anomalies, such that mean biases are implicitly removed. But even more, many PP882

predictors are not defined at large scales, and not chosen from the free atmosphere. For in-883

stance, those methods that best represented temperature trends all relied on 2m-temperature.884

In the reanalysis, which has been used as predictors, temperature observations have been885

assimilated into the model, such that grid-box variability and long-term are likely correctly886

represented in data rich regions. Local surface feedbacks that modulate temperature vari-887

ability are thus implictly accounted for. But a free running GCM will likely not correctly888

represent these feedbacks, such that GCM simulated 2m temperature will likely not fulfill the889

PP assumption. Similar arguments apply for grid box values of, e.g., 10m winds.890

Even though we investigated the performance to represent observed trends, we can only891

draw limited conclusions about representing future trends. MOS relies on credibly simulated892

grid box trends - the ERA-Interim trends are approximately correct by construction, the893

RCM show substantial deficiencies. But also for PP methods, our findings are far from being894

conclusive. For temperature, as discussed before, the PP assumption for relevant predictors895

may not be fullfilled. For precipitation, simply no conclusions are possible because of the low896

signal-to-noise ration. In any case, a method performing badly with perfect predictors will not897

perform better with imperfect predictors. Passing this evaluation is therefore a necessary, but898

not a sufficient requirement for a method to be applicable under climate change conditions.899

This discussion shows that further studies are required to establish the skill of down-900

scaling under simulated future conditions. The VALUE community is planning additional901

experiments Maraun et al. (2015): GCM predictor experiments to asses the performance un-902

der imperfect predictors, and pseudo reality experiments to establish statistical downscaling903

skill in simulated future climates. Additionally, we have identified a range of open questions904

that can be addressed within our perfect predictor experiment, in particular related to the905

predictor choice of PP methods. The metadata and complete results for individual methods906

are available from the VALUE portal www.value-cost.eu/validationportal. They can be907

downloaded and further analysed. Additionally, we encourage dedicated sensitivity studies908

based on the ensemble at hand.909
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Appendix910

Similarly to the portrait diagram in Sillmann et al. (2013), Figure 14 summarises the perfor-911

mance of the different methods for different indices in one (color-coded) value. To make these912

comparable across methods and indices, a reference scale has to be defined. This scale cannot913

simply be measured in terms of the best and worst performing methods for an index, as such914

a scale would only measure relative performance, not absolute performance. For instance, one915

would not be able to distinguish an index that is well represented from one that is poorly916

represented by all methods. Sillmann et al. (2013) define the variability of an index in space917

as reference scale. But this scale cannot be applied to a single series, and it cannot distinguish918

between indices that are well modelled by al methods across space (e.g., the seasonal cycle)919

and indices that are badly modelled (e.g., interannual variability). Thus, we attempt to define920

natural scales for different types of indices:921

• For biases in mean temperature, we define twice the standard deviation of daily vari-922

ability as scale. For Gaussian distributed variables, this range spans roughly 95% of the923

probability mass.924

• For biases of temperature indices, which may be expressed as anomalies (such as the 20925

year return value or the amplitude of the seasonal cycle), we chose the actual modulus926

of the anomaly (i.e., the difference of the return value and mean temperature, or the927

amplitude itself) as reference scale.928

• For relative biases, which assume only positive values (such as for temperature variance,929

precipitation intensity or mean spell length), a natural scale is the observed value itself.930

• For the phase of the seasonal scale we (somewhat arbitrarily) define one month as a931

reference scale.932
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Code Tech ST AC SE Predictors Domain Reference

MOS

RaiRat-M6 S no no yes temperature gridbox Räisänen and Räty (2013)
RaiRat-M7 S no no yes temperature gridbox Räisänen and Räty (2013)
RaiRat-M8 S no no yes temperature gridbox Räisänen and Räty (2013)
SB S no no yes temperature gridbox
ISI-MIP S/PM no no yes temperature gridbox Hempel et al. (2013)
DBS PM no no yes temperature gridbox Yang et al. (2010, 2015)
GPQM PM no no no temperature gridbox Bedia et al. (2016)
EQM QM no no no temperature gridbox Bedia et al. (2016)
EQMs QM no no yes temperature gridbox Bedia et al. (2016)
EQM-WT QM/WT no no no temperature gridbox Bedia et al. (2016)
QMm QM no no yes temperature gridbox Li et al. (2010)
QMBC-BJ-PR QM no no yes temperature gridbox Pongrácz et al. (2014)

Bartholy et al. (2015)
CDFt QM no no yes temperature gridbox Vrac et al. (2012)
QM-DAP QM no no yes temperature gridbox Štěpánek et al. (2016)
EQM-WIC658 QM no no yes temperature gridbox Wilcke et al. (2013)
RaiRat-M9 QM no no yes temperature gridbox Räisänen and Räty (2013)
DBBC QM no no yes temperature gridbox
DBD QM no no yes temperature gridbox
MOS-REG TF yes no no temperature 4 gridboxes Herrera et al. (2017)
FIC02T PM/A/TF no no yes temperature gridbox
PP

FIC01T A/TF no no yes Z1000+500 nat. > gridb.
ANALOG-ANOM A no no yes SLP/TD/T2/U+V+Z850 continental Vaittinada Ayar et al. (2016)
ANALOG A no no no SLP/T2/T850+700+500/Q850+500/Z500 national Gutiérrez et al. (2013)

San-Mart́ın et al. (2017)
ANALOG-MP A no no yes Z1000+500 > U+V600/T850 nat. > gridb. Obled et al. (2002)

Raynaud et al. (2017)
ANALOG-SP A no no yes Z1000+500 > T2/T2-TD nat. > gridb. Obled et al. (2002)

Raynaud et al. (2017)
MO-GP TF no no no full standard set gridbox Zerenner et al. (2016)
MLR-T TF no no no T2/SLP/U+V10m/T+Q+U+V850+700+500 gridbox
MLR-RAN TF no no no Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-RSN TF no no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-ASW TF yes no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-ASI TF no no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-AAN TF no no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-AAI TF no no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-AAW TF yes no yes Z500/T850 gridbox Huth (2002); Huth et al. (2015)
MLR-PCA-ZTR TF no no yes Z850/T850/R850 continental Hertig and Jacobeit (2008)
ESD-EOFSLP TF/WT no no yes SLP continental Benestad et al. (2015a)
ESD-EOFT2 TF/WT no no yes T2 continental Benestad et al. (2015a)
ESD-SLP TF/WT no no yes SLP continental Benestad et al. (2015a)
ESD-T2 TF/WT no no yes T2 continental Benestad et al. (2015a)
MLR TF no no no SLP/T2/T850+700+500/Q850+500/Z500 national Gutiérrez et al. (2013)
MLR-WT TF/WT yes no yes SLP/T2/T850+700+500/Q850+500/Z500 national Gutiérrez et al. (2013)
WT-WG WT/WG yes no no SLP national Gutiérrez et al. (2013)
SWG TF/WG yes no yes SLP/T2/TD/U+V+Z850 continental Vaittinada Ayar et al. (2016)
WG

SS-WG WG yes yes yes NA NA Keller et al. (2015, 2016)
MARFI-BASIC WG yes yes yes NA NA
MARFI-TAD WG yes yes yes NA NA
MARFI-M3 WG yes yes yes NA NA
GOMEZ-BASIC WG yes yes yes NA NA
GOMEZ-TAD WG yes yes yes NA NA

Table 2: Participating methods for temperature. Techniques: S: additive correction; PM: para-
metric quantile mapping; QM: empirical quantile mapping; A: analog method; TF: regression-
like transfer function; WT: weather typing; WG: weather generator. Explicitly modelled:
ST: stochastic noise, AC: autocorrelation, SE: seasonality. SLP: sea level pressure, T2: 2m-
temperature, T: temperature, TD: dew point temperature, Z: geopotential height, Q: specific
humidity, R: relative humidity, U,V,Z: velocities. A> indicates a two-step method. For the full
VALUE standard set of predictors and further details on the methods see Gutiérrez and coau-
thors (2017) or http://www.value-cost.eu/validationportal/app#!downscalingmethod.
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Code Tech ST AC SE Predictors Domain Reference

MOS

Ratyetal-M6 S no no yes precipitation gridbox Räty et al. (2014)
Ratyetal-M7 S no no yes precipitation gridbox Räty et al. (2014)
ISI-MIP S/PM no no yes precipitation gridbox Hempel et al. (2013)
DBS PM no no yes precipitation gridbox Yang et al. (2005, 2015)
Ratyetal-M9 PM no no yes precipitation gridbox Räty et al. (2014)
BC PM no no yes precipitation gridbox Monjo et al. (2014)
GQM PM no no no precipitation gridbox Bedia et al. (2016)
GPQM PM no no no precipitation gridbox Bedia et al. (2016)
EQM QM no no no precipitation gridbox Bedia et al. (2016)
EQMs QM no no yes precipitation gridbox Bedia et al. (2016)
EQM-WT QM/WT no no no precipitation gridbox Bedia et al. (2016)
QMm QM no no yes precipitation gridbox Li et al. (2010)
QMBC-BJ-PR QM no no yes precipitation gridbox Pongrácz et al. (2014)

Bartholy et al. (2015)
CDFt QM no no yes precipitation gridbox Vrac et al. (2012)
QM-DAP QM no no yes precipitation gridbox Štěpánek et al. (2016)
EQM-WIC658 QM no no yes precipitation gridbox Wilcke et al. (2013)
Ratyetal-M8 QM no no yes precipitation gridbox Räty et al. (2014)
MOS-AN A no no no precipitation gridbox Turco et al. (2011, 2017)
MOS-GLM TF yes no no precipitation 4 gridboxes Herrera et al. (2017)
VGLMGAMMA TF/WG yes no yes precipitation gridbox Wong et al. (2014)
FIC02P PM/A/TF no no yes precipitation gridbox
FIC04P PM/A/TF no no yes precipitation gridbox
PP

FIC01P A/TF no no yes Z1000+500 nat. > gridb.
FIC03P A/TF no no yes U+V10m/U+V500/R850+700 nat. > gridb.

> R850/Q700
ANALOG-ANOM A no no yes SLP/TD/T2/U+V+Z850 continental Vaittinada Ayar et al. (2016)
ANALOG A no no no SLP/T2/T850+700+500/Q850+500/Z500 national Gutiérrez et al. (2013)

San-Mart́ın et al. (2017)
ANALOG-MP A no no yes Z1000+500 > U+V600/T850 nat. > gridb. Obled et al. (2002)

Raynaud et al. (2017)
ANALOG-SP A no no yes Z1000+500 > T2/T2-TD nat. > gridb. Obled et al. (2002)

Raynaud et al. (2017)
MO-GP TF no no no full standard set gridbox Zerenner et al. (2016)

GLM-P TF yes3 no no Z500/T850 gridbox
MLR-RAN TF no no no Z500/T850 gridbox
MLR-RSN TF no no yes Z500/T850 gridbox
MLR-ASW TF yes no yes Z500/T850 gridbox
MLR-ASI TF no no yes Z500/T850 gridbox
GLM-det TF no no no SLP/T2/T850+700+500/Q850+500/Z500 national San-Mart́ın et al. (2017)
GLM TF yes no no SLP/T2/T850+700+500/Q850+500/Z500 national San-Mart́ın et al. (2017)
GLM-WT TF/WT yes no yes SLP/T2/T850+700+500/Q850+500/Z500 national San-Mart́ın et al. (2017)

(WT: only SLP)
WT-WG WT/WG yes no no SLP national San-Mart́ın et al. (2017)
SWG TF/WG yes no yes SLP/T2/TD/U+V+Z850 continental Vaittinada Ayar et al. (2016)
WG

SS-WG WG yes yes yes NA NA Keller et al. (2015, 2016)
MARFI-BASIC WG yes yes yes NA NA
MARFI-TAD WG yes yes yes NA NA
MARFI-M3 WG yes yes yes NA NA
GOMEZ-BASIC WG yes yes yes NA NA
GOMEZ-TAD WG yes yes yes NA NA

Table 3: Participating methods for precipitation. Techniques: S: scaling; PM: parametric
quantile mapping; QM: empirical quantile mapping; A: analog method; TF: regression-like
transfer function; WT: weather typing; WG: weather generator. Explicitly modelled: ST:
stochastic noise, AC: autocorrelation, SE: seasonality. SLP: sea level pressure, T2: 2m-
temperature, T: temperature, TD: dew point temperature, Z: geopotential height, Q: spe-
cific humidity, R: relative humidity, U,V,Z: velocities. A > indicates a two-step method.
Methods included for ilustrative purposes are marked in grey. For the full VALUE standard
set of predictors and further details on the methods see Gutiérrez and coauthors (2017) or
http://www.value-cost.eu/validationportal/app#!downscalingmethod.
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Figure 2: Illustration of selected aspects for daily precipitation, Graz, Austria. Top: dry spell
length distribution. Bottom: annual cycle. Black: observations, red: EQM, orange: Ratyetal-
M6, blue: MLR-SDSM, dark blue: MLR-ASI, magenta: SS-WG. Top, vertical dashed lines:
mean spell length; bottom, vertical dashed lines: phase of annual cycle maximum; bottom,
horizontal lines: minimum and maximum of annual cycle.
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Figure 3: AC1 for summer Tmax (left/top) and Tmin (right/bottom). Top row: observed
relationships for summer. Bottom rows: bias of the individual methods. For each method,
box-whisker-plots summarise the information for all considered stations. Boxes span the 25-
75% range, the whiskers the maximum value within 1.5 times the interquartile range, values
outside that range are plotted individually. A red asterisk indicates that values lie outside the
plotted range. The suffixes in the names of the MOS methods indicate whether a method has
been driven with ERA-Interim (-E) or the RCM (-R).
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Figure 4: As Fig.3, but for summer WarmSpellMean [days] of Tmax (top/left) and summer
ColdSpellMean [days] of Tmin (bottom/right)
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Figure 5: As Fig.3, but for the amplitude [K] (left/top) and phase [days] (right/bottom) of
the annual cycle for Tmax.
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Figure 6: As Fig.3, but for summer VarY [K2] (map/top) and Cor.1Y (no map/bottom) of
Tmax.
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Figure 7: As Fig.3, but for Cor.7Y and Tmax. Top: DJF; bottom: JJA.
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Figure 8: As Fig.3, but for the trend [K] in DJF mean Tmax.
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Figure 9: As Fig.3, but for winter WWProb (left/top) and DWProb (right/bottom).
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Figure 10: As Fig.3, but for winter WetSpellMean [days] (left/top) and summer DrySpellMean
[days] (right/bottom)
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Figure 11: As Fig.3, but for the relative amplitude (left/top) and phase [days] (right/bottom)
of the annual cycle of precipitation.
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Figure 12: As Fig.3, but for summer VarY [mm2] (map/top) and Cor.1Y (no map/bottom)
of precipitation.
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Figure 13: As Fig.3, but for the relative trend in JJA mean precipitation.
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Figure 14: Performance summary. Left: Tmin, right: precipitation. For each index either the
performance for all 4 seasons is shown, or additionally the performance for the whole year
(separated by a dashed line), or - in case of the seasonal cycle - ony for the whole year. Grey
squares indicate that no values have been calculated. For the scales used for normalisation,
see Appendix.
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