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A     GENERAL INTRODUCTION 

Recent estimates show that Earth is colonized by as many as 1 trillion microbial species 

(Locey and Lennon, 2016). The vast majority of the microbial taxa remain undiscovered 

with less than 0.1% of microorganisms characterized to date (Locey and Lennon, 2016). 

Historically, microorganisms have been identified and detected using cultivation in the 

laboratory with (artificial) media (Handelsman, 2004). This classic approach 

substantially underestimates microbial diversity as many microorganisms cannot be 

cultured (Handelsman, 2004). The majority of the characterized microorganisms 

belong to only four phyla (Proteobacteria, Firmicutes, Actinobacteria, and 

Bacteroidetes), highlighting the historic bias in bacterial detection (Rinke et al., 2013). 

The advent of sequencing and the subsequent introduction of metagenomics 

revolutionized microbial ecology as it bypassed the need for cultivation of 

microorganisms for characterization.

1     DNA sequencing 

DNA sequencing, first introduced in 1977 by Sanger et al., is a process in which the 

precise order of the DNA nucleotides (Adenosine, Guanine, Cytosine and Thymine) is 

determined (Sanger et al., 1977). Due to its simplicity and high accuracy, 

polyacrylamide gel and later capillary gel electrophoresis-based Sanger sequencing 

(Swerdlow and Gesteland, 1990) became the most used sequencing technology and 

remains an important tool in diagnostics today (Heather and Chain, 2016). Automated 

Sanger sequencing allowed researchers to move from examining individual gene loci 

to a genome-wide approach (Hunkapiller et al., 1991). In 2001, the first human genome 

was published, costing a total of US$ 2.7 billion over 13 years of work (Lander et al., 

2001; Venter et al., 2001). The increasing demand for low-cost sequencing technology 

led to the development of high-throughput sequencing (HTS) techniques, which 

became commercially available in 2005 (Margulies et al., 2005). HTS technologies are 

able to generate millions to billions of reads in a single sequencing run and thus 

drastically reduced the time and cost of DNA sequencing (Metzker, 2010). Different 

HTS instruments using distinct sequencing biochemistry were first introduced by Roche 
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(454) (Margulies et al., 2005), followed by Illumina (Solexa) (Bentley et al., 2008) and 

Life Technologies (ABI/ SOLiD) (Shendure and Ji, 2008). The read length, overall quality 

and throughput differed amongst these technologies, which have been continuously 

improved over time (Metzker, 2010). Today, the most successful and widely-adopted 

sequencing technology is lllumina’s Sequencing by Synthesis (SBS) technology, 

implemented in several commercial HTS platforms including the MiSeq and HiSeq 

(Table 1; Buermans and Den Dunnen, 2014). 

For the SBS process (Bentley et al., 2008), sequencing of DNA fragments takes 

places on a flowcell, a glass slide containing channels (also known as lanes). Prior to 

sequencing, the DNA fragment is ligated with adapters that covalently bind to the 

flowcell. The DNA library then binds randomly to the surface of the flowcell and clusters 

are formed by bridged amplification to intensify the detectable signal (Fig. 1A). 

Sequencing is then performed in cycles, where primers, polymerase, and four 

differently labeled dNTPs are added to the flowcell (Fig. 1B). The dNTPs are tagged with 

a fluorescent dye, which acts as a terminator blocking further polymerization. 

Following the addition of a single dNTP to each DNA strand, the flowcell is washed, the 

fluorescent signal is recorded and the terminator is removed (Fig. 1B). After each 

subsequent cycle, the Illumina software performs base calling, a process in which the 

DNA nucleotides are assigned to each measured florescent signal. Given that not all 

DNA molecules incorporate the dNTPs in each cycle, there is an accumulated effect 

that leads to lower signal intensities and a higher signal-to-noise ratio (reviewed in 

Fuller et al., 2009). Additional amplification creates sequencing errors, which lead to a 

decrease in sequence quality in each cycle and therefore limits the useful read length 

(reviewed in Fuller et al., 2009). Using the newest chemistry, the MiSeq has a maximum 

read length of 300 base pair (Buermans and Den Dunnen, 2014). However, the 

possibility of sequencing both ends of each fragment, also known as paired-end 

sequencing (Roach et al., 1995), allows for a larger versatility of the technique. The 

versatility of the HTS technology facilitates the comprehensive analysis of microbes 

today (Simon and Daniel, 2011). 
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Figure 1. Key steps involved in llumina’s Sequencing by Synthesis (SBS) process (Bentley et al., 
2008).  Representation of (A) bridge PCR used to amplify signal in SBS and (B) basic mechanism 
of SBS process.  
 
 

The recent introduction of long-read sequencing is challenging current HTS 

approaches (Table 1) (van Dijk et al., 2018). In 2011, PacBio released the first long-

range sequencing instrument that uses SMRT (Single Molecule Real Time) technology 

(Eid et al., 2009). Then in 2014, Oxford Nanopore Technologies introduced nanopore 

sequencing (Manrao et al., 2012). SMRT and nanopore sequencing allow for real-time 

sequencing and generate reads from up to 10 kilobases to as many as 1 megabase (van 

Dijk et al., 2018). Both technologies are being continually developed to reduce the high 

error rate (depending on system between 3 and 15%) associated with the long reads 

and improve sample preparation protocols (Jain et al., 2017; Travers et al., 2010). As 

the technology becomes further developed, long-read sequencing will revolutionize 

genomic research, including the field of metagenomics (Xu and Zhao, 2018). In 

particular the portable and affordable MinION (Oxford Nanopore Technologies) makes 

HTS broadly accessible and applicable in new fields of studies (e.g. clinical applications) 

(Benítez-Páez et al., 2016; Judge et al., 2015; Quick et al., 2017).  

 

A

flowcell

T

C
G

T G

WASH

A

B

T G

___________________________________________________________________________________________________GENERAL INTRODUCTION 

3



  

Table 1. Pros and Cons of the select HTS platforms, based on Goodwin et al. (2016) and van 
Dijk et al. (2018). 
 

 

 

2     Metagenomics 

The term metagenomics, first described in 1998, refers to the analysis of the complete 

genetic material obtained directly from complex environmental samples of different 

ecological niches (Handelsman et al., 1998). The collection of all organisms in a 

particular niche is known as the microbiota (Lederberg and McCray, 2001). With the 

decreasing costs of sequencing, metagenomics has become largely accessible and has 

thus been applied in a wide range of sample types, including detection of microbiota 

of different sites on the human body (e.g. human microbiome project (Turnbaugh et 

al., 2007)), deep cove aquatic vents (McMahon and Parnell, 2014) and office space 

environments (Adams et al., 2015). Regardless of sample type, the typical 

metagenomic workflow follows a straight-forward processing pipeline (Fig. 2). The 

initial two steps of the workflow, sample collection and DNA extraction, are crucial. 

Sample collection (including sample storage) and DNA extraction have been repeatedly 

shown to induce bias in metagenomic studies (Bai et al., 2012; Brooks et al., 2015; Choo 

et al., 2015; Kim et al., 2017). Hence, careful planning and appropriate controls are 

Platform Pros Cons 

Illumina 
(SBS) 

• Low error rate (e.g. MiSeq: 0.1%) 
• Low cost per Gb 
• Large amounts of data 
• Versatile applications; low 

amount of starting material 

• Long sequencing time (12-72 hrs) 
• Short read length (MiSeq: 300 bp) 
• High instrument cost 
• De-novo assembly difficult 
• No real-time data 

PacBio • Long read length up to 80 Kb 
• High accuracy (>99.999%) due to 

circular consensus sequencing 
technology 

• No problem with repeat regions, 
and different GC content 

• High instrument cost 
• High cost per Gb 
• High error rate with single pass 

sequencing (~15%) 
• Large amount of stating material 

required 
Oxford 
Nanopore 

• Long read length up to 1 Mb  
• Portable, low-cost sequencers 

with USB connection 
• Real-time data analysis 
• Scalability; from small (e.g. 

MinION) to large and powerful 
(e.g. PromethION) sequencers 

• High error rate (3-15%) including 
systematic errors with homopolymers 

• Large amount of stating material 
required  

• Quality of DNA dictates read length 
• Short flowcell shelf life 
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essential, independent of downstream preparation (Kim et al., 2017; Salter et al., 

2014). Sample preparation may differ for different sample types and thus microbial 

mock communities, composed of a known mixture of different microbes, have been 

used to study ideal conditions (Brooks et al., 2015).  

Over the past two decades, metagenomic approaches have shifted from 

classical Sanger sequencing to HTS technologies. Today, microbial studies use both (1) 

targeted metagenomics (or metataxonomics (Marchesi and Ravel, 2015)), which relies 

on sequencing an amplified phylogenetic marker from multiple samples in a barcoded 

library and (2) shotgun metagenomics, where all extracted DNA is fragmented and 

sequenced without amplification (Buermans and Den Dunnen, 2014). The appropriate 

library preparation, sequencing protocol and data analysis depends on the selected 

metagenomic approach (Fig. 2). 

 

 

 

 

 

 

 

Figure 2. Sample processing pipeline in metagenomic analysis for shotgun and amplicon-based 
studies. 

 

2.1     Targeted metagenomics 

The targeted metagenomic approach, also referred to as metataxonomics (Marchesi 

and Ravel, 2015), relies on the sequencing of a phylogenetic marker gene to detect a 

wide range of microbes. An ideal phylogenetic marker gene for phylogenetic 
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reconstructions should be ubiquitous, aligned easily, and have an informative 

substitution rate (Patwardhan et al., 2014). The most common phylogenetic marker 

gene is the small subunit ribosomal RNA (e.g. 16S rRNA) (Amann et al., 1995; Pace, 

1997). The 16S rRNA gene, which is approximately 1,500 base pairs in length, is most 

widely used for characterization of bacteria and archaea (Tringe and Hugenholtz, 

2008). Pace et al. (1985) first proposed the usefulness of 16S rDNA Sanger sequencing 

as an approach to circumvent culture-based bacterial detection. The 16S rRNA gene 

has nine hypervariable regions interspersed amongst conversed sites (Van de Peer et 

al., 1996). The hypervariable regions uniquely differ between different types of 

bacterial and archaeal species, which allows for detection and taxonomic classification 

(Van de Peer et al., 1996). The conserved regions, on the other hand, are ideal primer 

binding sites for broad-range amplification of environmental samples (Baker et al., 

2003). Sequencing of the 16S rDNA alone excludes the detection of eukaryotic 

microorganisms, which can have key roles in ecological niches (Bauer et al., 2018). For 

the detection of fungi and other eukaryote microbes, the internal transcribed spacer, 

large subunit ribosomal RNA, and small subunit ribosomal RNA (18S rRNA) have been 

used (Bik et al., 2012; Schoch et al., 2012). For the broadest detection of microbes, a 

combination of gene targets is often used on environmental samples (Fierer et al., 

2007; Kim et al., 2017).  

HTS technology does not allow for sequencing of the full-length marker gene 

(Buermans and Den Dunnen, 2014). Therefore, selecting the ideal variable region and 

most suitable primers is essential in library preparation of targeted metagenomics 

(Chakravorty et al., 2007). Not all variable regions have the same capacity of taxonomic 

classification and therefore studies have focused on identifying ideal targets for 

different sample types (Albertsen et al., 2015; Chakravorty et al., 2007; Walker et al., 

2015). For example, the hypervariable region 4 (V4) of the 16S rRNA gene has become 

widely used, given that it is short yet provides enough information for reliable bacterial 

classification (Caporaso et al., 2011; Kozich et al., 2013). Illumina’s dual-indexing 

amplification strategy allows for the simultaneous characterization of hundreds of 

different samples (Kozich et al., 2013). Additionally, the amplification steps during 

library preparation allows the detection of low abundance microbes (Salter et al., 2014; 
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Shah et al., 2011). However, amplification is also known to distort the microbial 

abundance and limit the detection of rare members of the community (Carlos et al., 

2012; Jovel et al., 2016). Therefore, it is essential to minimize amplification cycles and 

be aware of the resulting bias of the targeted metagenomic approach (Ahn et al., 2012; 

Brooks et al., 2015; Salter et al., 2014). Despite some of its disadvantages, targeted 

metagenomics is cost-effective and thus often used to screen a large quantity of 

samples, i.e. from many patients or for a longitudinal study (Jovel et al., 2016; Lax et 

al., 2017). 

 

2.2     Shotgun metagenomics 

Shotgun metagenomic sequencing has been used to gain a more in-depth 

understanding of microbial communities (Dutilh et al., 2017; Norman et al., 2014). The 

library preparation of shotgun sequencing circumvents the need of a universal marker 

gene, as DNA is fragmented and analyzed directly from samples without amplification 

(Fig. 2; summarized by Quince et al. (2017)). The fragmentation of extracted DNA leads 

to random sampling and thus provides a comprehensive coverage of the microbial 

community without the bias of amplification (Thomas et al., 2012). The resulting 

sequence reads represent various locations within the collection of microbial genomes 

of both eukaryotic and prokaryotic organisms in the samples (Quince et al., 2017). 

Some DNA sequences can be used for taxonomic classification (e.g. the 16S rRNA 

gene), while others provide information about coding regions (Prakash and Taylor, 

2012). The diverse set of reads allows for the detection of microbial genes that encode 

for different metabolic functions and thus provide insight into the functional potential 

of each microbiome (Prakash and Taylor, 2012; Thomas et al., 2012). However, to use 

a shotgun approach, a larger quantity of DNA is required for reliable results and 

selective enrichment is often needed to improve the ratio of host-to-microbial read 

output (Thomas et al., 2012). Additionally, metagenomic data from shotgun 

sequencing is complex and thus data analysis tools are being continuously developed 

to ease investigation (Dutilh et al., 2017; Lindgreen et al., 2016; Thomas et al., 2012). 

The ability to detect a wide range of microorganisms simultaneously makes shotgun 

sequencing a powerful tool that will grow in importance as cost of sequencing 

___________________________________________________________________________________________________GENERAL INTRODUCTION 

7



  

decreases over time (Miller et al., 2013; Norman et al., 2014; Pallen, 2014; Thomas et 

al., 2012).  

 

3     One Health 

It is estimated that 61% of all human pathogens and 75% of emerging infectious 

diseases are of zoonotic origin (Taylor et al., 2001). Recently emerged zoonotic 

diseases, such as the Middle East respiratory syndrome caused by MERS-CoV (Zaki et 

al., 2012), Brucellosis caused by various Brucella species (Seleem et al., 2010), and 

bovine spongiform encephalopathy (BSE) a prion disease (Scott et al., 1999), have 

highlighted the interconnection between human and animal health (Jones et al., 2008). 

Additionally, it has become apparent that environmental changes such as climate 

change, continuous growth of human populations, and the reduction of wildlife 

habitats are driving forces in zoonotic disease emergence (Rabinowitz et al., 2013; 

Woolhouse and Gowtage-Sequeria, 2005). To emphasize this close relationship 

between human, animal and environmental health, the concept of One Health has 

emerged (Fig. 3) (Daszak et al., 2000). The American Veterinary Medical Association 

(2008) defines One Health as “the collaborative effort of multiple disciplines—working 

locally, nationally and globally—to attain optimal health of humans, animals, and the 

environment”. This definition highlights that at the core of One Health is the 

interconnectedness of scientific fields such as infectious disease, toxicology, ecology, 

agriculture science, conservation, anthropology and social science. The creation of 

many initiatives (e.g. One Health Platform), scientific journals (e.g. Lancet Planetary 

Health) and One Health institutes demonstrates the rapid expansion of the One Health 

field over the last two decades (Cunningham et al., 2017). This concept has additionally 

been incorporated in public health policies and political declarations (e.g. UN Political 

Declaration on Antimicrobial Resistance) (Essack, 2018). For example, the World Health 

Organization (WHO), the World Organization for Animal Health (OIE), and the Food and 

Agriculture Organization of the United Nations (FAO) have formed a tripartite alliance 

and identified priority collaboration areas, such as fighting antimicrobial resistance 

(FAO/OIE/WHO Joint Scientific Consultation Writing Committee, 2011). Despite the 

increased awareness of the One Health approach amongst conservationists, ecologists 
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and veterinarians, many healthcare professions still fail to translate the One Health 

idea into action and do not incorporate the concept into current clinical research 

(Cunningham et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 3. Applications of metagenomics within the triad of One Health. Examples of 
applications within and between each triad of One Health.  

 

 

4     Application of metagenomics in One Health 

The continual emergence of novel microorganisms in clinical and environmental 

settings challenges conventional surveillance efforts (Miller et al., 2013). Laboratory 

techniques must constantly evolve to detect new pathogens in a wide set of different 

sample types, ideally in real-time. A range of classical diagnostic methods have been 

used for decades, including microscopy (e.g. histological staining), culture-based 

analysis, immunoassays (e.g. detection of antigens from pathogen) and nucleic acid 

amplification tests (NAATs) (Miller et al., 2013). A way to ease the surveillance of 

various microbes is to use molecular techniques that are pathogen-agnostic, allowing 

for broad-range non-targeted detection (Miller et al., 2013). Metagenomics is a useful 
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approach that simplifies the detection of known and novel microbes in a wide range of 

clinical samples (Goldberg et al., 2015). Instead of focusing on a single assay for a 

specific pathogen, laboratories can now use a single metagenomic approach to identify 

a broad range of microorganisms (Pallen, 2014). The use of HTS technology also allows 

for the detection of pathogen genomes, which can be subsequently used to examine 

antibiotic resistance and to study disease outbreaks (Robinson et al., 2013). Figure 3 

exemplifies the broad applicability of metagenomics in One Health. Despite many of its 

advantages, metagenomics is not a universal solution in One Health investigations as it 

only provides limited understanding of the functional and biological relevance of a 

microorganism (Prakash and Taylor, 2012). Additionally, issues with contamination, 

inherent bias within the technique (e.g. caused by different DNA extraction methods), 

and difficulties with storage and analysis of large datasets limit the applicability of 

metagenomic studies (Miller et al., 2013). It is important to keep in mind the study 

question and the available resources to evaluate the most suitable approach (e.g. 

amplicon HTS vs. shotgun metagenomics). In the following section, I will highlight three 

key applications of metagenomics in One Health. 

 

4.1     Pathogen detection in wildlife 

Pathogen detection in wildlife can be challenging due to the diversity of host species, 

the lack of established and validated assays and the often limited and low-quality 

sample material. Despite these challenges, screening wild animals is essential to 

identify disease reservoirs for humans or livestock (Cunningham et al., 2017; Haydon 

et al., 2002; Viana et al., 2014). Knowledge on the existence of a reservoir is central for 

disease prevention, management and surveillance. Metagenomic approaches allow for 

the characterization of microbes in wildlife and vectors of diseases (Qiu et al., 2014; 

Razzauti et al., 2015). It has been shown that using metagenomic tools, the tick salivary 

grads can be continually monitored to identify pathogens associated with livestock and 

human disease (Qiu et al., 2014). As vectors are often integral in cross-species 

transmission (Fig. 4A), monitoring the tick salivary grads can be an effective 

surveillance strategy. Continual epidemiological surveys of wildlife including 

metagenomic approaches are an asset for the identification, prevention and 
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subsequent control of emerging diseases at the human-livestock-wildlife interface (Kao 

et al., 2014; Razzauti et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The benefit of surveillance, early detection, and rapid response on disease control. 
(A) Cyclical pathogen prevalence in wildlife (pink) can lead to spillovers into domesticated 
animals (light green) or humans (red). Spillover into domesticated animals can amplify the 
capacity of a pathogen to infect the human population. Vectors may aid in all cross-species 
transmission events. (B) Surveillance, early detection and rapid response reduce the disease 
incidence in both animals (dark green) and human population (light blue). Figure is a reprinted 
from Karesh et al. (2012). 
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4.2     Early detection of emerging infectious diseases 

Early detection of zoonotic and anthropozoonosis threats is essential for rapid 

response to mitigate disease outbreaks (Fig. 4B; Karesh et al., 2012). However, early 

discovery of emerging infectious diseases can be difficult as the microorganisms are 

often well adapted with little to no clinical presentation in a resevoir population 

(Bäumler and Fang, 2013). Here, metagenomics allows for the detection of 

microorganisms that are unknown or unsuspected (Gardy and Loman, 2018; Pallen, 

2014). For example, a large-scale study on rodents and small mammals in China used 

shotgun metagenomic sequencing to survey the range of viral families in 20 different 

provinces (Wu et al., 2018). The study examined the virus in the context of host 

taxonomy and geographic location, and identified several novel viruses and their 

evolutionary history (Wu et al., 2018). Continual HTS-based surveilance of zoonotic 

pathogens in their wildlife and livestock reservoir can be useful to detect early signs for 

possible spillover events and outbreaks (Fig. 4; Karesh et al., 2012; Wu et al., 2018). In 

order to continually surveil and discover viruses with zoonotic potential, the PREDICT 

program was launched by the US Agency of International Development in 2009 (Joly et 

al., 2016). Whether broad continual surveillance programs are successful at early 

detection and useful for mediating disease outbreaks is yet to be seen. However, it is 

unquestionable that information on the virome is beneficial for the early discovery of 

emerging infectious diseases (Carroll et al., 2018). 

 

4.3     Examining entire microbial communities 

The consequences of commensal microorganisms on the health of both animals and 

humans is often underestimated (Trinh et al., 2018). The diverse communities of 

bacteria, archaea and microbial eukaryotes that inhabit the various environments of 

humans and animals have been shown to impact the immune system (Belkaid and 

Hand, 2014; Round and Mazmanian, 2009), susceptibility to pathogenic microbes (Abt 

and Pamer, 2014; Buffie et al., 2015; Dennisonet al., 2014), and essential metabolic 

functions (De Menezes et al., 2011; Kau et al., 2011). Studying the microbiome in health 

and disease has provided an enhanced understanding of health consequences of non-

pathogenic microbes that can be transmitted within the One Health triad (Trinh et al., 
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2018). For example, cohabitation with animals, including pets (Song et al., 2013) and 

livestock (Kraemer et al., 2018), has been linked to a greater diversity in the gut, skin 

and nasal microbiota (Misic et al., 2015). A more diverse microbiota has been proposed 

to have a protective effect against inflammatory diseases, such as allergy (Pascal et al., 

2018). Thus, restoring or altering the microbiota may provide a promising avenue for 

preventative therapy against different types of diseases (Pascal et al., 2018; Wang et 

al., 2018). 

 

5     Objective of this thesis 

Metagenomic approaches are valuable techniques in various different types of One 

Health investigations. The general aim of this thesis was to establish and validate 

targeted metagenomic tools to identify and study microbial communities in health and 

disease. 

 The first objective was to advance the standardization of terms and techniques 

in the rapidly expanding field of One Health. In Chapter B1, we focused on 

standardizing applicable criteria to determine a ‘disease reservoir’, a central concept 

for diseases of zoonotic and anthropozoonotic origin. Beyond standardizing 

terminology, we also determined sample handling conditions for metagenomic 

investigations of swab specimens in Chapter B2. The sampling regime was integral for 

the validation of all subsequent experimental studies.  

The second objective was to examine different applications of targeted 

metagenomics. In Chapter B3, we studied the urogenital microbiota of rhesus monkeys 

(Macaca mulatta), a common translational animal model for infectious diseases, by 

using 16S rRNA gene sequencing. 16S rRNA sequencing provides a good overview of all 

bacterial species but often is not suitable for more detailed investigation. Therefore, to 

selectively examine the diversity of Treponema, we established an amplicon-based 

metataxonomic tool to investigate the diversity of this genus in Chapter B4. 
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Chapter B1      
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Disease reservoirs: from conceptual frameworks to
applicable criteria
Luisa K Hallmaier-Wacker1,2, Vincent J Munster3 and Sascha Knauf1

Central to the One Health approach and any disease eradication program is the question of whether a pathogen has a
non-human reservoir. Despite well-established conceptual frameworks that define a reservoir of infection, empirical
characterization of reservoirs often remains controversial, challenging and sometimes misleading. What is essentially missing are
applicable requirements that standardize the use of the term ‘reservoir of infection’ across multiple disciplines. We propose an
empirical framework, considering maintenance and feasible transmission of a pathogen, to standardize the acceptance of a
disease reservoir across multiple disciplines. We demonstrate the intended use of these requirements by applying them to
different diseases that are known to infect both humans and animals.
Emerging Microbes & Infections (2017) 6, e79; doi:10.1038/emi.2017.65; published online 6 September 2017

Keywords: disease eradication; infection; infectious diseases; interdisciplinary; one health; multidisciplinary

A RESERVOIR NEEDS TO MAINTAIN THE PATHOGEN AND
HAVE A FEASIBLE TRANSMISSION ROUTE
The high prevalence of infectious agents of zoonotic and anthro-
pozoonotic origin pose a major health threat to both human and
animal populations. A conceptual framework for understanding a
reservoir of infection has been established through various studies that
have emphasized different aspects of zoonotic diseases.1–4 However,
empirical characterization of reservoirs often remains controversial
and challenging. The most applicable and accepted way to investigate
and define a reservoir emphasizes the annotation of a target group
(Figure 1), which is an explicitly defined population of interest in a
dynamic and heterogeneous landscape (for example, humans at the
livestock–wildlife–human interface).4,5 According to Haydon et al.,4

the target group is a matter of definition and may therefore be
disconnected from the ecological reality. The target group provides a
directionality to the study of a reservoir system. All other susceptible
populations (non-target populations), which directly or indirectly
connect epidemiologically to the target (Figures 1 and 2), can be part
of the potential reservoir.4 For a non-target population to be
considered an accepted functional reservoir, maintenance of a single
pathogen in the population needs to be shown in combination with a
feasible transmission route between the target and non-target
populations.4

Although the conceptual framework of a disease reservoir is already
well-defined, applicable requirements for an evidence-based rejection
or acceptance of a reservoir are currently missing. In particular,
interdisciplinary standards on genetic and functional similarities of
reservoir and human isolates of pathogens are nonexistent. Consider-
ing the increase in interdisciplinary research, we see the need to

critically discuss and standardize the use of the term ‘reservoir of
infection’ across different research fields to oppose the tendency of
published scientific data to exaggerate positive results and hype certain
areas of science.6,7 Although we do not claim absolute standardization
of empirical requirements to accept a reservoir across disciplines, we
present a framework to serve as a basis for a pending discussion in the
growing One Health community. The simplicity and functional
orientation of the presented framework allows for straightforward
application but does not negate more complex populations, as the
same principles can be applied to multi-species systems and metapo-
pulations (Figure 2).
According to the accepted definition of a reservoir proposed by

Haydon et al.,4 we discuss the requirements in two parts: the
pathogen’s maintenance in a potential population or community
followed by a discussion on proof of a feasible transmission route.
Although the two components are addressed separately, only together
they demonstrate the existence of a functional reservoir.

PROOF OF PATHOGEN MAINTENANCE IN A POTENTIAL
RESERVOIR
Increases in technological advancements (for example, next-generation
sequencing) and vast quantities of available data have not led to
concrete applicable criteria when examining the capacity of a pathogen
to be maintained in a population. Recognizing both the ethical
limitations in regards to animal testing8 and the advances in the
molecular detection of pathogens, we propose the following criteria to
demonstrate the maintenance of a pathogen in a population: (i) a
high-genetic similarity of the pathogen found in the reservoir system,
(ii) a high degree of functional similarity (infectivity and viability), and
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(iii) a longitudinal approach that considers the factor of time
(Table 1). Owing to the functional orientation of the requirements
and for simplicity, all entities involved in the biological lifecycles of a
parasite (for example, primary and intermediate hosts) should be
considered a single functional unit. Appropriate sequence and func-
tional analysis of a pathogen isolated multiple times from a potential
reservoir should be required to prove that a pathogen is maintained in
a population. The ability to quickly and cheaply sequence whole
genomes has allowed for better genetic resolution.49,50 Sequence data
can be used to examine similarity in the pathogen between a potential
reservoir and a target. However, mutation rates vary significantly
between pathogens51,52 and the threshold for sequence and functional
similarity must be individually defined and accepted by the scientific
community. A single-nucleotide difference can potentially result in a
loss of infectivity, for example, when important invasion mechanisms
are affected (receptor affinity). In bacteria, investigations can be
further complicated by plasmids that can be exchanged and mutated
over time.53 A high amount of phylogenetic relatedness of pathogens
isolated from the non-target and target populations does not provide
sufficient evidence for the involvement of a pathogen and its ability to
infect both groups. Importantly, DNA-based analyses only provide
information on the functional potential of a pathogen and must not
reflect the gene-expression within a host.54 For example, the bacterium

Treponema paraluiscuniculi (which causes syphilis in rabbits), is over
99% identical on the basis of the whole genome to the human
pathogen T. pallidum (which causes human treponematosis), but does
not infect humans.55 As phylogenetic information fails to reflect the
downstream effects of mutations, proof that a pathogen can proliferate
in the potential reservoir is required.56 Information on the transcrip-
tome and proteome of bacteria or the phenotype of viruses are
necessary to see the effect of mutations on pathogen viability.57 There
are different ways to test for the functional ability of a pathogen in
different species. Owing to the ethical concerns, cell and tissue assays
have been increasingly used in therapeutic research instead of animal
models.8 Although these assays are limited in their conclusiveness,
they can provide important insight into the molecular mechanisms
involved. For example, the failure to infect primary tissue culture from
rhesus macaques with human immunodeficiency virus 1 (HIV-1)
demonstrates that non-human primates were unlikely to act as a
maintenance population (Table 1).58 In some instances, for example,
with uncultivable bacteria such as Treponema pallidum, it may be
necessary to use animal models to examine the functionality of a
pathogen within a potential reservoir species. Knowledge of the
biology of the pathogen is essential to properly define a sequence
and functional similarity threshold for a particular reservoir system.

Figure 1 Three scenarios describing the dynamics of a simple reservoir system. (A) Pathogen maintenance in the non-target population and feasible
transmission route towards the target population. Only this constellation fulfills the requirements of a functional reservoir system. (B) Pathogen maintenance
in the non-target but no feasible transmission route towards the target population. This is a likely situation whether contact rates between the non-target and
target populations are below the threshold. (C) No pathogen maintenance in the non-target, but a feasible transmission route exists. An example of the effect
of a vaccination strategy in the non-target population. The dynamic of the system is indicated by arrows associated with a ‘t’ (time factor). #Maintenance,
*feasible transmission, solid arrows= obligatory, broken line= optional.

Figure 2 The simplicity and functional orientation of the presented framework allows for straightforward application but does not negate more complex
populations. The same principles apply to multi-species systems and metapopulations. The defined target group may be adjusted based on interest and may
therefore include metapopulations (targets 1 and 2). The non-target group increases in complexity due to the inclusion of multiple populations (a–d).
(A) Similarly, to a simple reservoir system, all susceptible populations that connect to the target either (a) directly or (b–d) indirectly are part of the non-
target population. (B) Temporal shifts in the ecological landscape of the non-target population may lead to the (d) exclusion of populations either due to lack
of connectivity or susceptibility. The dynamic of the system is indicated by arrows associated with a ‘t’ (time factor). #Maintenance, *feasible transmission,
solid arrows= obligatory, broken line= optional.
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When examining pathogen maintenance, a longitudinal approach is
required to consider the dynamics of a potential reservoir system,
including the influence of genetic variation in any given population.
Defining a population that was infected at a single time point as a
maintenance population for a pathogen is based on assumptions and
is therefore speculative. Sero-prevalence surveys are an attractive way
to detect the presence of pathogens in a population, as it indicates that
an immunocompetent subject was in contact with the pathogen.1

However, only longitudinal studies with adequate sampling regimes
(multiple sampling) to test for antibodies against a pathogen can
provide information on the timing or frequency of infection, both of
which are important for reservoir studies.59 Furthermore, cross-
reactivity and erroneous assays can lead to false-positive results. For
more diffuse reservoir systems, including multi-species compositions
where the diversity of host susceptibility (at the individual, species or
population level) protects against widespread infection (dilution
effect),60 a longer time frame must be applied. This guarantees a
more accurate understanding of the maintenance within a population
(for example, Ebola36).

PROOF OF FEASIBLE TRANSMISSION ROUTE
Maintenance of a pathogen in a population alone does not provide
sufficient proof that a functional reservoir exists. A connection
between the target and the non-target populations must be estab-
lished;4 otherwise the non-target population remains a maintenance
population with the potential to be a reservoir. Therefore, the
determination of a feasible and somewhat permanent transmission
route between the non-target and target populations is key to
identifying a reservoir system (Figure 1). For multi-species reservoir
systems, the transmission route between the target and non-target
populations may be indirect (Figure 2, connection between b and
target), possibly incorporating different hierarchical levels of a non-
target community.4,61 The type of transmission route dictates the form
of evidence needed to prove that a feasible transmission route exists
between the reservoir and target. For simplicity, we define vectors as
part of the transmission route, although under certain circumstances
(for example, permanency or substantial amplification in the vector),
they may act as part of the non-target community.61 Four basic
requirements need to be met to make a compelling argument for the
existence of a feasible transmission route: (i) spatial (direct or indirect)
and temporal connectivity between the reservoir system and the target
population, (ii) pathogen involvement in this feasible transmission
route, (iii) proof of viability of the pathogen during the proposed
transmission route and (iv) a longitudinal approach that requires the
isolation of a pathogen multiple times in a given transmission route
(Table 1).
To prove the feasibility of a transmission route, direct or indirect

spatial connectivity as well as temporal overlap between the non-target
and target populations must be present. Connectivity measurements
depend on the type of transmission route; for example, direct contact
transmission requires overlapping territory. Computational tools can
help determine the necessary overlap in a population by modeling the
transmission across an affected population.62 In addition to spatial and
temporal overlap, the involvement of the pathogen in the particular
transmission route needs to be shown, which again requires long-term
field projects. In the case of Lyme disease caused by Borrelia
burgdorferi, nucleic acids from the bacterium were detected in ticks
using PCR.44 However, the detection of DNA does not directly prove
that transmission occurs. To gain further confidence that the
transmission is feasible, it is therefore essential to show that the
infectious organism remains viable during the proposed transmissionTa
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route.45 This means that in addition to PCR detection, the viable
pathogen needs to be isolated during a transmission event, where the
measure of viability depends on the type of pathogen. In airborne
transmission, for example, environmental factors such as size of
droplets, UV light and humidity can greatly influence the transmis-
sibility of a virus (as reviewed in Tang63). If the amount of viable and
therefore infectious organisms is below the infectious dose, the
particular transmission route is unfeasible. Without a feasible trans-
mission route between target and non-target populations, no func-
tional reservoir exists. Furthermore, to include all parts of a reservoir
population, long-term investigations must focus on the transmission
between the non-target and target groups as well as feasible transmis-
sion within the non-target community.61 Unconnected maintenance
host populations may become a future reservoir through temporal
shifts of the ecosystem.

CHALLENGES OF IMPLEMENTATION
Biological systems are dynamic and can change over time (Figure 1).
Single transmission events do not confirm a reservoir of infection (for
example, HIV,20 Table 1). It is therefore important to show continuity
and persistence in both maintenance and transmission, which can only
be achieved through multiple and adequately timed (field) investiga-
tions. Well-designed intervention studies can be used as quasi-
experiments to study a reservoir of infection but should not be used
as a stand-alone test for the existence of a reservoir.1 Despite sufficient
planning, the cause and effect of intervention studies are often difficult
to determine1,64 and the removal of a pathogen from a particular
ecosystem may cause unanticipated effects. A negative outcome does
not necessary indicate the lack of a reservoir or transmission route.64,65

Instead, it can show that the intervention may have been incomplete
or that the complexity of a reservoir is not entirely understood.
Pathogens must be studied in the context of natural ecosystems.

The complexity of reservoir systems increases as multiple non-target
populations interact as an ecological entity, which is influenced by
factors such as competition, co-existence or predation.66 Furthermore,
the artificial environment in a laboratory, which is often used to study
the susceptibility of a species, differs substantially from a natural
setting.67 The use of laboratory animals or cell- and tissue-based assays
can be advantageous when studying pathogenicity, but it cannot solely
contribute to the understanding of the epidemiology of a pathogen,
which is largely impacted by variables such as genetic diversity, co-
infection, cross-protective immunity and spatial connectivity. As a
consequence, any epidemiological model requires additional informa-
tion on the geographic range and the ecological landscape.68 This
includes population densities and functional profiles of species that are
involved in the reservoir system.60,69 The importance of sample size in
field studies and animal experiments cannot be stressed enough as it
greatly affects the efficacy of analysis, especially in reservoirs with low-
frequency crossover events.
Neither laboratory experiments, nor intervention studies, nor

epidemiological models alone can provide a full understanding of a
natural reservoir of infection. Only the combination of methods that
are based on established and validated species-specific assays and
technically sound field investigations can provide confidence that the
pathogen is maintained in a non-target population and that a feasible
transmission route exists. This, however, requires the political will and
financial support to conduct long-term One Health studies to explore
diseases in their natural context.

CONCLUSION
The term ‘disease reservoir’ should be used carefully and only if there is
convincing evidence demonstrating the maintenance and a feasible
transmission route of a particular pathogen (Figure 1). We propose
overarching requirements that must be fulfilled to provide ample proof
that a reservoir exists (Table 1). Classical reservoir systems (for
example, Lyme disease caused by Borrelia burgdorferi) fulfill all of the
requirements proposed in this study, whereas some well-known
diseases, such as Ebola, need further research until a reservoir system
can be accepted (Table 1). For the pathogens without an accepted
reservoir, the framework introduced in this study also indicates the
outstanding questions that future research should focus on to
investigate the presence of a reservoir system. A broader expert-based
multidisciplinary discussion is needed to develop standards for the
diversity of pathogens.
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The impact of storage buffer, 
DNA extraction method, and 
polymerase on microbial analysis
Luisa K. Hallmaier-Wacker1,2, Simone Lueert1,2, Christian Roos  2 & Sascha Knauf1

Next-generation sequencing approaches used to characterize microbial communities are subject to 
technical caveats that can lead to major distortion of acquired data. Determining the optimal sample 
handling protocol is essential to minimize the bias for different sample types. Using a mock community 
composed of 22 bacterial strains of even concentration, we studied a combination of handling conditions 
to determine the optimal conditions for swab material. Examining a combination of effects simulates 
the reality of handling environmental samples and may thus provide a better foundation for the 
standardization of protocols. We found that the choice of storage buffer and extraction kit affects the 
detected bacterial composition, while different 16S rRNA amplification methods only had a minor effect. 
All bacterial genera present in the mock community were identified with minimal levels of contamination 
independent of the choice of sample processing. Despite this, the observed bacterial profile for all tested 
conditions were significantly different from the expected abundance. This highlights the need for proper 
validation and standardization for each sample type using a mock community and blank control samples, 
to assess the bias in the protocol and reduce variation across the datasets.

Microorganisms colonize various anatomical sites and play a crucial role in the balance of health and disease. The 
vaginal microbiome is known to maintain the health of women and thereby prevents urogenital diseases1. The 
advent of cultivation-independent molecular approaches, such as 16S rRNA amplicon sequencing, has allowed 
for a better understanding of the microbes that inhabit different biological niches. However, these powerful tools 
are not without important technical caveats that can lead to a distortion in the acquired data2. Such limitations 
have been well documented, and include sample collection, storage buffer, DNA extraction, amplification prim-
ers and methods, sequencing technology, and analysis techniques3,4. While it is impossible to negate all of these 
influences, it is important to understand the bias inherent in the analysis. Studies focusing on one or two technical 
limitations have made recommendations for improving the bias such as reducing the number of PCR cycles5 or 
adding additional lysis pre-treatment6.

DNA extraction, a critical step in culture-independent bacterial profiling, has been identified as a key driver 
of technical variation3. Most common studies on the microbiome of swab material use commercially available 
DNA extraction kits that vary in their lysis approach from mechanical to enzymatic treatment. Various studies 
have focused on technical variations in extraction kits, yet a field-wide consensus on sample extraction has not 
been reached3,6–9. Due to the large variety of microbiota and sample types, a single standard for all sample types 
is unlikely to be achieved. Despite the knowledge that the choice of extraction kit can have a significant effect on 
the results, there is often a lack of proper validation across sample types3.

Similar to DNA extraction kits, the choice of sample storage buffer has been shown to influence the detected 
bacterial community10–12. The ideal storage choice largely depends on the available resources during sampling 
such as the availability of freezing conditions11. Selecting the optimal storage buffers is dependent upon its com-
patibility with all downstream analyses including the extraction method. Many studies, however, only focus on 
the effect of a single technical variation instead of examining the effect of different combination of storage buffer, 
DNA extraction kit, and amplification methods2. Studying a combination of effects mirrors the reality of sample 
handling more closely and may thus provide a better foundation for the standardization of sampling handling 
protocols prior to microbial analysis.
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In this study, we used a mock community, composed of an even concentration of cells from 22 bacterial strains 
(19 genera), to assess the effect of storage buffers, extraction kits, and amplification methods (Fig. 1). Using a 
mock community to examine the effect of different sample handling conditions rather than environmental sam-
ples of unknown microbe composition is essential to be able to systematically compare the effects3. In addition 
to the use of a mock community, a blank control was included in all sample procedures to monitor any buffer, 
kit, or reagent specific contamination13. The aim of this study was to evaluate the performance of combinations 
of handling conditions commonly used in microbiome studies and to contribute to the ongoing debate on stand-
ardization in microbiome research.

Methods
Preparation of swab mock community samples. A cell mixture of 22 different bacterial strains at a 
concentration of 1 × 108 cells/mL of each organism (Microbial mock community, HM-280) in phosphate buffer 
saline (PBS) was obtained through Biodefense and Emerging Infectious Research (BEI) Resources, NIAID, NIH 
as part of the Human Microbiome Project (Manassas, USA; Supplementary Table S1). To simulate physiological 
conditions, 10 µl of mock community containing 1 × 106 cells/mL of each organism was added to a flocked swab 
(FLOQSwabs, Copan Improve Diagnostics, Brescia, Italy) and then placed in 500 µl of the respective storage 
buffer (Fig. 1). Four different storage buffers were used; PBS (PAN-Biotech GmbH, Aidenbach, Germany), a 
custom-made lysis buffer (10 mM Tris, pH 8.0, 0.1 M EDTA, pH 8.0 and 0.5% SDS), RNA-later (Thermo Fisher 
Scientific Inc., Waltham, MA, USA), and no buffer (native). A blank control swab sample was placed in each 
storage buffer without additive. All swab samples were frozen at −80 °C for one week prior to DNA extraction. 
Suitable precautions were taken during sample handling and processing to insure sterility during all procedures.

DNA Extraction methods. Three commercially available DNA extraction kits were used in this study to 
extract bacterial DNA from swab material stored in four different storage buffers (Table 1). Extraction was per-
formed in triplets and the extracted DNA from each buffer was subsequently pooled prior to 16 S rRNA gene 
amplification. Processing of swab samples prior to DNA extraction is illustrated in Supplementary Fig. S1.

QIAamp DNA Mini Kit (QMINI). Samples were extracted using the QIAamp Mini Kit (Qiagen GmbH, 
Hilden, Germany) according to the standard protocol with minor modifications. Briefly, proteinase K (20 mg/µl) 
was added and the samples were incubated for 50 minutes at 56 °C. Then, AL buffer (Qiagen GmbH) and ethanol 
were added in the appropriate amount. The DNA from the lysate was subsequently purified using the spin col-
umns provided by the manufacturer and eluted in 70 µl AVE buffer (Qiagen GmbH).

MOBIO PowerLyzer PowerSoil Kit (MOBIO). A maximum of 750 µl of swab lysate was added to the 
0.1 mm PowerLyzer® Glass Bead Tube (Qiagen GmbH). DNA extraction was continued from step 2 as described 
in the MOBIO PowerLyzer PowerSoil Kit protocol (Qiagen GmbH). The DNA was eluted in a final volume of 
100 µl of Solution C6 provided in the kit.

Figure 1. Outline of experimental design. A schematic showing the different treatment variables.

Extraction Method Abbreviation Lot # Lysis type Elution Volume
MOBIO PowerLyzer PowerSoil Kit MOBIO PL16C30 Mechanical, Column-based 100

GEN-IAL First All-Tissue Kit GENIAL 0091.01 Enzymatic, Phenol-Chloroform 20

QIAamp DNA Mini Kit QMINI 154035749 Enzymatic, Column-based 70

Table 1. Commercial extraction kits used in this study.
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GEN-IAL First All-Tissue Kit (GENIAL). The first All-Tissue Kit (GEN-IAL, Troisdorf, Germany) was 
applied according to the manufacturer’s protocol with minor modifications. Briefly, 5 µl proteinase K and 5 µl 
dithiothreitol (DTT) was added to the lysate and incubated at 65 °C for 60 min at 600 rpm in a thermomixer 
(Eppendorf, Hamburg, Germany). The lysate was purified according to the standard protocol and the DNA pellet 
was resuspended in 20 µl of C6 buffer (Qiagen GmbH).

16S rRNA gene amplification. For each pooled extraction, the V4 region of the 16 S ribosomal RNA (16 S 
rRNA) gene was amplified in triplets using the universal primers 515 F and 806 R adapted with linker regions and 
barcoded sequences used for dual-indexing14. Platinum SuperFi DNA Polymerase (Thermo Fisher Scientific) and 
the Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher Scientific) were both tested for amplifi-
cation. Each PCR reaction consisted of 12.5 µl of 2x PCR master mix, 6 µl of Microbial DNA-Free water (Qiagen 
GmbH), 1.25 µl of each primer (0.5 mM each, Metabion, Martinsried, Germany) and 4 µl of template in a total 
reaction volume of 25 µl. PCR cycling conditions comprised of a pre-denaturation step of 30 s at 98 °C, followed 
by 30 cycles of 98 °C for 10 s, 55 °C for 15 s and 72 °C for 60 s, and a final 10 min extension step at 72 °C. For a selec-
tion of four samples, five additional cycles were added to the amplification procedure to examine if additional 
cycles may be favorable for samples with low concentrations. The amplicon triplets were pooled, purified using 
0.7x AMPure XP beads (Beckman Coulter, Brea, USA) and quantified using the Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific). Amplicon integrity was verified for a representative number of 11 samples using a BioAnalyzer 
2000 (Agilent, Palo Alto, USA) prior to pooling equimolar amounts (10 nM) of each amplicon for sequencing. For 
the blank samples, the maximum volume (5 µl) of sample was added to the library, as the concentrations prior to 
sequencing were below 10 nM. Illumina MiSeq. 2 × 250 bp paired-end sequencing (Illumina V2 chemistry) was 
performed in the Transcriptome and Genome Analysis Laboratory at the University of Göttingen14. All generated 
read files analyzed in this study were uploaded to the NCBI Sequence Read Archive (SRA) (SRP125723).

Mock community data processing and analysis. The sequencing reads were processed using the 
mothur software package (v.1.36.1)15. According to the MiSeq SOP14, contigs were assembled, sequences trimmed, 
identical sequences merged, and chimeras removed (UCHIME16). Subsequently, sequences were aligned to the 
SILVA bacterial reference database17. Non-bacterial sequences, cross-sample singletons, and poorly aligned 
sequences were removed. The seq.error command was run for each mock sample in mothur and subsequently 
averaged to determine the error rate of the run. Due to low read numbers, blank control sample reads (control 
swabs containing no mock community) were removed from the dataset and analyzed separately. As subsampling 
is currently still an accepted method of normalization in microbial ecology18, the reads of the remaining mock 
community samples were rarefied to 95,870 sequences/sample. A separate file with the theoretical sequence com-
position (actual) of the 22 bacterial strains of mock community was created and adjusted for the 16 S rRNA copy 
number (Supplementary Table S1) and normalized to the sequence count of the run (95,870 reads)19. After merg-
ing the actual (theoretical) mock community composition with the practically obtained sequences, the merged 
file was classified using the Bayesian classifier implemented in mothur20. Operational taxonomic units (OTUs) 
were assigned based on 97% sequence similarity and subsequently the alpha and beta diversity was analyzed. For 
alpha diversity, the richness (OTUs observed and Choa1) and community diversity (Inverse Simpson Metrix) 
was analyzed using the summary.single command in mothur. Additionally, the percentage of contaminant OTUs 
(OTUs that do not cluster to the theoretical mock community) was examined. Beta diversity was analyzed using 
Bray-Curtis dissimilarity index21. The dissimilarity matrix was visualized using nonmetric multidimensional scal-
ing (NMDS) plots and Newick formatted dendrograms (visualized in FigTree v.1.4.2, http://tree.bio.ed.ac.uk/
software/figtree/).

Statistical comparison of sequence data. To evaluate and compare the type of extraction and ampli-
fication method used, the values of the alpha or beta diversity measurement were pooled for each variable (e.g. 
the buffer type). The statistical significance of the pooled data was analyzed in GraphPad Prism 6 (GraphPad 
software, La Jolla, CA, USA). In case of normal distribution (Kolmogorov-Smirnov normality test), the paramet-
ric paired two-tailed students t-test was used for comparison. In all other cases the non-parametric Wilcoxon 
matched-pairs signed rank test was used. For multiple comparisons, a one-way ANOVA with Bonferroni’s mul-
tiple comparisons test was applied. Differences in community structure between storage buffers and extraction 
methods were tested using analysis of molecular variance (AMOVA) in mothur22. Non-metric multidimensional 
scaling (NMDS) plot of Bray-Curtis dissimilarities and UPGMA-clustered dendrograms (Bray-Curtis) were used 
to visualize data points. Parsimony (mothur) hypothesis testing was performed to test whether the differential 
clustering of the PBS samples in the dendrograms was significant23. Differences in the 30 most abundant OTUs 
were assessed using the metastats command in mothur24 and p-values for differences in individual OTUs were 
corrected for multiple comparisons using Bonferroni correction. Values of p < 0.05 were considered statistically 
significant.

Results
The pooled library (n = 28 mock samples, n = 36 blank/control samples) produced 12,968,125 16 S rRNA 
sequence reads, of which 9,920,805 reads were retained after quality control (77%). A total of 8,974,393 sequences, 
with a mean read count of 249,288 reads per sample, were retained after the sequences corresponding to the blank 
control samples were removed. After rarefying to 95,870 sequences per sample, de novo OTU picking returned 
228 OTUs, of which 19 OTUs corresponding to the mock community make up more than 99% of the pooled 
community. The average error rate of the run was found to be 0.040% (±0.004).
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Effect of different amplification method. The choice of polymerase (Platinum SuperFi DNA polymer-
ase vs. Phusion Hot Start II High-Fidelity DNA polymerase) was not found to significantly change the number 
of observed OTUs (p = 0.08 [paired t-test] or Inverse Simpson index, p = 0.48, [paired t-test]). Furthermore, 
pairwise comparison of the Bray-Curtis dissimilarity between the two polymerases yielded only small variations 
(maximum difference 0.076, Supplementary Table S2) indicating near identical bacterial community profile for 
a single sample (Fig. 2). Since the results indicate that these two applied high-fidelity polymerases do not sig-
nificantly impact the observed microbial diversity, we pooled the data from the two polymerases for identical 
sample for the analyses of buffer and extraction kit choice. The addition of five cycles in 16 S rRNA gene ampli-
fication shows only a minor impact on the detected bacterial composition when tested on MOBIO extractions 
(Supplementary Fig. S2a). There was, however, a significant increase of the number of OTUs detected with addi-
tional cycles (p = 0.029, Supplementary Fig. S2b), indicating that lower cycle numbers are favorable.

Effect of storage buffer. The effect of the four storage buffer (lysis buffer, native, PBS or RNA-later) on the 
alpha diversity was assessed based on OTU richness (identified absolute number of taxa) and evenness (Inverse 
Simpson index). The choice of storage buffer had no significant influence on the OTU richness of the swab sam-
ples (p = 0.158 [ANOVA], Fig. 3a), nor the overall evenness. However, PBS treated samples that were extracted 
with MOBIO, detected a lower evenness compared to all other treatment conditions (Wilcoxon test, Fig. 3b).

Pairwise AMOVA of Bray-Curtis dissimilarity showed that the storage buffer choice had a significant impact 
on the community structure (p = 0.004, AMOVA). A dendrogram of the Bray-Curtis dissimilarity shows that the 
PBS stored samples clustered separately from the other buffer types which was confirmed by parsimony analysis 
(p = 0.001, Fig. 3c). To examine which OTUs drive the differential clustering, we examined the read count for 
each OTU. Four bacterial OTUs corresponding to Neisseria, Pseudomonas, Porphyromonas and Helicobacter are 
significantly different in the PBS stored samples for all extraction kits (Fig. 3d–g). These results indicated that PBS 
buffer significantly alters single OTUs as well as the overall bacterial composition compared to all other storage 
buffers, independent of extraction kit choice. The bacterial profile of the blank control samples indicated that 
this effect is not caused by a buffer specific contamination as there appears to be no obvious buffer or kit specific 
profile (Supplementary Fig. S3).

Effect of extraction method. Richness, both the observed number of OTUs and Choa1, were analyzed to 
see the effect of the extraction kit choice on the alpha diversity. Pairwise comparison showed no significant effect 
on OTU richness between the different extraction kits (p = 0.893 [ANOVA], Table 2). In general, all extraction 
kits detect a higher OTU richness compared to the expected richness of the mock community (Table 2). In addi-
tion to assessing richness, evenness was analyzed using the Inverse Simpson index. The evenness of the samples 
extracted using MOBIO was significantly lower compared to the QMINI and GEN-IAL extractions (p = 0.008, 
p = 0.023, Wilcoxon test, Table 2). The evenness did not significantly vary between QMINI and GEN-IAL. Yet, the 
mean (±SEM) observed evenness (5.21 ± 0.08) was significantly lower than the expected evenness of the mock 
community (18.3). The same five OTUs, Enterococcus, Neisseria, Escherichia, Pseudomonas, and Bacillus dominate 
the bacterial profile independent of extraction kit choice (Fig. 3c).

Pairwise AMOVA of Bray-Curtis dissimilarity indicated that the extraction kit choice significantly impacted 
the community structure (p = 0.001, AMOVA). To assess which extraction kit more accurately represents the 
bacterial community structure, a theoretical ideal mock community (actual) composition was created for com-
parison (see methods for details). In the ideal scenario, the experimental data would be identical to the actual 
composition and there would be no Bray-Curtis dissimilarity. To assess the extraction kits, Bray-Curtis dissim-
ilarity was calculated between the observed and actual mock community for each sample (Fig. 4). The samples 
extracted with the same commercial kit were grouped in a boxplot and pairwise comparison was performed. The 
QMINI kit produced a significantly better representation of the bacterial community compared to all other kits 
tested (paired t-test, all p < 0.01, Fig. 4). On the contrary, the MOBIO kit performed significantly poorer than all 

Figure 2. Clustering of samples amplified with two different polymerases on a non-metric multidimensional 
scaling (NMDS) plot of the Bray-Curtis dissimilarities. Points are colored by applied extraction kit. The 
encircled pairs correspond to a single sample where each data point represents one 16 S rRNA amplification 
with Phusion Hot Start II High-Fidelity DNA Polymerase and the another with Platinum SuperFi DNA 
Polymerase. Sample pairs labeled with * were stored in PBS.
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other tested kits (all p < 0.01, Fig. 4). Overall, all the extraction kits distort the bacterial profile compared to the 
expected bacterial composition of the mock community (Fig. 4).

Discussion
We compared a variety of storage buffers, extraction kits, and amplification methods to examine which combina-
tion of handling conditions best represents the microbial diversity of an even mock community (Fig. 1). Different 
combinations of factors that most closely resemble the reality of sample handling were analyzed to facilitates the 

Figure 3. PBS stored samples significantly distort individual OTUs and cluster separately from other buffer 
types. Boxplots (median ± range) of (a) the number of OTUs and (b) the Inverse of the Simpson index for each 
buffer type. (c) UPGMA clustering on Bray-Curtis dissimilarities including taxa plots showing the relative 
abundance of OTUs in percentage of reads. Differential clustering of PBS to all other buffers was found to be 
significant (parsimony test, p = 0.001) (d–g) Individual bacterial OTUs are significantly underrepresented for 
PBS-stored samples. Number of sequence reads for OTUs corresponding to (d) Neisseria, (e) Pseudomonas, (f) 
Porphyromonas, and (g) Helicobacter. (Wilcoxon test, *p < 0.05, **p < 0.01).
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establishment of standards for the analyses of microbial compositions in swab samples. We show that the choice 
of storage buffer and extraction kit affects the detected bacterial composition, while different amplification meth-
ods had only a minor effect.

Using a mock community, four storage buffers were tested that have been previously used in various stud-
ies25–28. All samples in this study were frozen at −80 °C rapidly after collection. The samples stored in RNA-later, 
lysis buffer and native performed similarly to each other and revealed a similar detected bacterial diversity 
(Fig. 3). Samples stored in RNA-later have been previously reported to decrease DNA purity, lower DNA extrac-
tion yields, and to significantly alter the microbial diversity compared to native frozen samples10,29. This, however, 
was not observed in our study. It is likely, that this reflects differences in the sample material (microbes on swab 
vs. fecal samples) as it has been observed that fecal samples are harder to disperse evenly in RNA-later which may 
affect the storage and extraction efficiency10. Interestingly, compared to the other buffer types, swabs stored in 
PBS show an altered bacterial composition. There is no indication of a PBS buffer specific contamination profile 
in the blank samples that could explain this differential clustering. Moreover, PBS buffer in combination with the 
MOBIO extraction kit detected a lower evenness, which indicates that PBS seems to be particularly incompatible 
with certain extraction kits. PBS is a balanced salt solution that maintains pH, osmotic balance and is therefore 
frequently used as a wash buffer in cell and tissue culture. PBS storage has been recommended by manufacturers 
protocols and has been previously used when examining various extraction kits12,30. Other studies examining 
the effect of different storage conditions have not tested PBS despite its use in DNA extraction from swab mate-
rial6,10–12. It is not clear what properties of PBS effect the mock community differently from other storage buffers. 
Due to its properties, the buffer may stabilize certain cell types and therefore create a different bacterial profile. 
Interestingly, despite the different bacterial profile, the PBS samples perform similarly to the other buffer types 
when comparing them to the mock community. This indicates that the choice of buffer can affect the bacterial 
profile and specific OTUs, but does not lead to a significantly worse representation of the bacterial community. 
Our findings support the notion that standardization in sample collection and handling is essential to allow com-
parison of data within a study31. Additionally, field-wide standardization across handling protocols is vital for 
each sample type, so that cross-study comparisons become possible.

All extraction methods used in this study identify all 19 OTUs present in the mock microbial community 
(22 bacterial strains of 19 genera, Supplement Table S1). However, all kits detected a higher richness compared 
to the actual richness of the mock control. A low concentration of mock community (approximately 1 × 107 
cells/mL of each organism) was used in this study to simulate the expected bacterial amount in vaginal or oral 
swab samples32. Therefore, it was not surprising that additional OTUs were detected13. However, 99% of the 
pooled library clusters into 19 OTUs which correspond to the bacteria in the mock community. This indicates 
that the additionally detected OTUs correspond to a small fraction of sequence reads and may therefore be a 
result of contamination. This study in combination with previous work suggests that the expected biomass of 

Extraction Method Observed OTUs Chao1 InvSimpson
MOBIO PowerLyzer PowerSoil Kit 62.88 ± 8.38 69.79 ± 10.31 3.9 ± 0.40
GEN-IAL First All-Tissue Kit 59.75 ± 5.82 66.02 ± 7.51 5.3 ± 0.09
QIAamp DNA Mini Kit 64.00 ± 4.87 78.04 ± 5.94 5.1 ± 0.13
Actual/Expected Mock Community 22 22 18.3

Table 2. Alpha diversity measurements (mean ± SEM) for each of the DNA extraction kits (n = 8).

Figure 4. Bray-Curtis dissimilarity between observed and expected strain proportion for each of the tested 
extraction methods. The expected strain proportion (actual) was generated for comparison and represents 
the theoretically composition of the mock community (see methods for detail). The pair-wise proportions 
(expected to observed) from samples extracted with the same commercial kit were grouped in a single boxplot 
(mean ± SEM). Symbols illustrate different buffer types (■ PBS, ▼ RNA-later, ▲ native, ●lysis buffer) (Paired 
t-test, *p < 0.05, ***p < 0.001).
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vaginal and oral swab samples is sufficient for amplicon-based microbial detection without the need of addi-
tional target enrichment13. The use of a mock microbial community in this study allowed for direct assessment 
of the extraction kit performance. This comparison indicated that QMINI provides the best representation 
of the bacterial community when compared to MOBIO and GENIAL. Using a mock community, Yuan et al. 
also found that an altered version of QMINI provided the best bacterial profile6. A study using oral swabs 
confirmed that QMINI extracts DNA with significantly greater yield and good quality compared to other 
extraction kits2. This is in contrast to previous studies on fecal and soil samples, which found that MOBIO 
most effectively extracts microbial DNA of various bacterial strains33. These reported differences in optimal 
extraction kit may be due to the differences in sample type. The overall bacterial DNA and exogenous material 
(e.g. fiber) differs substantially between fecal and swab material34. Standardization of the extraction kit may 
thus only be appropriate within each sample type.

In this study, we find that the choice between the two polymerases and the addition of five cycles in amplifica-
tion of the 16S rRNA gene did not have a significant effect on the bacterial community structure (Fig. 2). Contrary 
to our findings, Wu et al. report that the choice of polymerase had an effect on the microbial community struc-
ture, however, the two polymerases that were tested had considerable differences in the fidelity (20 times and 4 
times higher than Taq)35. The two hot-start polymerases used in our study, had significantly higher fidelity (100 
times and 52 times higher compared to Taq) and are both recommended for NGS applications by the manufac-
turers. This may likely explain the lack of observable differences. Unlike polymerase choice, which had no effect 
on the detected evenness or richness, the addition of five PCR cycles to the amplification method led to an overes-
timation of the bacterial richness. Previous studies have already suggested that this increase is due to an upsurge 
of chimeric structures with increased cycle numbers3,5,35. This supports the notion that lower cycles numbers are 
favorable for amplicon sequencing5.

All tested conditions in this study lead to a distortion of the bacterial community structure compared to 
the expected bacterial mock composition (Fig. 4). Enterococcus, Neisseria, Escherichia, and Pseudomonas domi-
nated the detected profile in our study, while other bacteria genera such as Lactobacillus were underrepresented. 
Knowledge of which genera are underestimated in the detected bacterial profile (e.g. Lactobacillus) is essential 
to properly estimate the bias when studying certain bacterial communities (e.g., the vaginal microbiome). In a 
recent study using the same mock community, the bacterial profile resembled the one detected in our study, indi-
cating that the observed distortion is most likely not due to laboratory or kit specific contamination3,13. Instead, 
the bias could be attributed to a variety of factors that were not examined in this study, such as differential suscep-
tibility of bacteria to lysis6. To increase lysis efficiency of a broader spectrum of bacteria, enzymatic pre-treatment 
has been studied as a potential solution, with mixed results6,36,37. Another potential cause for the observed bias 
is the use of primers for 16 S rRNA gene amplification. Although these are universal, amplification may favour 
certain bacterial strains thus creating bias in the analysis38,39. Shotgun metagenomics has been proposed as a 
solution as it negates some of the bias caused by the amplification, however, this technique does not negate all of 
technical caveats as storage and extraction kit choice can still have a major impact on the results3,40. Continual 
improvement to the sample handling conditions for both amplicon sequencing and shotgun metagenomics using 
mock communities is therefore essential.

Conclusion
For now, investigators should standardize the sample handling methods for each sample type as consistency 
among sample collection, sample storage and sample processing is able to significantly reduce variation. 
Preliminary tests on specific sample types should be used to ensure that the comparative analysis is as accurate 
as possible. Caution is, however, warranted when drawing conclusions about the relative abundance of bacterial 
populations in a single sample and when combining data for meta-analyses.
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Supplementary Information: 
 
 Table S1: Organisms in the microbial mock community HM-280 

Organism 
16S rRNA gene 
copy number 

Acinetobacter baumannii, strain 5377 5 
Actinomyces odontolyticus, strain 1A.21 2 
Bacillus cereus, strain NRS 248 12 
Bacteroides vulgatus, strain NTC 11154 7 
Bifidobacterium adolescentis, strain E194a 5 
Clostridium beijerinckii, strain NCIMB 8052 14 
Deinococcus radiodurans, strain R1 (smooth) 3 
Enterococcus faecalis, strain OG1RF 4 
Escherichia coli, strain MG1655 7 
Helicobacter pylori, strain 26695 2 
Lactobacillus gasseri, strain 63AM 6 
Listeria monocytogenes, strain EGDe 6 
Neisseria meningitides, strain MC58 4 
Porphyromonas gingivalis, strain 2561 4 
Propionibacterium acnes, strain KPA171202 3 
Pseudomonas aeruginosa, strain PAO1-LAC 4 
Rhodobacter sphaeroides, strain ATH 2.4.1 3 
Staphylococcus aureus, strain TCH959 6 
Staphylococcus epidermidis, FDA strain PCI 1200 5 
Streptococcus agalactiae, strain 2603 V/R 7 
Streptococcus mutans, strain UA159 5 
Streptococcus pneumoniae, strain TIGR4 4 
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Figure S1: Processing of swab samples prior to DNA extraction. (A) A kit-specific lysis 

buffer was added to the native swab sample, which was briefly vortexed to ensure even 

distribution of the buffer. Subsequently, the bottom of the swab-containing tubes (PBS, RNA-

later, native and custom-made lysis buffer) was pierced by a sterile needle (20G) to allow for 

the separation of the swab material from the respective storage buffer. Separation was forced 

by centrifugation (2,500g for 1 minute at room temperature). (B) Prior to DNA extraction, 

RNA-later and PBS buffer were centrifuged at 11,000g for 5 minutes at 4 °C. The supernatant 

was removed and replaced by kit-specific lysis buffer.  

 
 
Table S2: Bray-Curtis Dissimilarity between identical samples amplified with either Platinum 
SuperFi DNA Polymerase or the Phusion Hot Start II High-Fidelity DNA Polymerase. 
 

Kit Buffer Bay-Curtis Dissimilarity 
MOBIO Lysis buffer 0.064 

 Native 0.039 
 PBS 0.076 
 RNA-later 0.032 

GENIAL Lysis buffer 0.028 
 Native 0.036 
 PBS 0.027 
 RNA-later 0.025 

QMINI Lysis buffer 0.062 
 Native 0.076 
 PBS 0.019 
 RNA-later 0.044 
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Figure S2: Five additional cycles (‘c’) significantly altered the number of detected OTUs 

but did not alter the bacterial composition. (a) Taxa plots showing the relative abundance 

of OTUs identified in percentage of reads. Actual refers to the predicted bacterial composition 

of the mock community. (b) Boxplots (median ± range) of the number of OTUs in each of the 

samples plotted by cycle number (‘c’). (Wilcoxon t-test, *p<0.05) 

 

 
 
 
 
 
 
 
 
 
 

___________________________________________________________________________________________________PUBLICATIONS

35



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hallmaier-Wacker et al. 
 

 
 

Figure S3: Bacterial profile of blank samples for each buffer and kit used in our study. 

A total of 946,412 sequences corresponded to the blank sample, with a mean read count of 

12,727 reads per sample. Taxa plots showing the relative abundance of OTUs identified in 

percentage of reads. Symbols illustrate different extraction kits (●MOBIO, ■ GENIAL, 

▲QMINI) 

 
 

PUBLICATIONS___________________________________________________________________________________________________

36



  

Chapter B3      
 

 
 

Lactation and menstruation shift the vaginal microbiota in 
captive rhesus monkeys to be more similar to the male urethral 

microbiota 
 

Luisa K. Hallmaier-Wacker1,2, Simone Lüert1,2, Christian Roos2,3 and Sascha Knauf1,4 
 
 

Scientific Reports 9: 17399 (2019) doi: 10.1038/s41598-019-53976-8 

 
1Neglected Tropical Diseases Work Group, Infection Biology Unit, German Primate 

Center, Leibniz Institute for Primate Research, Göttingen, Germany  

2Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate 

Research, Göttingen, Germany 

3Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate 

Research, Göttingen, Germany 

4Division of Microbiology and Animal Hygiene, Georg-August-University, Göttingen, 

Germany 

 
_____________________________________________________ 
Author contributions: 
 
Conceived and designed the study: LHW, CR, SK  
Performed sample collection: LHW, SL, SK 
Conduced laboratory work: LHW, SL 
Analyzed the data: LHW, SK 
Manuscript preparation: LHW, SL, CR, SK 
 

___________________________________________________________________________________________________PUBLICATIONS

37



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1SCIENTIFIC REPORTS |         (2019) 9:17399  | https://doi.org/10.1038/s41598-019-53976-8

www.nature.com/scientificreports

Lactation and menstruation shift 
the vaginal microbiota in captive 
rhesus monkeys to be more similar 
to the male urethral microbiota
L. K. Hallmaier-Wacker1,2, S. Lüert1,2, C. Roos  2,3 & S. Knauf  1,4*

The vaginal microbiota of nonhuman primates differs substantially from humans in terms of 
Lactobacillus abundance, overall taxonomic diversity, and vaginal pH. Given these differences, it 
remains unclear in what way the nonhuman primate genital microbiota protects against pathogens, in 
particular sexually transmitted infections. Considering the effect that microbiota variations can have 
on disease acquisition and outcome, we examined endogenous and exogenous factors that influence 
the urogenital microbiota of male and female captive rhesus monkeys. The male urethral (n = 37) 
and vaginal (n = 194) microbiota of 11 breeding groups were examined in a cross-sectional study. 
During lactation and menstruation, the vaginal microbiota becomes significantly more diverse and 
more similar to the microbes observed in the male urethra. Group association and cage-mate (sexual 
partners) relationships were additionally associated with significant differences in the urogenital 
microbiota. Our results demonstrate that microbiota considerations are necessary in order to make 
informed selection of nonhuman primates as translational animal models.

In recent years there has been an increased interest in the microbiota of nonhuman primates (NHPs) for evolu-
tionary, experimental, and conservation purposes. However, microbiota considerations are currently not used to 
refine and reduce experiments with NHPs, despite increasing evidence that the microbiota in humans can influ-
ence disease progression (reviewed by1). Of the NHP animal models, the Asian rhesus monkey (Macaca mulatta) 
and long-tailed macaque (Macaca fascicularis) are the most extensively utilized species2–4. In laboratory settings, 
rhesus monkeys cycle year-round, have a reproductive cycle that is similar to that of humans and experience 
similar changes in the hormonal levels during sexual cycle, pregnancy and post-partum5–7. Therefore, the vagina 
of rhesus monkeys has been used to model the human vaginal epithelium and study sexual transmitted infections 
(STIs)8. For example, rhesus monkeys have been extensively used to study the disease acquisition and outcome 
of simian-/human immunodeficiency virus (SIV/HIV)3,9. In a study on SIV susceptibility, estrogen treatment in 
rhesus monkeys protected female rhesus monkeys from the sexually transmitted infection3. Smith et al. proposed 
that not just the thickening of the vaginal epithelium but also a potential change in vaginal microenvironment 
may have led to the observed effect under the influence of high estrogen levels3.

Many studies have laid the groundwork in characterizing the genital microenvironment of various species 
of captive and wild NHPs2,10–12. Unlike the vaginal microbiota of humans, which is often dominated by a single 
Lactobacillus species13, NHPs, including rhesus monkeys, harbor a diverse set of vaginal microbes2,11. In humans, 
the acidic nature of the vaginal environment (pH ≤ 4.5) protects women against STIs14. The vaginal microbiota of 
NHPs on the other hand has a low abundance of Lactobacillus (<2% of microbiota), a near neutral vaginal pH and 
is instead colonized by a diverse set of bacterial genera including Sneathia, Aerococcus, Prevotella, Porphyromonas, 
Fusobacterium and Atopobium2,11,12,15. Considering these differences, it currently remains unclear in what way the 
vaginal microenvironment of rhesus monkeys protects against infectious diseases. Additionally, despite increas-
ing evidence that sexual exposures can alter the composition of the human genital microbiota16,17, the urethral 

1Work Group Neglected Tropical Diseases, Infection Biology Unit, Deutsches Primatenzentrum GmbH, Leibniz 
Institute for Primate Research, Goettingen, Germany. 2Primate Genetics Laboratory, Deutsches Primatenzentrum 
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Primazentrum GmbH, Leibniz Institute for Primate Research, Goettingen, Germany. 4Division of Microbiology and 
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microbiota of male NHPs remains largely uncharacterized. A better understanding of factors that influence the 
rhesus monkey genital microbiota of both male and female animals in health and disease is thus warranted.

In this study, we investigate the genital microbiota of a large breeding colony of rhesus monkeys at the German 
Primate Center. To identify endogenous and exogenous factors that influence the microbiota, we examined the 
genital microbiota in the breeding colonies in the context of age, breeding group association, social rank, body 
mass, and long-term health status. We studied both, the vaginal microbiota of female and the urethral microbiota 
of male rhesus monkeys which has not been done in previous studies. We are therefore able to compare bacterial 
composition between male and female animals in a single cohort of rhesus monkeys and found that during men-
struation and lactation the vaginal microbiota shifts to be more similar to the male urethral microbiota.

Results
We examined the vaginal microbiota of 194 female rhesus monkeys and the urethral microbiota of 37 male rhesus 
monkeys housed at the breeding facility of the German Primate Center (data file S1). The mean age, number of 
breeding groups, and other characteristics of the sampled animals are shown in Table 1. The V4 region of the bac-
terial 16S rRNA gene was selected as its informative, short-read length from the Illumina MiSeq platform allows 
full overlap of paired-end reads and thus higher confidence in the sequence data. Sequencing of the V4 region 
of the rhesus monkey samples generated a total of 14,571,505 unfiltered reads with a mean read count of 48,630 
reads per sample ( ± 15,461 SD) after quality filtering. Sequences were rarified to 11,371 sequences per sample and 
clustered into operational taxonomic units (OTUs) based on the 97% similarity threshold. We first examined the 
microbiota of the male urethra and vagina separately and then compared composition similarities between male 
and female animals.

Appropriate control samples and a mock community (Microbial mock community, HM-280, Biodefense and 
Emerging Infectious Research (BEI) Resources, Manassas, USA) were included in the sequencing run. Using 
the mock community, the observed error rate for the run was found to be 0.036%. The collected control samples 
showed that contamination was highest during sample collection procedures, while controls taken during ampli-
fication procedures in the laboratory yielded only minimal read counts (Fig. S1a). Taxa plots of control samples 
that were taken during sampling at two different breeding units, show that the relative abundance of contaminant 
OTUs was similar (Fig. S1b).

The vaginal microbiota is significantly altered during lactation and menstruation. We 
investigated the vaginal microbiota (n = 194), vaginal pH (n = 138), and sexual cycle phase (n = 148) of 
clinically-healthy, reproductively-active rhesus monkeys housed in eleven breeding groups (Table 1). None of 
the females showed signs of pregnancy, as defined by transabdominal palpation. At the time of sampling 30.4% 
of the animals were lactating. In addition to lactation, we characterized the sexual cycle phase using exfoliative 
vaginal cytology (EVC) (see Methods, Table S1). The sexual cycle phase (P1-P3) of non-lactating females were 
evenly distributed with 35.6% in an ovulatory phase (P1), 41.3% in an intermediate phase (P2) and 23.1% in a 
menstruation-like phase (P3) (Table S1). For lactating females, 52.3% of the animals were in a menstruation-like 
phase, 31.8% in an intermediate phase, and 15.9% in the ovulatory phase (Table S1). For the purpose of the micro-
biota analysis, lactation status and sexual cycle phases were analyzed independently.

Overall, a mean of 219.8 ± 160.7 (unless otherwise stated all values are given in mean ± SD) OTUs were 
observed in the vaginal microbiota of the rhesus monkeys. The most abundant genus was Prevotella with a mean 
abundance of 20.5 ± 16.4%. Different OTUs were identified as Prevotella, indicating that a diverse set of species 
from this genus were present (Fig. 1). Porphyromonas (9.5 ± 9.9%), Streptobacillus (9.1 ± 13.4%) and an unclas-
sified genus of the family Ruminococcaceae (9.5 ± 7.3) were the other dominant taxa in the otherwise diverse 
community (Fig. 1).

Lactation status and sexual cycle phase strongly correlated with the OTU richness (identified absolute number 
of taxa) and evenness (inverse Simpson index; Fig. 2). Lactating females had a significantly higher OTU richness 
(p ≤ 0.0001 [Mann-Whitney t-test]) and the bacterial taxa were significantly more evenly distributed (p ≤ 0.0001 

Female (n = 194) Male (n = 37)
Mean age, years 10.0 ± 4.9 7.9 ± 5.6
   n Geriatric (>19 years) 10 1
   n Adult (5–19 years) 168 17
   n Juvenile (<5 years) 16 19
Breeding groups 11 10
Vaginal pH, mean ± SD 6.4 ± 0.7 (n = 138) N/A
% EVC* 76.3% (n = 148) N/A
   n Phase 1 44† N/A
   n Phase 2 57† N/A
   n Phase 3 47† N/A
% Lactating 30.4 (n = 59) N/A
% Breeder males N/A 40.5 (n = 15)

Table 1. Characteristics of sampled rhesus monkeys in this study. *Cytology phases classification described in 
detail in Methods and Supplementary Table S2; †The subdivision of sexual cycle phases by lactating status can be 
seen in Table S2.
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[Mann-Whitney t-test] than in non-lactating females (Fig. 2a,b). Similarly, animals in a menstruation-like (Phase 
3, Table S1) sexual cycle phase had a significantly higher OTU richness (p ≤ 0.0001 [Kruskal-Wallis test]) and 
were significantly more evenly distributed (p ≤ 0.001 [Kruskal-Wallis test]) than animals in the ovulatory (Phase 
1) or intermediate phase (Phase 2; Fig. 2c,d). A heatmap of the relative abundance of the 20 most common 
OTUs shows that lactating animals and animals in menstruation-like sexual phase clustered separately from 
other animals (Fig. 1). Vaginal bacterial communities from these animals clustered prominently in cluster 1 (C1) 
and are characterized by different bacterial taxa than the cluster 2 (C2; Fig. 1). Of the ten most abundant OTUs, 
Provella, Mobiluncus, Porphyromonas and an unclassified genus of the family Ruminococcaceae were significantly 
different in the lactating and menstruation-like animals (Fig. S2a,b). These cluster differences were confirmed by 
significant differences in the unweighted UniFrac distances, which are visualized on the principal coordinates 
plot along axis 1 (23.1%) (Fig. 3a,b). Pairwise AMOVA confirmed that the differential clustering of lactating and 
menstruating-like animals resulted in significantly different community structures (p ≤ 0.001).

In order to examine an additional functional variable of the vaginal microbiota, we tested the vaginal pH 
at the time of sampling using pH-indicator paper. The mean overall vaginal pH of the sampled animals was 
found to be 6.4 ± 0.7 (Table 1). The vaginal pH of lactating females (6.8 ± 0.5) was significantly higher than 
that of non-lactating females (6.3 ± 0.7) (p ≤ 0.0001 [Mann-Whitney t-test], Fig. S3a). Similarly, animals in 
menstruation-like sexual phase (7.0 ± 0.5) had a higher vaginal pH compared to individuals in the other sexual 
cycle phase (P1: 6.0 ± 0.6, P2: 6.3 ± 0.7, p ≤ 0.0001 [Kruskal-Wallis test], Fig. S3b).

Figure 1. Heatmap of the relative abundance of microbial taxa identified in the vaginal microbiota of rhesus 
monkeys in multiple breeding groups. Ward linkage clustering of samples based on the composition and relative 
abundance of the 20 most abundant OTUs in the vaginal microbiota. Lactation status (1: lactating and 0: non-
lactating), group association (A–K) and EVC (sexual cycle phases) (P1: ovulatory phase, P2: intermediate stage, 
P3: menstruation-like and NT: not tested) of each sample are shown beside the heatmap. C1 and C2 indicate 
two main clusters in the ward linkage clustering. See Table 1 for sample size composition.
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Breeding groups influence the vaginal microbiota. Aside from lactation status and cycle phase, we 
examined if the vaginal microbiota is shaped by age and breeding group. Animals were subdivided into juve-
niles (<5 years), adults (5–19 years), and geriatric (>19 years). Age was not found to have an influence on alpha 
diversity (Fig. S4) and beta diversity (p = 0.155 [AMOVA; Fig. S5a). The group association, in contrast, signif-
icantly correlate with the OTU richness (p ≤ 0.0001 [Kruskal-Wallis test], Fig. 2e) and evenness (p ≤ 0.0001 
[Kruskal-Wallis test], Fig. 2f). The breeding group association of each sample can be seen on the heatmap of 
the 20 most abundant OTUs (Fig. 1). Additionally, we observed a significant difference in unweighted UniFrac 
distances when considering all breeding groups (p ≤ 0.001 [AMOVA; Fig. S5b). Pairwise comparisons of alpha 
and beta diversity measurements between individual breeding groups was, however, not significant for all tested 
groups.

Figure 2. Alpha diversity measurements for the vaginal microbiota of female rhesus monkeys. Violin plots 
of the observed OTUs and InvSimpson index clustered based on (a,b) lactation status (Mann-Witney t-test, 
***p ≤ 0.0001) and (c,d) sexual cycle phases (P1: ovulatory phase, P2: intermediate stage, P3: menstruation-
like) (Kruskal-Wallis test, **p ≤ 0.001, ***p ≤ 0.0001). (e,f) Boxplots (median ± range) of the observed OTUs 
and InvSimpson index clustered by breeding groups (groups association: A-K). See Table 1 for sample size 
composition.
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Influence of age in adult male rhesus monkeys. We characterized the urethral microbiota of 
clinically-healthy, reproducing male rhesus monkeys housed in ten different breeding groups (Table 1). Breeding 
groups are composed of a single adult male (breeding male) and juvenile off-spring males (≤5 years) which 
are removed from the breeding groups upon reaching adulthood. Overall, the urethral microbiota of male rhe-
sus monkeys is composed of a diverse community of microbes, with a mean of 481.3 ± 127.0 OTUs observed. 
On a phylum level, Firmicutes (54.1 ± 8.3%), Bacteroidetes (25.5 ± 9.3%), Proteobacteria (9.0 ± 6.7%) and 
Actinobacteria (6.6 ± 3.2%) made up 95% of the identified sequences. The four dominant phyla were present in all 
37 samples. On the genus level, the bacterial community is diverse with no single dominating OTU (Fig. 4). The 
most abundant genus in the male rhesus monkey urethra was Prevotella with a mean abundance of 14.4 ± 9.7% 
followed by Porphyromonas (7.5 ± 6.6%) and Ezakiella (7.3 ± 6.8%).

We examined if the urethral microbiota of the adult, breeding male differed from the microbiota of juve-
nile males. Each breeding group had a single adult breeding male with the exception of group H (n = 4) and I 
(n = 3), which were further divided into subgroups within a single housing unit. Adult males neither differed 
from other males in the OTU richness (p = 0.145, [Mann-Whitney test], Fig. 4a) nor the evenness (p = 0.453 
[Mann-Whitney test], Fig. 4b). Pairwise AMOVA of unweighted UniFrac distances found that being the breeding 
male in a group had no effect on community structure (p = 0.123). A dendrogram of unweighted UniFrac dis-
tances shows that the adult animals did not cluster separately from other animals (parsimony analysis, p = 0.768; 
Fig. 4c). OTU richness and evenness measurements of each breeding group are shown in Fig. S6. We note here, 
that the sample size of male animals in each breeding group were low (n = 1 to 4 animals). Therefore, statistical 
analysis was not performed to examine breeding group differences.

Figure 3. The vaginal microbiota of menstruating-like and lactating females clusters separately. Principal 
coordinates analysis (PCoA) of vaginal samples colored by (a) lactation status (lactating (dark blue, 1) and non-
lactating (light blue, 0) and (b) sexual cycle status (P1: ovulatory phase (red), P2: intermediate stage (pink), P3: 
menstruation-like (dark red) and NT: not tested (gray)). Distances between samples were calculated using the 
unweighted UniFrac metrics. See Table 1 for sample size composition. Fig. S5 shows the corresponding PCoA 
plot classified by group association and age classification.
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Lactating and menstruating female have a more similar microbiota to the male urethra. On the 
phylum level, Firmicutes and Bacteroidetes dominated both microbiotas, making up 80.1 ± 6.9% in the male urethra 
and 69.9 ± 17.8% in the vagina. Yet, Fusobacteria, the third most abundant phylum in the vagina (14.4 ± 16.1%), only 
made up 1.9 ± 3.3% in the male urethra. The most abundant genus across the dataset for both, male and female geni-
tal microbiota was Prevotella. Several OTUs cluster into this bacterial genus and the most abundant Prevotella OTUs 
(mean abundance of 6.0 ± 8.7%) was found in 226 out of 231 animals. Other Prevotella OTUs were less abundant 
and only dominant in some samples (Fig. 1: vaginal microbiota and Fig. 4: male urethral microbiota).

Figure 4. The male urethral microbiota of adult and juvenile rhesus monkeys does not differ significantly. 
Violin plots of (a) the number of OTUs and (b) the inverse Simpson index for adult and juvenile males (Mann-
Witney t-test). (c) UPGMA clustering on unweighted UniFrac including taxa plots showing the relative 
abundance of the 25 most abundant OTUs in percentage of reads. Genus-level bacterial classification of OTUs 
shown legend with the percent of sequences that classified with each genus. Group are shown accordingly and 
adult (breeding male within each group) is indicated. See Table 1 for sample size composition.

___________________________________________________________________________________________________PUBLICATIONS

43



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7SCIENTIFIC REPORTS |         (2019) 9:17399  | https://doi.org/10.1038/s41598-019-53976-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

To further examine similarities between the vagina and male urethra, overall OTU richness and evenness was 
compared. As we previously observed a significant difference in alpha and beta diversity of the vaginal microbiota 
based on lactation status and sexual cycle phase, these variables were plotted separately (Fig. 5). The male urethra 
had a significantly higher OTU abundance compared to non-lactating and non-menstruation-like (ovulatory 
and intermediate phase) animals (p ≤ 0.0001 [Kruskal-Wallis test], Fig. 5a,b). Contrary, menstruation-like (P3) 
and lactating female rhesus monkeys showed no significant difference in the number of OTUs compared to the 
male urethra microbiota (p ≤ 0.05 [Kruskal-Wallis test], Fig. 5a,b). Similarly, inverse Simpson index measure-
ments were significantly different between males and non-lactating and non-menstruation-like (ovulatory (P1) 
and intermediate phase (P2)) animals (p ≤ 0.0001 [Kruskal-Wallis test], Fig. 5c,d). Inverse Simpson index meas-
urements were not significantly different between males and lactating and menstruation-like animals (p ≤ 0.05 
[Kruskal-Wallis test], Fig. 5c,d). To examine, if the trend in the alpha diversity could be observed in the overall 
bacterial composition, pairwise unweighted UniFrac distances were calculated between the male urethral micro-
biota and the vaginal microbiota. More similar microbiotas resulted in a smaller calculated UniFrac distances 
and vise versa. The UniFrac distances were grouped in violin plots based on either lactation status (Fig. 5e) or 
sexual cycle phase (Fig. 5f). We found that the bacterial composition of the vaginal microbiota of lactating and 
menstruating-like animals (P3) was significantly more similar to that of the male urethra microbiota (Fig. 5e,f).

Cage-mates are more similar in their genital microbiota. In order to assess if sexual contact shapes 
the genital microbiota of the captive rhesus monkeys, pairwise unweighted UniFrac distances were calculated 
between the male urethral microbiota of the adult male in each group and the vaginal microbiota of adult females. 
Females and males of the same breeding group were considered cage-mates and thus potential sexual partners. 
UniFrac distances were grouped into violin plots as ‘cage-mates’ or from ‘other breeding groups’ (no sexual con-
tact possible) (Fig. 6). Cage-mates were found to be significantly more similar in the bacterial composition com-
pared to non-cage-mates (p ≤ 0.0001 [Mann-Whitney test], Fig. 6). As we observed a significant difference in 
lactation status and sexual cycle phase, these variables were additionally plotted in separate paired-violin plots 
to examine cage-mate differences for each group (Fig. S7a,b). Cage-mates were found to be significantly more 
similar in the bacterial composition for lactation, menstruation-like and ovulatory phase animals (Fig. S7a,b). 
Cage-mate similarity was not observed for the non-lactating group or for animals in an intermediate sexual phase 
(P2; Fig. S7a,b).

Discussion
Considering the effect that microbiota variation can have on disease acquisition and outcome1, we examined 
endogenous and exogenous factors that influence the urogenital microbiota of captive rhesus monkeys. The inclu-
sion of optimal negative controls (Fig. S1) and the relatively large sample size strengthen the study. However, 
based on our cross-sectional study design we were limited in drawing causal relationships between factors and 
variations in the genital microbiota. Nevertheless, our results urge for the inclusion of microbiota analysis in the 
selection and experimental use of rhesus monkeys as indicated by the differences between the vaginal microbiota 
during lactation and sexual cycles phases.

We showed that during lactation and menstruation the bacterial composition shifts towards a more diverse 
community (Figs. 1–3). As reported previously, we confirmed that the mean vaginal pH of rhesus monkeys 
(6.4 ± 0.7) is significantly higher than that found in humans (Fig. S3)2. Instead of the Lactobacillus-dominance 
observed in women (reviewed by18), the vaginal microbiota of captive and wild NHPs harbor a more diverse set 
of bacteria (Fig. 1)2,11,12,15. Our study shows that in captive rhesus monkeys the already diverse bacterial com-
munity shifts to an even more diverse and significantly different bacterial composition during lactation and the 
menstruation-like phase (Figs. 2–3). While a previous study on captive baboons (Papio anubis) found no differ-
ence in the vaginal microbiota of cycling females15, a recent study in wild baboons (Papio cynocephalus) reported 
that the ovarian cycle phase and the reproductive state shaped the vaginal microbiota12. Both of these studies 
used visual assessment of perivulvar swellings to determine the sexual cycle phase12,15. Inconsistent classification 
of these phases in the two studies in combination with low sample sizes may explain the difference in the out-
come of both studies. Instead of using perivulvar swellings, we performed vaginal exfoliative cytology to classify 
the animals into three sexual cycle phases (Table S1)19–21. Vaginal exfoliative cytology reflects the current state 
of the vaginal epithelium and therefore serves as a reliable marker for the sexual cycle phase19–21. The even dis-
tribution of all three sexual cycle phases in non-lactating rhesus monkeys (Table S1) is indicative of a healthy 
reproductive community. Using cytology as a marker of sexual cycle phase, this study supports Miller et al.’s 
finding that ovarian cycle phase (menstruation-like) and reproductive state (lactation) shifts the vaginal micro-
biota in NHPs12. Similar changes have been reported in temporal and cross-section studies in women during 
menstruation and post-partum13,22, where it has been demonstrated that the vaginal microbiota shifted from a 
Lactobacillus-dominant state towards a more diverse bacterial composition13,22. Despite the remarkable differ-
ences in bacterial species composition of the rhesus monkeys and human vaginal microbiota, it is interesting that 
similar factors (e.g. hormonal changes) seem to influence the vaginal microbiota. This is supported by our finding 
that the observed changes in bacterial vaginal diversity in the rhesus monkeys coincide with changes in the pH, a 
functional measurement of the vaginal ecosystem. Whether the observed variance in the bacterial diversity and 
the difference in pH is physiologically relevant cannot be determined in this study. However, none of the animals 
had any clinical manifestations of vaginitis, which supports our notion that the bacterial variation and the pH 
differences observed in this study is within physiologically range.

It has been proposed that hormonal fluctuations during the sexual cycle, pregnancy and post-partum shape 
the vaginal microbiota (reviewed by18). Both lactation and menstruation are marked by hormonal changes in the 
vagina, which may be indirect or direct driving factors for the shift in vaginal microbiota observed in this study 
(Figs. 1–3). Studies on SIV susceptibility in rhesus monkeys have shown that hormone treatment can lead to an 
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Figure 5. The vaginal microbiota of lactating and menstruating females is more similar to the urethral 
microbiota. Violin plots of the number of OTUs (a) in the male urethra and vaginal microbiota of lactating and 
non-lactating females and (b) in the male urethra and vaginal microbiota of females in three sexual cycle phases 
(P1: ovulatory phase, P2: intermediate stage, P3: menstruation-like) (Kruskal-Wallis test, ***p ≤ 0.0001). Violin 
plots of the inverse Simpson index for (c) male urethra and vaginal microbiota of lactating and non-lactating 
females and (d) male urethra and vaginal microbiota of females in three sexual cycle phases (Kruskal-Wallis 
test, ***p ≤ 0.0001). (e,f) Violin representations showing unweight UniFrac distance of each adult female to 
the adult male in each group. Data is plotted by (e) lactation status (Kruskal-Wallis test, ***p ≤ 0.0001) and (f) 
sexual cycle phase (Mann-Witney t-test, ***p ≤ 0.0001). See Table 1 for sample size composition.

___________________________________________________________________________________________________PUBLICATIONS

45



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

9SCIENTIFIC REPORTS |         (2019) 9:17399  | https://doi.org/10.1038/s41598-019-53976-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

altered susceptibility3,9. During high levels of estrogen, changes in the vaginal epithelium, including changes in vagi-
nal microenvironment, may have a protective effect3. Further investigations are necessary to examine the causal rela-
tionship between hormone levels, changes in the NHP vaginal microbiota, and susceptibility to pathogens. However, 
it has become clear, that a more holistic understanding on host-pathogens interactions is required for the interpreta-
tion of animal experiments as host factors can influence the microbiota and vice versa (reviewed by1).

We examined the male urethral microbiota of the rhesus monkeys to further compare the genital microbi-
ota of females and males in a single breeding unit. To our knowledge, there has been no studies on the urethral 
microbiota of wild or captive NHPs to date. Four bacterial phyla, Firmicutes, Bacteroidetes, Proteobacteria, and 
Actinobacteria, compose the majority of identified sequences in the urethra. On the phylum level, the urethral 
microbiota of the male rhesus monkeys were similar to that reported in humans with Firmicutes making up the 
largest proportion23. In our male animals, notable urethral taxa include Prevotella, Porphyromonas, and Ezakiella, 
have all been previously associated with the urinary tract microbiota of adult men23–25. Prevotella has been pre-
viously detected in the genital microbiota of healthy female rhesus monkeys indicating that this genus plays a 
residential role in the rhesus monkeys’ genital microbiota10. In humans, some species of Prevotella have been 
associated with disease states (e.g., bacterial vaginosis26) while other species can be found in clinically healthy 
women (e.g., post-partum22). Identifying the specific species of Prevotella and their functional role in NHPs may 
be important to further understand the vaginal microbiota of NHPs. For the urethral microbiota, it is difficult to 
compare the prevalence of Prevotella in the male rhesus monkey to other studies, as there is currently no consen-
sus on the core urethral microbiota, even in humans25. As a result, large scale investigations need to be performed 
to study the male urogenital microbiota including factors that influence this unique ecosystem in health and 
disease25.

It has been hypothesized that sexual exposures can alter the composition of the genital microbiota13,16,25. A 
recent study on sexual partners with bacterial vaginosis (BV), showed that women with BV were significantly 
more similar to the urogenital microbiota of their partner17. To test if sexual contact affected the genital micro-
biota of NHPs, we first examined if adult, breeding males in captive rhesus monkeys had different urethral 
microbiota from juvenile males. Breeding groups in this study contained a single adult male, who monopolized 
the cage-mates in estrus. We found that the age of male rhesus macaques did not shape the urethral microbiota 
(Fig. 4). This may be due to the fact that juvenile rhesus monkeys already engage in socio-sexual mounting 
as a form of play27. Sexual history in healthy adolescent men has been reported to be a possible determinant 
of the urogenital microbiota16. Known sexually transmitted bacteria and taxa associated with the urethral 
tract of adult men23, were observed rarely in adolescent men16. To further study the effect of sexual contact, 
we examined the similarity of the genital microbiota in cage-mates (adult male to adult females in the same 
breeding group). We found that overall, cage-mates were significantly more similar to each other compared 
to non-cage-mates (Fig. 6). When subdividing cage-mate by lactation status and sexual cycle, the observed 
cage-mate effect was not seen for non-lactation and intermediate sexual phase animals (Fig. S7a,b). This may 
be due to an inappropriate subsampling of these two groups. For example, the intermediate sexual phase clas-
sification used in the EVC may represent both, proliferative phase and secretory phase, and is therefore an 
oversimplification. This highlights the limitation of this cross-sectional study in assessing cage-mate similari-
ties. A controlled temporal study is necessary to examine the effect of sexual contract in NHP breeding groups. 

Figure 6. Comparison between the male urethral microbiota and female vaginal microbiota of cage-mates. 
Violin plots showing unweight UniFrac distance of the adult vaginal microbiota to the urethral microbiota of 
the adult males. Data is plotted separately for female animals in the same breeding group (cage-mates) and 
females of other breeding groups (other) (Mann-Witney t-test ***p ≤ 0.0001). For further subdivision by 
lactation status and sexual cycle phase see Fig. S7.
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NHPs can be an advantages model to further examine microbiota similarities in sexual partners (in health and 
disease) as sexual contact is easily observed and controlled.

A surprising finding of our study was that independent of breeding group association, the bacterial composi-
tion of lactating monkeys and/or those in the menstruation-like sexual phase were more similar to the urethral 
microbiota than the non-lactating/non-menstruating animals (Fig. 5). As females in a menstruation-like sexual 
phase are less attractive to male rhesus monkeys, we presume that the similarity is not caused by recent sexual con-
tact. A possible explanation for this finding is that the altered hormonal state allows otherwise more-suppressed 
bacteria to dominate the microbiota. To understand the cause of the vaginal microbiota shift towards the male 
urethra microbiota, controlled temporal experiments in NHPs would be necessary. Interestingly, a temporal study 
in humans has shown that the vaginal microbiota post-partum shifts towards the gut microbiota22. The study 
was able to show that the shift towards the gut microbiota persisted for multiple months and was independent of 
delivery method (vaginal vs. caesarean). These findings support the notion that during changes in the genital eco-
system (e.g., shifts in hormones or delivery), the vagina is more susceptible to ‘foreign’ bacteria. This potentially 
altered susceptibility should be carefully considered when performing vaginal inoculations in NHPs for future 
experiments (e.g., HIV).

We found that breeding groups can have an effect on the vaginal microbiota (Fig. 2). Breeding group similar-
ities could be influenced by various factors including host genetics28, differences in group size or cage effects29. 
Many of these factors could not be properly examined in this study and require planned and controlled animal 
experiments. In mice, it has been shown that animals kept in the same cage become more similar in microbi-
ota composition over time29. This effect could be studied in captive NHPs by examining microbiota changes 
in various ecological niches (genital, skin, fecal) during cage transfers. A cage effect in NHPs could have major 
implications for the use of NHPs as translational animal models. A better understanding of the NHP micro-
biota could therefore refine animal selection for animal experiments where a higher standardization can lead 
to reduced animal numbers3,9. The inclusion of appropriate controls in microbiota studies cannot be stressed 
enough30. Especially low abundance microbiotas like the urethral microbiota are vulnerable to contaminations 
during sampling and laboratory analysis31. The inclusion of blank control samples, especially at the site of sam-
ple collection, is essential and should be understood as Good Laboratory and Scientific Practice (Fig. S1). Only 
well-planned and controlled microbiota studies on NHPs will provide a better understanding of factors that 
influence microbiotas of NHPs.

Methods
Ethical statement. All samples included into this study were obtained from clinically healthy rhesus mon-
keys that underwent the mandatory annual health check at the German Primate Center between June 2016 and 
May 2017. Animals were not purposely immobilized to collect samples for this study. Swabs were taken as part of 
a routine annual health monitoring and tuberculosis screening. Animal were short-term immobilized by trained 
veterinarians who checked and documented the general health condition of each individual. Sampling included 
the collection of blood, oral and genital swab samples. The use of the samples was reviewed and approved by the 
animal welfare and ethics committee of the German Primate Center (EC No. 1–16). All work steps involving the 
handling of live animals followed the rules of ‘Good Veterinary Practice’.

Study design and animals. Urethral swabs of 37 male and vaginal swabs of 194 female rhesus monkeys 
were collected. A cross-sectional study design was applied. Samples from apparently pregnant individuals, clini-
cally diseased animals, or animals that received medical treatment within the last 6 months were excluded from 
analysis. Moreover, we excluded samples from animals below the age of three. Data file S1 provides a detailed 
overview on the samples analyzed in this study as well as the respective NCBI Sequence Read Archive numbers. 
Lot numbers for consumables were kept consistent and are reported in the Supplementary Material (Table S2).

Swab sample collection. Immobilized female rhesus monkeys were placed in dorsal recumbency and 
the area around the vulva was cleaned using 70% ethanol. To facilitate sampling, a sterile silicon tube, 15 mm 
diameter and 40 mm length, was used to avoid swab contamination with skin or fecal material. A flocked swab 
(FLOQSwabs, Copan Improve Diagnostics, Brescia, Italy) was moistened using a single drop of sterile physiolog-
ical saline solution (WDT eG, Garbsen, Germany) and was subsequently inserted midway into the vaginal canal. 
Subsequently the swab was rotated 20-times on the dorsal wall before it was gently removed and transferred into 
500 µl of custom-made lysis buffer (10 mM Tris, pH 8.0, 0.1 M EDTA, pH 8.0 and 0.5% SDS). Samples were kept 
on ice until transported to the inhouse laboratory facilities where they were stored at −80 °C30.

An additional swab was collected to perform an EVC. Briefly, the swab was rolled onto a microscope glass slide 
after which it was allowed to air-dry. Slides were then stained with a Romanowski stain (Diff-Quik) and subse-
quently examined under the microscope by two independent investigators19. Cytological scoring was performed 
as previously described by McLennan et al.20. The maturation index was calculated by counting 100 representative 
epithelial cells, which were scored according to their cell type. Briefly, parabasal cells were assigned a value of 0, 
intermediate cells a value of 0.5, and superficial cells a value of 1. Based on the cumulative maturation score, the 
animals were categorized into three stages (ovulatory phase (P1), intermediate phase (P2), and menstruation-like 
phase (P3); see Supplementary Table 2).

The vaginal pH was measured using a swab which was inserted midway into the vagina and then rolled onto 
a pH-indicator paper (Merck & Co., Kenilworth, New Jersey). The vaginal pH was scored by two independent 
researchers following the manufacturer’s instructions using a scale ranging from 5.5 to 9.0.

Immobilized male rhesus monkeys were placed in ventral recumbency and sampled for urethral swabs. A 
minitip FLOQ swabs (Copan Improve Diagnostics) was moistened using sterile physiological saline solution and 
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subsequently inserted 1–2 cm into the urethra of the animal. Subsequent handling of the samples was identical to 
the procedure described for vaginal swab samples.

Suitable precautions were taken during sample collection to avoid microbial contamination. As a sample col-
lection control, a FLOQ swab with a single drop of sterile physiological saline solution was immediately trans-
ferred into a 500 µl custom-made lysis buffer at the breeding facility at the time of sampling.

DNA extraction. We used the QIAamp DNA Mini Kit (Qiagen GmbH, Hilden, Germany) to extract bacte-
rial DNA. This kit was previously validated for microbial analysis of swab material30. Briefly, proteinase K (50 mg/
µl) was added and the samples were incubated overnight at 56 °C at 600 rpm (Thermomix comfort, Eppendorf, 
Hamburg, Germany). Appropriate amounts of AL buffer (Qiagen GmbH) and ethanol were added. The DNA was 
subsequently purified from the lysate using the spin columns provided in the kit. Extracted DNA was eluted in 
75µl Microbial DNA-Free water (Qiagen GmbH). Suitable precautions were taken during sample handling and 
processing in the laboratory to limit microbial contamination and maintain consistency during all procedures. 
The order of sample processing was randomized to avoid handling bias. As a laboratory analysis collection con-
trol, a FLOQ swab was transferred into a 500 µl custom-made lysis buffer under the DNA extraction bench at the 
time the rhesus monkey samples were handled.

16S ribosomal RNA gene sequencing. The universal primers 515 F and 806 R, which were adapted with 
linker regions and barcode sequences, were used to amplify the V4 region of the 16S ribosomal RNA (16S rRNA) 
gene32. Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher Scientific, Waltham, Massachusetts), 
which has been previously validated for the use in microbiota studies30, was used to amplify each sample in tri-
plets. PCR reactions consisted of 12.5µl of 2x PCR master mix, 8µl of Microbial DNA-Free water (Qiagen GmbH), 
1.25µl of each primer (0.5 mM each, Metabion, Steinkirchen, Germany) and 2µl of template in a total reaction vol-
ume of 25µl. PCR cycling conditions comprised of a pre-denaturation step of 30 s at 98 °C, followed by 30 cycles 
of 98 °C for 10 s, 55 °C for 15 s and 72 °C for 60 s, as well as a final 10 min extension step at 72 °C. A blank control 
(Microbial DNA-Free water) and a mock control sample (Microbial mock community, HM-280, Biodefense and 
Emerging Infectious Research (BEI) Resources, Manassas, Virginia) were included in 16S rRNA gene ampli-
fication. The amplicon triplets were pooled, purified using 0.7x AMPure XP beads (Beckman Coulter, Brea, 
California), and quantified using the Qubit 3.0 Fluorometer (Thermo Fisher Scientific). Subsequently, we ver-
ified the amplicon integrity for a representative number of eleven samples using the BioAnalyzer 2000 (Agilent, 
Santa Clara, California). Equimolar amounts (10 nM) of sample amplicon and maximum volume of control sam-
ples (5µl) were pooled prior to sequencing. Illumina MiSeq. 2 × 250 bp paired-end sequencing (V2 chemistry, 
Illumina, San Diego, California) was performed in the Transcriptome and Genome Analysis Laboratory at the 
University of Goettingen in accordance with published guidelines32.

Data processing and analysis. The sequencing reads were processed using the mothur software package 
(v.1.39.5)33. According to the MiSeq SOP33, contigs were assembled, sequences were quality filtered, and PCR 
artifacts were removed. The SILVA bacterial reference database34 was used to align the sequences and OTUs were 
assigned based on 97% sequence similarity. Cross-sample singletons and poorly aligned sequences were removed. 
The seq.error command was used to determine the error rate and the mock community was eliminated from the 
dataset. Due to low read numbers, control sample reads were excluded from the dataset and analyzed separately.

To examine differences in the microbial community structure, alpha (species richness within a single sample) 
and beta diversities (microbial community diversity between samples) were calculated. As alpha diversity meas-
urements, we determined the number of observed OTUs and calculated the inverse Simpson Metrix using the 
summary.single command in mothur. Beta diversity was determined using unweighted UniFrac metrics35. The 
dissimilarity matrix was visualized using Principal Coordinates Analysis (PCoA) and a Newick formatted den-
drogram (visualized in FigTree v.1.4.2, http://tree.bio.ed.ac.uk/software/figtree/). ClustVis tool (https://biit.cs.ut.
ee/clustvis/) was used to create a heatmap of the relative abundance of bacterial taxa36. Violin plots (R package 
plot.ly) and box plots (GraphPad Prism 6) were used to visualize data points for different variables.

Statistical analysis. The statistical significance of the pooled data was analyzed in GraphPad Prism 6 
(GraphPad software) and in R (v3.4.3;37) using the package vegan (version 2.5;38). Whenever appropriate, we 
tested for normality distribution of the data using the Kolmogorov-Smirnov normality test. The significance in 
alpha diversity and pair-wise beta diversity between two or more groups was tested using the non-parametric 
Mann-Whitney-U or Kruskal-Wallis tests including correction for multiple testing using Dunn’s post hoc tests. 
Differences in community structure based on age of animals, group association, and lactation status was tested 
using analysis of molecular variance (AMOVA, 1,000 permutations) in mothur39. PCoA plots of unweighted 
UniFrac metrics and UPGMA-clustered dendrograms (unweighted UniFrac metrics) were used to visualize data 
points. Differences in the ten most abundant OTUs in vaginal samples were assessed using the metastats com-
mand in mothur40. p-values for differences in individual OTUs were corrected for multiple comparisons using 
Bonferroni correction. Values of p ≤ 0.05 were considered statistically significant.

Data availability
All generated read files have been deposited in the NCBI Sequence Read Archive under the accession number 
SRP184988. Detailed information about the samples is provided in Data file S1 in the supplemental material.
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Supplementary Figures: 

 

 
Fig. S1: Bacterial profile of control samples included in this study. (a) A total of 6,657 

sequences corresponded to the control samples included during sample collection, lab analysis 

and 16S rRNA amplification (blank control). (b) Taxa plots showing the relative abundance 

of the 15 most abundant OTUs in percentage of reads for control samples taken during sample 

collection at two different breeding groups (sample collection 1: group A and sample 

collection 2: group E).  
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Fig. S2: Individual bacterial OTUs are significantly different in the vaginal microbiota 

of lactating and menstruating female monkeys. Percentage of sequence reads (mean ± SD) 

for the ten most abundant OTUs in the vaginal microbiota sorted by (a) lactation status 

(lactating (dark blue) and non-lactating (light blue) and (b) sexual cycle phases (P1: ovulatory 

phase (red), P2: intermediate stage (pink), P3: menstruation-like (dark red)). Differences in 

the ten most abundant OTUs were assessed using the metastats command in mothur 

(*p≤0.001; For (b) significance is shown only if P3 was significantly different for both P1 and 

P2).  
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Fig. S3: Vaginal pH was significantly different in lactating and menstruating animals. 

Violin plots of the vaginal pH grouped by (a) lactation status (Mann-Witney t-test 

***p≤0.0001) and (b) sexual cycle phases (P1: ovulatory phase, P2: intermediate stage, P3: 

menstruation-like; Kruskal-Wallis test ***p≤0.0001). 

 

 

 

 
 

Fig. S4: Alpha diversity measurements for vaginal microbiota of rhesus monkeys 

grouped by age composition. Violin plots of the (a) observed OTUs and (b) InvSimpson 

index (Kruskal-Wallis test). See Table 1 for sample size composition and age classification.  
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Fig. S5: Principal coordinates analysis of vaginal samples separated by (a) age 

comparison and (b) group association. Distances between samples were calculated using 

the unweighted UniFrac metrics. Figure legend shows age groups and group association 

(groups: A-K). See Table 1 for sample size composition and age classification.  
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Fig. S6: Alpha diversity measurements for urethral microbiota of male rhesus monkeys 

grouped by group composition. Boxplots (median ± range) of the (a) observed OTUs and 

(b) InvSimpson index clustered.  
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Fig. S7: Cage-mate comparison between adult male and female genital microbiota 

subdivided by lactation status and sexual cycle phase. Paired violin representations 

showing unweight UniFrac Distance of the adult vaginal microbiota to the urethral microbiota 

of the adult males. Data is sorted by (a) lactating status and (b) sexual cycle phase (P1: 

ovulatory phase, P2: intermediate stage, P3: menstruation-like). The colored (blue/red) violin 

plots correspond to the unweight UniFrac distance between the adult male and females in the 

same cage, while black plots correspond to the unweighted UniFrac distance between the 

alpha male and females from other breeding groups (no sexual contact possible) (Mann-

Witney t-test ***p≤0.0001).  
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Supplementary Tables: 

 

Table S1: Maturating value and phase classification for exfoliative vaginal cytology used 

in this study 

Phase 
Assignment 

Maturation 
value 

Sexual cycle phases Cell composition % Lac 
(n= 44) 

% Non-Lac 
(n=104) 

Phase 1 95-100 Ovulatory Dominated by 
superficial cells 15.9% 35.6% 

Phase 2 45-95 Intermediate  
Intermediate, 
parabasal & basal cells 31.8% 41.3% 

Phase 3 >45 Menstruation-like* Diverse including 
cellular debris & blood 
cells (erythrocytes and 
leucocytes) 

52.3% 23.1% 

*Menstruation-like: this phase represents both menstruation and postpartum amenorrhea  
 

 

Table S2: Reagents and kits used in this study with lot numbers and suppliers 

Reagent Supplier Lot Number 
FLOQSwabs, regular Copan Improve Diagnostics F5RM00 
FLOQ swabs, mini-tip Copan Improve Diagnostics 8H0D00 
Microtube SafeSeal, 1.5 ml Sarstedt AG & Co. 7080311 
DNA LoBind Tubes, 1.5 ml Eppendorf AG G171343G 
DNA LoBind Tubes, 2.0 ml Eppendorf AG D157963O 
The QIAamp Mini Kit Qiagen GmbH 157033520 
Microbial DNA-Free water Qiagen GmbH JE01 
Phusion HS II HF DNA Polymerase Thermo Fisher Scientific 00607540 
AMPure XP beads Beckman Coulter 16909300 
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The genus Treponema contains a number of human and animal pathogenic as well
as symbiotic bacteria that are found in vastly different anatomical and environmental
habitats. Our understanding of the species range, evolution, and biology of these
important bacteria is still limited. To explore the diversity of treponemes, we established,
validated, and tested a novel metataxonomic approach. As the informative nature
of the hypervariable regions of the 16S rRNA gene differ, we first analyzed each
variable region independently. Considering the in silico results obtained, we established
and validated the sequencing of the V4-region of the 16S rRNA gene using known
mixtures of Treponema species as well as a selected number of clinical samples.
The metataxonomic approach was able to identify Treponema to a near-species
level. We demonstrate that using a spirochete-specific enrichment, our method is
applicable to complex microbial communities and large variety of biological samples.
The metataxonomic approach described provides a useful method to unravel the full
diversity and range of Treponema in various ecosystems.

Keywords: metagenomics, metataxonomics, one health, spirochete, 16S rRNA, Treponema, marsupial, Potorous

INTRODUCTION

Spirochaetes, a phylum of spiral-shaped bacteria, range from pathogenic (e.g., Treponema pallidum)
to symbiotic (e.g., Sphaerochaeta coccoides) to free-living (e.g., Exilispira thermophile) species
(Paster, 2001). The ability of spirochetes to inhabit vastly anatomical and ecological habitats
is remarkable and indicates a high diversity of the bacterial members of this phylum (Paster,
2001). Until recently, spirochetes were predominantly discovered and subsequently characterized
using cultivation, microscopical, or serological approaches. These techniques make it di�cult and
sometimes impossible to characterize not-yet-cultivated species, to identify species in multiple-
spirochete infections, or to discover commensal microbes. The advent of cultivation-independent
molecular techniques (e.g., nucleic acid amplification technology) has allowed for a broader
detection of Treponema in di�erent biological niches. To date, the 16S rRNA phylogenetic marker
gene has been particularly instrumental in the detection of Treponema diversity (Pace, 1997). Based
on defined similarity thresholds the 16S rRNA sequences can be grouped into phylotypes. For
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example, using a clonal 16S rRNA gene library and subsequent
Sanger sequencing, the termite (Reticulitermes flavipes) gut was
found to harbor more than 67 di�erent treponemal phylotypes
(Lilburn et al., 1999) and the human oral cavity up to 23 di�erent
treponemal clusters (Choi et al., 1994).

More recently, 16S rRNA gene-based metataxonomic studies
have moved from clonal libraries to high-throughput sequencing
approaches. Single hypervariable regions of the 16S rDNA have
been used to examine di�erent microbiomes (Kozich et al.,
2013) and have identified treponemes in many ecological niches
(Hong et al., 2012; Klitgaard et al., 2014; Rodriguez-R et al.,
2015; Clayton et al., 2018; Hicks et al., 2018). For example,
the gut microbiome of wild western lowland gorillas (Gorilla
gorilla gorilla) (Hicks et al., 2018) and other nonhuman primates
(Clayton et al., 2018) harbors multiple operational taxonomic
units (OTUs) corresponding to the genus Treponema. Yet,
conventional data analysis pipelines used in microbiome studies
still do not allow for species-level characterization (Schloss et al.,
2009; Caporaso et al., 2010). Taxonomic classification for many
bacterial genera is restricted by the limited sequence di�erences
in the 16S rRNA gene (Wang et al., 2007). Rossi-Tamisier et al.
(2015) showed that spirochetes, in particular Treponema and
Spirochaeta, have an exceptionally large variability in the 16S
rRNA gene. For Treponema, only 2.1% of the analyzed 16S rRNA
sequences fell within the recommended similarity threshold (95–
98.7%) (Rossi-Tamisier et al., 2015).

To explore the range and diversity of Treponema, we
established, validated, and tested a newly designed spirochete-
specific metataxonomic approach that utilizes the 16S rRNA
gene. Based on the known variability of the 16S rRNA
gene, we hypothesized that a single hypervariable region of
this gene provides a good target for a metagenomics-based
assay to examine the diversity of Treponema in various
biological sample types.

MATERIALS AND METHODS

In silico Analysis
Based on the nomenclature of Bergey’s Manual of Systematic
Bacteriology, we selected all bacterial species that are classified
within the phylum Spirochaetes (Paster, 2001). Subsequently,
a representative 16S rRNA gene sequence corresponding to
each Spirochaetes bacterial species was retrieved from the
GenBank database1. Where possible, sequences were chosen
with maximal length and no ambiguous bases. Sequences
shorter than 1,250 base pairs and/or containing more than
two ambiguous bases were not included in the dataset even
if no other sequence of the bacterial species was available
(Supplementary Table S1).

The Perl-based high-throughput software tool V-Xtractor
was used to locate the hypervariable regions (V2–V8) of the
16S rRNA sequences using Hidden Markov Models (Hartmann
et al., 2010). Subsequently, the sequences of each variable region
were analyzed using the mothur software package (v.1.41.1)

1https://www.ncbi.nlm.nih.gov

(Schloss et al., 2009). In an initial step, identical sequences
were removed using the unique.seq command. Then, the
SILVA bacterial reference database (Quast et al., 2012) was
utilized to align the sequences [align.seqs command using
kmer searching (8mers) and Needleman–Wunsch pairwise
alignment method]. OTU clustering was performed for
distance threshold ranging from 0.01 to 0.10 at increments
of 0.01 (cluster.split command with the OptiClust algorithm)
(Westcott and Schloss, 2017).

Spirochete Mock Community
The spirochete mock community comprised an equal
mixture of 19 strains of the phylum Spirochaetes. Single
bacterial DNA isolates were obtained from the German
Collection of Microorganisms and Cell Cultures (DSMZ).
DNA from rabbit inoculated T. pallidum subsp. pertenue
strain Gauthier (referred to as T. pallidum throughout the
manuscript) was obtained from David �majs, Department
of Biology, Faculty of Medicine, Masaryk University,
Brno, Czech Republic. The 19 Spirochaetes species
which were used in this study, including the cultivation
method, DSMZ reference number, 16S rRNA gene copy
number, genome size, and NCBI reference, are shown in
Supplementary Table S2.

The DNA of the cultured spirochetes obtained from DSMZ
was quantified using the Qubit 2.0 Fluorometer (Thermo Fisher
Scientific). T. pallidum DNA, due to the rabbit background
DNA from in vivo inoculation experiments, was quantified using
an established TaqMan PCR (qPCR) targeting the polA gene
with slight modifications as described previously (Knauf et al.,
2018). Based on the DNA content, genome size and 16S rRNA
gene copy number, the 19 spirochetes were mixed together at
equimolar (even) ribosomal RNA operon counts per organism.
The final spirochete mock community contained 100,000 16S
rDNA copies/µl of each species. All dilutions were made using
Microbial DNA-Free water (Qiagen GmbH). Suitable precautions
were taken during all sample handling and processing to avoid
microbial contamination.

Treponema Mock Communities
In addition to the spirochete mock community, we created three
bacterial DNA validation sets to evaluate the intra-metagenomic
assays performance. T. pallidum DNA was quantified using
TaqMan PCR as described above. For the first validation set,
the stock of T. pallidum (50,000 16S rRNA copies) was used
to make a 10-fold dilution series. The dilutions of T. pallidum
DNA were subsequently mixed with bacterial DNA contained no
Spirochaetes [Microbial Mock Community, HM-280, Biodefense
and Emerging Infectious Research (BEI) Resources, Manassas,
VA, United States] (Supplementary Table S3). The second
validation set was a mixture of T. pallidum and T. denticola in
di�erent ratios (Supplementary Table S4). The final ratios of the
T. pallidum to T. denticola were 1:100, 1:10, 1:1, 10:1, and 100:1.
The third validation set was a 10-fold serial dilution series of
T. pallidum starting at 50,000 copies of 16S rRNA gene. Dilutions
for all validation sets were made using Microbial DNA-Free
water (Qiagen GmbH).
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Spirochete 16S Ribosomal RNA Gene
Enrichment
Spirochete-selective primers were used to enrich
spirochetal DNA (Dewhirst et al., 2010). The primers
F24 (50-GAGTTTGATYMTGGCTCAG-30) and M98 (50-
GTTACGACTTCACCCYCCT-30) were used to amplify a
⇠1,450 bp fragment of the 16S rRNA gene covering the V1–
V9 region. This first PCR step was performed in triplicates
using the Phusion Hot Start II High-Fidelity DNA Polymerase
(Thermo Fisher Scientific), which has been validated for the use
in microbiome studies (Hallmaier-Wacker et al., 2018). PCR
reactions consisted of 12.5 µl of 2⇥ PCR master mix, 9.5 µl
of Microbial DNA-Free water (Qiagen GmbH), 1.0 µl of each
primer (0.5 mM each, Metabion), and 1 µl of template in a total
reaction volume of 25 µl. PCR cycling conditions comprised of
a pre-denaturation step of 30 s at 98�C, followed by either 20 or
35 cycles of 98�C for 10 s, 57�C for 15 s and 72�C for 120 s, and
a final 10 min extension step at 72�C. A 16S rRNA amplification
control sample (blank controls; Microbial DNA-Free water)
was included. Subsequently, PCR triplicates were pooled before
library preparation.

Analysis of the V4 Region of the
16S rRNA Gene After an Initial
Spirochete-Specific Amplification Step
A pre-test to re-amplify the V3, V4, and V6 regions was
performed to identify the most suitable variable regions. The
V4 region was selected, as the V3 and V6 region primers
demonstrated technical issues to evenly amplify the variable
regions. A modular, two-step PCR process was used to
specifically re-amplify the V4-region of the 16S rRNA gene and
prepare the samples for sequencing on the MiSeq platform.
In the first step, the V4 region of the 16S rRNA gene was
amplified using TruSeq adaptor-tailed universal primers
515F and 806R. The primers 515F-TruSeq (50-ACACTCT
TTCCCTCCACGACGCTCTTCCGCTCTGTGTGCCAGCMGC
CGCGGTAA-30) and 806R-TruSeq (50-GTGACTGGAGTTCA
GACGTGTGCTCTTCCGATCCCGGACTACHVGGGTWTCT
AAT-30) were composed of the universal primer targeting the
V4 region (Caporaso et al., 2011) followed by a linker and the
TruSeq adaptor (Illumina, Inc.). Amplification was performed
in triplicates and each 25.0 µl reaction contained 1.0 µl of PCR
product of the enrichment step, 12.5 µl of 2⇥ Phusion Hot Start
II High-Fidelity PCR Master Mix (Thermo Fisher Scientific),
9.5 µl of Microbial DNA-Free water (Qiagen GmbH), and 1.0 µl
of each V4-targeting 16S primer (0.5 mM each, Metabion). The
cycling conditions were as follows: a pre-denaturation step of
30 s at 98�C, followed by 20 cycles of 98�C for 10 s, 55�C for 15 s
and 72�C for 60 s, and a final 10 min extension step at 72�C. To
monitor contamination, the blank control of the enrichment step
was included as a 16S rDNA amplification control.

In the second-step PCR reaction, sample-specific
Illumina indices and flow cell adapters were added in
an indexing reaction. Illumina i7 and i5 indices were
added to each amplicon using the indexing primer P5 (50-
AATGATACGGCGACCACCGAG ATCTACAC-[i5-INDEX]

-ACACTCTTTCCCTACACGACGCTC-30) and indexing primer
P7 (50-CAAGCAGAAGACGGCATACGAGAT-[i7-INDEX]-
GTGACTGGAGTTCAGAC GTGT-30). Amplification was
performed in a 50.0 µl reaction containing 2.0 µl of PCR
product from the first-step, 25.0 µl of 2⇥ KAPA HiFi HotStart
ReadyMix (KAPA Biosystems), 21.0 µl of Microbial DNA-Free
water (Qiagen GmbH), and 1.0 µl of each Truseq index primer
(0.5 mM each, Metabion). The cycling conditions were as follows:
a pre-denaturation step of 3 min at 98�C, followed by eight cycles
of 98�C for 20 s, 62�C for 30 s and 72�C for 30 s, and a final
5 min extension step at 72�C. To monitor overall contamination,
the blank control of the first-step PCR reaction was included as a
16S rRNA gene amplification control.

V4-Region 16S rDNA Amplification
Without an Initial Spirochete-Specific
Amplification Step
For comparison the initial enrichment PCR was not performed
on a sample of the spirochete mock community and a sample
of validation set 1 (5,000 16S rDNA copies of T. pallidum). For
these two samples the first-step V4-targeting PCR reaction was
performed for additional 15 cycles (total of 35 cycles). A 16S
rRNA gene amplification control was included for this altered
procedure. All other conditions were kept identical.

Applications to Clinical Samples
The applicability of the metataxonomic approach was tested on
extracted DNA from genital swabs of Gilbert’s potoroo (Potorous
gilbertii), a small marsupial found inWestern Australia (Vaughan
et al., 2009). For more information on sample processing see the
Supplementary Materials.

MiSeq Library Preparation and Pooling
After the indexing reaction, all amplicons were purified using
0.7⇥ AMPure XP beads (Beckman Coulter), and quantified
using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific)
(Supplementary Table S5). The amplicon integrity was verified
for a representative number of four samples using the
BioAnalyzer 2000 (Agilent). Equimolar amounts (2 nM) of
sample amplicons were pooled. For samples with <2 nM
concentration, the maximum volume (5 µl) was pooled prior
to sequencing. The Transcriptome and Genome Analysis
Laboratory at the University of Goettingen performed the
Illumina MiSeq 2 ⇥ 250 bp paired-end sequencing (Illumina
V2 chemistry) run.

Data Processing and Analysis
Raw reads were processed using the mothur software package
(version 1.41.1) (Schloss et al., 2009). Initial pre-processing
and quality control were performed in accordance with
the MiSeq SOP (Schloss et al., 2009). Briefly, paired-end
reads were assembled using the make.contigs command.
Subsequently, the screen.seqs command was used to trim
sequences and filter out any sequences with ambiguous base
calls. Identical trimmed sequences (unique.seq command)
were aligned (align.seqs command) to the SILVA bacterial
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TABLE 1 | Identifiable in silico OTUs for the different genus within the phylum of Spirochaetes at a 97% threshold.

Variable
region

Total OTU Treponema
(n = 28)#

Sphaerochaeta
(n = 4)

Spirochaeta
(n = 16)

Leptospira
(n = 21)

Exilispira
(n = 1)

Leptonema
(n = 1)

Borrelia
(n = 30)

Brachyspira
(n = 14)

Spironema
(n = 1)

V2 69 25 3 14 11 1 1 5 8 1

V3 50 25 2 12 4 1 1 3 1 1

V4 53 24 3 13 3 1 1 4 3 1

V5 47 22 3 12 2 1 1 2 3 1

V6 53 24 4 12 6 1 1 2 3 1

V7 34 12 2 11 3 1 1 2 1 1

V8 47 23 2 11 5 1 1 1 2 1

#(n) indicates the number of unique representative sequences in the in silico.fasta file for each genus.

reference database (Quast et al., 2012). Poorly aligned sequences,
chimeras [chimera.uchime command; UCHIME algorithm
(Edgar et al., 2011)], and other erroneous non-bacterial sequences
(remove.lineage command) were removed. The remaining
sequences were classified using a Bayesian classifier implemented
in mothur and OTUs were assigned based on a distance
threshold of 0.03.

For the species-level classification, Treponema-classified
sequences were extracted from the dataset using the get.lineage
command. Using the Treponema sequence data in the in silico

FIGURE 1 | Study design of the metataxonomic assay targeting the V4-region
of the 16S rRNA gene. The gray boxes show the tested cycle (c) conditions
for each step. The blue shading indicates the modular two-step library
preparation.

fasta file (Supplementary Table S1), a database was created
using the create.database command. Using this database, the
taxonomy of the filtered sequences was assigned using the
classify.otu command.

Data Availability
All generated read files have been deposited in the
NCBI Sequence Read Archive under the accession
number PRJNA541286.

RESULTS

In silico Analysis of the Information
Content of the V2–V8 Regions of the
16S rRNA Gene
We analyzed each hypervariable region (V2–V8) of the 16S rRNA
gene for its potential to distinguish nine bacterial genera that
make up the phylum Spirochaetes. In total, we analyzed the
information content of the variable regions of 114 representative
sequences in silico (Supplementary Table S1). Hypervariable
regions V2–V8 were able to distinguish the nine bacterial
genera at a similarity threshold of 97% (Table 1). The V2
region identified the largest total number of OTUs (n = 69)
compared to all other tested regions (Table 1). Overall, the
least number of OTUs were identified in the genera Leptospira,
Borrelia, and Brachyspira. For the genus Treponema on the
other hand, all variable regions with the exception of V7 were
able to detect a high number of distinct OTUs (Table 1).
Regions V2 and V3 were both able to detect 25 OTUs at
a threshold of 97% in the in silico dataset containing 28
unique representative sequences. To examine the robustness
of the in silico results for Treponema, we examined the
identifiable OTUs at threshold cuto�s ranging from 90 to 99%
(Supplementary Figure S1). For V2, V3, and V4 regions at
90% similarity threshold, >15 OTUs are distinguishable in the
Treponema genus (Supplementary Figure S1).

V4-Region 16S rDNA Amplification of the
Spirochete Mock Community
We tested three di�erent amplification conditions targeting the
V4-region of the 16S rRNA gene (Figures 1, 2). All 16S rRNA
gene amplification conditions were able to identify all seven
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FIGURE 2 | Actual and observed proportions of a spirochete mock community to a genus and species-level. Relative abundance of OTUs in percentage of reads for
a spirochete microbial mock community amplified using multiple methods. The spirochete enrichment and V4-region-specific PCR cycle numbers are shown below
the taxa plots. The expected strain proportion (actual) of the spirochete mock community represents the theoretical composition and was corrected for differential
copy number of the 16S rRNA gene. Species-level classification only shown for the genus Treponema.

genera that were included in the mock community samples
(Figure 2). The amplification condition without spirochete-
specific 16S rRNA gene enrichment di�ered less from the
actual mixing proportion than the samples which were enriched
(Figure 2). In all conditions, Treponema, Leptonema, and
Sphaerochaeta were preferentially detected. For the spirochete
enriched samples (20 cycles and 35 cycles), Borrelia, Leptospira,
and Brachyspira made up <1% of the detected sequence reads
(Figure 2). In addition to the genus-level identification, we
classified the Treponema sequences on a species-level using
a Treponema-specific database of the V4-region. At 97%
similarity threshold, the database contains 24 OTUs of which
21 OTUs correspond to single species and 3 OTUs correspond
to species-clusters (denticola-, medium-, and the pallidum-
cluster) (Supplementary Table S6). All 16S rDNA amplification
conditions were able to identify all seven species of Treponema in
the mock community (Figure 2). Independent of amplification
conditions, sequences corresponding to T. pallidum-cluster were
amplified less e�ciently.

Amplification control samples (blank samples) were included
for each amplification method to test for contamination during
the amplification process. The blank sample from the 20-
cycle enrichment had the lowest amplicon quantity before
sequencing as well as the lowest overall corresponding number of
sequences reads (Supplementary Figure S2 and Supplementary
Table S5). Compared to the blank control enriched for 20
cycles, the control of the enrichment for 35 cycles had a
100⇥ fold increase in sequence reads (Supplementary Figure
S2). Despite an overall lower cycle count, the sequence reads

corresponding to the nonenriched sample were as high as
for the control enriched for 35 cycles. Unlike the enriched
samples (20 cycle and 35 cycle), which detected minimal
Treponema in the blank sample (<10 sequence reads), the non-
enriched control sample detected 6,364 reads of Treponema
(Supplementary Figure S2).

Intra-Metagenomic Assays Performance
The validation sample sets were used to assess the e�ciency of
the spirochete enrichment amplification, the e�ect of competition
between two species, and the detection limit of the amplicon
sequencing approach. The first validation set was a mixture of
di�erent concentrations of T. pallidum with a microbial mock
community (HM-280). Figure 3 shows that both 20 cycle- and
35 cycle-enrichment steps significantly improve the detection
of T. pallidum compared to the unenriched sample at 5,000
16S rRNA gene copies of T. pallidum. As the input DNA of
T. pallidum decreases, the dilution e�ect between T. pallidum
to microbial mock community HM-280 can be visualized clearly
(Figure 3). Four to six 16S rRNA gene copies of T. pallidum
were detected for 35 cycle- (44,141 sequence reads) and 20
cycle-enrichment (2,224 sequence reads).

The second validation set was a mixture of T. pallidum and
T. denticola in di�erent ratios (see the section “Materials and
Methods” for details). For all ratios, T. denticola outcompeted
T. pallidum in detected sequence reads (Table 2). However,
both species of Treponema were detected at all tested ratios
(Table 2). The third validation set was a 10-fold serial
dilution series of T. pallidum. Sequence reads were >9,000
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FIGURE 3 | The effect of spirochete enrichment on the detection limit of T. pallidum. Relative abundance of OTUs in percentage of reads for a T. pallidum-spiked
microbial mock community (HM-280). The theoretically calculated amount of spike in T. pallidum ranging from 5 to 5,000 16S rDNA copies is shown along the
x-axis. The biologically effective range of T. pallidum may differ from theoretically calculated amount (e.g., 5 copies = 4–6 copies). Cycle number for the spirochete
enrichment and V4-region-specific PCR is shown above the taxa plots.

reads down to 500 16S rRNA gene copies of T. pallidum
(Figure 4). At 50 16S rRNA gene copies, T. pallidum
was detectable but overall sequence reads were markedly
decreased (13,453 sequence reads). For the final two dilutions,
total read numbers were <1,500 and T. pallidum sequence
detection was analogous to the blank control (<10 sequence
reads) (Figure 4).

Applications to Clinical Samples
(Gilbert’s Potoroo)
We examined samples from four Gilbert’s potoroo which had
been found to harbor a Treponema infection (Vaughan et al.,
2009). Using the amplicon sequencing technique, we identified a
Treponema species in all four clinical samples (Supplementary
Figure S3). Sequence reads corresponding to the Treponema
made up >75% of the total read count for Gilbert’s potoroo
samples No. 2–4 (Supplementary Figure S3). The Treponema
sequences clustered into a single OTU, which cannot be identified
using the Treponema-specific V4-region database at a 97%
threshold identity.

TABLE 2 | Relative abundance of OTUs in percentage of reads for different
proportions of T. pallidum and T. denticola 16S rRNA gene.

Ratio of T. pallidum
and T. denticola
16S rRNA gene

% sequence reads
for T. pallidum (read

count)

% sequence reads
for T. denticola (read

count)

1:100 0.1 (37) 99.9 (81,032)

1:10 0.3 (350) 99.7 (112,402)

1:1 3.0 (3,108) 97.0 (100,507)

10:1 26.6 (31,077) 73.4 (85,750)

100:1 77.3 (74,179) 22.7 (21,809)

DISCUSSION

We used the in silico analysis to predict the informative nature
of each 16S rDNA hypervariable region for di�erent spirochetes.
Our findings expand on the results of Rossi-Tamisier et al.
(2015), indicating that three genera of spirochetes have low
interspecies sequence similarity with the 16S rRNA gene, which
makes it a suitable gene target for identification (Table 1). The
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FIGURE 4 | Detection limit of the metagenomic approach for Treponema.
Total sequence reads resulting from different input amounts of T. pallidum.
Displayed amounts of T. pallidum (50,000–0.5 16S rDNA copies) represent
theoretically calculated amounts. Biologically effective range may differ from
theoretically calculated amount (e.g., 0.5 copies = 0–2 copies). Blank control
represents the 16S rDNA amplification control using microbial DNA-free water
as input. For these samples 20 cycles of enrichment PCR was followed by 20
cycles of V4-region-specific PCR (for more detail see the section “Materials
and Methods”).

V3 and V4 region have been previously described for their
discriminatory power (Chakravorty et al., 2007; Yang et al., 2016;
Graspeuntner et al., 2018). In a study of 110 bacterial species,
V2 and V3 were the most suitable candidates (Chakravorty
et al., 2007). Considering phylogenetic resolution, the variable
regions 4, 5, and 6 have been previously identified as prime
targets (Yang et al., 2016; Graspeuntner et al., 2018). Overall, the
in silico analysis provided good initial data to e�ciently design
the in vitro experiments. It is, however, important to note that
technical caveats of NGS sequencing must be considered prior
to the selection of the most appropriate region (Kozich et al.,
2013). For example, for the Illumina MiSeq Platform, paired-
end sequencing can currently cover 300 base pairs. Considering
the overall error rate of this platform [⇠0.1–0.01% per base,
depending on the data-filtering scheme (Meacham et al., 2011;
Loman et al., 2012)], the ideal read length for a metataxonomic
approach allows for full overlap of the two pair-end reads (Kozich
et al., 2013). Based on our in silico results and pre-test using
di�erent primers, we selected the V4 region of the 16S rRNA gene
for further in vitro testing.

A spirochete mock community of known species composition
allowed for the systematic comparison between the di�erent
amplification methods (Figure 1; Brooks et al., 2015).
Independent of the amplification method, our metagenomic
approach was able to detect all seven genera of spirochetes in the
mock community, as well as all species of Treponema (Figure 2).
However, not all spirochetes were detected equally well with
all amplification procedures (Figure 2). The spirochete-specific
enrichment step, which was included for a better detection of
spirochetes, led to the distortion of the actual proportions and
favored Treponema, Sphaerochaeta, and Leptonema (Figure 2).
The distortion of the bacterial profiles due to preferential
amplification of multi-template PCR is a known phenomenon
and a major limitation of 16S rRNA gene amplification that
results from sub-optimal primer binding (Polz and Cavanaugh,
1998; Brooks et al., 2015; Hallmaier-Wacker et al., 2018).
It has been previously shown that this distortion e�ect is
not significantly influenced with decreasing the number of
amplification cycles (Acinas et al., 2005; Sipos et al., 2007; Wu
et al., 2010; Brooks et al., 2015). Similarly, our results did not
remarkably change with an increased number of enrichment
cycles (20 cycles vs. 35 cycles; Figure 2). Nevertheless, the use of
unnecessary cycles should be avoided as it can lead to formation
of unwanted side products such as chimeras (Ahn et al., 2012),
as well as a higher risk of overamplifying reads that originate
from contamination (blank controls; Supplementary Figure S2)
(Salter et al., 2014).

To examine the benefits of the spirochete enrichment PCR
(20 cycles and 35 cycles) on the detection limit of analysis,
we tested the metataxonomic approach on mock communities
that simulate bacterial proportions found in clinical samples
(Supplementary Table S3). For these samples, the enrichment
step critically improved the detection of Treponema at low
copy numbers, thus indicating that enrichment is a useful
tool for samples with low spirochete numbers (<5,000 16S
rDNA copies) (Figure 3). We showed that five 16S rRNA gene
copies of T. pallidum were detectable in a sample with 20
other bacterial species (even bacterial mock HM-280). Using
serial dilutions, we were able to detect as little as 50 16S
rRNA gene copies of T. pallidum using 20 cycle enrichment
amplification (Figure 4). These data indicate a sensitivity of
our assay that is comparable to standard TaqMan qPCR and
which outcompetes the conventional 16S rRNA clonal approach
(Leslie et al., 2007). Obtaining a high detection limit using a
clonal approach is both time consuming and resource intensive
(Leigh et al., 2010). On the other hand, Sanger sequence
analysis of clone libraries provide greater phylogenetic resolution
due to an increased read length, covering the full 16S rRNA
gene (Leigh et al., 2010). The complex microbial communities
present in many clinical samples is a frequent challenge in
diagnostics and in these sample the occurrence of multi-
Treponema species is not uncommon. For example, in oral
syphilis patients, T. pallidum can be found in combination
with T. denticola (Scott and Flint, 2005). We therefore tested
the e�ect of competing species by simulating a co-infection
of T. pallidum and T. denticola (Supplementary Table S4).
Overall, the metataxonomic approach underestimated the ratio

Frontiers in Microbiology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 2094

PUBLICATIONS___________________________________________________________________________________________________

66



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fmicb-10-02094 November 7, 2019 Time: 13:5 # 8

Hallmaier-Wacker et al. Metataxonomic Tool for Treponema Diversity

of T. pallidum in the samples (Table 2). Amplicon sequencing
was, however, su�cient to identify both species of Treponema at
all tested ratios (Table 2). We note here that the metataxonomic
approach does not accurately represent absolute abundance of
di�erent species (Widder et al., 2016). The used primers may have
a significant e�ect in distorting tested ratios and thus alternative
primer should be designed and evaluated for specific research
questions. Additionally, quantitative techniques such as qPCR,
flow cytometry, or fluorescence in situ hybridization (FISH)
may be superior for evaluating known competing species (e.g.,
T. pallidum and T. denticola) (Props et al., 2017). Moreover, the
metataxonomic approach should not be used for defining novel
bacterial species even if species-level clustering is possible using
the 16S rRNA sequence information (e.g., Treponema) (Tindall
et al., 2010). Instead, 16S rRNA gene amplicon sequencing
provides a qualitative view on the diversity of treponemes within
a given DNA sample. For example, we used the metataxonomic
approach to examine clinical samples of the Gilbert’s potoroo
that have been previously found to harbor a Treponema infection
(Vaughan et al., 2009). As the potoroo clinical samples were
associated with a polymicrobial environment and infection was
believed to be chronic (Vaughan et al., 2009), we performed
a 35 cycle-enrichment in order to detect low concentrations
of spirochetes. We identified a single Treponema species in all
tested samples of the four Gilbert’s potoroos, which currently
remains unclassified at a species level. The high percentage
of Treponema in the detected samples (>75%; Supplementary
Figure S3) indicates that the amplicon method is applicable for
clinical samples and guides subsequent approaches that aim to
fully characterize the discovered Treponema species. The results
from the metataxonomic approach can be used to select most
promising samples for whole-genome analysis (WGS), as well as
provide a preliminary understanding of the possible phylogeny,
whichmay assist in reference-based assembly (Wyres et al., 2014).
Importantly, further WGS sequences of known and unknown
Treponema are crucial to study the evolution and epidemiology
of this ancient group of bacteria and to enhance future shotgun
metagenomic studies. Currently, there is only a limited number
of whole-genome sequences of Treponema, in particular the non-
pathogenic species, due to the di�culty to culture many of the
species [e.g., from the termite gut (Paster et al., 1996)].

CONCLUSION

We showed that the V4 region of the 16S rRNA gene is a valuable
target to explore the diversity of Treponema in various biological
sample types. To monitor the quality of each sequencing run,
it is essential to including relevant controls with all clinical
samples. When applied appropriately, the presented modular

metataxonomic approach is broadly applicable as it requires only
small amounts of bacterial DNA for the detection of a broad range
of Treponema species.

DATA AVAILABILITY

The datasets generated for this study can be found in the NCBI
Sequence Read Archive accession number PRJNA541286.

AUTHOR CONTRIBUTIONS

LH-W and SK conceived and designed the study. LH-W, SL,
SG, CS, and SK performed the experiments in the laboratory.
LH-W, SL, and SK analyzed the data. NB and RV-H contributed
DNA from the Gilbert’s potoroos. SG, CS, and JO contributed
DNA samples of spirochetes for the mock sample. All authors
contributed to the writing of the manuscript, read, reviewed, and
approved the final manuscript.

FUNDING

SK received funding to conduct parts of this study by the German
Research Foundation (DFG KN1097/3-2 and KN1097/7-1). The
funders had no role in any part of this study.

ACKNOWLEDGMENTS

We thank the Biodefense and Emerging Infectious Research
(BEI) Resources, NIAID, NIH for providing the cells from
Microbial Mock Community (Even, HM-280) as part of the
Human Microbiome Project. We thank David �majs of the
Department of Biology, Faculty of Medicine at the Masaryk
University for providing DNA from the T. pallidum subsp.
pertenue strain Gauthier. Additionally, we thank Christian Roos
(German Primate Center) and Fabian Ludewig (Transcriptome
and Genome Analysis Laboratory at the University of Göttingen)
for their assistance in optimizing the sequencing run. Finally, we
thank Simone Severitt and Carola Berg (bothDSMZ) for excellent
technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.02094/full#supplementary-material

REFERENCES
Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., and Polz, M. F. (2005). PCR-

induced sequence artifacts and bias: insights from comparison of two 16S rRNA
clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71,
8966–8969. doi: 10.1128/AEM.71.12.8966-8969.2005

Ahn, J.-H., Kim, B. Y., Song, J., and Weon, H. Y. (2012). E�ects of PCR cycle
number and DNA polymerase type on the 16S rRNA gene pyrosequencing
analysis of bacterial communities. J. Microbiol. 50, 1071–1074. doi: 10.1007/
s12275-012-2642-z

Brooks, J. P., Edwards, D. J., Harwich, M. D., Rivera, M. C., Fettweis, J. M.,
Serrano, M. G., et al. (2015). The truth about metagenomics: quantifying and

Frontiers in Microbiology | www.frontiersin.org 8 September 2019 | Volume 10 | Article 2094

___________________________________________________________________________________________________PUBLICATIONS

67



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

fmicb-10-02094 November 7, 2019 Time: 13:5 # 9

Hallmaier-Wacker et al. Metataxonomic Tool for Treponema Diversity

counteracting bias in 16S rRNA studies. BMC Microbiol. 15:66. doi: 10.1186/
s12866-015-0351-6

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.
f.303

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A.,
Turnbaugh, P. J., et al. (2011). Global patterns of 16S rRNA diversity at a
depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108,
4516–4522. doi: 10.1073/pnas.1000080107

Chakravorty, S., Helb, D., Burday, M., Connell, N., and Alland, D. (2007).
A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of
pathogenic bacteria. J. Microbiol. Methods 69, 330–339. doi: 10.1016/j.mimet.
2007.02.005

Choi, B. K., Paster, B. J., Dewhirst, F. E., Göbel, U. B. (1994). Diversity of cultivable
and uncultivable oral spirochetes from a patient with severe destructive
periodontitis. Infect. Immun. 62, 1889–1895.

Clayton, J. B., Gomez, A., Amato, K., Knights, D., Travis, D. A., Blekhman, R.,
Knight, R., et al. (2018). The gut microbiome of nonhuman primates: lessons in
ecology and evolution. Am. J. Primatol. 30:e22867. doi: 10.1002/ajp.22867

Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W.-H., et al.
(2010). The human oral microbiome. J. Bacteriol. 192, 5002–5017. doi: 10.1128/
JB.00542-10

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Graspeuntner, S., Loeper, N., Künzel, S., Baines, J. F., and Rupp, J. (2018). Selection
of validated hypervariable regions is crucial in 16S-based microbiota studies of
the female genital tract. Sci. Rep. 8:9678. doi: 10.1038/s41598-018-27757-8

Hallmaier-Wacker, L. K., Lueert, S., Roos, C., and Knauf, S. (2018). The impact of
storage bu�er, DNA extraction method, and polymerase on microbial analysis.
Sci. Rep. 8:6292. doi: 10.1038/s41598-018-24573-y

Hartmann, M., Howes, C. G., Abarenkov, K., Mohn, W. W., and Nilsson, R. H.
(2010). V-Xtractor: an open-source, high-throughput software tool to identify
and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA
gene sequences. J. Microbiol. Methods 83, 250–253. doi: 10.1016/j.mimet.2010.
08.008

Hicks, A. L., Lee, K. J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., et al.
(2018). Gut microbiomes of wild great apes fluctuate seasonally in response to
diet. Nat. Commun. 9:1786. doi: 10.1038/s41467-018-04204-w

Hong, P. Y., Li, X., Yang, X., Shinkai, T., Zhang, Y., Wang, X., et al. (2012).
Monitoring airborne biotic contaminants in the indoor environment of pig
and poultry confinement buildings. Environ. Microbiol. 14, 1420–1431. doi:
10.1111/j.1462-2920.2012.02726.x

Klitgaard, K., Nielsen, M. W., Ingerslev, H.-C., Boye, M., and Jensen, T. K. (2014).
Discovery of bovine digital dermatitis-associated Treponema spp. in the dairy
herd environment by a targeted deep-sequencing approach. Appl. Environ.
Microbiol. 80, 4427–4432. doi: 10.1128/AEM.00873-14

Knauf, S., Lüert, S., �majs, D., Strouhal, M., Chuma, I. S., Frischmann, S., et al.
(2018). Gene target selection for loop-mediated isothermal amplification for
rapid discrimination of Treponema pallidum subspecies. PLoS Negl. Trop. Dis.
12:e0006396. doi: 10.1371/journal.pntd.0006396

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D.
(2013). Development of a dual-index sequencing strategy and curation pipeline
for analyzing amplicon sequence data on the MiSeq Illumina sequencing
platform.Appl. Environ. Microbiol. 79, 5112–5120. doi: 10.1128/AEM.01043-13

Leigh, M. B., Taylor, L., Neufeld, J. D. (2010). “Clone libraries of ribosomal RNA
gene sequences for characterization of bacterial and fungal communities,” in
Handbook of hydrocarbon and Lipid Microbiology, ed. K. N. Timmis (Berlin:
Springer) 3969–3993. doi: 10.1007/978-3-540-77587-4_310

Leslie, D. E., Azzato, F., Karapanagiotidis, T., Leydon, J., and Fyfe, J. (2007).
Development of a real-time PCR assay to detect Treponema pallidum in clinical
specimens and assessment of the assay’s performance by comparison with
serological testing. J. Clin. Microbiol. 45, 93–96. doi: 10.1128/JCM.01578-06

Lilburn, T. G., Schmidt, T. M., Breznak, J. A. (1999). Phylogenetic diversity of
termite gut spirochaetes. Environ. Microbiol. 1, 331–345. doi: 10.1046/j.1462-
2920.1999.00043.x

Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E.,
Wain, J., et al. (2012). Performance comparison of benchtop high-throughput
sequencing platforms. Nat. Biotechnol. 30, 434–439. doi: 10.1038/nbt.
2198

Meacham, F., Bo�elli, D., Dhahbi, J., Martin, D. I., Singer, M., and Pachter, L.
(2011). Identification and correction of systematic error in high-throughput
sequence data. BMC Bioinformatics 12:451. doi: 10.1186/1471-2105-
12-451

Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere.
Science 276, 734–740. doi: 10.1126/science.276.5313.734

Paster, B. J. (2001). “Phylum XV. Spirochaetes,” in Bergey’s Manual of Systematic
Bacteriology, 2nd Edn, Vol. 4. eds N. R. Krieg, J. T. Staley, D. R. Brown, B. P.
Hedlund, B. J. Paster, N. L. Ward, et al. (New York, NY: Springer) 471–566.

Paster, B. J., Dewhirst, F. E., Cooke, S. M., Fussing, V., Poulsen, L. K., and Breznak,
J. A. (1996). Phylogeny of not-yet-cultured spirochetes from termite guts. Appl.
Environ. Microbiol. 62, 347–352.

Polz, M. F., and Cavanaugh, C. M. (1998). Bias in template-to-product ratios in
multitemplate PCR. Appl. Environ. Microbiol. 64, 3724–3730.

Props, R., Kerckhof, F.-M., Rubbens, P., De Vrieze, J., Sanabria, E. H.,
Waegeman, W., et al. (2017). Absolute quantification of microbial taxon
abundances. ISME J. 11, 584–587. doi: 10.1038/ismej.2016.117

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2012).
The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks
1219

Rodriguez-R, L. M., Overholt, W. A., Hagan, C., Huettel, M., Kostka, J. E., and
Konstantinidis, K. T. (2015). Microbial community successional patterns in
beach sands impacted by the Deepwater Horizon oil spill. ISME J. 9, 1928–1940.
doi: 10.1038/ismej.2015.5

Rossi-Tamisier, M., Benamar, S., Raoult, D., and Fournier, P. E. (2015). Cautionary
tale of using 16S rRNA gene sequence similarity values in identification of
human-associated bacterial species. Int. J. Syst. Evol. Microbiol. 65, 1929–1934.
doi: 10.1099/ijs.0.000161

Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Mo�att,
M. F., et al. (2014). Reagent and laboratory contamination can critically impact
sequence-based microbiome analyses. BMC Biol. 12:87. doi: 10.1186/s12915-
014-0087-z

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister,
E. B., et al. (2009). Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial
communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.
01541-09

Scott, C., and Flint, S. R. (2005). Oral syphilis—re-emergence of an old disease with
oral manifestations. Int. J. Oral Maxillofac. Surg. 34, 58–63. doi: 10.1016/j.ijom.
2004.01.029

Sipos, R., Székely, A. J., Palatinszky, M., Révész, S., Márialigeti, K., and
Nikolausz, M. (2007). E�ect of primer mismatch, annealing temperature
and PCR cycle number on 16S rRNA gene-targetting bacterial community
analysis. FEMS Microbiol. Ecol. 60, 341–350. doi: 10.1111/j.1574-6941.2007.00
283.x

Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., and Kämpfer, P. (2010).
Notes on the characterization of prokaryote strains for taxonomic purposes. Int.
J. Syst. Evol. Microbiol. 60, 249–266. doi: 10.1099/ijs.0.016949-0

Vaughan, R. J., Warren, K. S., Mills, J. S., Palmer, C., Fenwick, S., Monaghan,
C. L., et al. (2009). Hematological and serum biochemical reference values and
cohort analysis in the Gilbert’s potoroo (Potorous gilbertii). J. Zoo Wildl. Med.
40, 276–288. doi: 10.1638/2008-0058.1

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00
062-07

Westcott, S. L., and Schloss, P. D. (2017). OptiClust, an improved
method for assigning amplicon-based sequence data to operational
taxonomic units. mSphere 2:e00073-17. doi: 10.1128/mSphereDirect.000
73-17

Widder, S., Allen, R. J., Pfei�er, T., Curtis, T. P., Wiuf, C., Sloan, W. T., et al.
(2016). Challenges in microbial ecology: building predictive understanding of

Frontiers in Microbiology | www.frontiersin.org 9 September 2019 | Volume 10 | Article 2094

PUBLICATIONS___________________________________________________________________________________________________

68



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fmicb-10-02094 November 7, 2019 Time: 13:5 # 10

Hallmaier-Wacker et al. Metataxonomic Tool for Treponema Diversity

community function and dynamics. ISME J. 10, 2557–2568. doi: 10.1038/ismej.
2016.45

Wu, J. Y., Jiang, X. T., Jiang, Y. X., Lu, S. Y., Zou, F., and Zhou, H. W. (2010).
E�ects of polymerase, template dilution and cycle number on PCR based 16
S rRNA diversity analysis using the deep sequencing method. BMC Microbiol.
10:255. doi: 10.1186/1471-2180-10-255

Wyres, K. L., Conway, T. C., Garg, S., Queiroz, C., Reumann, M., Holt, K.,
et al. (2014). WGS analysis and interpretation in clinical and public
health microbiology laboratories: what are the requirements and how do
existing tools compare? Pathogens 3, 437–458. doi: 10.3390/pathogens302
0437

Yang, B., Wang, Y., and Qian, P. Y. (2016). Sensitivity and correlation of
hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC
Bioinformatics 17:135. doi: 10.1186/s12859-016-0992-y

Conflict of Interest Statement: SG, CS, and JO were employed by the Leibniz
Institute DSMZ – German Collection of Microorganisms and Cell Cultures.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Hallmaier-Wacker, Lüert, Gronow, Spröer, Overmann, Buller,
Vaughan-Higgins and Knauf. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 September 2019 | Volume 10 | Article 2094

___________________________________________________________________________________________________PUBLICATIONS

69



Chapter B4      
 

Supplemental information:  

 

Supplementary Material and Methods - Processing of Gilbert´s potoroo samples 

Table S1. Spirochetes (with and without taxonomic validation*) and corresponding 

NCBI Accession numbers used in in silico determination  

Table S2. Organisms included in the spirochete mock community 

Table S3. Bacterial mixture of validation set 1 

Table S4. Bacterial mixture of validation set 2 

Table S5. Qubit measurements of spirochete mock community, Treponema validation 

sets (Val1-3) and blank controls included in this study 

Table S6. In silico results for identifiable OTUs at a 97% threshold for the V4-region of 

the 16S rRNA gene of the Treponema genus 

Figure S1. In silico results for identifiable OTUs at different threshold cut-offs for the 

Treponema genus 

Figure S2. Bacterial profile of control samples included in this study. 
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1 Supplementary Material and Methods 

 

Processing of Gilbert´s potoroo samples. We obtained previously extracted DNA from 

clinical samples that were taken for a different study (1). The collection of the samples 

was reviewed and approved by the Murdock University Animal Ethics Committee 

(W1082/04). No animals were handled for this study. Please refer to Vaughan-Higgins 

et al. for details on sampling procedures and DNA extraction. The metataxonomic 

assay was performed for the Gilbert´s potoroo samples using 35-cycles enrichment 

PCR followed by two-step Truseq library preparation. Data analysis including species-

level classification for Treponema was performed as described for the mock 

communities. 

 
2 Supplementary Tables 

 

Table S1. Spirochetes (with and without taxonomic validation*) and corresponding 

NCBI Accession numbers used in in silico determination. *The taxonomic standing of 

each spirochete species can be cross-checked using the NCBI GenBank Accession 

Number and Integrated Taxonomic Information System. 

Genus Species GenBank Number 
Borrelia afzelii JX888452 
Borrelia americana NR_116166 
Borrelia anserina U42284.1 
Borrelia bavariensis NR_074854 
Borrelia burgdorferi AB091823 
Borrelia carolinensis EU085416 
Borrelia coriaceae NR_114544 
Borrelia crocidurae GQ358200 
Borrelia duttonii AF107366 
Borrelia garinii  D67018 
Borrelia hermsii EU203150 
Borrelia hispanica GQ202264 

___________________________________________________________________________________________________PUBLICATIONS

71



Borrelia japonica L46696 
Borrelia lonestari  AY166715 
Borrelia mayonii KP972468 
Borrelia miyamotoi AB904793 
Borrelia parkeri AF307100 
Borrelia persica HQ610931 
Borrelia recurrentis AF107361 
Borrelia sinica NR_024713 
Borrelia spielmanii AM182231 
Borrelia tanukii D67023 
Borrelia theileri KF569941 
Borrelia turcica NR_024820 
Borrelia turdi D67024 
Borrelia turicatae AY934610 
Borrelia valaisiana  EU135596 
Borrelia yangtzensis NR_145665 

Brachyspira aalborgi AF200693 
Brachyspira alvinipulli JF430707 
Brachyspira canis HM450994 
Brachyspira corvi EU819070 
Brachyspira hyodysenteriae NR_044764 
Brachyspira innocens NR_044763 
Brachyspira intermedia KR809388 
Brachyspira murdochii KR809386 
Brachyspira muridarum GU189376 
Brachyspira muris GU189383 
Brachyspira pilosicoli  AB120008 
Brachyspira pulli KR809387 
Brachyspira rattus GU189374 
Brachyspira suanatina DQ473578 
Exilispira thermophila NR_041644 
Leptonema illini JQ988853 
Leptospira alexanderi JQ988836.1 
Leptospira biflexa  JQ988840.1 
Leptospira borgpetersenii AY995716 
Leptospira broomii Y19243 
Leptospira fainei JQ988851.1 
Leptospira idonii AB721966.1 
Leptospira inadai AY631896.1 
Leptospira interrogans  AY995726 
Leptospira kirschneri EF536998 
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Leptospira kmetyi AB279549.1 
Leptospira licerasiae NR_044310 
Leptospira mayottensis NR_134067.1 
Leptospira meyeri HQ709385.1 
Leptospira noguchii EU349496  
Leptospira santarosai JQ988838.1 
Leptospira terpstrae NR_115294.1 
Leptospira vanthielii NR_115297.1 
Leptospira weilii JQ988839.1 
Leptospira wolbachii AY631879.1 
Leptospira wolffii KC662454.1 
Leptospira yanagawae MG979779.1 

Sphaerochaeta associata NR_145842.1 
Sphaerochaeta coccoides NR_042260 
Sphaerochaeta globosa NR_114608 
Sphaerochaeta pleomorpha NR_114609 

Spirochaeta africana NR_026302 
Spirochaeta alkalica NR_026301 
Spirochaeta americana NR_028820 
Spirochaeta asiatica NR_026300 
Spirochaeta aurantia FR749896.1 
Spirochaeta cellobiosiphila NR_044505 
Spirochaeta dissipatitropha AY995150.1 
Spirochaeta halophila NR_044756.2 
Spirochaeta isovalerica FR749931.1 
Spirochaeta lutea HG965770.2 
Spirochaeta perfilievii AY337318  
Spirochaeta psychrophila NR_134185.1 
Spirochaeta smaragdinae NR_027585 
Spirochaeta taiwanensis AY735103.1 
Spirochaeta thermophila CP002903.1 
Spirochaeta xylanolyticus AY735097  
Spironema culicis AF166259.1 
Treponema amylovorum JN713358 
Treponema azotonutricium  NR_074168 
Treponema berlinense NR_042797.1 
Treponema brennaborense NR_029348 
Treponema bryantii AB849328 
Treponema caldarium NC_015732.1 
Treponema denticola KC415235 
Treponema isoptericolens  NR_042486.1 
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Treponema lecithinolyticum GU420631 
Treponema maltophilum X87140 
Treponema medium JN713397 
Treponema pallidum NC_021179 
Treponema paraluisleporidarum ecovar Cuniculus NC_015714 
Treponema paraluisleporidarum ecovar Lepus JX899416 
Treponema parvum AF302939.1 
Treponema pectinovorum GU562449.1 
Treponema pedis  KP063170 
Treponema phagedenis FJ004921 
Treponema porcinum NR_042942 
Treponema primitia NC_015578 
Treponema putidum NR_027189 
Treponema saccharophilum M71238 
Treponema socranskii AB015892 
Treponema stenostreptum NR_113042 
Treponema succinifaciens NR_074755.1 
Treponema vincentii AY119690 
Treponema zioleckii DQ065758 
Treponema zuelzerae NR_104797 
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Table S2. O
rganism

s included in the spirochete m
ock com

m
unity. * C

atalogue num
ber of the G

erm
an C
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s and 

C
ell C

ultures (D
SM
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D
SM

 
#* 

G
enus 

Species 
C

ultivation 
G

enom
e size       

(M
bp) 

16S rD
N

A
 

copies 
N

C
B

I R
eference 

10508 
Borrelia 

afzelii 
pure culture 

0.905 
2 

N
C

_018887.1 
5251 

Borrelia 
herm

sii 
pure culture 

0.923 
1 

N
Z_C

P014349.1 
4680 

Borrelia 
burgdorferi 

pure culture 
0.911 

1 
N

C
_001318.1 

105803 
Brachyspira 

hyodysenteriae 
pure culture 

3.041 
1 

N
Z_C

P015910.2 
21528 

Leptonem
a  

illini 
pure culture 

4.521 
1 

N
Z_A

H
K

T00000000.1 
21526 

Leptospira 
kirschneri 

pure culture 
4.409 

1 
N

Z_A
H

M
N

00000000.2 
21537 

Leptospira 
m

eyeri 
pure culture 

4.188 
1 

N
Z_A

K
X

E00000000.1 
21521 

Leptospira 
terpstrae 

pure culture 
4.092 

2 
N

Z_A
O

G
W

00000000.2 
21534 

Leptospira 
broom

ii 
pure culture 

4.395 
3 

N
Z_A

H
M

O
00000000.2 

22777 
Sphaerochaeta 

globosa 
pure culture 

3.316 
4 

N
C

_015152.1 
6578 

Spirochaeta  
therm

ophila 
pure culture 

2.560 
2 

N
C

_017583.1 
8902 

Spirochaeta  
africana 

pure culture 
3.286 

3 
N

C
_017098.1 

12168 
Treponem

a  
brennaborense 

pure culture 
3.056 

4 
 N

C
_015500.1 

14222 
Treponem

a  
denticola 

pure culture 
2.843 

2 
N

C
_002967.9 

18691 
Treponem

a  
pedis 

pure culture 
2.889 

2 
N

C
_022097.1 

2985 
Treponem

a  
saccharophilum

 
pure culture 

3.454 
1 

 N
Z_A

G
R

W
00000000.1 

2489 
Treponem

a  
succinifaciens 

pure culture 
2.732 

4 
N

C
_015385.1 

7334 
Treponem

a  
caldarium

 
pure culture 

3.239 
3 

 N
C

_015732.1 
N

/A
 

Treponem
a  

pallidum
 

in vivo 
1.139 

2 
N

Z_C
P003679.1 
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Table S3. Bacterial mixture of validation set 1. * Microbial mock community, HM-

280 (Biodefense and Emerging Infectious Research (BEI) Resources, Manassas, USA) 

contains no Spirochaetes. # Effective biological range is 4-6 copies of 16S rDNA. 

 
Mock community HM-280 *  

(ng/µl) 
Concentration of T. 

pallidum (copies of 16S 
rDNA) 

0.50 5,000 
0.50 500 
0.50 50 
0.50 5 # 

 
 
 
Table S4. Bacterial mixture of validation set 2. 
 

Concentration of T. 
pallidum (copies of 16S 

rDNA) 

Concentration of T. 
denticola (copies of 16S 

rDNA) 

Final ratio of T. 
pallidum to T. denticula 

500 50,000 1:100 
5,000 50,000 1:10 

50,000 50,000 1:1 
50,000 5,000 10:1 
50,000 500 100:1 
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Table S5. Qubit measurements of spirochete mock community, Treponema validation 

sets (Val1-3) and blank controls included in this study. * TP: theoretically computed 

T. pallidum 16Sr RNA gene copies in each sample; # OFR: out of range ≤ 0.2 ng/µl. 

 

Sample Enrichment PCR 
(cycles) 

V4-specific PCR 
(cycles) 

Qubit Average 
(ng/µl) 

Spirochete mock 0 35 12.8 
Spirochete mock 20 20 14.9 
Spirochete mock 35 20 16.8 
Val1 (5,000 copies TP)* 0 35 12.8 
Val1 (5,000 copies TP) 20 20 2.5 
Val1 (500 copies TP) 20 20 3.3 
Val1 (50 copies TP) 20 20 0.43 
Val1 (5 copies TP) 20 20 0.45 
Val1 (5,000 copies TP) 35 20 9.4 
Val1 (500 copies TP) 35 20 12.0 
Val1 (50 copies TP) 35 20 10.6 
Val1 (5 copies TP) 35 20 29.3 
Val2 (1:100) 20 20 2.0 
Val2 (1:10) 20 20 6.8 
Val2 (1:1) 20 20 4.9 
Val2 (10:1) 20 20 8.2 
Val2 (100:1) 20 20 2.4 
Val3 (50,000 copies TP) 20 20 3.4 
Val3 (5,000 copies TP) 20 20 8.3 
Val3 (500 copies TP) 20 20 1.7 
Val3 (50 copies TP) 20 20 0.14 
Val3 (5 copies TP) 20 20 OFR# 
Val3 (0.5 copies TP) 20 20 OFR 
Blank control 0 35 1.1 
Blank control 20 20 OFR 
Blank control 35 20 0.3 
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Table S6. In silico results for identifiable OTUs at a 97% threshold for the V4-region 

of the 16S rRNA gene of the Treponema genus. 

 
OTU Species association OTU Representation 
1 T. amylovorum Single species 
2 T. azotonutricium Single species 
3 T. berlinense Single species 
4 T. brennaborense Single species 
5 T. bryantii Single species 
6 T. caldarium Single species 
7 T. denticola, T. putidum Denticola-cluster 
8 T. isoptericolens Single species 
9 T. lecithinolyticum Single species 
10 T. maltophilum Single species 
11 T. medium, T. vincentii Medium-cluster 
12 T. pallidum, T. paraluisleporidarum Pallidum-cluster 
13 T. pectinovorum Single species 
14 T. pedis Single species 
15 T. parvum Single species 
16 T. phagedenis Single species 
17 T. porcinum Single species 
18 T. primitia Single species 
19 T. saccharophilum Single species 
20 T. socranskii Single species 
21 T. stenostreptum Single species 
22 T. succinifaciens Single species 
23 T. zioleckii Single species 
24 T. zuelzerae Single species 
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3 Supplementary Figures 
 

 
 

Fig. S1. In silico results for identifiable OTUs at different threshold cut-offs for 

the Treponema genus. Gray bar graphs show the number of OTUs detected at 

thresholds ranging from 99% to 90% similarity for 16S rDNA region (A) V2, (B) V3, 

(C) V4, (D) V5, (E) V6, (F) V7 and (G) V8. The dashed line on the plots represents the 

number of defined Treponema species in in silico dataset. 
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Fig. S2. Bacterial profile of control samples included in this study. Total sequence 

reads corresponding to 16S rRNA amplification control samples (blank controls) in 

this study. The spirochete enrichment and V4-region specific PCR cycle number are 

shown below the plot. 
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Fig. S3. Sequence read counts of Gilbert´s potoroo samples. Total sequence reads 

corresponding to four clinical samples. For the clinical samples, 35-cycles of spirochete 

enrichment PCR was followed by 20-cycles of V4-region specific PCR (for more detail 

see the methods). 
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C     GENERAL DISCUSSION 

 

1     The importance of standardization 

The One Health field is rapidly expanding, leading to growing interest in the multi-

disciplinary approach and an increasing number of specialized ‘One Health’ journals 

(Osterhaus and MacKenzie, 2016). As the One Health field is highly interdisciplinary 

with many cross-continental collaborations and large-scale consortiums (Cunningham 

et al., 2017), standardization is an important topic of discussion. This thesis highlights 

the importance of standardizing terms, sequence thresholds, best practices, and 

appropriate controls in order to produce reliable results and avoid misunderstandings 

amongst the scientific community and the general public (Marchesi and Ravel, 2015). 

 

1.1     Standardizing terms for better interdisciplinary communication  

Standardization of terms and definitions is essential for effective interdisciplinary 

communication and an important tool to align future research goals (Strehlow, 1993). 

The use of the term ‘parasite’ illustrates the dissonance that differences in vocabulary 

can cause between researchers, the medical community, and the general public. For 

researchers, the definition of parasite includes all forms of life that live in a harmful 

host-dependent relationship, including animals, plants, fungi, bacteria, and viruses 

(Lucius et al., 2017). However, for the medical community and the general public, a 

parasite is a common term used to describe only parasitic protozoa, worms 

(helminths), and arthropods (Callaway and Cyranoski, 2015; Lucius et al., 2017). This 

example highlights the need to not only standardize terms but also provide appropriate 

applications and support activity that encourages a common vocabulary amongst 

different stakeholders (Strehlow, 1993). Attempts to standardize terminology have 

been reported for multiple fields, especially in medicine where clinically meaningful 

categorizations are often essential for disease treatment (Frassetto et al., 2007; 

Marchesi and Ravel, 2015; Raebel et al., 2013). In Chapter B1, we focused on defining 

applicable requirements to standardize the term ‘reservoir of disease’, a central 

concept in One Health (Hallmaier-Wacker et al., 2017). Despite many conceptual 
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frameworks for this term (Ashford, 2003; Drexler et al., 2012; Haydon et al., 2002; 

Viana et al., 2014), the characterization of reservoirs remains controversial, challenging 

and often driven by the tendency of science to hype certain areas of research (Caulfield 

et al., 2016; Vinkers et al., 2015). In light of this, we deemed it necessary to move away 

from the theoretical concept of disease reservoirs, towards well-structured applicable 

criteria (Hallmaier-Wacker et al., 2017). Furthermore, we applied the new framework 

to known zoonotic diseases to illustrate the intended use and avoid misunderstanding. 

We believe that the further standardization of vocabulary will facilitate effective 

communication across scientific disciplines, counteract the tendency of science to 

overemphasize positive results, and aid future collaborations within One Health. 

 

1.2     Establishing sequence thresholds for classification 

As highlighted in Chapter B1, there is a need to define and establish thresholds of 

sequence similarity for microorganisms. Mutation rates vary significantly amongst 

pathogens (Dapp et al., 2013; Matic et al., 1997) and thus current sequence thresholds 

often misclassify microorganisms, especially when comparing pathogens in multiple 

hosts and environments (potential reservoir system) (Hallmaier-Wacker et al., 2017). 

At the core of defining sequence thresholds is a fundamental discussion of how to 

classify microorganisms (Cohan, 2002; Rosselló-Mora and Amann, 2001; Staley, 2006). 

Cell-culture used to rely on observable morphological traits between bacterial cultures 

for taxonomic classification (Fig. 1A; Rosselló-Mora and Amann, 2001). Molecular 

technology, such as 16S rRNA sequencing (Fig. 1B-C), multi-locus strain typing (MLST; 

Fig. 1D) and whole genome sequencing (WGS; Fig. 1E), have allowed for DNA-based 

classification, yet have not resolved the ongoing debate (Fraser et al., 2009; 

Konstantinidis et al., 2006). For 16S rRNA-based classification, threshold cutoffs (97% 

vs. 99%; Fig. 1B-C) for classification have been discussed. However, it has been shown 

that any selected cutoff value is valid for less than 50% of studied microorganisms 

(Rossi-Tamisier et al., 2015). Rossi-Tamisier et al. (2015) suggested that threshold 

values need to be defined separately for each bacterial genus. To negate the issue of 

taxonomic classification, 16S rRNA-based metagenomic studies (e.g. Chapter B3) have 

relied on binning sequences into operational taxonomic units (OTU) (Blaxter et al., 
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2005; Schloss et al., 2009). Recent studies have suggested that OTU binning thresholds 

need to be reconsidered (Edgar, 2018) and alternative dynamic clustering per 

taxonomic family has been proposed (Mysara et al., 2017). The large sequence 

variation in the 16S rRNA gene in some bacterial families can be advantageous for 

metagenomic detection, as shown in Chapter B4. The high variability in the genus 

Treponema allowed for near species-level classification, but also highlights the current 

discrepancies between sequence thresholds. The issue of defining appropriate 

sequence thresholds is not limited to 16S rRNA data but has also been reported for 

MLST and whole genome approaches (Konstantinidis et al., 2006). For molecular-based 

techniques, it is important to further address this challenge with pragmatic theoretical 

solutions as well as novel bioinformatic approaches. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. Bacterial classification using different criteria. At the tip of each phylogenetic tree, 
the geometric shapes represent different isolated bacteria. The circle represents the outgroup 
and is metabolically significantly different from the triangles. The basis of classification (A-E) 
results in a different division of the bacterial isolates (geometric shapes), which is indicated by 
the vertical bar and binning label (e.g. A1). Classification is based on (A) obvious metabolic 
differences (square vs. circle), (B) 16S rRNA gene (threshold: 97%), (C) 16S rRNA gene 
(threshold: 99%), (D) several selected genes that are highly divergent (e.g. MLST), and (E) whole 
genome sequences.  The figure was originally published by Kopac and Cohan (2011) and was 
modified for this thesis. 
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1.3     Inclusion of appropriate controls 

Before using any metagenomic approach, it is important to understand the technique’s 

inherent bias (Brooks et al., 2015). To examine this bias and optimize existing methods, 

microbial mock communities composed of a known mixture of different 

microorganisms have been generated and are now commercially available (Jumpstart 

Consortium Human Microbiome Project Data Generation Working Group, 2012). In this 

thesis, microbial mock communities were included as positive controls in all presented 

experimental studies (Chapter B2-4). In Chapter B2, the cell-based microbial mock 

community allowed us to screen sampling, extraction and amplification procedures 

(Hallmaier-Wacker et al., 2018). Similarly, in Chapter B4, the DNA-based spirochete 

mock community was instrumental to establish and validate the detection technique 

(Hallmaier-Wacker et al., 2019b). Using environmental samples of unknown microbe 

composition would not have allowed us to systematically compare different 

experimental conditions (Brooks et al., 2015; Kim et al., 2017). In addition to mock 

samples, negative controls (i.e. blank samples) are essential to monitor sampling and 

laboratory contamination (Salter et al., 2014). If the microbial biomass is low, it can be 

difficult to distinguish the reads resulting from contamination from the actual 

microbiota reads (Kim et al., 2017). For example, a unique placenta microbiota was 

identified by multiple studies (Aagaard et al., 2014; Amarasekara et al., 2015; Antony 

et al., 2015; Zheng et al., 2015), however a recent study questioned these results by 

showing that the microbiota of the placenta was similar to the negative controls for six 

human specimens (Lauder et al., 2016). Well-planned studies with appropriate controls 

and sample sizes are necessary to address if the placenta harbors a unique microbiota 

(Kim et al., 2017). Whenever applicable, we included appropriate blank controls, 

reported lot numbers of reagents and randomized sample processing to closely 

monitor and avoid contamination (Chapter B2-4). We believe that inclusion of 

appropriate positive and negative controls should be considered good laboratory 

practice in metagenomic studies and thus mandatory for publication. 
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1.4     The importance of establishing sample handling 

Establishing and validating methods is an essential but often overlooked aspect of 

metagenomic studies. Sample handling and processing regimes for different sample 

types should be informed by laboratory-based validation studies (Quince et al., 2017). 

It has been shown that inadequate sample collection and processing can lead to 

misinterpretation of data and false conclusions (Laurence et al., 2014; Salter et al., 

2014). Chapter B2 focuses on establishing appropriate sample handling methods for 

swab material, a key sample type for many studies (Hallmaier-Wacker et al., 2018). This 

chapter highlights that the ideal sample handling conditions can greatly vary between 

different sample types (e.g. fecal vs. swab type). Independent of sequencing approach, 

the ideal conditions need to be defined for the entire library preparation process, 

including sample collection (Choo et al., 2015), DNA extraction (Wagner Mackenzie et 

al., 2015) and library amplification (Ahn et al., 2012; Jones et al., 2015). Previous 

studies have identified that distortion is particularly driven by DNA extraction and 

amplification (Acinas et al., 2005; Brooks et al., 2015; Wagner Mackenzie et al., 2015). 

While PCR amplification can be circumvented using shotgun metagenomic sequencing 

(Miller et al., 2013), DNA extraction affects all types of metagenomic approaches 

(Brooks et al., 2015; Jovel et al., 2016). Extracting a representative microbial 

community is challenging due to large differences in the abundance of genetic content 

(e.g. host vs. microorganisms) (Kleiner et al., 2015), as well as differences in the 

susceptibility to lysis conditions (Vesty et al., 2017; Yuan et al., 2012). Different lysis 

treatments have been studied but there is currently no ideal method for all sample 

types (Carrigg et al., 2007; Wagner Mackenzie et al., 2015; Yuan et al., 2012). To allow 

for cross-study comparisons, handling conditions should be standardized as much as 

possible therefore reducing the variation across different datasets (Hallmaier-Wacker 

et al., 2018). The handling conditions established in Chapter B2 informed our sampling 

protocol at the German Primate Center (Chapter B3), as well as the processing of the 

spirochete mock community (Chapter B4). Additionally, to ensure the comparability 

between datasets, sampling efforts of ongoing studies (e.g. Treponema field 

investigations; Chapter B4) have incorporated the established handling practices for 

swab material. 
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2     Application of targeted metagenomics in One Health 

Metagenomics is a powerful tool and has the potential to significantly aid different 

kinds of One Health investigations (Miller et al., 2013). However, reliable 

infrastructure, laboratory expertise, and bioinformatic understanding are necessary to 

produce reliable metagenomic data (Miller et al., 2013). Metagenomic studies should 

be well planned and not applied as a one-size-fits-all solution. For example, for 

diagnostics, classical pathogen specific methods (e.g. immunoassay) should not be 

negated as optimal solutions for targeted, rapid, on-site testing (Miller et al., 2013). 

Metagenomics can, however, aid diagnostics by providing avenues for novel pathogen 

detection (Pallen, 2014) and validating unexpected negative test results (Marks et al., 

2017). Nevertheless, the detection of a pathogen using metagenomics does not 

provide information about disease progression or biological relevance (Miller et al., 

2013). Results must be interpreted with caution and causality (e.g. between disease 

and presents of microorganism) should be carefully examined in well-controlled 

experiments (Fritz et al., 2013). Investigations need to critically assess which methods 

are ideal for answering the particular research question. In this thesis, I highlighted two 

applications of targeted metagenomics in the One Health field. Chapters B3 and B4 use 

sequencing of a single hypervariable region of the 16S rRNA gene to examine bacterial 

diversity, which cannot be assessed using classical detection methods. Both studies 

were conducted under controlled laboratory conditions and thus provide important 

baseline data for future One Health investigations. 

 

2.1     The importance of baseline data in microbiome analysis 

Studying the microbiome in health and diseases has provided a better understanding 

of the role that symbiotic microbes can play within the One Health triad (Trinh et al., 

2018). 16S rRNA-based analyses have been performed for a wide range of samples and 

the importance of the human and animal-associated microbiota has become evident 

(Bahrndorff et al., 2016; Turnbaugh et al., 2007). Susceptibility to pathogenic microbes 

can be greatly influenced by the microbiota (Abt and Pamer, 2014; Buffie et al., 2015; 

Dennison et al., 2014). These findings have implications not only for disease ecology 

GENERAL DISCUSSION___________________________________________________________________________________________________

88



  

but also for the use of translational animal models (Kostic et al., 2013). In Chapter B3, 

we examined the genital microbiota of male and female rhesus monkeys (Hallmaier-

Wacker et al., 2019a). Rhesus monkeys are commonly used translational animal 

models for infectious diseases, including sexually transmitted infections (Haus et al., 

2014; Spear et al., 2010). For example, rhesus monkeys have been used to model 

human coinfections with syphilis (T. pallidum subsp. pallidum) and simian 

immunodeficiency virus (SIV) (Marra et al., 1992). In Chapter B3, our data show that 

endocrine-regulated processes (lactation/menstruation), cage-mate (sexual partners) 

relationships and group associations can significantly impact the urogenital microbiota 

(Hallmaier-Wacker et al., 2019a). Since these differences likely influence biomedical 

experiments, we urge for increased awareness of microbiota considerations of 

translational animal models. Just like genetic differences guide the selection of animals 

for biomedical experiments today (Haus et al., 2014; Nguyen and Xu, 2008), microbiota 

consideration should influence future selection of translational animal models. 

Continual improvement of the selection of non-human primates (NHPs) is essential to 

refine and reduce the required number of animals (Prescott et al., 2017). In addition 

to important data on captive rhesus monkeys, Chapter B3 also provides baseline data 

for One Health investigations on wild NHPs in health and disease. Future research 

should focus on the causal relationships between the microbiota and pathogens during 

health and disease. For example, a recent study demonstrated that cardiac disease in 

zoo-housed western lowland gorillas (Gorilla gorilla gorilla) was associated with a 

change in the gut microbiota (Krynak et al., 2017). The authors suggest that 

Spirochaetes, Proteobacteria and Firmicutes were markers of cardiac disease (Krynak 

et al., 2017), without showing a direct causal relationship between the two factors. 

Caution is warranted in making premature assumptions about relationships, given that 

changes in the microbiota may be indirect effects of disease (e.g. changes in diet (David 

et al., 2014)). Controlled clinical trials in humans (e.g. clinical trials for fecal transplants 

(Rossen et al., 2015)) and translational animal models (e.g. germ-free mice (Bendtsen 

et al., 2015)) are key resources to examine causality in microbiota shifts. 
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2.2     Metataxonomic approach for the detection of Treponema 

Treponema are often found at high numbers in microbiome analysis but generally 

remain undiscussed and unclassified (Clayton et al., 2018). For example, the 

gastrointestinal tract of termites has been found to harbour more than 67 treponemal 

phylotypes (Lilburn et al., 1999), of which only a fraction has been cultured and further 

characterized (Dröge et al., 2008; Graber et al., 2004; Lilburn et al., 2001). The large 

diversity of Treponema and the difficulty to culture many (Orth et al., 2010) have 

further hindered investigations and characterizations. In Chapter B4, we establish and 

validate a metataxonomics approach to examine the diversity of Treponema 

(Hallmaier-Wacker et al., 2019b). Previous studies have expressed interest in the 

diversity of oral spirochetes and have used 16S rRNA clonal sequencing approaches to 

estimate the diversity (Choi et al., 1996; Dewhirst et al., 2010). Compared to clonal 

library approach, metataxonomics is sensitive and high-throughput and thus easily 

applicable to a wide spectrum of sample types. In Chapter B4, we demonstrate one 

clinical application of the metataxonomic approach by examining genital samples from 

Gilbert’s potoroo, which were previously described to harbour a Treponema infection 

(Vaughan et al., 2009). We were able to obtain near species-level classification for the 

Treponema (Rossi-Tamisier et al., 2015), which indicated that the spirochete in the 

Gilbert’s potoroo did not cluster within any known Treponema species (Hallmaier-

Wacker et al., 2019b). Previously, data from the 16S rDNA sequences, in combination 

with simple microscopy, have been used to characterize new species of Treponema 

(Nordhoff et al., 2005). However, 16S rRNA-based data should only provide a starting 

point for further characterizations and should not be used alone for novel species 

identification (Tindall et al., 2010). In order to gain a more comprehensive 

understanding of the isolated Treponema, WGS is currently being conducted. Results 

from the metataxonomics approach can be used when choosing sample for WGS and 

also yield a preliminary understanding which may contribution to reference-based 

assembly of whole genome sequences (Wyres et al., 2014). In addition to WGS, further 

sampling efforts and well-planned investigations should be performed in order to 

further examine the pathogenic potential and disease progression in the Gilbert’s 

potoroo (Vaughan, 2008). In order to examine the Treponema infection within the One 
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Health triad, future studies should focus on examining other species (including 

marsupials) and environments in the Australian ecosystem. 

 

3     Nanopore sequencing in One Health 

All experiential studies in this thesis used the Illumina platform, which is the current 

standard for metagenomic studies. The Illumina platform provides accurate reads (i.e. 

low error rate) and large amounts of data, but is limited by sequence length, 

turnaround time and the necessity to pool samples to reduce per-sample cost 

(Buermans and Den Dunnen, 2014; Fuller et al., 2009; Ma et al., 2017). Oxford 

Nanopore Technologies has released a small, portable, inexpensive sequencing 

platform called the MinION, which has tremendous potential to change the 

applicability of metagenomics (Laver et al., 2015; Mikheyev and Tin, 2014; Xu et al., 

2018). Proof of concept studies using cell culture, bacterial mock communities and 

clinical samples with high pathogen loads have shown the benefits and applications of 

real-time data analysis (Benítez-Páez et al., 2016; Benítez-Páez & Sanz, 2017; Bradley 

et al., 2015; Quick et al., 2017). For example, multiple studies have used real-time data 

analysis to examine antibiotic resistance of bacterial species (Judge et al., 2015; 

Stakenborg et al., 2005) and have shown that complete real-time resistance profiles 

can be determined after 10 hours of sequencing (Cao et al., 2016). However, the 

current nanopore technology still has limitations in terms of error-rate, required 

sample quality, and data analysis (Ma et al., 2017). Many of these challenges are being 

addressed (Cao et al., 2016; Xu et al., 2018) and further development of nanopore 

technology will make it a robust and superior alternative to the current SBS sequencing 

methods (Lyon et al., 2018; Minei et al., 2018; Voskoboinik et al., 2018). The long read 

lengths (up to 10kb in length) will allow for a much more detailed understanding of 

entire microbial communities and thus provide us with a far more detailed 

understanding of microbial community structures (Xu et al., 2018). Therefore, 

personalized medicine for infectious diseases, targeted antibiotics treatment, 

microbiota monitoring for early disease prevention, and immediate pathogen 

screening in wildlife, may all become reality in the near future (Ku and Roukos, 2013; 

Lemon et al., 2012; Miller et al., 2013).  
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4     Concluding remarks  

This study examined targeted metagenomic approaches in the One Health field. I 

highlighted the importance of standardization of terms, inclusion of appropriate 

controls and the use of established sample handling conditions. Without 

standardization, communications and collaboration in the interdisciplinary One Health 

field will not be effective at producing meaningful metagenomic data for cross-study 

comparisons. Based on the established standardized procedures, I demonstrated the 

applicability of target metagenomics in two studies addressing different aspects within 

the One Health triad. The urogenital microbiota and Treponema metataxonomic study 

were conducted under controlled laboratory conditions and thus provide important 

baseline data for future investigations. Further characterization of various microbiotas 

with a focus on Treponema diversity will provide informative data about 

microorganism-host relationships not just in primates and Australian marsupials, but 

also in various other hosts and ecosystems. Continually adapting current metagenomic 

applications to new forms of standardization and novel sequencing technology (e.g. 

MinION) is crucial to further improve our understanding of the microbial world.  
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Summary 

This thesis is meant to further the applicability of metagenomics in One Health by 

discussing key forms of standardization, as well as targeted applications. 

Metagenomics is a powerful pathogen-agnostic tool, allowing for broad-range non-

targeted detection of microorganisms. This is especially useful for application in One 

Health investigations to detect known and unknown microorganisms in animals, 

humans and the environment. In this thesis, I highlight the benefits and limitations of 

metagenomics in One Health and urge for the continual adaptation to new forms of 

standardization, evolving technology, and novel areas of research. 

Standardization of terms and techniques is a key challenge in One Health 

investigations as the field is highly interdisciplinary with many cross-continental 

collaborations and large-scale consortiums. This thesis addresses two forms of 

standardization to improve effective communication and interdisciplinary exchange. 

First, it highlights the need for an empirical framework to determine a ‘disease 

reservoir’, a central topic for pathogens of zoonotic or anthropozoonotic origin 

(Chapter B1). To exemplify the use of the proposed criteria and avoid 

misunderstandings, the established framework is applied to a variety of known 

zoonotic diseases. In addition to standardizing terminology, this thesis establishes 

appropriate handling conditions for swab samples for metagenomic studies (Chapter 

B2). Here, I emphasize the need for appropriate controls (blank controls and mock 

communities), standardized procedures and continual monitoring of contamination. 

The presented handling conditions were used for all subsequent procedures (Chapter 

B3 and B4) to ensure compatibility between datasets. 

Based on the standardized procedures, this thesis demonstrates the 

applicability of target metagenomics in two studies investigating different aspects of 

the One Health triad. In both studies, the bacterial diversity was examined by 

sequencing a single hypervariable region of the 16S rRNA gene under controlled 

laboratory conditions and thus provide important baseline data for future 

investigations. The first study focused on examining the urogenital microbiota of 

rhesus monkeys (Macaca mulatta), a commonly-used translational animal model 
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(Chapter B3). Endocrine-regulated processes, cage-mate relationships and group 

associations were found to impact the urogenital microbiota of rhesus monkeys at the 

German Primate Center. Based on the observed plasticity of the urogenital microbiota, 

an increased awareness of microbiota considerations of translational animal models is 

essential. Additionally, the identified microbiota provides baseline data for One Health 

investigations on wild non-human primates in health and disease. Here, Treponema 

species have been previously identified in multiple taxa of wild non-human primates. 

To further explore the diversity of these medically and ecologically-relevant bacteria, 

the second application of metagenomics in this thesis focused on establishing and 

validating a metataxonomic tool to identify Treponema (Chapter B4). The incorporation 

of a spirochete-specific enrichment step and the modular amplicon approach allowed 

us to detect Treponema to a near species-level using only a small amount of DNA. The 

presented data from the in-silico and in-vitro experiments using mock communities 

and clinical samples provided confidence in the applicability of the metataxonomic 

approach. Further characterization of different microbiota with a focus on Treponema 

will provide informative data about microorganism-host relationships in various 

animals and ecosystems within the One Health triad. 

 

___________________________________________________________________________________________________SUMMARY

107



Acknowledgments 

I would like to thank Dr. Sascha Knauf for giving me the opportunity to work in this 

fascinating field. Thank you for your continual encouragement, for showing me Lake 

Manyara National Park and for always supporting me to go to conferences around the 

world. Working with you has made me a passionate scientist, a more critical thinker 

and a better teacher. 

I would also like to thank my thesis committee members, PD Dr. Christian Roos and Dr. 

Dietmar Zinner, for their instrumental feedback and continual advice.  

I am very thankful to all my colleagues both in Germany and Tanzania, working in an 

international and interdisciplinary team has been wonderful. First and foremost, to 

Simone Lüert for her technical advice, moral support and the continual flow of snacks 

during my PhD. Simone, I truly admire your dedication to our research. Also, thank you 

to Felipa, Chuma, Clara, Lena, and Elaine for keeping me company and giving me advice 

throughout my time at the German Primate Center. 

I am grateful to Uwe Schönmann for his general support.  A special thank you to Dr. 

Tamara Becker, Dr. Annette Schrod, Annette Husung, Wolfgang Henkel, Melina Urh 

and all the animal caretakers for their help during sampling at the German Primate 

Center. Thank you to Daniel Reckel and Dr. Angela Noll for your help with command 

line and fixing numerous bugs.  

Thank you to all the collaborators and co-authors that have made these projects 

possible. Thank you to Dr. Vincent Munster, PD Dr. Sabine Gronow, Dr. Cathrin Spröer, 

Prof. Dr. Jörg Overmann, and Dr. Rebecca Vaughan-Higgins. I would also like to thank 

Fabian Ludewig and Dr. Gabriela Salinas of the Transcriptome and Genome Analysis 

Laboratory for their assistance in optimizing all the sequencing runs.  

Thank you to Dr. Jonas Bart for clarifying all the GAUSS regulations and organizing all 

the helpful workshops for graduate students. Thank you to everyone who proofread 

parts of this thesis, especially Shally Yuan for the language corrections.  

ACKNOWLEDGMENTS___________________________________________________________________________________________________

108



Thank you to my roommates, Lena, Kathinka, Alex, Jan, Marina, Thiemo, Marc, Manisha 

+1, for always pointing out Option D, for the mushroom fights in the kitchen, and for

the summer BBQs. Thank you, Flavia, for showing me the Göttingen jungle, Rodolfo for

introducing me to Brazilian children’s songs and Yi for striking me out that one time.

You are amongst the most precious things I gained from this experience.

Thank you to my family for their unconditional love, inspiration, and support. To Julian 

for making me laugh, to Hiltrudis for always listening and to Frank for being proud of 

me. Finally, to Ramiro, thank you for encouraging me to follow a dream of mine and 

for your trust, friendship, and love.  

___________________________________________________________________________________________________ACKNOWLEDGMENTS

109


	General Introduction
	Publications
	Disease reservoirs: from conceptual frameworks to applicable criteria
	The impact of storage buffer, DNA extraction method, and polymerase on microbial analysis
	Lactation and menstruation shift the vaginal microbiota incaptive rhesus monkeys
	A Metataxonomic Tool to Investigate the Diversity of Treponema

	General Discussion 
	References
	Summary
	Acknowledgments



