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Abstract 

Stream restoration is increasing as a method to repair streams damaged by 

anthropogenic activities; however, subsequent biological monitoring is still limited. 

The goal of the Clean Water Act (1972) is the protection and maintenance of the 

chemical, physical and biological integrity of the Nation's waters which supports the 

idea of stream restoration. Biological monitoring is critical in assessing the effect of 

restoration on aquatic biodiversity and to provide baseline data for future comparison. 

In 2004, the Rowan County Road Department, Kentucky, constructed a road through 

the valley of Laurel Creek, severely impacting 716 meters of high quality, headwater 

stream and 259 meters of small tributaries. Stream restoration occurred in Fall 2007 

and Fall 2008, with the majority of the restoration activity occurring in Fall 2008. A 

bioassessment of Laurel Creek using fish, aquatic macroinvertebrates, habitat 

assessments and water quality was conducted to determine the biological integrity of 

the stream and to provide baseline data for future monitoring of the watershed. The 



objective ofthis study was to compare the fish and aquatic macroinvertebrate 

communities in Laurel Creek before (June 2008) and after restoration (Spring and 

Summer 2009). Sampling was conducted above, within, and below the restored area 

using Kentucky Division of Water standard bioassessment protocols. 

The Kentucky Index of Biotic Integrity score decreased from Summer 2008 to 

Summer 2009 at sites within and below the restored area. Other metrics applied in the 

KIBI, such as relative abundance of tolerant and insectivorous fishes, also revealed a 

disturbed fish community. In addition, fish abundance and biomass slightly decreased 

after restoration at sites within and below the restoration. In contrast, the 

Macroinvertebrate Biotic Index for all sites in Laurel Creek increased from Summer 

2008 to Summer 2009. Relative abundance and diversity of aquatic 

macroinvertebrates increased at all sampling sites between 2008 and 2009, including 

the intolerant orders of Ephemeroptera, Plecoptera, and Trichoptera. The functional 

feeding guild composition more closely resembles a balanced feeding structure. 

Decline in the fish community may be a result of the intermittency observed 

in headwater streams. The improvement seen in aquatic macroinvertebrate 

community health may be attributed to the length of time between stream restoration 

activities and bioassessment sampling. Stream restoration appeared to have a slight 

negative impact on the fish community abundance and biomass, and no effect on the 

macroinvertebrate communities. This study only addressed the short-term (I-year) 

effects of restoration; additional monitoring is needed to examine long-term effects of 

restoration on fish and macroinvertebrate communities. 
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Introduction 

Importance of Stream Restoration 

The single most prominent threat to streams and biological communities 

within them is anthropogenic-related habitat degradation (Giller and Malmqvist 1999, 

Walters et al. 2009). During the past few decades, stream restoration has become an 

important focus in restoration ecology, ecological management, and as a scientific 

discipline (Kondolf and Micheli I 995, Muotka and Laasonen 2002). The goal of 

natural resource management is to restore ecological integrity to streams; that is, to 

return streams to a physically, ecologically, and functionally self-sustaining state of 

resilience and health, able to support a diverse community of organisms (Karr 1987). 

Aquatic systems possessing ecological integrity are able to better withstand 

perturbations from natural disturbances and may be able to survive anthropogenic 

disturbance (Karr et al. 1986). At a minimum, stream restoration is a method 

employed to retard the loss of biodiversity and re-establish biotic and abiotic 

heterogeneity of a stream (Giller and Malmqvist 1999, Muotka and Laasonen 2002). 

A more desirable goal for stream restoration is the rehabilitation or improvement of a 

degraded aquatic habitat to something resembling a naturally functioning system 

(Helfman 2007, Spanhoff and Arie 2007). Biological monitoring is a method 

commonly used to detect, record, and evaluate changes in a biological system from 

both natural and human induced causes to ensure that incremental improvements in 

rehabilitation/restoration are met (Helfman 2007). 



Biological Monitoring History 

Anthropogenic activities, both past and present, have impacted the quality of 

water and the biological community within it (Karr 1981). The Clean Water Act of 

1972 (specifically amendments 33 U.S.C. §§ 1251- 1376) was enacted to protect and 

maintain water quality and to monitor the waters of the United States. Early 

traditional measures focused on chemical monitoring (Karr 1981, Cairns and Pratt 

1993). Although useful, chemical parameters focus on point-source or discharge 

pollution, essentially showing only a "snapshot" or a short term effect of 

anthropogenic disturbance to streams (Carter et al. 2006). Chemical parameters fail to 

account for the physical and biological damage to the waterways disturbing the 

aquatic fauna (Karr 1981 ). Chemical parameters also fail to account for natural 

disturbance, such as drought or geographic variation of chemicals (Karr 1981). 

In contrast, a combined spatial and temporal view of ecosystem health can be 

obtained by biological monitoring which offers a moving picture of past and present 

land use (Carter et al. 2006). Biological monitoring (biomonitoring or bioassessment) 

is a systematic approach used to evaluate changes in the environment using biological 

organisms with the intent to document the health of the community (Rosenberg and 

Resh 1996). Aquatic macroinvertebrates, those organisms retained by mesh sizes?: 

200 to 500 µm (Rosenberg and Resh 1996), and fishes offer a long term perspective 

of water quality and ecological integrity which reflect watershed conditions and use 

(Karr 1981, Karr et al. 1986, Barbour et al. 1999, KDOW 2008). Biological 

communities integrate the effects of different disturbances of the watershed, thus are 
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continuous monitors of fluctuating abiotic and biotic factors; whereas chemical 

measurements may not detect a disturbance that occurred between sampling periods 

(KDOW 2008). 

Importance of Fishes in Biological Monitoring 

Fishes are valuable tools with many advantages for biological monitoring. 

Fishes are used in biological monitoring because they are good indicators oflong­

term effects and broad habitat conditions, and generally include species that represent 

a variety of tropic levels (Karr et al. 1986, Barbour et al. 1999, KDOW 2008). Fish 

are relatively easy to identify and specimens may be released unharmed after 

identification. Natural history and sensitivity to disturbances are well documented for 

fishes (Karr et al. 1986, Etnier and Starnes 200 I). Furthermore, the absence of certain 

species can be indicative of what is occurring in a stream's watershed. For example, 

an intolerant, simple lithophilic species, such as Clinostomus funduloides (rosyside 

dace), would be predicted to have reduced numbers in a stream with high 

sedimentation or silt. Silt fills interstitial spaces between gravel and cobble, 

destroying habitats that many aquatic organisms require, and disrupting predation 

refuges and feeding guilds, potentially causing the loss of sensitive species. (Giller 

and Malmqvist 1999). Scott (2006) examined 36 streams undergoing deforestation in 

the southeastern Appalachian Mountains, and concluded that loss of biotic integrity 

and increased homogenization in fishes followed habitat modification. Many studies 

have used fish community structure to assess the biological integrity of streams 

because they are continuously affected by anthropogenic perturbations and are 
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sensitive to early stages of restoration. Fish responsiveness to stream restoration can 

be measured with biotic indices and is commonly conducted (Kinsolving and Bain 

1993, Paller et al. 2000, Miltner et al. 2004, Price and Birge 2005, Morgan and 

Cushman 2005, Zhu and Chang 2008, Walters et al. 2009). 

Biological monitoring of fishes is also of value to the general public (Karr 

1981). If the general public can make a connection to the overall fish community 

health, then they may be more likely to recognize the importance of protecting and 

maintaining water quality for both fish and themselves. 

Importance of Aquatic Macroinvertebrates in Biological Monitoring 

Aquatic macroinvertebrates are also useful tools for biological monitoring of 

streams and other aquatic systems. Since the early 1900s, macroinvertebrates have 

been used to assess changes in habitat and water quality (Carpenter 1924, Cairns and 

Pratt 1993). Due to the complex life cycle of macroinvertebrates, long term studies 

can be employed to monitor the improvement of stream restoration (Barbour et al. 

1999, KDOW 2008). Aquatic macroinvertebrates are diagnostic in measuring the 

health and quality of a stream or river because they are ubiquitous and affected by all 

types of anthropogenic perturbations in aquatic systems (Barbour et al. 1999, Carter 

et al. 2006, KDOW 2008). The large number of aquatic macroinvertebrate species 

provides a variety of responses to perturbations. The sedentary lifestyle of many 

macroinvertebrate species allows for a spatial analysis of disturbance effects (Barbour 

et al. 1999, Carter et al. 2006). 
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Aquatic macroinvertebrates represent a fundamental part of an aquatic lotic 

system by providing energy and nutrients to higher trophic levels (Vannote et al. 

1980, Wallace and Webster 1996). Thus, an understanding of anthropogenic 

influences on their spatial distribution and abundance is critical for a comprehensive 

bioassessment before and after stream restoration. Likewise, they integrate the effects 

of short-term environmental stressors in the aquatic environment and may be used to 

assess site specific impacts (i.e., stressed versus unstressed areas). Benthic aquatic 

macroinvertebrate communities constitute a range of trophic levels, and community 

responses to many types of pollution have been established (Cairns and Pratt 1993, 

Barbour et al. 1999, Carter et al. 2006). A decrease or absence of species intolerant to 

habitat degradation, such as ephemeropterans (mayflies), plecopterans (stoneflies), 

and trichopterans ( caddisflies ), may reflect disturbances in an aquatic system. Many 

studies have focused on the use of aquatic macroinvertebrate communities for 

biological monitoring to assess ecosystem disturbance and environmental conditions 

(Wallace 1990, Richardson and Kiffney 2000, Muotka and Laasonen 2002, Pond 

2000, Korsu 2004, Bae et al. 2005, Churchel and Batzer 2006, Walther and Whiles 

2008). 

Another aspect of biomonitoring, which is recommended in Barbour et al. (1999), 

is the use of trophic measures to evaluate the balance of feeding strategies in benthic 

assemblages. The functional feeding guild (FFG) proportions have been used to 

detect the severity of disturbance in streams by evaluating the balance of feeding 

strategies. Feeding guilds are defined by how organic matter is acquired. One group 
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of the FFG are shredders, and they feed on coarse particulate organic matter (CPOM; 

> Imm; Cummins and Klug 1979). Decomposition or mechanical breakdown of 

CPOM releases fine particulate organic matter (FPOM, 50µm-1 mm) and ultra fine 

particulate organic matter (UPOM, 0.5- 50 µm). Collectors comprise another 

important group within the FFG, and they feed primarily on FPOM and UPOM by 

gathering or filtering the organic matter. They can be further split into two groups: 

collector-filterers and collector-gatherers (Vannote et al. 1980). A third group within 

a stream's FFG are scrapers (grazers), and they graze or scrape organic matter (algae) 

from the substrate and primarily feed on periphyton. A final component of the FFG 

consists of predators that actively seek out and capture prey (Cummins and Klug 

1979). 

The characteristics of a particular stream reach directly influence the specific 

proportion of each member of the macroinvertebrate FFG that comprise the 

community. The River Continuum Concept (RCC), which was developed by Vannote 

et al. (I 980), is a paradigm that explains the FFG composition in relation to stream 

order and both allochthonous and autochthonous input. The composition of the 

community shifts according to the lotic gradient from the headwater to the mouth. 

According to Vannote et al. (1980) headwater streams (orders 1-3) are strongly 

influenced by allochthonous organic matter from surrounding riparian vegetation, 

thus autochthonous production is decreased by riparian shading. Shredders and 

collectors are proposed to be the dominant macroinvertebrates in headwater streams 

because of the allochthonous input. Middle reaches of streams ( orders 4-6) are 
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dominated by collectors which acquire nutrients from FPOM input transported from 

upstream. Because middle reaches of streams are not limited by light, scrapers also 

dominate due to increased autochthonous input from periphyton. Higher order 

streams (>6) receive little shading and rely on large amounts ofFPOM and UPOM 

transported from upstream, creating a community where collectors dominate. 

Changes from the expected macroinvertebrate functional feeding guild 

proportions within a given reach may suggest that disturbance has occurred, creating 

a shift in the macroinvertebrate community. Anthropogenic activity such as clearing 

of riparian vegetation, increased channelization, and sediment inputs can lead to 

increased stress on a lotic system. Natural fluctuations, such as intermittent stream 

flow, can also induce stressed functional feeding guilds (Pond et al. 2003). 

Importance of Habitat Assessments 

Habitat assessments are conducted, in addition to chemical and biological 

monitoring efforts, in order to measure, record, and evaluate habitat parameters 

(K.DOW 2008). Stream ecosystems are strongly influenced by the condition of the 

riparian zone which can impact stream substrate, water temperature, water chemistry, 

hydrology, and energy flow of a lotic system (Harding et al. 1998). Along with 

chemical and biological monitoring, habitat assessments provide an integrated picture 

of factors impacting an aquatic ecosystem, and they help to show a comprehensive 

view of an aquatic ecosystem. 

Biological communities within an aquatic ecosystem are affected by both the 

quality and quantity of available physical habitat (Barbour et al. 1999). All physical 
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habitat parameters, including the catchment area, can potentially influence the health 

of the aquatic ecosystem (Harding et al. 1998, Barbour et al. 1999). Riparian zones 

function as a buffer by intercepting sediments from upland sources, reducing stream 

bank erosion, processing nutrients, and controlling the range and elevation of 

temperature (Helfman 2007). Research has focused on relating watershed use to in­

stream physical and biological components. For example, Roy et al. (2003) and 

Cuffney et al. (2005) concluded that a decrease in forest cover reduced aquatic 

macroinvertebrate richness, and increased the abundance of tolerant organisms. Also, 

Miltner et al. (2004) found that urban streams with good Index of Biotic Integrity 

(!BI) scores were maintained because those sites either had intact riparian zones and 

undeveloped floodplains, or were supported by large amounts of groundwater. 

Importance of Water Chemistry 

In addition to biological monitoring and habitat assessments, water chemistry 

measurements can detect patterns of chemical variation influencing the aquatic 

community, which can provide insight about the ability of the stream to support a 

healthy aquatic community. Common water chemistry parameters that are measured 

include temperature, dissolved oxygen, conductivity, pH, total suspended solids, and 

turbidity. Total suspended solids (TSS) is a measure of sediment loading, which 

describes the mass of sediment suspended in water (mg/L). Another measure of 

sediment loading is turbidity, which measures the degree oflight penetration as a 

function of suspended material in a unit of water (Helfman 2007). These common 

water quality measurements help detect the effects of disturbance to a stream. 
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Temperature is one variable that plays in important role in biological and 

chemical processes. Many aquatic organisms can only tolerate a specific temperature 

range. If water temperatures are outside of an organism's optimal range for a 

prolonged period, the organism can become stressed and/or die (Dohner et al. 1997). 

Temperature is closely correlated to the oxygen content of water; that is, oxygen 

levels decrease with increased water temperatures (Brower et al. 1998). Likewise, 

metabolic rates of aquatic organisms, photosynthesis by aquatic mosses and plants, 

and sensitivity of organisms to toxicants are influenced by water temperature (Dohner 

et al. 1997, Newman and Unger 2003). Anthropogenic factors that can influence 

water temperature include removal of stream riparian zones (which can increase 

water temperatures), increased storm water runoff, and dam-created impoundments 

(Dohner et al. 1997). 

Aquatic organisms require oxygen for cellular processes (Brower et al. 1998). 

Increased runoff from farmland and impervious surface can decreased the amount of 

available oxygen in a stream ecosystem. Oxygen in water is measured as dissolved 

oxygen (mg/Lor% saturation), and if more oxygen is consumed than produced by 

the aquatic ecosystem, dissolved oxygen levels decline and sensitive organisms ( e.g., 

trout, stoneflies) may become stressed or die (Dohner et al. 1997). 

Conductivity (µSiem) is a measure of the water's ability to conduct an 

electrical current, and is affected by inorganic (anions and cations) and organic 

dissolved solids (Dohner et al. 1997). Polluted waters generally have a higher and a 

Jess stable conductivity than non-polluted waters, therefore conductivity can be used 
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as a measure of pollution. Sensitive species will decline with increased conductivity 

(KDOW 2008). 

The hydrogen ion concentration, pH, also plays a major role in many chemical 

and biological processes in the water. pH outside of the average range (6-8.5), can 

reduce the diversity of stream organisms because it stresses their physiology. Low pH 

can dissociate toxic elements, leading to conditions that can stress the aquatic 

community (Newman and Unger 2003). Measuring the ability of a stream to 

neutralize acidic conditions is important. Alkalinity is a measurement of the alkaline 

compounds in the water such as bicarbonates, carbonates, and hydroxides which act 

as a buffering system (APHA 1998, Wetzel 2001). Alkalinity is influenced by 

atmospheric deposition (acid rain), surrounding rock, runoff, and wastewater 

discharges which can alter the pH of a stream. 

Ultimately, a biological assessment supported by habitat and water chemistry 

measurements provides a comprehensive view of stream health and integrity. A 

knowledge and understanding of watershed use and aquatic relationships is essential 

to properly understand the structure and function of a stream ecosystem. Disturbance 

to a lotic system can alter the water chemistry and habitat in turn influencing the 

biological communities. 

Laurel Creek Background Information 

Laurel Creek is a second order stream in Rowan County, Kentucky, and part 

of the Little Sandy River drainage (Fig. I). Laurel Creek watershed, which drains 

61.38 km2
, lies within the unglaciated Western Allegheny Plateau ecoregion of 

IO 



Kentucky (KDOW 2008), and has ecologically sensitive species such as Clinostomus 

Junduloides (rosyside dace) and Cot/us bairdii (mottled sculpin). Laurel Creek is a 

high gradient headwater stream with horizontally bedded Pennsylvanian sedimentary 

rock containing sandstone, siltstone, shale, and coal (KDOW 2008). The headwaters 

of Laurel Creek experience periods of intermittency, or low flow, during summer and 

fall months. This intermittency can create dry stretches interspersed by isolated pools. 

Historically Laurel Creek has been minimally impacted by anthropogenic 

factors and recognized by the Kentucky Division of Water as a Special Use Water. 

Special Use Waters are worthy of extra protection because they are thought to have 

exceptional water quality and are able to support indigenous life (KDOW 2009). 

According to Kentucky Administrative Regulations (401 KAR 10:026) Laurel Creek 

is listed as a cold water aquatic habitat, an outstanding state resource, a primary 

contact recreation, and a secondary contact recreation from Stegal-Cold Springs Road 

Bridge in Elliott County to its headwaters in Rowan County. 

In 2004 the Rowan County Road Department illegally constructed a road 

through the valley of Laurel Creek. Necessary permits required to perform 

construction in Laurel Creek were not obtained. Following the road construction in 

Laurel Creek, 716 meters of the Laurel Creek mainstem and 259 meters of small 

tributaries to Laurel Creek were severely impacted. Laurel Creek experienced 

excessive sediment deposition, extreme channel alteration, substantial turbidity in 

riffles and runs, and extensive riparian zone de-vegetation (personal communication 

with KDOW biologists 8 October 2009). In addition, the road increased public access 
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to the area which caused further degradation to in-stream habitat from all terrain 

vehicle activity (ATV). The unperrnitted activity and substantial environmental 

damage triggered action by the Kentucky Division of Water and the United States 

Environmental Protection Agency, Region 4. To avoid paying a considerable fine, 

Rowan County elected to restore the creek. A restoration plan was developed by CPD 

Engineers, and restoration occurred in Fall 2007 and Fall 2008. A minimal amount of 

restoration (128 meters) occurred in Fall 2007, and a majority of the restoration 

activity (847 meters) occurred in Fall 2008. The restoration goal was to enhance the 

creek through proper reshaping of impacted sections, installing grade control 

structures, re-vegetating and stabilizing disturbed sections of the riparian zone, 

controlling invasive plant species, and removing culverts in tributaries to restore 

natural drainage. Biological and chemical monitoring of Laurel Creek was funded by 

Rowan County. 
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Figure I. Laurel Creek watershed in Rowan and Elliot Counties, Kentucky. (KDGI 2009) 



Study Objective 

Pre- and post-restoration biological assessments of Laurel Creek using fishes, 

aquatic macroinvertebrates, water quality, and habitat assessments were conducted to 

determine the biological integrity of the stream and to provide baseline data for future 

monitoring of the watershed. The main objective of this study was to compare the 

biological communities of fishes and aquatic macroinvertebrates in Laurel Creek 

before and after restoration. Data from the bioassessment were used to determine if 

the restoration affected the biological communities. If restoration has affected the 

biological communities, change in those communities would be expected in sites 

within and possibly below the restoration, while no change in fish and aquatic 

macroinvertebrate communities would be expected in sites above the restoration. 

Stream restoration would be expected to disturb the fish and aquatic 

macroinvertebrates communities within and below the restoration by causing a 

decline in diversity and abundance, especially in those groups that are sensitive to 

disturbance. If a system-wide change (all sites change in a similar fashion) or no 

change in the communities is detected, this suggests that restoration has not affected 

the biological community. 
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Methods and Materials 

Study Area 

Eight sites in the Laurel Creek watershed were surveyed for fishes in Summer 

2008 (17, 18, and 23 June 2008), Spring 2009 (17 and 19 March, and 5 April 2009), 

and Summer 2009 (1 and 2 July 2009); these same sites were surveyed for aquatic 

macroinvertebrates in Summer 2008 (21, 23, 24, and 30 June 2008) and Summer 

2009 (14, 15, 16, and 18 June 2009) (Fig. 2). In general, collection methods and data 

analysis followed guidelines in Methods for Assessing Biological Integrity of Surface 

Waters in Kentucky (KDOW 2008), Development and Application of the Kentucky 

Index of Biotic Integrity (KlBI) (Compton et al. 2003), and The Kentucky 

Macroinvertebrate Bioassessment Index (Pond et al. 2003). Two sites were selected 

above the restored area (Above 1 (Al) and Above 2 (A2)), along with three sites 

within the restored area (Damaged I (DI), Damaged 2 (D2), and Damaged 3 (D3)), 

and three sites below the restored area (Below 1 (B 1 ), Below 2 (B2), and Below 3 

(B3)) for biological monitoring (Fig. 2, Table Al). All reach lengths were 100 meters 

and incorporated multiple habitats such as a riffle, a run, and a pool. Fifty-five meters 

of the most upstream reach on Laurel Creek were sampled in June 2008 and March 

and April 2009, and 100 m were sampled in July 2009. All tables with locality 

information are provided in Appendix A. 

Fish Sampling and Analysis 

Fishes were sampled in Summer 2008 (17, 18, 23 June 2008), Spring 2009 (17 

and 19 March 2009, and 5 April 2009), and Summer 2009 (1 and 2 July 2009). In 
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Figure 2. Map displaying sample sites in Laurel Creek, Rowan/ Elliot Counties, 
KY, indicated by dots. The restored area of the stream is within the curved bracket 

(KDGI 2009). 
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general, collection methods and data analysis followed guidelines in KDOW (2008) 

and Compton et al. (2003 ). 

Fishes were sampled using a Smith-Root, Inc. LR-24 backpack electrofisher and a 

1.6 x 4 m seine, as recommended by KDOW (2008). Complex habitats, such as 

boulders, riffles, and undercut banks, were sampled with a backpack electrofisher; 

gravel riffles, root masses, and pools were sampled with a seine. Sampling was 

conducted by two to three personnel. The electrofisher operator and "main netter" 

always were experienced personnel. Shocking was conducted by moving upstream in 

a side-to-side/bank-to-bank sweeping technique with one pass of the reach. Seining 

was also accomplished with two people pulling/holding the seine, and the other crew 

member kicking into the seine. If only two people were available one person held the 

seine and another person kicked into the seine. All sites were sampled by 

electofishing and the lower most site (B3) was supplemented with the seine to ensure 

that the wide shallow pools were sampled effectively. For each reach, fishes collected 

were temporarily retained in a five gallon bucket until the entire reach had been 

sampled, and then identified, counted, weighed, and released unharmed, or if small 

size prevented identification, preserved in I 0% fom1alin and returned to the 

laboratory for identification. All fishes were identified to species level. Vouchered 

specimens were fixed in the field with I 0% formalin, identified in the laboratory, and 

then permanently preserved in 70% ethanol in the Morehead State University Fishes 

Collection. 
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Fish community health was evaluated, in part, using biomass, abundance, and 

Shannon Diversity Index. The Shannon Diversity Index (H') was calculated to 

describe species diversity at each site. The Shannon Diversity Index is a measure 

incorporating both taxa richness and taxa abundance, and is maximized by having 

high richness and high abundance values across all taxa. Richness is a measure of the 

total number of taxa recorded at each sample site, and generally decreases with 

decreasing water quality and stream health. Using the H' values, evenness (J') was 

calculated to estimate how evenly the species were distributed at each site. This 

metric is maximized when the abundance of all taxa in a sample are equal. Shannon 

Diversity Index and evenness were calculated as follows (Lugwig and Reynolds 

1988, Bro.wer et al. 1998): 

H'= -I(Pi log Pi) 

J'= H'/In(S) 

Fish community health was evaluated with the Kentucky Index of Biotic Integrity 

(KIBI) (Compton et al. 2003). The Index of Biotic Integrity (Karr 1981) originally 

was used to assess fish community and structure in warm-water Midwestern streams. 

The KIBI was developed specifically for Kentucky's streams and aquatic fauna, and 

followed a framework of Karr (1981) and Karr et al. (1986). The KIBI incorporates 

stream size in the analysis, and includes seven metrics that measure fish community 

attributes which show responsiveness to anthropogenic disturbances. The metrics 

include NAT, DMS richness, INT richness, SL richness, %Inset, %Toi, and o/oFHW, 
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and these values are incorporated into an overall KIBI score used to rate fish 

community health. 

1. Native species richness (NAT) is a count of the number of native species 

present. Native fish species were determined using the ecological designation from 

Appendix A of Compton et al. (2003). Native species are expected to decline with 

disturbance (KDOW 2008). This metric is used only in wadeable streams. 

2. Darter, madtom, sculpin richness (DMS) is a count of the number of 

intolerant species included in the tribe Etheostomatini (darters), the genus Noturus 

(madtoms), and the genus Cottus (sculpins). These orders are sensitive to pollution 

and disturbance and are expected to decline with impairment (KDOW 2008). 

3. Intolerant species richness (INT) is a count of the number of intolerant 

species collected from a sample. Intolerant fish species were determined using the 

ecological designation from Appendix A of Compton et al. (2003). Intolerant species 

are expected to decline with impairment (KDOW 2008). 

4. Simple lithophilic spawning species richness (SL) is a count of the total 

number of simple lithophilic spawning species. Simple lithophile fish species were 

determined using the ecological designation from Appendix A of Compton et al. 

(2003). Simple lithophile species require clean gravel to spawn on and do not build 

nests. This metric will decline with increasing sedimentation and habitat instability. 

5. Relative abundance of insectivorous individuals (%INSCT) is a count of 

the total number of insectivorous individuals in a sample, excluding tolerant 

individuals. Insectivorous fishes were determined using the ecological designation 
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from Appendix A of Compton et al. (2003). To determine the ¾INSCT for each 

reach, abundance of insectivorous fish species (tolerant insectivore species are 

excluded) are summed, and then divided by the total number of individuals in that 

sample and multiplied by I 00. Because disturbances, particularly siltation, affect 

aquatic insects by filling in interstitial spaces, degraded sites have fewer insectivorous 

fish species. 

6. Relative abundance of tolerant individuals (¾TOL) is a count of the total 

number of tolerant individuals from a site, divided by the total number of individuals 

from the sample. Tolerant fish species were determined using the ecological 

designation from Appendix A of Compton et al. (2003). Because tolerant individuals 

are not considered susceptible to disturbance, the relative abundance of tolerant 

individuals will increase with decreasing water quality, habitat diversity, and/or 

habitat stability. 

7. Relative abundance of facultative headwater individuals (¾FHW) is a 

count of the number of individuals of facultative headwater species, divided by the 

total number of individuals from the sample. A watershed of less than 15.4 km2 is 

considered a headwater stream. Facultative headwater fish species were determined 

using the ecological designation from Appendix A of Compton et al. (2003). 

Facultative headwater species are typically less common in pristine headwater 

streams, but tend to increase in abundance in impaired streams. More facultative 

headwater individuals suggest recent or ongoing disturbance, however, this may 

increase from natural disturbance such as flood scouring or drought. 
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Aquatic Macroinvertebrate Sampling and Analysis 

The same selected sites and reaches for fish sampling were surveyed for 

macroinvertebrates in Summer 2008 (21, 23, 24, and 30 June 2008) and again in 

Summer 2009 (14, 15, 16, 18 June 2009). Aquatic macroinvertebrate communities 

were sampled using both a semi-quantitative riffle and a multiple habitat qualitative 

method as outlined in KDOW (2008). In a semi-quantitative riffle collection, nine D­

frame dipnet (0.1 Im2
) sweeps are stratified within the deepest portion (thalweg) of 

the cobble-boulder-riffle habitat to make a lm2 sample. Working upstream in the 

measured reach, the substrate above the D-frame dipnet was disturbed to dislodge any 

macroinvertebrates living within or on the rocks. This method was used in the riffles 

of each reach, and triplicate samples were collected. Riffle habitat is targeted due to 

the high species richness and abundance, and to ensure flow and substrate stability 

within a high gradient headwater stream (KDOW 2008). A dipnet is 35 cm wide, and 

a sample is made the width of the net to about 35 cm above the net. These nine 

samples were combined in a wash bucket to collect a I m2 semi-quantitative sample. 

The combined sample was partly processed in the field using a 500 µm sieve (US 

#35) to remove any large gravel, cobble, leaves, or pieces of woody debris, which 

were separately inspected and rinsed off for any invertebrates, then discarded. 

In a multiple habitat qualitative sample, collections from diverse habitats are 

targeted, such as leaf packs, boulders, woody debris, aquatic mosses, and submerged 

roots. When any of the multiple habitat types were not available, such as submerged 

roots or woody debris, more time was invested in other habitat areas ( e.g., leaf packs 
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and small boulders). A one hour effort per sample was divided between two people 

into a 30 minute segment per person. The time period allowed for equal effort among 

sites and enabled comparison between sites. 

Samples were preserved in the field using 50% ethanol, and taken to the 

laboratory for sorting and identification. In the laboratory, the semi-quantitative riffle 

sample was processed separately from the qualitative multiple habitat sample. The 

semi-quantitative riffle sample was meticulously sorted with the aid of a dissecting 

microscope and fine forceps to search for all macroinvertebrates in the sample. All 

organisms were identified to the lowest possible taxonomic level, usually genus. 

Early instar individuals were left at higher taxonomic levels unless it could be 

determined with a high probability that they belonged to a lower taxonomic ranking. 

If, for example, some early instar individuals could be diagnosed to be one of two 

taxa, but only one of those taxa was present within the sample, then the early instar 

individuals would be added to the total for the taxon that was previously recorded 

from the site. Vouchered specimens were placed in the Morehead State University 

aquatic invertebrate collection. The same sorting and preservation procedure was 

employed for the qualitative multiple habitat sample. 

Chironomids were mounted on microscope slides with CMC media for 

identification following the methods described in the Identification Manual for the 

Larval Chironomidae (Diptera) of North and South Carolina (Epler 2001). 

Identification was conducted with the use of a compound microscope using 40x 

magnification and oil emersion. Chironomids were identified to genus. Early instar 
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individuals were left at higher taxonomic levels unless it could be determined with a 

high probability that they belonged to a lower taxonomic ranking. Questionable 

chironomid identifications were verified by Mark Vogel (Kentucky Division of 

Water). 

Macroinvertebrate identification primarily followed An Introduction to the 

Aquatic Insects of North America by Merritt and Cummins (I 996), Merritt et al. 

(2008), the Identification Manual for the Larval Chironomidae (Diptera) of North 

and South Carolina by Epler (2001), and The Crayfishes of Kentucky by Taylor and 

Schuester (2004). Aquatic macroinvertebrate community health was evaluated using 

the Kentucky Macroinvertebrate Bioassessment Index (MBI) (Pond et al. 2003) and 

Methods for Assessing Biological Integrity of Surface Waters in Kentucky (KDOW 

2008), Shannon Diversity Index, and Functional Feeding Guild composition. Shannon 

Diversity Index (H') and evenness (J') were calculated to describe species diversity 

and evenness at each site using the semi-quantitative sample. Aquatic 

macroinvertebrate community health was evaluated using the MBI which includes 

seven metrics that show responsiveness to anthropogenic disturbance. 

I. Taxa richness (TR) is a measure of the total number of distinct genera present 

in the composited sample (both semi-quantitative and qualitative multiple habitat 

sample combined). For taxa not identifiable to genus, the family taxon was counted 

only if no genera were identified and counted. To obtain a MBI score at each site, the 

TR values were divided by 63 and multiplied by JOO (Table A2). Taxa richness 

generally decreases with decreasing water quality and stream health. 
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2. Ephemeroptera, Plecoptera, Trichoptera richness (EPT) is a measure of the total 

number of distinct genera (using a composite of the semi-quantitative riffie and 

qualitative multiple habitat sample) within the pollution sensitive orders of 

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). For 

the EPT value of each site the number of distinct genera were counted. For taxa not 

identifiable to genus, the family taxon was counted only if no genera were identified 

and counted. To obtain a MBI score at each site, the EPT value was divided by 33 

and multiplied by 100 (Table A2). The metric generally increases with increasing 

water quality, habitat diversity, and stability (KDOW 2008). 

3. The modified HilsenhoffBiotic Index (mHBI) was modified from the 

HilsenhoffBiotic (HBI) Index, and originally only included benthic arthropod 

communities from Wisconsin. The HBI was used to evaluate organic stream pollution 

based on tolerance values for benthic arthropod communities. The HBI has been 

regionally modified for southeastern United States streams, and tolerance values have 

been developed from North Carolina Division of Environmental Management and 

KDOW data (KDOW 2008). For the mHBI value for each site, tolerance values (TV) 

from Appendix D-1 of KDOW (2008) were assigned to each taxon. If a tolerance 

value for a taxon was not available, the family tolerance value was used. For the 

genera Hydrobiomorpha, Paratrichocladius, Reomyia, Serromyia, Maccerffertium, 

Nixe, and Stylogomphus the family tolerance values were used. The number of each 

taxon (up to 25 individuals) was multiplied by their tolerance value to yield a score 

for each genus, and then were summed. The summed value was then divided by the 
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total number of individuals for each site (up to 25 individuals per taxon). To obtain a 

MBI score, the mHBI value for each site was subtracted from I 0, then divided by 

7.82 and multiplied by I 00 (Table A2). An increasing mHBI value indicates 

decreasing water quality. Data used to calculate this metric are taken only from the 

semi-quantitative riffie sample. 

4. Modified EPT (m%EPT) Richness is a measure of the abundance of the 

generally pollution sensitive insect orders Ephemeroptera, Plecoptera, and 

Trichoptera recorded from each semi-quantitative sample. Species ofTrichoptera 

genus Cheumatopsyche are excluded from this calculation because they have been 

documented as being a pollution tolerant. For the m%EPT value of each site, the 

abundance of these three taxa (excluding Cheumatopsyche) are summed and divided 

by the total number of individuals collected for each site. To obtain a MBI score, the 

m%EPT value was divided by 86.9 then multiplied by I 00 (Table A2). The higher the 

m%EPT value indicates increasing water quality and/or habitat conditions (KDOW 

2008). Data used to calculate this metric are taken only from the semi-quantitative 

riffle sample. 

5. Percent Ephemeroptera (%Ephem) is a measure of the abundance of 

mayflies. Mayflies are generally considered susceptible to impacts of heavy metals 

and high conductivity associated with mining and oil well alterations (KDOW 2008). 

For the %Ephem value of each site, the relative abundance of mayflies was summed, 

and divided by the total number of individuals in each sample. To obtain a MBI score 

for each site, the %Ephem was divided by 66.5 then multiplied by 100 (Table 2). 
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With increased pollution from the above sources, the percent of Ephemeroptera will 

decrease (KDOW 2008). Mayflies harbored in headwater streams have been 

documented as more sensitive than those in wadeable streams, therefore this metric is 

only used in headwater streams. Data used to calculate this metric are taken only from 

the semi-quantitative riffle sample. 

6. Percent Chironomidae+Oligochaeta (%Chir+%Olig) is a measure of the 

relative abundance of chironomids (midges) and oligochaetes (segmented worms) in 

each sample. These organisms are generally considered pollution tolerant (KDOW 

2008). For the %Chir +%0Iig value of each site, the abundance of Chironomidae and 

Oligocheata individuals were summed, and then divided by the total number of 

individuals in each sample. To obtain a MB! score for each site, the %Chir+ %Olig 

value was subtracted from 100, divided by 99.32, and multiplied by 100 (Table A2). 

Increasing abundance in Chironomide and Oligochaeta generally indicates decreasing 

water quality from a variety of sources including municipal waste, agriculture, and 

coal mining (KDOW 2008). This index value generally will increase with decreasing 

habitat diversity and/or stability. Data used to calculate this metric are taken only 

from the semi-quantitative riffle sample. 

7. Percent Primary Clingers (%Clingers) is a measure of the abundance of 

those organisms that require hard, silt-free substrate to "cling" to (KDOW 2008). For 

the %Clinger value of each site, the abundance of each clinger taxon (marked by an 

"X" in the habitat column of Appendix D-1 ofKDOW (2008)) was summed, and then 

divided by the total number of individuals of each site. To obtain a MB! score, the 
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%Clinger value was divided by 75.5 and then multiplied by 100 (Table A2). The 

increasing abundance of clingers indicates higher quality habitat and substrate 

stability. Data used to calculate this metric are taken only from the semi-quantitative 

riffle sample. 

8. The macroinvertebrate biotic index (MBI) is a composite average of the seven 

bioassessment metrics that have been standardized to an approximated "best" value 

found in the KDOW statewide database. In order to rate a given site, the MBI value 

for the site is compared to a narrative description determined by the KDOW (Pond et 

al. 2003). The KDOW have determined reference sites throughout the state to 

establish baseline data for macroinvertebrate assessments. For headwater streams in 

the mountain regions of Kentucky, the MBI values range from 0-23 (very poor), 24-

47 (poor), 48-71 (fair), 72-82 (good), and above 82 is rated as excellent. 

Functional feeding group composition was included to evaluate trophic 

relationships. Functional feeding groups were analyzed from the semi-quantitative 

samples because they have a more standard collecting procedure in comparison to the 

qualitative sampling. Functional feeding group classifications were obtained by using 

Appendix D-1 of KDOW (2008) and Merritt et al. (2008). The macroinvertebrates 

collected for each of the eight sites in Summer 2008 and Summer 2009 were divided 

into four different functional feeding groups (FFGs). These included predators, 

scrapers, shredders, and collectors. The collectors were further subdivided into 

collector-gathers and filter feeders. Relative abundance for each functional feeding 

group was calculated. If a trophic relationship was not available for a taxon in 
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Appendix D-1 of KDOW (2008), the trophic relationship was obtained from Merritt 

et al. (2008). A functional feeding group classification for Reomyia sp. was not 

available. 

Inferential statistics were not used to evaluate the biological community, 

water chemistry, or habitat data. The design of this study would have statistical 

limitations (i.e., pseudoreplication) that limit inferences that can be made (Eberhardt 

and Thomas 1991, Richardson and Kiffney 2000). Pseudoreplication is a source of 

error consisting of assigning an exaggerated estimate of statistical significance by 

treating a data set as independent observations when in fact the observations are 

interdependent (Hurlbert 1984). The design of the study can demonstrate differences 

between sample sites within Laurel Creek by this use of widely accepted multimetric 

biotic indices and community measures for aquatic ecosystems (Washington 1984). 

Multimetric biotic indices are justifiable because they integrate multiple attributes of 

a biological system that respond to a variety of disturbances which generally affect 

the aquatic community (Gerristen 1995, Karr 1999, Kilgour et al. 2004). 

Habitat Assessment 

In addition to macroinvertebrate and fish community health, habitat was 

evaluated with high gradient habitat data sheets from KDOW (2008) to evaluate the 

quality of in-stream and riparian habitat and to determine if any parameters were 

affecting the biological community ( e.g., increased sedimentation). Only the reaches 

within the restored area in which macroinvertebrate and fishes were sampled were 

included in the habitat evaluation for a pre- and post- analysis. Sites DI, D2, and D3 
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were evaluated on 13 August 2009. The reaches above and below the impacted area 

were evaluated in Summer 2009 (4 July 2009) post-restoration. 

The availability of quality habitat directly influences the integrity of the 

stream (KDOW 2008). It is important to evaluate the condition of the habitat to 

determine what is happening within the stream itself. Habitat assessments also 

provide documentation of current habitat condition for future references. Habitat 

assessments are subjective; therefore, to maintain consistency in evaluations, the 

same person must fill out the habitat data forms each sampling period. Ten habitat 

parameters were measured: epifaunal substrate/available cover, embeddedness, 

velocity/depth regime, sediment deposition, channel flow status, channel alteration, 

frequency of riffles (or bends), bank stability (right and left bank), vegetative 

protection (right and left bank), and riparian vegetative zone width (right and left 

bank). 

1. Epifaunal substrate/available cover is a parameter that measures the 

quantity and variety of diverse in-stream structures such as cobble, fallen trees, 

undercut banks, root mass, etc., which offer refuge, feeding opportunities, and 

nursery sites to aquatic organisms. The assessment is conducted for the entire I 00 m 

reach. 

2. Embeddedness is a measurement of the degree of silt, sand, or mud that 

cover or surround the rocks. Increased embeddedness decreases the available habitat 

providing shelter, spawning sites, and incubation sites for fishes and aquatic 

macroinvertebrates. The upstream and middle section of riffle habitat are assessed. 
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3. Velocity/depth regime is a measurement evaluating the four velocity 

regimes present in a high-gradient stream. The four velocity regimes are slow-deep, 

slow-shallow, fast-deep, and fast-shallow. This parameter is used to determine a 

stream's ability to provide and maintain a stable aquatic environment. 

4. Sediment deposition is a measurement of the amount of sediment that has 

accumulated in the bottom of pools and stream bottom. The formation of island, point 

bars or shoals is a direct effect of sediment deposition, and often results in filling in of 

runs and pools (KDOW 2008). An unstable and frequently changing environment will 

have increased sediment deposition, which may render the habitat unsuitable for 

many organisms. 

5. Channel flow status is a measurement of the wetted width (water that 

reaches the base of both lower banks) of 100 m reach. The measurement varies 

seasonally. 

6. Channel alteration is a measurement of the degree of channelization 

(straightening of the stream), amount of bank stabilization structures (rip-rap), dams 

or bridges present that obstruct flow, and dredging detected within the last 20 years. 

7. Frequency of riffles is a measurement of the heterogeneity of a stream. To 

obtain the occurrence of riffles, the ratio of distance between each riffle was divided 

by the width of the stream in each reach. 

8. Bank stability is a parameter which evaluates the amount of erosion, or the 

potential for erosion, for each stream bank. The right and the left bank (determined by 

facing downstream) are scored separately on a O to 10 scale. 
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9. Vegetative protection is a parameter which measures the immediate riparian 

zone by evaluating the degree of cover. Riparian zones function as a buffer in that 

they intercept sediments from upland sources, reduce stream bank erosion, provide 

allochthonous organic matter to organisms in the stream, and control the range and 

elevation in temperatures (Reifman 2007). The right and the left bank ( determined by 

facing downstream) are scored separately on a O to 10 scale, and native vegetation 

scores higher than invasive vegetation. 

I 0. Riparian vegetative zone width is a parameter evaluating the width of 

vegetative cover from the stream bank through the riparian zone. The age of the trees 

is incorporated into the score, and a vegetative zone with older trees scores higher 

than that of a vegetative zone with younger trees. The right and the left bank 

( determined by facing downstream) are scored separately on a O to 10 scale. 

Each individual parameter is ranked by a score of up to 20 possible points; 

parameters with a right and a left bank receive a score for each side (up to ten points 

per side). The total points allotted for each parameter are combined for an overall 

habitat score (maximum 200 points). For a stream in the Western Allegheny Plateau 

bioregion of Kentucky, a score of?. 160 is considered fully supporting, 117-159 is 

partially supporting, and :5 116 is non-supporting of aquatic life (KDOW 2008). 

Water Chemistry 

Water chemistry parameters were collected and measured concurrently with 

fishes at the same locations in Laurel Creek during Summer 2008 (17, 18, and 23 of 
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June 2008), Spring 2009 (17 and 19 March and 5 April 2009), Summer 2009 (I and 2 

July 2009), and with aquatic macroinvertebrates in Summer 2009 (14, 15, 16, and 18 

June 2009). Water quality measures were collected to ensure that the basic water 

chemistry at each site in Laurel Creek was not a limiting factor for the biological 

communities. Measures of water quality followed Standard Methods for the 

Examination of Water and Wastewater (APHA 1998) and equipment manufacturer's 

methods. Parameters measured included: temperature (0 C), conductivity (µSiem), 

dissolved oxygen(% saturation and mglL), and pH (standard units). A portable YSI 

556 multiparameter system (multiprobe system) was calibrated accordingly to the 

manufactures's manual. Metrepak pH-pHydrion buffers certified at 4.00 ± 0.02 and 

10.00 ± 0.02 certified at 25°C and Fisher Buffer Solution pH 7.00 certified pH of 

6.99-7.01 at 25°C were employed for pH standards. Traceable® Conductivity 

standard certified reference material (99.5 µSiem) were employed for conductivity 

standards. The YSI probe was placed in the stream at the downstream location of 

each reach prior to sampling the biological community and measurements were 

recorded. Field verification, with the use of pH and conductivity standards, was 

obtained when potentially aberrant readings were observed. 

Samples for total suspend solids (TSS) and turbidity (nephelometric turbidity 

units, NTU) were collected during sampling in Spring 2009 (17 and 19 March and 5 

April 2009), and Summer 2009 (I and 2 July 2009). Total suspended solids were 

measured following methods outlined in Wyckoff (1964) and Standard Methods for 

the Examination of Water and Wastewater (APHA 1998) (Method 2540 D, total 

32 



suspended solids dried at 103-105 °C). Filtered and unfiltered water samples were 

stored in acid washed polyethylene bottles at 4°C until analyzed. Total suspended 

solids were determined by suction filtering water through a pre-combusted 0.45 µm 

pore-size glass-fiber filter (Wyckoff 1964). Turbidity was measured generally 

following guidelines in Standard Methods for the Examination of Water and 

Wastewater (APHA 1998) (2130 B, Nephelometric Method) with the use ofa HACH 

Company (Model 2100) portable turbidimeter which measures turbidity of water from 

0.1 to 1000 NTUs. The meter was standardized using purchased HACH solid 

standards 24 hours before sampling. Triplicate representative water samples were 

collected in manufacturer's glass sample cells (sample cells hold approximately 15 

ml) from each designated reach. Sample cells were wiped clean with a lint free cloth, 

a thin film of silicone oil was applied, and the sample cell was wiped again to ensure 

an even film of silicone. The application of silicone is used to mask scratches or 

minor imperfections that may contribute to turbidity or stray light. The sample cell 

was then placed into the turbidity meter cell compartment and the turbidity, in NTU, 

was measured and recorded. 

Alkalinity was measured due to its significance in aquatic systems. Alkalinity 

is a measure of the capacity of water to neutralize acids (APHA 1998, Wetzel 2001). 

Samples for alkalinity were collected and measured in Summer 2009 (I and 2 June 

2009). Alkalinity was measured following methods outlined in Standard Methods for 

the Examination of Water and Wastewater (APHA 1998) (Method 2320 B, titration 

method). Unfiltered water samples were stored in acid washed polyethylene bottles at 
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4°C until analyzed. Alkalinity was determined by titrating 0.02 N sulfuric acid 

(H2S04) with a self-zeroing buret into I 00 milliliters of sample water mixed with 

bromcresol green-methyl red indicator until a color change was observed. A pH probe 

was used to measure the pH (standard units) after titration. 
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Results 

Fish Community Analysis 

From the collection of3,395 individuals in Laurel Creek, a total of 14 species 

from six families were identified from Summer 2008 to Summer 2009. All 

assessments offish communities are provided in Appendix B (Tables Bl-Bl I). All 

sites in Laurel Creek were dominated by minnows and sculpins, especially rosyside 

dace (Clinostomousfunduloides), blacknose dace (Rhinichthys atratulus), creek chubs 

(Semotilus atromaculatus), and mottled sculpins (Cottus bairdii). Clinostomus 

Junduloides was the dominant species collected in Summer 2008 and Spring 2009. 

Semotilous atromaculatus was the dominant species collected in Summer 2009. 

Overall there was little change observed in Darter, Madtom, and Sculpin 

richness (DMS), intolerant species richness (INT), and simple lithophile spawning 

species (SL) among years. DMS richness ranged from 2-4 species between Summer 

2008 and Summer 2009. The only change in DMS richness observed from Summer 

2008 to Summer 2009 was encountered at sites D2 and BI; D2 increased by one 

species and BI decreased by two species. Etheostoma jlabellare, the fantail darter, 

was collected in Summer 2009 at site D2 and it had not been collected there 

previously. Site Bl declined by two DMS species; Cottus bairdii was the only DMS 

species collected in Summer 2009. Intolerant species richness ranged from 1-4 

species from Summer 2008 to Summer 2009. The only change observed from 

Summer 2008 to Summer 2009 was an increase at site B3 by one intolerant species. 

Oncorhynchus mykiss was collected at site B3 in Summer 2009 and it was not 

35 



previously collected at this site. SL richness ranged from 1-6 between Summer 2008 

and Summer 2009. The only change observed from Summer 2008 to Summer 2009 

was a decrease of simple lithophile richness by one species at sites Al and Bl. 

Catostomus commersonii was not collected from site Al in Summer 2009 and 

Hypentilium nigricans was not collected from site BI in Summer 2009. 

System-Wide Changes Observed Among Sites 

There was an observable, system-wide trend, in the relative abundance of 

insectivorous (%Inset) and tolerant (%Toi) fish species. From Summer 2008 to 

Summer 2009 a decrease was observed in relative abundance of insectivorous fishes 

present at all sites excluding the most downstream site (B3; Fig. 3). The two most 

abundant intolerant fishes were Cottus bairdii and Clinostomus fanduloides. Spring 

2009 %Inset values showed an increase at sites Al, DI, D2, D3, and B3 however, the 

values decreased in Summer 2009 below the values collected in Summer 2008 (Fig. 

3). Summer 2008 %Inset values ranged from 42.9-67.4 with the highest relative 

abundance of insectivorous fishes collected at site B 1, and the lowest collected at site 

Al (Fig. 3). Spring 2009 %Inset values ranged from 45.3-87.0, with the highest 

%Inset collected at site B3, and the lowest collected at site B2 (Fig. 3). Summer 2009 

%Inset values ranged from 20.0-65.9 with the highest %Inset collected at site B3, and 

lowest at site Al (Fig. 3). 

A system-wide trend was also observed in relative abundance of tolerant 

fishes. The two most abundant tolerant fishes were Rhinichthys atratulus and 

Semotilius atromaculatus. Relative abundance of tolerant fishes (%Toi) increased at 
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all sites from Summer 2008 to Summer 2009, excluding the most downstream site 

(B3; Fig. 4). Spring 2009 %Toi values showed a decrease at sites Al, DI, D2, D3, 

and B3; however, the values increased in Summer 2009 to values higher than 

collected in Summer 2008. Summer 2008 % Toi values ranged from 30.4-54.8, Spring 

2009 values ranged from 9.42-50.0, and Summer 2009 values ranged from 26.6-77.7. 

The lowest %Toi values observed in Summer 2008 was at site Bl, and site B3 for 

Spring and Summer 2009. The highest %Toi values from Summer 2008 to Summer 

2009 were observed at site AI (Fig. 4). 

Facultative headwater species collected in Laurel Creek were Campostoma 

anomalum, Rhinichthys atratulus, Catostomus commersonii, and Etheostoma 

jlabellare. Relative abundance offacultative headwater species was variable between 

Summer 2008 and Summer 2009 in comparison to other metrics. Relative abundance 

of facultative headwater species increased from Summer 2008 to Summer 2009 at all 

sites excluding D3 and B2 (Fig. 5). Summer 2008 ¾FHW values ranged from 16.7-

51.2, Spring 2009 values ranged from 16.5-58.3, and Summer 2009 values ranged 

from 21.6-56.0. The lowest ¾FHW values observed in Summer 2008 and Spring 

2009 were in site BI, and in site D3 for Summer 2009. The highest ¾FHW values 

from Summer 2008 to Summer 2009 were observed at site Al (Fig 5). 
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Differential Changes Observed Among Sites 

There was an observable change in sites within and below the restored area in 

KIBI scores, fish biomass, and fish abundance. This same trend was not observed in 

sites above the restoration. KIBI scores for Summer 2008 ranged from 56-67 and 

were rated as fair to excellent (Fig. 6; Table BI). KIBI scores for Spring 2009 ranged 

from 35-77 and were rated as poor to excellent (Fig. 6, Table B2). KIBI scores in 

Summer 2009 ranged from 55-72 and were rated as good to excellent (Fig. 6; Table 

B3). KIBI Scores slightly decreased from Summer 2008 to Summer 2009 except for 

sites AI and B3. In general, KIBI scores were the lowest in Spring 2009, especially at 

sites AI, DI, D3, BI, and B2. 

An increase in abundance of individuals collected was observed in sites above 

the restored area, compared to a pronounced decrease in sites within and below the 

restored area (Fig. 7). Abundance for Summer 2008 ranged from 82-358 individuals, 

48-160 individuals in Spring 2009, and 66- I 73 in Summer 2009. Site A I had the 

lowest abundance in Summer 2008 and Spring 2009, but the abundance still increased 

from Summer 2008 to Summer 2009. Site D2 had the lowest abundance in Summer 

2009. The highest abundance of individuals for Summer 2008 was collected at site 

Bl, site DI in Spring 2009, and site B3 in Summer 2009 (Table B7). The largest 

decline observed in abundance from Summer 2008 to Summer 2009 was at site B3 

with a decrease of 185 individuals. Sites D3 and D2 also had a substantial decline 
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in abundance; site D3 decreased by 133 individuals and site D2 decreased by 86 

individuals. 

Total biomass (grams) exhibited a similar change from Summer 2008 to 

Summer 2009. An increase in total biomass collected was observed in sites above the 

restored area, compared to a decrease in sites within and below the restored area (Fig. 

8). Total biomass for Summer 2008 ranged from 257.3-991.8 grams, 124.0-492.8 

grams in Spring 2009, and 214.7-695.5 grams in Summer 2009. Site Al had the 

lowest total biomass in Summer 2008 and Spring 2009, and site D2 had the lowest in 

Summer 2009. The highest biomass for Summer 2008 was encountered at site D3, 

site DI for Spring 2009, and site B3 for Summer 2009 (Table BS). 

Shannon Diversity Index (H') values are provided in Tables B9-Bl 1 

(Appendix B). The highest H' of 2.07 occurred at site B3 in Summer 2008 (Fig. 9, 

Table B9). The highest H' of 1.80 occurred at sites DI and B2 in Spring 2009. The 

highest H' of2.09 occurred at site B3 in Summer 2009. The lowest H' of 1.60 

occurred at site DI in Summer 2008. The lowest H' of 1.43 occurred at site Al and 

Bl in Spring 2009. The lowest H' of 1.32 occurred at site Al in Summer 2009. Sites 

Al, D3, Bl, B2, and B3 showed a decrease in Shannon Diversity Index from Summer 

2008 to Summer 2009, and sites A2, D 1, D2, and B3 increased from Summer 2008 to 

Summer 2009 (Fig. 9). Overall, Shannon Diversity Indices did not vary much among 

years. 
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Aquatic Macroinvertebrate Community Analysis 

A total of 5,05 I macroinvertebrate individuals were collected from Laurel 

Creek. Seventy-one taxa were identified from Summer 2008 and I 05 taxa from 

Summer 2009; this includes 11 orders and 46 families from both the semi-quantitative 

and qualitative samples. All assessments of macroinvertebrate communities are 

provided in Appendix C (Tables C 1-C 13 ). Diptera were the most diverse with 25 

genera identified in Summer 2008 and 45 genera in Summer 2009. The most 

frequently encountered taxon recorded from Laurel Creek in Summer 2008 was 

Cheumaiopsyche (Trichoptera, Hydropsychidae ), and the most frequently 

encountered taxon in Summer 2009 was Allocapnia (Plecoptera, Capniidae). Taxa 

collected in Laurel Creek in Summer 2008 and not in Summer 2009 are provided in 

Table C 12, and taxa collected in Summer 2009 and not collected in Summer 2008 are 

provided in Table Cl 3. 

Comparison of site trends in generic taxa richness (TR), EPT richness (EPT), 

mHBI, relative abundance ofEPT (¾EPT), relative abundance of mayflies 

(¾Ephem), relative abundance of chironomid midges and oligocheate worms (¾Chir 

+ ¾Olig), relative abundance of clinger organisms (%Clingers), macroinvertebrate 

biotic index (MBI), Shannon Diversity Index (H'), Shannon Evenness Index ( J'), and 

functional feeding guild composition of Summer 20008 and Summer 2009 are shown 

in Tables C5-Cll. 

Generic taxa richness (TR) increased from Summer 2008 to Summer 2009 at 

all sites within Laurel Creek (Fig. 10). TR values ranged from 26-39 in Summer 2008 
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and from 41-57 in Summer 2009. The greatest increase in TR was observed at sites 

Al (19 taxa), DI (25 taxa), B2 (20 taxa), and B3 (20 taxa). 

EPT richness increased from Summer 2008 to Summer 2009 in all sites except 

site A2 (Fig. 11 ). No change was detected in site A2 from Summer 2008 to Summer 

2009. EPT richness ranged from 9-18 in Summer 2008, and from 12-26 in Summer 

2009. The greatest increase in EPT richness was observed at sites DI (12 taxa), D3 (8 

taxa), and B3 (8 taxa). 

The mHBI decreased from Summer 2008 to Summer 2009, except at sites B2 

and B3 (Fig. 12). The mHBI ranged from 3.24-5.54 for Summer 2008 and from 2.11-

3.74 in Summer 2009 (Tables CS and C6). The greatest decrease in mHBI was 

observed at sites Al (1.86 decrease) and D3 (1.28 decrease). 

Modified EPT richness (m%EPT) showed improvement from Summer 2008 

to Summer 2009 (Fig. 13). m%EPT ranged from 21.02-39.27 for Summer 2008, from 

41.77-72.68 for Summer 2009. Allocapnia were the most abundant EPT 

macroinvertebrate encountered in Summer 2009, and the relative abundance of this 

genus increased at all sites from Summer 2008 to Summer 2009. The greatest 

increases in relative abundance of Allocapnia were encountered at site D2, with an 

increase in relative abundance of 11.48% in Summer 2008 to 50.13% in Summer 

2009. Cheumatopsyche decreased in relative abundance in all sites from Summer 

2008 to Summer 2009. The largest decreases were observed at sites D3, B2, and B3. 

In addition, several genera of mayflies, stoneflies, and caddisflies were encountered 
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in Summer 2009 and not in Summer 2008 (Tables Cl2 and C 13). 

Percent Ephemeoptera (%Ephem) showed an overall improvement from 

Summer 2008 to Summer 2009, except at sites D3 and B3 (Fig. 14). %Ephem ranged 

from 3.22-11.96 for Summer 2008, and from I 1.67-22.09 for Summer 2009. Site D3 

decreased in %Ephem by 0.29 and site B3 decreased by 3.52. The greatest increase in 

%Ephem from Summer 2008 and Summer 2009 was observed at site Al 

(12.70%).The most abundant mayfly collected in Summer 2008 was Isonychia 

(Ephemeroptera, Isonychidae). The most frequently encountered mayfly collected in 

Summer 2009 at sites Al, A2, DI, D3, BI, and B3 was Acentrella (Ephemeroptera, 

Baetidae ), and the most frequently encountered mayfly at site D2 was Jsonychia. 

Acentrel/a and Isonychia were the most frequently encountered mayflies collected at 

site B2 in Summer 2009 with equal relative abundance. 

Relative abundance of chironomids (midges) and oligochaete (segmented 

worms; %Chir + %OIig) increased in all sites from Summer 2008 to Summer 2009, 

except at sites BI and B2 (Fig. 15). %Chir + %Olig ranged from 0-24.29 for Summer 

2008, and in from 5.84-27.64 for Summer 2009. The greatest increase in %Chir + 

%OIig was observed at site Al(l3.93%) and D2 (16.64); Fig. 15). The most abundant 

chironomids collected in Summer 2008 were either in the Thienemannimyia group 

(Diptera, Chironomidae) or Polypedilum (Diptera, Chironomidae). The most 

abundant chironomids collected in Summer 2009 were the relatively intolerant genus 

Parametriocnemus (Diptera, Chironomidae ). 
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Relative abundance of clinger organisms (% Clingers; macroinvertebrates 

adapted to attach to hard, silt-free substrates) decreased at all sites from Summer 2008 

to Summer 2009 (Fig. 16). %Clingers ranged from 42.31-73.30 for Summer 2008, 

and from 28.49-56.66 for Summer 2009. The greatest decrease in %Clingers was 

observed at sites D3 (31.27), B2 (30.19), Bl (28.25), and Al(26.36) (Fig. 16). 

Cheumatopsyche were the most frequently encountered clinger organism at sites A I, 

A2, DI, D2, D3, B2, and B3 in Summer 2008, while Optioservus larvae (Coleoptera, 

Elmidae) were the most frequently encountered clinger organism at site BI. Perlesta 

(Plecoptera, Perlidae) were the most frequently encountered clinger organisms at sites 

D2, D3, Bl, and B3 in Summer 2009. Nigronia (Megaloptera, Corydalidae) were the 

most frequently encountered clinger organisms at sites Al and B2, and 

Cheumatopsyche were the most common at site DI in Summer 2009. 

The overall MBI scores improved from Summer 2008 to Summer 2009 (Fig. 

17). MBI scores ranged from 51.39-66.66 in Summer 2008, and ranged from 58.49-

67.55 in Summer 2009 (Tables CS and C6). The greatest improvement in MBI scores 

was observed in site DI, which increased by 13.10. 

From Summer 2008 to Summer 2009 the abundance of aquatic 

macroinvertebrates increased at all sites, except BI and B3, with site D3 having the 

highest abundance of aquatic macroinvertebrates sampled. Site A2 had the highest 

Shannon Diversity Index of2.95 in Summer 2008. In Summer 2009, Al had the 

highest Shannon Diversity Index of3.18 (Tables I and 2). Site Al had the lowest 

Shannon Diversity Index of 2.40 for Summer 2008, and Site D3 had the lowest 
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Table 1. Shannon Diversity Index, abundance, and generic richness for macroinvertebrate communities 
of eight sites within Laurel Creek in Summer 2008 

Sample # of Shannon Diversity Index Shannon Evenness Index 
Site Abundance Genera (H') (J') 
Al 93 19 2.40 0.82 
A2 178 25 2.95 0.92 
DJ 176 22 2.42 0.78 
D2 182 28 2.78 0.83 

u, D3 209 28 2.42 0.73 '° Bl 178 19 2.42 0.82 
B2 223 21 2.38 0.78 
B3 247 20 2.46 0.82 



Table 2. Shannon Diversity Index, abundance, and generic richness for macroinvertebrate communities 
of eight sites within Laurel Creek in Summer 2009. 

Sample # of Shannon Diversity Index Shannon Evenness Index 
Site Abundance Genera (H') (J') 
Al 201 48 3.18 0.82 
A2 339 38 3.03 0.83 
DI 293 43 2.91 0.77 
02 203 38 2.94 0.81 

°' 
03 377 35 2.21 0.62 

0 
Bl 172 33 2.76 0.79 
B2 266 44 2.81 0.74 
B3 199 42 3.06 0.82 



Shannon Diversity Index of2.21 for Summer 2009 (Tables I and 2). Overall, 

Shannon Diversity Index increased in all sites from Summer 2008 to Summer 2009 

except site 03. 

Functional Feeding Guild Composition 

Changes were observed in the composition of functional feeding group 

composition from Summer 2008 to Summer 2009. Generally, from Summer 2008 to 

Summer 2009 collectors (filterers and gatherers) and shredders increased while 

predators decreased in many of the sites. Scrapers were not frequently encountered 

and lower in abundance compared to the other feeding groups. All values for the 

functional feeding guild composition are provided in Tables C9-Cl I. 

At sites above the restored area (A 1 and A2) predators were the most 

abundant feeding group in Summer 2008, ranging from 30.34-53.76% (Fig. 18). 

Collectors (filterers and gatherers) were the second most abundant feeding group, 

ranging from 31.46-40.86%. Scrapers were not a large component of the feeding 

guilds, ranging from 4.30-13.48%, and shredder abundance ranged from 1.08 -

23.60%. The prevalent trends observed in Summer 2009 were a decrease in predators 

at site A 1 and an increase in shredder abundance at sites A 1 and A2. Shredder 

abundance ranged from 23.89-24.87% in Summer 2009. Collectors (filterers and 

gatherers) were the most abundant feeding group in Summer 2009 with values 

ranging from 37.31-43.37% (Fig. 18). 

Within the restored area (DI, 02, and 03) predators were the most abundant 

group at sites DI and 02, with values ranging from 45.60-50.00% in Summer 2008 
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(Fig. 19). Collectors (filterers) were the most abundant group at site D3 in Summer 

2008 with a relative abundance of 56.46%. Predators decreased in abundance at sites 

DI and D2 in Summer 2009 to 25.94-36.95%, but increased at site D3 to 24.40% 

relative abundance. Collectors (filterers and gatherers) increased in abundance at site 

DI in Summer 2009 to 51.20% relative abundance and decreased at sites D2 and D3 

to 34.97% and 15.91 % (Fig. 19). Shredder abundance increased at all sites from a 

relative abundance of3.41-13.40% in Summer2008 to 16.38-51.19% in Summer 

2009 (Fig. 19). Scrapers were not a large component of the feeding guild in Summer 

2008 or Summer 2009; their values ranged from 7.14-13.07% in 2008 and 4.93-

8.49% in 2009. 

At sites below the restored area (BI, B2, and B3) shredders were the most 

abundant group at site Bl (26.40%) and collectors (filterers and gatherers) were the 

most abundant group at sites B2 and B3 with relative abundance of39.91 % and 

45.75% respectively (Fig. 20). Shredders increased in abundance at all sites from 

Summer 2008 to Summer 2009 with relative abundance values ranging from 28.14-

33.09%. Collectors increased at site BI from Summer 2008 to Summer 2009 and 

decreased in abundance at sites B2 and B3 (Fig. 20). The relative abundance of 

collectors ranged from 27.82-39.70% in Summer 2009. Predators relative abundance 

decreased at each site below the restored area from Summer 2008 to Summer 2009 

(Fig. 20). Relative abundance of predators ranged from 25.84-39.01 % in Summer 

2008 and from 23.84-29.32% in Summer 2009. Scrapers were not a large component 

of the feeding guilds in Summer 2008 or in Summer 2009. Relative abundance of 
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scraper relative abundance vales ranged from 5.67-20.79% in Summer 2008 and 8.04-

9.77% in Summer 2009. 

The functional feeding guild composition of Laurel Creek in Summer 2009 is 

closer to the hypothetical community structure provided by Vannote et al. ( 1980) in 

comparison to the Summer 2008 composition. Functional feeding guild composition 

for sites A2, D3, and B2 in Summer 2008, and Al in Summer 2009 do not equal 

I 00%, because a functional feeding guild classification was not available for the 

Reomyia (Diptera, Chironomidae) found at those sites. Relative abundance for 

Reomyia in Summer 2008 was I. 12% at site A2, 0.48% at site D3, and 0.45% at site 

B2. Relative abundance for Reomyia in Summer 2009 was 0.50% at site Al. 
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Habitat Assessment 

Pre-restoration and post- restoration habitat assessment scores for Laurel 

Creek in Summer 2008 and Summer 2009 are presented in Tables 3 and 4. Sites 

within the restored area (DI, D2, and D3) were evaluated in Summer 2008, and all 

sites were evaluated in Summer 2009. In Summer 2008 overall habitat scores were all 

rated as partially supporting aquatic life (Fig. 21). In Summer 2009, sites A2 and D3 

were rated as fully supporting aquatic life, and all other sites were rated as partially 

supporting aquatic life in Laurel Creek (Fig. 21 ). 

Evaluations of habitat assessments conducted in Summer 2008 revealed the 

lowest scores in the following parameters: velocity/depth regime, channel flow status, 

bank stability, vegetative protection zone, and riparian vegetative zone width. For 

velocity/depth regime, site DI scored in the poor category and sites D2 and D3 scored 

in the low end of the marginal category. For channel flow status, sites D2 and D3 

scored in the low end of the marginal category. Water filled only 25-75% of the 

available channel. For bank stability, the right bank of DI scored in the low end of the 

marginal category. Thirty to sixty percent of the stream bank had potential for future 

erosion. For vegetative protection zone, site D2 scored in the poor category. Kudzu 

(Pueraria lobata), a non-native invasive species of vine, was the dominant vegetation 

on the right bank of site D2. For riparian vegetative zone width, site DI scored in the 

high end marginal category; the riparian habitat was only 6 to 12 meters wide. 

Evaluations of habitat assessments conducted in Summer 2009 revealed the 

lowest scores in the following parameters: epifaunal substrate/available cover, 
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embeddedness, bank stability, vegetative protection zone, and riparian vegetative 

zone width. For epifaunal substrate/available cover site DI scored in the marginal 

category. Habitat availability was less than desirable for colonization. For 

embeddedness, site B3 score in the high in marginal category. Gravel and cobble 

particles were 50-75% surrounded by fine sediment. For bank stability, site DI scored 

in the high end of the marginal category. Thirty to sixty percent of the stream bank 

had potential for future erosion. For vegetative protection zone, sites D2 and BI 

scored in the poor category. Kudzu (Pueraria /obata), a non-native invasive species 

of vine, was the dominant vegetation on the right bank of site D2. For riparian 

vegetative zone width, site D2 and B2 scored in the marginal category. The riparian 

habitat was only 6 to 12 meters wide at those sites. 
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Table 3. Habitat assessment scores for sites within the restored area, 
2re-restoration, Summer 2008. 

Parameter DI D2 D3 
Epifaunal Substrate available cover 12 15 16 
Embeddedness 8 18 15 
Velocity/Depth Regime 5 8 8 
Sediment Deposition 17 20 18 
Channel Flow Status 17 7 7 
Channel Alteration 16 20 20 
Frequency of Riffles (or bends) 10 18 17 
Bank Stability- Left Bank 6 8 9 
Bank Stability-Right Bank 4 9 8 
Vegetative Protection- Left Bank 9 9 10 
Vegetative Protection- Right Bank 8 3 9 
Riparian Vegetative Zone Width-Left bank 5 10 9 
Riparian Vegetative Zone Width-Right bank 10 6 9 
Total Score 127 151 155 
Narrative Classification 1 

PS PS PS 
1. PS= partially supporting 
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Table 4. Habitat assessment scores for all sites in Laurel Creek, post-restoration, in Summer 2009. 

Parameter Al A2 DI D2 D3 Bl B2 B3 

Epifaunal Substrate available cover 13 18 10 15 18 13 16 8 
Embeddedness 16 15 13 16 15 11 15 10 
Velocity/Depth Regime 10 14 12 13 15 13 13 13 
Sediment Deposition 18 17 15 18 18 16 17 12 
Channel Flow Status 14 15 15 15 15 12 15 15 
Channel Alteration 16 18 12 18 19 15 16 16 
Frequency of Riffles ( or bends) 13 16 11 16 16 15 16 13 
Bank Stability- Left Bank 9 10 5 8 9 6 8 8 
Bank Stability-Right Bank 9 6 8 6 9 8 8 8 

_, Vegetative Protection- Left Bank 10 10 6 - 9 10 6 8 8 
Vegetative Protection- Right Bank 8 6 7 5 9 8 5 8 
Riparian Vegetative Zone Width-Left Bank 10 10 " 10 10 5 6 10 .) 

Riparian Vegetative Zone Width-Right Bank 6 6 8 5 8 10 4 10 
Total Score 152 161 125 154 171 138 147 139 
Narrative Classification1 PS FS PS PS FS PS PS PS 

1. PS= partially supporting and FS= fully supporting 



Water Chemistry 

Results of water quality measurements from Laurel Creek are presented in 

Tables 5-6. Notable differences were not found between sample sites or between 

years. The water quality data was what one might expect from a stream in the Little 

Sandy River Drainage of the Western Allegheny Plateau as compared to KDOW 

water quality data. All parameters measured were similar for all eight sampling sites 

between years, except for a slight increase in conductivity and decrease in dissolved 

oxygen(% saturation and mg/L) in Summer 2009. The levels of conductivity and 

dissolved oxygen were not outside normal conditions to support aquatic life. 

Furthermore, a comparison was made with KDOW water quality background levels 

for reference reach headwater streams in the Western Allegheny Plateau region of 

eastern Kentucky. The levels collected were within the expected range with the 

exception of a high total suspended solids and turbidity reading at site B2 in Spring 

2009 and a low pH reading at site A2 in Summer 2009. 

A high measurement of total suspended solids and turbidity were collected 

and measured at site B2. This measurement was high due to logging upstream in 

Lovelace Fork that caused substantial turbidity and sediment loading to the creek in 

Spring 2009. At site B2 on 18 June 2008 a high pH reading of I 0.14 and at A2 on I 4 

June 2009 a low pH reading of2.62 were measured and recorded (Table 5). These 

measurements are thought to be due to faulty probe because the aquatic life was still 

flourishing at the site. In addition, water samples were taken back to the lab and 
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measured with a hand held pH meter; values were within the expect range of a pH of 

6-9. 
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Table 5. Water quality data from Laurel Creek in Summer 2008. 

Temperature Conductivity Dissolved Dissolved 
pH Site Date Oxygen Oxygen (OC) (µSiem) 

(% Saturation) (mg/L) (standard Unit) 

Al I 7-Jun-08 15.85 227 129.5 12.81 6.07 
A2 I 7-Jun-08 17.32 216 111.5 10.62 6.18 
DI I 7-Jun-08 21.17 223 13 I. I 11.64 6.43 
D2 I 7-Jun-08 20.36 207 118.7 10.70 6.07 
D3 23-Jun-08 15.16 201 107.5 12.50 7.20 ___, 
Bl 18-Jun-08 14.21 250 111.4 11.39 6.42 .t,. 

B2 l 8-Jun-08 14.99 273 110.2 11.05 10.14 
B3 23-Jun-08 15.65 201 101.5 10.56 7.01 



Table 6. Water quality data from Laurel Creek in Spring and Summer 2009. 

Dissolved Dissolved pH Turbidity Alkalinity 
Site Date Temperature Conductivity Oxygen Oxygen (standard (average TSS as CaCO3 

(CC) (~Siem) (% Saturation) (mll!L) Unit) NTU) (mll!L} (mll!L} 
Al I 7-Mar-09 12.20 120 108.8 11.66 7.11 4.37 4.8 
A2 I 7-Mar-09 11.17 121 106.8 11.60 7.23 4.26 3.6 
DI 17-Mar-09 6.00 122 107.5 13.36 7.00 5.48 2.0 
D2 17-Mar-09 7.29 114 109.4 13.20 7.29 9.82 1.6 
D3 17-Mar-09 8.35 104 104.7 12.25 7.10 3.06 2.4 
Bl 19-Mar-09 8.63 123 101.0 11.78 6.80 2.95 2.0 
B2 5-Apr-09 6.73 88 106.7 12.90 5.1 I 7.98 11.2 
B3 I 9-Mar-09 8.51 99 111.7 13.06 7.03 17.70 8.0 
Al 14-Jun-09 17.07 119 95.5 9.05 5.97 
A2 I 4-Jun-09 18.10 124 76.7 7.22 2.62 ___, 
DI 16-Jun-09 16.79 V, 118 102.2 9.92 6.74 
D2 I 6-Jun-09 16.88 107 100.2 9.72 5.56 
D3 I 6-Jun-09 16.37 103 97.0 9.46 6.94 
Bl I 6-Jun-09 16.67 112 88.8 8.65 6.03 
B2 17-Jun-09 16.50 105 97.1 9.48 6.53 
B3 18-Jun-09 15.84 107 97.7 9.63 6.61 
Al I-Jul-09 17.89 157 86.8 8.23 9.04 4.28 0.4 42 
A2 I -Jul-09 18.08 163 83.3 7.87 8.2 4.09 0.8 40 
DI 1-Jul-09 18.08 160 83.0 7.84 8.41 4.02 0.8 43 
D2 I-Jul-09 17.23 155 88.9 8.53 7.54 4.27 0.8 46 
D3 1-Jul-09 16.80 152 87.3 8.46 7.07 3.01 4.0 50 
Bl 2-Jul-09 16.34 164 80.5 7.88 8.30 3.67 0.4 61 
B2 2-Jul-09 16.82 133 85.6 8.29 8.35 4.04 0.4 45 
B3 2-Jul-09 16.54 140 83.2 8.11 7.28 4.03 0.8 51 

The (-) indicates parameter was not collected during the sample period. 



Discussion 

Fish Community Health 

Overall, the diversity of fishes, biomass, abundance, Shannon Diversity Index, 

and KIBI scores suggest fish communities are in fair to good condition. However, the 

fish community structure reflects a community that has been disturbed. The observed 

slight decline in abundance of intolerant, tolerant, and facultative headwater species, 

across all sites, may indicate a more transient response in the fish community to 

unusually low flows in Summer and Fall 2008. However, the decline in KIBI scores, 

abundance, and biomass of fishes only within and below the restored area may 

suggest that restoration has had a slight negative impact on the fish community. 

Summer 2009 KIBI scores for Laurel Creek at all sites, excluding B3, were in 

the fair and good classification, and this was a decline from Summer 2008. Summer 

2008 KIBI scores ranged from fair to excellent, with most sites described as good or 

excellent. Communities rated as "fair" and "good" are defined by fewer species, loss 

of intolerant species, and a stressed trophic structure (Karr et al. 1986). Site B3 was 

classified as excellent in Summer 2009, however, this is a wadeable (higher order) 

site whereas the other sites are headwater (lower order) sites. Site B3 is 

approximately 9.66 km downstream from the headwater sites and is affected by a 

variety of factors such as increased watershed size, additional tributaries, and heavy 

all terrain vehicle activity. Because site B3 is relatively insensitive to change in upper 

Laurel Creek (i.e. restoration), it is not directly comparable to the seven other 

headwater sites sampled in Laurel Creek. 
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System-wide changes observed among sites 

System-wide changes were those that were similar across all sites, and might 

suggest a source of disturbance to the fish communities other than the restoration. 

From Summer 2008 to Summer 2009 there was a slight system-wide decrease in 

abundance of intolerant fishes, such as Clinostomus funduloides and Cottus bairdii, 

and a system-wide increase in abundance of tolerant. In addition, a system-wide 

increase was observed in facultative headwater species at sites Al, A2, DI, D2, and 

B 1. In general, facultative headwater species are generalist species that are not 

primarily associated with headwater streams, and natural or anthropogenic 

disturbance can cause an increase in these species (KDOW 2008). Because these 

changes occurred at all sites, factors other than restoration activities might have 

affected the fish communities. 

Headwater streams undergo periods of intermittent flow during summer or fall 

months which could impact recruitment and overall densities from year to year. 

During periods oflow flow, fishes are particularly vulnerable and re-colonization 

depends on distance an organism must travel, the available resources in the new 

section, and the pool of available colonists (Peterson and Bayley 1993, Moerke and 

Lamberti 2003). Generalist fish species may provide a base offish species that are 

variable in composition, but remain relatively constant, thus providing a base for 

colonization (Kinsolving and Bain 1993). Generalist species are also better able to 

cope with environmental change compared to intolerant species (Poff and Ward 

1990). 
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Unusually low flow in late Summer and Fall of2008 may have affected the 

composition of fish species. In August 2008, the headwaters of Laurel Creek 

experienced sections of de-watering creating in-stream barriers, and the unusually 

low water levels continued throughout Fall 2008. This may help to explain why a 

system-wide increase in relative abundance of tolerant and facultative headwater 

species and a decrease in intolerant fishes were observed. Tolerant (generalist) fish 

species may have been able to colonize the sites above, within, and below the 

disturbed area following the months oflow water levels and post-restoration 

disturbance. To fully address this observation, follow up bioassessments should be 

conducted to further assess the fish community. 

Differential changes observed among sites 

Differential changes are those measures which showed a decline in fish 

community health within and below the restoration, but did not show the same 

decline in sites above the restoration. This may indicate restoration as the disturbance. 

A decline in abundance, biomass, and overall KIBI scores were observed in sites 

within and below the restoration, but the same decline was not observed in sites 

above the restoration. Similar studies found that areas disturbed by anthropogenic 

sources were not devoid of fish, but disturbed sections had lower density and fewer 

fish species compared to less disturbed sections (Kinsolving and Bain 1993, Paller et 

al. 2000, Moerke and Lamberti 2003, Miltner 2004, Helfman 2007). Other studies 

reported an increase in abundance and biomass following in-stream restoration. 
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However, the species that increased in abundance were categorized as tolerant species 

(Shields et al. 2003, Hrodey and Sutton 2008). 

The timing of the major restoration activity in Laurel Creek also coincided 

with a period of unusually low flow in 2008. During periods oflow flow, pools 

within streams offer a place of refuge for the fish community. Fishes may become 

concentrated in the remaining isolated pools and conditions within these pools may be 

less than optimal. Therefore, effects from restoration activities, such as major moving 

of earth, installing cross vane weirs with large machinery in the creek, and 

disturbance to the riparian zone from removing non-native invasive plant species, 

may have created further disturbance to the fish community during this vulnerable 

period. 

Fish are important to use in bioassessments of restoration as they are present 

in a stream continuously and they respond to transient effects which may not be 

detected by other measurements such as water quality or habitat assessments. Periods 

of intermittency experienced in Laurel Creek may help to explain the increase in 

relative abundance of tolerant species, decrease in relative abundance of intolerant 

species, and increase in relative abundance of facultative headwater species. Other 

fish community measures, such as the decline in abundance, biomass, and KIBI 

scores suggest restoration has had some effect on the fish community. The magnitude 

of these declines was not high, suggesting that negative effects on the fish community 

were only minimal. To fully address these observations, continued bioassessments 
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should be conducted in Laurel Creek to determine if these effects persist for a longer 

period of time. 

Aquatic Macroinvertebrate Community Health 

Overall, a positive system-wide response was observed in aquatic 

macroinvertebrates between Summer 2008 and 2009. Many of the biotic metrics 

within the MBI increased, the Shannon Diversity Index improved, and functional 

feeding guild composition more closely resembled the hypothetical community 

structure in Summer 2009 compared to Summer 2008. Restoration does not seem to 

have impacted the aquatic macroinvertebrate community. 

Much research has focused on using macroinvertebrate community structure 

for biomonitoring lotic systems after disturbance (Hynes 1970, Wallace 1990, 

Richardson and Kiffney 2000, Muotka and Lassonen 2002, Pond 2000, Korsu 2004, 

Bae et al. 2005, Churchel and Batzer 2006, Walther and Whiles 2008). Several 

studies concluded that aquatic macroinvertebrate communities recovered quickly after 

disturbance from colonization, but the macroinvertebrate species composition 

changed following restoration (Wallace 1990, Pond 2000, Korsu 2004). The results of 

this study indicate improvement in the health of the aquatic macroinvertebrate 

communities from Summer 2008 to Summer 2009; however some MBI metrics and 

the overall MBI scores were somewhat lower than what is expected from an 

undisturbed headwater stream in the Little Sandy River drainage (Pond et al. 2003). 
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The improvement seen in aquatic macroinvertebrate community health may 

be attributed to the length of time between stream restoration activities and 

bioassessment sampling. During that seven month period, aquatic macroinvertebrates 

could have re-colonized the stream (Molles 1985, Wallace 1990, Korsu 2004). The 

recovery seen in the aquatic macroinvertebrate community is probably due in part to 

the mobility of the adults and rapid life cycles of some aquatic macroinvertebrates 

(e.g., dipterans; Hynes 1970, Davies 1976, Pinder 1986, Wallace 1990, Merritt and 

Cummins 1996, Merritt et al. 2008). 

While there was an improvement seen in the overall macroinvertebrate 

community health, values are lower for all sampled sections of Laurel Creek when 

compared to reference reach data for mountain headwater streams of Kentucky (Pond 

et al. 2003). Taxa richness, EPT richness, m%EPT, %Ephem, %Chir + %Olig values, 

and MBI scores recorded for Laurel Creek increased from Summer 2008 to Summer 

2009, but these metrics were not within the expected ranged determined by Pond et 

al. (2003). These results may be attributed to when the bioassessment sampling was 

conducted. Bioassessment activity was outside of the suggested sampling period for a 

headwater stream in the Little Sandy River drainage (Pond et al. 2003). Spring (i.e., 

February to May) is the most appropriate time to sample a mountainous headwater 

stream in Kentucky (Pond et al. 2003, KDOW 2008); the lower scores may be a result 

of sampling for aquatic macroinvertebrates in June of2008 and June 2009. Sampling 

in summer months may fail to record temperature and oxygen sensitive species, as 
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well as species that have emerged from the stream in early Spring ( e.g., plecopterans 

and ephemeropterans; Hynes 1970, Pond et al. 2003). 

One metric of the MB!, ¾clingers, showed a large decline in relative 

abundance of clinger organisms in Laurel Creek between Summer 2008 and Summer 

2009. However, the un-standardized data for the relative abundance of clingers at the 

sites above and two sites within the restored area actually showed an increase in the 

relative abundance of clingers. The un-standardized data for one site within and three 

sites below the restored area showed a decrease in relative abundance of clingers. The 

overall abundance of macroinvertebrates at each site is numerically masking the 

abundance of clingers at those sites. Clingers are good indicators of sedimentation in 

a lotic system since they require hard silt-free substrates to cling to (KDOW 2008). 

Restoration activities might have increased sedimentation downstream, but pre­

restoration data are unavailable for comparison. 

Functional Feeding Guild Composition 

Although many aquatic macroinvertebrates are considered omnivorous 

feeders, they can still be classified into feeding groups based on their resource 

preference (Vannote et al. 1980, Pond 2000). Relative abundance of functional 

feeding group composition provides useful information on the overall trophic 

organization and food resource dynamics of streams. The abundance of various 

functional feeding groups shifted from Summer 2008 to Summer 2009. The 

functional feeding guild present in Laurel Creek in Summer 2009 resembled a pattern 
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close to the River Continuum Concept (Vannote et al. 1980). Scrapers were not a 

large component of the feeding guilds in Summer 2008 or Summer 2009. Scrapers are 

not as prevalent in forested headwaters streams because they graze on benthic algal 

communities which are limited by light (Vannote et al. 1980, Muotaka and Laasonen 

2002, Pond 2000). Predator abundance decreased at most sites from Summer 2008 to 

Summer 2009, however, the decrease was not substantial. Predators are expected to 

make up <15% of the functional feeding guild (Vannote et al. 1980). This study 

found a somewhat higher predator value (23-36%). Collectors and shredders 

dominated the functional feeding community in Summer 2009, comprising more than 

58% of the community at each site. The relative abundance of collectors increased at 

some sites and decreased at other sites from 2008 to 2009, independent of sample site. 

Shredders increased at all sites from Summer 2008 to Summer 2009. However, 

shredder abundance is still somewhat lower than the hypothetical value (35%) 

expected in a functional feeding guild of an undisturbed headwater stream (Vannote 

et al. 1980). Two explanations are possible for these findings: shredders could have 

been underestimated because non-riffle habitats were not included in the functional 

feeding guild calculations (which are based only on the semi-quantitative samples), 

and lack of sufficient riparian vegetation may be a limiting factor to the shredder 

community. 

Shredders should have comprised a larger proportion of the functional feeding 

guild than was observed in Laurel Creek in both Summer 2008 and 2009 in 

comparison to Vannote et al. (1980). However, since quantitative sampling was 
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conducted in riffies and functional feeding guild composition was calculated from 

those samples, the shredder composition may have been underestimated. Shredders, 

such as Eurylophella (Ephemerellidae ), Pycnopsyche (Limnephilidae ), and 

Lepidostoma (Lepidostomatidae) were found in other habitats within each sample site 

that were not included in the calculations (Muotka and Laasonen 2002, Pond 2000). 

In addition, shredder composition could have been limited by allochthonous 

input from the riparian vegetative zone. Riparian vegetative zone width was degraded 

at sites where the road was adjacent to the creek or other anthropogenic disturbance 

was present. Thus, riparian vegetative zone width was most likely limited by the 

existence of the road, which was barricaded to vehicle traffic prior to restoration in 

Fall 2008, but never fully removed. Therefore, as time progresses and the riparian 

zone further recovers, one might expect to see increased shredder abundance in years 

to come. 

Overall, a positive system-wide change was observed in aquatic 

macro invertebrates between Summer 2008 and 2009. Many of the measures of 

aquatic macroinvertebrate community health indicated improvement between years 

and probably suggest that restoration has not impacted the macroinvertebrate 

communities. 

Conclusion 

The results from this study indicate that restoration may have had a minimal 

negative impact on the fish community as supported by decreased KIBI scores, 
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abundance, and biomass within and below the restored area of Laurel Creek, but it 

does not appear to have impacted the aquatic macroinvertebrate community. Fish 

populations were heavily impacted during the unusually low flow events in late 

Summer and Fall 2008, and would not have had time to recover by Summer 2009 

sampling. However, it is not surprising that the macroinvertebrate communities 

showed an improvement between years considering many aquatic macroinvertebrates 

possess short life cycles and the ability to rapidly re-colonize a disturbed area (Molles 

1985, Wallace 1990, Merritt et al. 2008, Korsu 2004). The results from this study do 

not suggest ecologically significant impacts since the trends observed in the fish 

community were minor and the macroinvertebrate community seemed to improve. 

Continued biological monitoring is needed to examine long-term effects ofrestoration 

in Laurel Creek to the biological communities. 

Future Direction 

Stream restoration projects are becoming increasingly common, but biological 

assessments following restoration are still lacking (Alexander and Allan 2006, 

Walther and Whiles 2008). Ecological restoration will continue to play an important 

role in natural resource management to restore function to streams and rivers. Pre­

and post-restoration data are needed to document changes in the abiotic and biotic 

components of an ecosystem to determine if restoration has been successful (Kondolf 

and Micheli 1995, Helfman 2007, Walther and Whiles 2008). 
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The results of this study lend insight into the short-term effects (one year) of 

restoration on the biological community of Laurel Creek. It is very likely that this 

study was not long enough to document full recovery of the biological community 

(Detenbeck et al. I 992). Additional monitoring is needed to examine long-term 

effects ofrestoration on fish and macroinvertebrate communities, which will allow 

for a better understanding of these restoration efforts. 

In addition, there were limitations inherent in the design of this study. Future 

research should focus on increasing the number of sample sites within the stream 

being restored as well as sampling ecologically and geologically equivalent streams 

for replication. Sampling should be conducted at the appropriate assessment season 

for each biological community (in the Spring for aquatic macroinvertebrates and in 

the Summer or Fall for fishes) to obtain accurate abundance and diversity measures. 

Bioassessment monitoring of stream restoration projects is valuable for determining 

the ecological integrity of a stream, and documenting the health and resilience of the 

stream community (Karr et al. 1986). 
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Table Al. List of the eight sites sampled in Laurel Creek watershed, Rowan and Elliott 
Counties, Kentuck:i:'. 

Site Latitude Longitude County Watershed 

Above I (Al) N38.15285° W083 .25982° Rowan 2.31 km' 

Above2 (A2) N38.1537° W083 .26 I 02° Rowan 2.12 km2 

Damaged I (DI) N38.15060° W083 .25906° Rowan 2.46 km' 
Damaged 2 (D2) N38.14640° W083.25529° Rowan 3.73 km 

Damaged 3 (D3) N38.14331° W083.24782° Rowan 5.54 km' 

Below I (Bl) N38.13491° W083 .23613° Rowan 7.54 km' 

Below2 (B2) N38.13277° W083.23380° Rowan/Elliott 13.49 km2 

Below 3 (B3) N38.13164° W083. l 93 l 7° Elliott 37.16 km2 
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Table A2. Statewide 95%ile or 5%ile values used by KDOW for each metric for headwater streams 
(Pond et al. 2003). 

Metric 95%ile or 5%ile Formula for calculation MB! subcomponents 

TR 63 TR(I00)/63 

EPT 33 EPT(l 00)/33 

m%EPT 86.9 m%EPT(l 00)/86.9 

%Ephem 66.5 %Ephem(I00)/66.5 

%Chir + %Olig 0.68 ((I 00-%chir+%Olig)/(l 00-0.68)) 100 

%Clingers 75.5 %Clingers(! 00)/75.5 

%mHBI 2.18 ((I 0-mHBJ)/(10-2.18))100 
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Table BI. Fishes collected in Laurel Creek, Rowan County, KY in June 2008. 
Fish famil): or seecies Above I Above 2 Damaged I Damaged 2 Damaged 3 Below I Below2 Below 3 
Petromyzontidae 
lampetra aepyptera 2 2 2 5 

(least brook lamprey) 
Cyprinidae 

Campostoma anoma/um 2 3 6 7 7 
( central stoneroller) 
Clinostomus fundu!oides 17 34 54 51 61 34 34 102 
(rosyside dace) 
Notropis buccatus 10 
(silverjaw minnow) 
Notropis photogenis 24 
(silver sh inner) 

'D Pirnephales notatus 00 6 
(bluntnose minnow) 
Rhinichthys atratulus 32 13 39 33 39 16 32 41 
(blacknose dace) 
Semotilus atromaculatus 13 9 21 25 37 24 34 62 
( creek chub) 

Catostomidae 
Catostomus comrnersonii 9 2 7 23 2 8 4 
(white sucker) 
Hypentiliurn nigricans 6 
(nothern hog sucker) 

Salmonidae 
Sa/mo trulla 
(brown trout) 



Table BI. (Continued) Fishes collected in Laurel Creek, Rowan County, KY in June 2008. 

Fish famil~ or seecies Above I Above 2 Damaged I Damaged 2 Damaged 3 Below I Below2 Below 3 
Cottidae 

Coitus bairdii 10 13 20 24 36 51 21 36 
(mottled sculpin) 

Percidae 
Etheostoma caeru/eum 11 4 
(rainbow darter) 
Etheostoma j/abel/are 3 2 
(fantail darter) 
Etheostoma nigrum 9 6 11 14 6 15 51 
Uohnny darter) 

Total individuals 84 82 147 152 221 138 166 358 
Total Species 7 9 8 7 9 10 11 13 

'° Biomass (grams) 257.3 336.4 407.9 616.8 991.8 516.2 813.9 953.5 
'° KIBI score (headwater) 56 60 71 70 69 76 65 69 

narrative classification Fair Good Excellent Good Good Excellent Good Good 



Table B2. Fishes collected in Laurel Creek, Rowan County, KY in March and April 2009. 

Fish famil~ or seecies Above I Above 2 Damaged 1 Damaged 2 Damaged 3 Below I Below 2 Below 3 
Petromyzontidae 

lampetra aepyptera 3 4 6 
(least brook lamprey) 

Cyprinidae 
Campostoma anoma/um 3 6 5 3 2 3 
( central stoneroller) 
Cl inostomus funduloides 21 60 18 69 14 14 14 
(rosyside dace) 
Nolropis buccatus 
(silverjaw minnow) 
Notropis phologenis 88 
(sliver minnow) 

0 Rhinichthys atratulus 16 16 26 10 24 9 11 7 
0 (blacknose dace) 

Sernoti/us atromaculatus 8 14 24 8 4 17 14 5 
( creek chub) 

Catostom idae 
Catostomus commersonii 3 6 
(white sucker) 
Hypentilium nigricans 
(northern hog sucker) 

Cottidae 
Col/us bairdii 12 17 19 10 26 40 5 8 
(mottled scul in) 



Table 82. (Continued) Fishes collected in Laurel Creek, Rowan County, KY in March and April 2009. 

Fish famil~ or seecies Above I Above 2 Damaged I Damaged 2 Damaged 3 Below I Below2 Below 3 
Percidae 

Etheos/oma caeruleum 2 
(rainbow darter) 

Etheostoma jlabe/lare 2 
(fantail darter) 
Elheostoma nigrum 11 13 7 4 7 
Qohnny darter) 

Total individuals 48 78 160 49 143 85 53 138 
Total species 5 8 9 7 9 7 9 12 
Biomass (grams) 124.0 239.1 492.8 174.6 411.9 132.7 206.9 215.1 
KIBI score (headwater) 35 57 74 36 74 55 53 77 

0 narrative classification Poor Fair Excellent Poor Excellent Fair Fair Excellent -



Table B3. Fishes collected in Laurel Creek, Rowan County, KY in July 2009. 

Fish famil~ or seecies Above I Above 2 Damaged I Damaged 2 Damaged 3 Below I Below 2 Below 3 
Petromyzontidae 
lampelra aepyplera 7 3 3 4 
(least brook lamprey) 

Cyprinidae 
Campostoma anomalum 3 4 2 2 6 
(central stoneroller) 
Clinos/omus.funduloides 13 31 21 20 17 24 11 31 
(rosyside dace) 
Notropis buccatus 3 
(silverjaw minnor) 
Nolropis photogenis 38 - (silverjaw minnow) 0 

N 
Pimephales notatus 
(bluntnose minnow) 
Rhinichthys atratulus 65 17 22 19 11 26 15 11 
(blacknose dace) 
Semotilus atromaculatus 36 22 22 12 26 30 33 30 
(creek chub) 

Catostomidae 
Catostomus commersonii 2 2 3 5 3 4 
(white sucker) 
Hypenlilium nigricans 2 
(northern hog sucker) 

Salmonidae 
Oncorhynchus mykiss 
(rainbow trout) 



Table B3. (Continued) Fishes collected in Laurel Creek, Rowan County, KY in July 2009. 

Fish famil,' or seecies Above I Above 2 Damaged I Damaged 2 Damaged 3 Below I Below 2 Below 3 
Cottidae 

Coitus bairdii 8 12 17 8 22 39 18 33 
(mottled sculpin) 

Percidae 
Etheostoma caeruleurn 2 2 
(rainbow darter) 
Etheostoma j/abellare 2 
(fantail darter) 
Etheostoma nigrum 5 7 2 7 
Gohnny darter) 

Total individuals 130 97 94 66 88 122 88 173 

- Total species 6 9 7 9 9 6 10 14 
0 Biomass (grams) 339.0 405.2 336.4 214.7 410.7 507.5 349.9 695.5 w 

KIBI score (headwater) 60 59 56 55 59 64 57 72 
narrative classification Good Good Fair Fair Good Good Good Excellent 



Table B4. Values for core Kentucky Index of Biotic Integrity Scores- June 2008 

Metric Date Al A2 DI D2 D3 B I B2 B3 
DMS Jun08 2 3 2 2 3 3 4 3 
INT Jun08 2 2 2 2 2 2 2 3 
SL Jun08 3 3 3 3 3 4 4 6 
%1NSCT Jun08 42.9 59.8 54.4 56.6 51.6 67.4 51.0 62.3 
%TOL Jun08 54.8 37.8 42.3 42.8 44.8 30.4 44.6 31.6 
%FWH Jun08 51.2 18.3 32.7 29.6 26.7 16.7 32.5 NA 

0 
-I>-



Table BS. Values for core Kentucky Index of Biotic Integrity Scores- March 2009. 

Metric Date Above I Above 2 Damage I Damage2 Damage 3 Below I Below2 Below3 

DMS Mar09 2 2 3 2 3 2 3 3 
INT Mar09 2 2 2 2 2 2 3 

SL Mar09 3 3 3 3 2 3 6.0 

o/o!NSCT Mar09 47.9 50 58.8 59.2 72.0 64.7 45.3 87.0 

o/oTOL Mar09 50.0 42.3 35.0 38.8 20.3 30.6 49.1 9.42 

o/oFWH Mar09 58.3 25.6 28.1 24.5 25.2 16.5 32.1 NA 

-0 
V, 



Table B6. Values for core Kentucky Index of Biotic Integrity Scores- July 2009 

Metric Date Above I Above 2 Damage I Damaiie 2 Damage 3 Below I Below 2 Below 3 

OMS Jul09 2 3 2 3 3 I 4 3 

INT Jul09 2 2 2 2 2 2 2 4 

SL Jul09 2 3 3 3 3 3 4 6 

%1NSCT Jul09 20.0 46.4 47.9 45.5 47.7 51.6 38.6 65.9 

%TOL Jul09 77.7 42.3 48.9 51.5 47.7 46.7 57.8 26.6 

%FWH Jul09 56.0 24.7 33.0 36.4 21.6 23.7 23.9 NA 



Table B7. Total abundance of fishes 
collected in Laurel Creek from 2008 
to 2009. 

Sites June March July 
2008 2009 2009 

A1 84 48 130 
A2 82 78 97 
D1 147 160 94 
D2 152 49 66 
D3 221 143 88 
B1 138 85 122 

B2 166 53 88 
B3 358 138 173 

Table BS. Total biomass (grams) of fishes 
collected in Laurel Creek from 2008 
to 2009. 

June March July 
Sites 2008 2009 2009 

A1 257.3 124.0 339.0 

A2 336.4 239.1 405.2 

D1 407.9 492.8 336.4 

D2 616.8 174.6 214.7 

D3 991.8 411.9 410.7 

B1 516.2 132.7 507.5 

B2 813.9 206.9 349.9 

B3 953.S 215.1 695.S 
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Table B9. Shannon Diversity Index values for fish communities in Laurel Creek in 
Summer 2008. 

Shannon's 
Sample #of Diversity Shannon's Evenness Index 

Site Abundance Species Index (H') (J') 
A1 84 7 1.61 0.83 
A2 82 9 1.65 0.75 
D1 147 8 1.60 0.77 
D2 152 7 1.65 0.85 
D3 221 9 1.87 0.85 
B1 138 10 1.63 0.71 
B2 166 11 2.02 0.84 
B3 358 13 2.07 0.81 
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Table BI 0. Shannon Diversity Index values for fish communities in Laurel Creek in 
S ring 2009. 

Shannon 
Sample #of Diversity Shannon Evenness Index 

Site Abundance Species Index (H') (J') 
A1 48 5 1.43 0.89 
A2 78 8 1.75 0.84 
D1 160 9 1.80 0.82 
D2 49 7 1.55 0.80 
D3 143 9 1.53 0.70 
B1 85 7 1.43 0.74 
B2 53 9 1.80 0.82 
B3 138 12 1.39 0.56 
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Table B 11. Shannon Diversity Index values for fish communities in Laurel Creek in 
Summer 2009. 

Sample 
Shannon 

#of Diversity Shannon Evenness Index 
Site 

Abundance Species Index (H') (J') 
A1 130 6 1.32 0.73 
A2 97 9 1.71 0.78 
D1 94 7 1.71 0.88 
D2 66 9 1.68 0.76 
D3 88 9 1.75 0.80 
B1 122 6 1.47 0.82 
B2 88 10 1.73 0.75 
B3 173 14 2.09 0.84 

l l 0 
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Table CI. Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2008. 
TV' CL2 Al A2 DI D2 D3 Bl 82 83 

Coleoptera 
Dryopidae He/ichus 4.6 X 2 9 6 6 12 6 7 
Elmidae Dubiraphia 6.4 
Elmidae Oplioservus 2.36 X 4 2 2 30 8 3 
Elmidae Oulimnius 1.78 X I 
Elmidae Stene/mis 5.1 X 10 
Hydrophilidae Tropisternus 9.7 X 

Psephenidae Ectopria 4.61 X 4 
Psephenidae Psephenus herricki 2.35 X 5 4 
Ptilodactylidae Anchytarsus bicolor 3.65 X 19 
Diptera 
Ceratopogonidae Atrichopogon 6.49 
Ceratopogonidae Bezzia 6.9 3 

- Chironomidae Chironomus 9.63 
N Chironomidae Cricotopus 7 

Chironomidae He/opelopia 6.2 2 3 5 

Chironomidae Microtendipes 5.5 
Chironomidae Parametriocnemus 3.65 2 9 2 3 7 
Chironomidae Po/ypedilum 6.8 X 8 3 II 2 10 
Chironomidae Reomyia 7 2 I 
Chironomidae Rheocricotopus 7.3 
Chironomidae Tanytarsus 6.7 X 2 
Ch ironom idae Thienemannimyia gp 5.9 8 2 6 2 9 II 44 
Chironomidae Zavrelimyia 5.3 
Simulidae Prosimulium 4.01 X 

Simulidae Simu!ium 4.4 X 9 
Tabanidae Tabanus/Whitneyomyia 9.22 

I. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 



Table C 1. (Continued) Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2008. 
TV 1 CL2 Al A2 DI D2 D3 Bl 82 83 

Tipulidae Antocha 4.25 X 2 
Tipulidae Crytolabis 4.9 
Tipulidae Dicranota 0 5 5 4 2 6 5 
Tipulidae Hexatoma 4.31 2 3 20 12 8 6 
Tipulidae Pseudolimnophi/a 7.22 2 
Tipulidae Tipula 7.3 2 2 2 
Ephemeroptera 
Baetidae Unid Baetid 5 2 5 
Caenidae Caenis 7.41 
Ephemerellidae Eurylophe/1 a 4.34 X 

Ephemeridae Ephemera I.I 
Heptageniidae Stenacron 4 X 

Heptageniidae Stenonema 4.2 X 2 4 2 11 - lsonychiidae Isonychia 3.45 13 8 13 22 17 12 24 -w Leptophlebiidae leptophlebia 6.23 
Hemiptera 
Veliidae Microve/ia 9 12 4 5 7 4 
Veliidae Rhagovelia 9 8 5 3 2 10 
Megaloptera 
Corydalidae Nigronia 5.3 X 16 5 50 12 6 18 42 5 
Odonata 
Aeshnidae Boyeria 6 3 8 4 
Cordulegastridae Cordulegaster 5.73 I 
Gomphidae Gomphus 5.8 5 16 17 2 
Plecoptera 
Capniidae Allocapnia 2.52 13 3 16 24 34 20 27 
Perlidae Acroneuria 1.4 X 

Perlidae Perlesta 4.7 X 4 16 4 2 2 5 12 10 
1. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 



-

Table C 1. (Continued) Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2008. 
TV1 CL2 Al A2 DI D2 D3 Bl B2 B3 

Trichoptera 
Goeridae Goer a 0.13 2 
Hydropsychidae Ceratopsyche I .4 x 3 
Hydropsychidae Cheumatopsyche 6.22 x 22 20 36 37 65 24 
Hydropsychidae Hydropsyche 4 x 8 
Philopotamidae Chimarra 2. 76 x 8 13 3 29 3 
Philopotamidae Dolophilodes 0.81 x 2 13 2 
Polycentropodidae Cyrnellus 7.34 x 
Rhyacophilidae Rhyacophila 0.8 x 
Uenoidae Neophylax 2.2 x I 

1. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 
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Table C2. Taxa collected in the qualitative samples, but not in the semi-quantitative samples, 
Summer 2008. 

Al A2 DI D2 D3 Bl B2 B3 
Coleoptera 
Dryopidae He/ichus 29 
Elmidae Dubiraphia I 5 
Psephenidae Ectopria 
Decapoda 
Cambaridae Cambarus 
Cambaridae Cambarus bartonii 
Cambaridae Cambarus robustus 
Cambaridae Orconectes 
Diptera 
Chironomidae Chironomus 
Chironomidae Helopelopia - Chironomidae Microtendipes 7 4 5 2 -V. 
Chironomidae Reomyia 3 
Chironomidae Stictochironomus 10 30 I 2 
Chironomidae Thienemannimyia gp. 
Chironomidae Xylotopus 
Culicidae Unid Culicidae 2 
Dixidae Dixella 

Tipulidae Tp_ula 3 



Table C2. (Continued). Taxa collected in the qualitative samples, but no in the semi-quantitative 
sam12les, Summer 2008. 

Al A2 DJ D2 D3 Bl B2 B3 
Ephemcroptcra 
Baetidae Unid Baetid 2 
Baetiscidae Baetisca 
Caenidae Caenis 2 
Ephemerellidae Eu,ylophel/a 5 2 6 
Ephemeridae Ephemera 3 
Heptageniidae Stenacron 10 4 3 9 3 
Heptageniidae Stenonema 5 
lsonychiidae !sonychia 2 
Leptophlebiidae leptophlebia I 
Hemiptera 
Gerridae Aquarius 2 3 2 7 2 - Gerridae Gerris 2 I 

0\ 
Megaloptera 
Sialidae Sia/is 2 
Odonata 
Aeshnidae Boyeria 3 
Calopterygidae Calopte1yx 2 
Cordulegastridae Cordulegaster 2 
Plecoptcra 
Nemouridae Amphinemura 2 
Trichoptera 
G lossosomatidae Glossosoma 
Limnephilidae Pycnopsyche 14 13 27 17 26 2 20 
Philopotamidae Wormaldia I 
Polycentropodidae Cyrnellus 
Rhyacophilidae Rhyacophi/a 2 
Uenoidae Neophylax 3 22 21 21 2 22 



Table C3. Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2009 
TV 1 CL2 Al A2 DI D2 D3 Bl 82 83 

Co!eoptera 
Dryopidae Helichus 4.6 X 2 2 2 2 4 3 
Dytiscidae Hydroporous 8.62 2 I 2 
Elmidae Optioservuslarvae 2.36 X I 20 4 7 8 14 8 
Elmidae Ou/imnius 1.78 X I 
Elmidae Stene/mis 5.1 X 

Hydrophilidae Helochares 8.3 
Hydrophilidae Hydrobiomorpha 9 
Psephenidae Ectopria 4.16 X 4 2 3 4 

Psephenidae Psephenus herricki 2.35 X I I 4 
Ptilodactylidae Anchytarsus bico/or 3.64 X 3 9 I 
Decapoda 

Cambaridae Cambarus 4.9 -___, Cambaridae Cambarus bartonii 4.59 
Cambaridae Orconectes cristavarius 5.47 
Diptera 
Athericidae Atherix 2.1 I 
Ceratopogonidae Bezzia/Palpomyia 6.9 3 3 3 
Ceratopogonidae Serromyia 7 
Chironomidae C/adotanytarsus 4.09 
Chironomidae Chironomus 9.63 
Chironomidae Corynoneura 6.01 I 
Chironomidae Cricotopus 7 2 6 
Chironomidae Demicrytochironomus 2.12 
Chironomidae Dicrotendipes 8.1 2 
Chironomidae Diploc/adius 7 
Chironomidae Helopelopia 6.2 2 2 
Chironomidae Krenosrnittia 0 I 

I. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 



Table C3. (Continued) Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2009. 

TV1 CL2 Al A2 DI D2 D3 Bl 82 83 
Chironomidae Microspectra 1.52 I I 2 
Chironomidae Microtendipes 5.5 2 I 3 I 
Chironomidae Natarsia 9.95 
Chironomidae Orthoc/adius 7.3 
Chironomidae Paracricotopus 4.7 
Chironomidae Parakiefferiella 5.4 
Chironomidae Parametriocnemus 3.65 8 13 6 9 4 2 2 17 
Chironomidae Paratendipes 5.11 I 
Chironomidae Paralrichocladius 7 5 I 2 2 4 
Chironomidae Phaenospectra 6.5 X 

Chironomidae Polypedilum 6.8 X 2 4 2 5 3 3 3 6 

- Chironornidae Pollhastia 6.4 -00 Chironomidae Pseudorthocladius 1.51 I I I II 
Chironomidae Reomyia 7 
Chironomidae Rheotanytarsus 6.4 X 

Chironomidae Sticlochironomus 6.52 
Chironomidae Sub/el/a 7 
Chironomidae Tanytarsus 6.7 X I I I I 2 I 2 
Chironomidae Thienemannimyia gp. 5.9 6 8 6 7 6 5 I 5 
Chironomidae Tvetenia 3.6 II 2 6 2 2 2 
Chironomidae Zavrelimyia 5.3 I 2 
Dixidae Dixa 2.55 
Empididae Chelifera 8.1 I I 
Simuliidae Prosimu/ium 4.01 X 4 15 9 4 4 I 4 9 
Simuliidae Simulium 4.4 X 10 23 26 11 4 8 8 9 

I. Tolerance values (K.DOW 2008) 2. Clinger organisms denoted by "x." (K.DOW 2008) 



Table C3. (Continued) Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2009. 
TV 1 CL2 Al A2 DI D2 D3 Bl 82 83 

Tabanidae Tabanus!Whitneyomyia 9.2 
Tipulidae Antocha 4.25 X 2 
Tipulidae Dicranota 0 12 18 5 9 13 2 4 5 
Tipulidae Hexatoma 4.31 I 4 2 3 4 I 5 
Tipulidae Pseudolimnophi/a 7.22 2 5 9 6 2 
Tipulidae Tipu/a 7.3 
Tipulidae Unid Tipulid 7.33 2 3 
Ephemeroptera 
Baetidae A centre/la 3.6 15 35 30 15 15 25 15 13 
Caenidae Caenis 7.41 I 
Ephemerellidae Drunel/a 0.7 X 5 3 
Ephemerellidae Eurylophe/la 4.34 X 2 5 
Ephemerellidae Timpanoga 2 X 

\0 Ephemeridae Ephemera I. I 
Heptagen i idae Maccajfertium 3 4 
Heptageni idae Stenacron 4 
Heptageniidae Stenonema 4.1 X 6 2 3 3 6 4 
lsonychiidae lsonychia 3.45 7 5 14 16 7 13 15 
Letophlebiidae Habrophlebia 0.5 
Letophlebiidae Habrophlebiodes 2.3 8 
Letophlebiidae Paraleptoph/ebia 0.94 X 2 7 
Leptophlebiidae Unid Leptophlebid 3.3 4 
Hemiptera 
Veliidae Microvelia 9 
Megaloptera 
Corydalidae Nigronia 5.3 X 16 13 26 15 23 7 28 2 
Sialidae Sia/is 7.17 1 

I. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 



Table CJ. (Continued) Taxa collected in the semi-quantitative samples in Laurel Creek, Summer 2009. 

TV 1 CL2 AI A2 DI D2 D3 Bl B2 B3 
Odonata 
Aeshnidae Boyerio 6 2 
Cordulegastridae Cordulegaster 5.73 
Gomphidae Stylogomphus 6 8 8 4 5 3 3 13 
Plecoptera 
Capniidae Allocapnia 2.52 40 61 39 37 189 43 81 41 
Nemouridae Amphinemura 3.33 4 3 2 7 2 2 
Peltoperidae Unid. Peltoperlid 2 X 2 
Perlidae Acroneuria 1.4 X 

Perlidae Eccoptura xanthenes 3.74 X 3 
Perlidae Per/es/a 4.7 X 4 20 23 28 33 1 I 22 13 
Perlodidae /soperla 1.8 X 

N 
Trichoptera 0 

Glossosomatidae Agape/us 0 X 

Goeridae Goera 0.13 
Hydropsychidae Ceratopsyche 1.4 X 2 
Hydropsychidae Cheumatopsyche 6.22 X 14 24 50 9 8 5 
Hydropsychidae Hydropsyche 4 X 

Lepidostomatidae lepidostoma 0.9 
Limnephilidae Pycnopsyche 2.52 
Philopotamidae Chimarra 2.76 X 

Philopotamidae Do/ophilodes 0.81 X 2 2 2 4 
Philopotamidae Worma/dia 0.65 X X 2 2 
Rhyacophilidae Rhyacophi/a 0.8 X 

Uenoidae Neophy/ax 2.2 X 

Amphipoda Unid. Amphipod 7.97 I 
Annelida Unid. Oligocheata 8.2 2 4 2 

I. Tolerance values (KDOW 2008) 2. Clinger organisms denoted by "x." (KDOW 2008) 



Table C4. Taxa collected in the qualitative samples, but not in the semi-quantitative samples 
In Laurel Creek, Summer 2009. 

Al A2 DI D2 D3 Bl 82 83 
Colcoptera 
Dryopidae Helichus 21 
Psephenidae Psephenus herricki 
Diptera 
Chironomidae Brilla 
Chironomidae Microspectra 
Chironomidae Paratanytarsus 
Chironomidae Xy/otopus 
Tipulidae Tipula 2 7 6 
Decapoda 
Cambaridae Camabrus - Cambaridae Orconectes cristavarius N - Ephemeroptcra 
Baetiscidae Baetisca 
Caenidae Caenis 2 
Ephemerellidae Eurylophel/a 5 
Ephemeridae Ephemera 
Heptageniidae Stenacron 2 2 4 3 IO 
Leptophlebiidae Unid Leptophlebid 
Hemiptcra 
Gerridae Aquarius 
Gerridae Gerris 2 
Veliidae Microve/ia 9 



Table C4. (Continued) Taxa collected in the qualitative samples, but not in the semi-quantitative 
Laurel Creek, Summer 2009. 

Al AZ D1 D2 D3 Bl B2 B3 
Odonata 
Aeshnidae Boyeria 2 2 
Cordulegastridae Cordulegaster 
Plecoptera 
Perlidae Acroneuria 2 
Perlidae Eccoptura xanthenes 
Perlodidiae /soperla 3 2 
Taeniopteryx Taeniopteryx 
Trichoptcra 
G lossosomatidae Agapetus 
G lossosomatidae G/ossosoma 
Hydropsychidae Diplectrona - Lepidostomatidae lepidostoma I 8 N 

N 
Limnephilidae Pycnopsyche 7 6 16 8 
Philopotamidae Chimarra 3 
Uenoidae Neophy/ax 14 20 7 



Table CS. Values for core macroinvertebrate metrics, Summer 2008. 

Metric Al A2 DI D2 D3 Bl B2 B3 
TR 34 39 26 35 36 27 30 37 
EPT 14 16 10 13 10 9 13 18 
mHBI 5.54 4.41 3.96 4.54 3.39 4.08 3.24 3.66 
m¾EPT 23.66 30.20 21.02 21.98 39.23 33.15 28.70 39.27 
o/oEPHEM 3.22 8.43 7.39 9.34 11.96 9.55 8.52 14.57 
o/oCHIR+OLIG 0 12.36 1.70 0.11 5.74 13.48 9.87 24.29 

- %Clinger 66.66 64.04 73.30 42.31 61.24 56.74 68.16 50.61 
N w 

Table C6. Standardized values for MBI Scores 2008 (values from Table CS inputted into formulae 
in Table A2). 

Al A2 DI D2 D3 Bl B2 B3 
TR 53.96 61.9 41.27 55.55 57.14 42.86 47.62 50 
EPT 42.42 48.48 30.3 39.39 30.3 27.27 39.39 60 
mHBI 57.03 71.48 77.24 68.82 84.53 75.7 86.45 92.02 
m¾EPT 27.22 43.96 24.19 25.29 45.14 38.14 33.03 53.07 
o/oEPHEM 4.84 12.68 11.11 14.05 17.99 14.36 9.8 NA 
%CHIR+%OLIG 100.68 88.24 99.97 100.57 94.91 86.59 90.75 76.47 
%Clinger 88.29 84.82 97.08 56.04 81.11 75.15 90.28 68.39 
MBI score 53.49 58.79 54.45 51.39 58.73 51.44 56.76 66.66 



Table C7. Values for core macroinvertebrate metrics, Summer 2009. 

Metric Al A2 DI D2 D3 Bl B2 B3 

TR 53 45 51 42 41 41 50 57 

EPT 19 16 22 16 18 12 16 26 

mHBI 3.68 3.39 3.53 3.70 2.11 3.74 3.41 3.72 

m%EPT 44.28 41.89 43.34 54.68 72.68 58.72 54.51 41.71 

%EPHEM 15.92 15.93 17.41 19.70 11.67 22.09 13.91 11.05 

%CHIR+%OLIG 13.93 15.34 9.22 16.75 5.84 12.79 8.65 27.64 
%Clinger 40.30 45.13 56.66 37.44 29.97 28.49 37.97 32.66 -N 

.i,. 

Table C8. Standardized values for MBI Scores 2009 (values from Table C6 Inputted into formulae 
in Table A2). 

Al A2 DI D2 D3 Bl B2 B3 
TR 84.13 69.84 80.95 66.66 65.08 66.66 77.78 77.03 

EPT 57.57 48.48 66.66 48.48 54.54 36.36 48.48 86.66 
mHBI 80.81 84.5 82.74 80.56 100.9 80.05 84.27 91.15 

%EPT 50.95 48.2 49.89 62.92 83.64 67.57 62.73 56.36 
m%EPHEM 23.94 23.95 26.17 29.63 17.55 33.22 20.92 NA 

%CHIR+%OLIG 86.67 85.24 91.4 83.82 94.8 87.81 91.97 73.09 
%Clinger 53.38 59.78 75.04 49.59 39.69 37.73 50.29 44.14 
MB! score 62.49 60.00 67.55 60.24 65.17 58.49 62.35 71.41 



Table C9. Metric values and MBI scores for 
mountain headwater and wadeable sites in 
the Little Sandy River basin. 
(Pond et al. 2003). 

Metric Headwater Wadeable 

TR 41-53 52-69 
EPT 17-25 27-33 
mHBI 2.95-3.71 3.55-4.32 
M¾EPT 63.8-77.4 47.7- 75.0 
¾Ephem 14.7-31.5 NA1 

¾Chir + ¾Olig 2.3-7.2 5.3-17.6 
%Clinger 31.7-43.9 47.4-75.5 
MBI Scores 67.0-75.8 77.5-94.8 

1.% Ephem used only with headwater 
stream assessments. 
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Table CI0. Comparison of functional feeding group composition 
of sites above the restoration from Summer 2008 to Summer 2009. 

%FFG Al-08 Al-09 A2-08 A2-09 

Collector/Filterer 38.71 21.39 30.34 21.24 
Collector/Gatherer 2.15 15.92 1.12 22.13 
Predator 53.76 28.36 30.34 23.01 
Scraper 4.30 8.96 13.48 9.73 
Shredder 1.08 24.87 23.60 23.89 

Table Cl 1. Comparison of functional feeding group composition of sites within the 
restored area from Summer 2008 to Summer 2009. 

%FFG D1-08 D1-09 D2-08 D2-09 D3-08 D3-09 

Collector/Filterer 32.95 35.84 29.67 17.73 56.46 8.22 
Collector/Gatherer 0.57 15.36 7.14 17.24 2.39 7.69 
Predators 50.0 25.94 45.60 36.95 18.66 24.4 
Scraper 13.07 6.48 7.14 4.93 8.61 8.49 
Shredder 3.41 16.38 10.45 23.15 13.4 51.19 

Table C12. Comparison of functional feeding group composition of sites below the 
restoration from Summer 2008 to Summer 2009. 

%FFG B1-08 B1-09 B2-08 B2-09 B3-08 B3-09 

Collector/Filterer 24.72 14.53 39.91 13.91 45.75 14.07 
Collector/Gatherer 2.25 20.93 2.24 13.91 0.81 25.63 
Predators 25.84 23.84 39.01 29.32 32.39 24.12 
Scraper 20.79 9.30 8.52 9.77 5.67 8.04 
Shredder 26.40 31.40 9.87 33.09 15.38 28.14 
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Table Cl3. Aquatic macroinvertebrate taxa collected 
Laurel Creek in Summer 2008 and not collected in 
Summer 2009. 

Order Family Genus 

Diptera Ceratopogonidae Atrichopogon 

Diptera Chironomidae Rheocricotopus 

Diptera Culicidae Unid Culicidae 
Diptera Dixidae Dixel/a 

Odonata Calopterygidae Ca/opteryx 
Odonata Gomphidae Gomphus 
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Table Cl 4. Aquatic macroinvertebrate taxa collected 
in Laurel Creek in Summer 2009 and not collected in 
Summer 2008. 
Order Famil):' Genus 

Coleoptera Dytiscidae Hydro porous 

Coleoptera Hydrophilidae He/ochares 

Coleoptera Hydrophilidae Hydrobiomorpha 

Diptera Athericidae Atherix 

Diptera Ceratopogonidae Serromyia 

Diptera Chironomidae Brilla 

Diptera Chironomidae C/adotanytarsus 

Diptera Chironomidae Corynoneura 

Diptera Chironomidae Demicrytochironomus 

Diptera Chironomidae Dicrotendipes 

Diptera Chironomidae Diplocladius 

Diptera Chironomidae Krenosmittia 

Diptera Chironomidae Microspectra 

Diptera Chironomidae Natarsia 

Diptera Chironomidae Orthoc/adius 

Diptera Chironomidae Paracricolopus 

Diptera Chironomidae Parakiefferiella 

Diptera Chironomidae Paratanytarsus 

Diptera Chironomidae Paratendipes 

Diptera Chironomidae Paratrichocladius 

Diptera Chironomidae Phaenospectra 

Diptera Chironomidae Pouhastia 

Diptera Chironomidae Pseudorlhocladius 

Diptera Chironomidae Rheotanytarsus 

Diptera Chironomidae Sub/el/a 

Diptera Chironomidae Tvetenia 

Diptera Dixidae Dfra 

Diptera Empididae Chelifera 

Ephemeroptera Baetidae A centre/la 

Ephemeroptera Ephemerellidae Drunella 

Ephemeroptera Ephemerellidae Timpanoga 

Ephemeroptera Heptageniidae Maccajfertium 

Ephemeroptera Letophlebiidae Habrophlebia 

Ephemeroptera Letophlebiidae Habrophlebiodes 

Eehemeroetera Letoehlebiidae Paralepto['_h!ebia 
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Table Cl 4. (Continued) Aquatic macroinvertebrate 
taxa collected in Laurel Creek in Summer 2009 and 
not collected in Summer 2008. 
Order Family Genus 

Odonata Gomphidae Stylogomphus 

Plecoptera Peltoperidae Unid Pe/toper/id 

Plecoptera Perlidae Eccoptura xanthenes 

Plecoptera Perlodidae Jsoperla 

Plecoptera Taeniopteryx Taeniopteryx 

Trichoptera Glossosomatidae Agape/us 

Trichoptera Hydropsychidae Diplectrona 

Trichoptera Lepidostomatidae Lepidostoma 
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