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ABSTRACT 

Old Woman Creek National Estuarine Research Reserve and State Natural 

Area and Preserve, is a shallow, hypereutrophic Great Lakes coastal wetland on the 

western basin ofLake Erie, Ohio, U.S.A. Primary production was measured by 

several methods from 1987-1993 at Old Woman Creek. We assessed many commonly 

used techniques to determine primary production including die! oxygen changes, light 

and dark bottle incubations, chlorophyll a concentrations, and daily pH change. Using 

algal volume as an independent variable, analysis revealed that the best estimator of 

primary production was diurnal oxygen changes (r2=0.940(NPP): r2=0.66l(GPP)). 

Because many of the normally used methods failed to provide reasonable estimates of 

primary production in this shallow hypereutrophic system, wetland scientists should be 

cautious when selecting a method of estimating water column primary production. 

This wetland also receives much non-point pollution, largely from agricultural runoff. 

These nutrients, specifically phosphorus and nitrogen, tend to increase primary 
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production and phytoplankton and periphyton volume where the creek enters the 

wetland. The effect of these nutrients is not as profound on primary production and 

algal communities at the output near Lake Erie. The presence of macrophytes, 

dominated by Nelumbo lutea, tend to be more important in changing relative species 

abundances in the phytoplankton communities, shifting the community structure from 

a euglenophyte to a diatom dominated community. The algal communities tend not to 

show successional species replacements throughout the year, but remain in an early 

successional stage, due to sediment perturbation and non-point nutrient inputs. 
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CHAPTER I: 

Comparison of Methods of Measuring Water Column 

Production in a Great Lakes Coastal Wetland 

1.1. Introduction 

1. 

Although a number of studies have been done on primary production of the 

vascular flora wetlands, relatively few studies have been done on water column 

production. Wetland ecologists usually measure primary production using methods 

designed for use in terrestrial or deep water ecosystems. No studies have been 

conducted to determine if techniques commonly used to measure water column 

production in lakes and oceans are applicable to productive wetlands, although there 

are indications they may not (c.f. Hall and Moll 1975; Kemp and Boynton 1980). As 

ecotones, wetlands are recognized as having characteristics of aquatic and terrestrial 

systems; however, they also have unique biotic communities and hydrologies (Mitsch 

and Gosselink 1994). Aquatic flora in shallow water are often not under the same 

environmental constraints found in most deeper water systems. For example, many 

freshwater wetlands harbor extensive populations of epiphyton and periphyton, and 

nutrients are often plentiful. As a result, epiphytic and planktonic production in many 

freshwater wetlands may be orders of magnitude greater than in most lakes and the 

ocean. Consequently, it is possible that reliance on techniques designed for use in 
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lakes and oceans -- where production, respiration rates, algal volume and community 

structure are profoundly different -- may not provide reliable estimates to wetland 

scientists. 

Because the products of photosynthesis determine the structure and production 

of all higher trophic levels, it is essential for wetland scientists to obtain reliable 

estimates of primary production. This is particularly critical in wetland 

biogeochernistry studies -- where "source, sink, transformer questions" are being 

examined. In such studies, estimates of in situ primary production can be helpful in 

elucidating ecosystem functions (Meyer and Edwards 1990; Reeder 1994). This study 

compares a number of commonly accepted methods of measuring in situ water column 

production in a shallow hypereutrophic freshwater wetland to determine which 

estimates most accurately reflect the status of the algal community. 

1.2. Methods 

1.2.1. Site Description 

Old Woman Creek National Estuarine Research Reserve and State Natural 

Area and Preserve (Old Woman Creek) is a 56 ha wetland on the edge of western 

Lake Erie near Huron, Ohio, U.S.A. (Fig. 1 ). Depths in the wetland average about 0.5 

m or less, but this can change dramatically (up to 1 m) throughout the year not only 

because of storm pulses from the watershed, but also because of adjacent lake level 
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Figure 1: Map of Old Woman Creek demonstrating sampling sites. Note railroad 
separating estuary, creating two distinct embayments. Barrier beach is semipermanent, 
typically open to Lake Erie in winter and closed during summer. 
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fluctuations and the activity of a barrier beach (which may be opened or closed by 

hydrologic events). The wetland remains closed to the lake throughout most of the 

growing season. Normally, less than 30% of the wetland is covered by the dominant 

macrophyte, Ne/umbo lutea; therefore, this system is often dominated by open water 

primary producers, rather than macrophytes ( despite its shallow conditions). The 

planktonic community is dominated by nanoplanktonic flagellates, euglenophytes, and 

small centric diatoms (Klarer and Millie 1994). Detailed site descriptions of the study 

area are available in Klarer and Millie (1989, 1992) and Mitsch and Reeder (1991, 

1992). 

1.2.2. Field and Laboratory Methods 

Measurements of water column production were taken at various sites in the 

wetland during the 1987, 1988, 1992, and 1993 growing seasons. Water column 

production was estimated using six common techniques: 1) hourly die! oxygen changes 

2) dawn-dusk-dawn oxygen changes; 3) die! pH changes; 4) bottle incubations; 5) 

chlorophyll a concentrations; and 6) algal volumes. Not all techniques were used in 

all years. 

Because daily changes in products of metabolism are traditionally recognized 

as profound in hypereutrophic systems (Hall and Moll 1975), emphasis was given to 

diurnal oxygen change techniques to calculate production. When D. 0. changes were 

used, corrections for diffusion were measured by using a floating dome (Copeland and 
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Duffer 1962). These rates were not sufficient to create any significant error in 

metabolism calculation; therefore D.O. change numbers are presented uncorrected for 

diffusion. 

Production was calculated using rates of change every one to four hours 

(following the calculations of Fontaine and Ewe! 1981 ), as well as using only dawn­

dusk-dawn changes (following the calculations of Odum and Hoskin 1958). During 

1987 and 1988 oxygen was measured using Winkler titrations at dawn and dusk, and 

in-between with a YSI 54A dissolved oxygen meter ( calibrated against the Winkler 

D.O. measurements) at six sites (Fig. !.). During 1992 and 1993 dissolved oxygen 

concentrations were measured using a Hydrolab DataSonde 3. The Hydrolab oxygen 

probe was air calibrated less than an hour before being deployed, then rechecked when 

the instrument was retrieved to correct for flux--which was always less than 0.2 mg r1. 

Diel pH changes were measured at dawn and dusk at six sites in 1988 and 

1992, and at four sites in 1993. Fluctuations in pH provide an estimate of CO2 

metabolism in productive aquatic systems (Beyers and Odum 1959; Beyers 1964). 

During 1988, a Hach field pH meter was placed in the middle of the water column at 

each site at dawn and dusk. The instrument was calibrated at 4.00, 7.00, and 10.00 

less than an hour before measurements. During 1992 and 1993 a Fisher Accumet 

1003 field pH meter was used similarly. Additionally, during 1992 and 1993, hourly 

pH measurements were taken at two sites using the Hydrolab DataSonde 3. The 

probe was calibrated at 7.00 and the reference electrode checked less than one hour 
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before deployment. The pH probe accuracy was rechecked upon retrieval. Deviations 

in the standardization were never more than 0.2 pH units. 

During 1992 and 1993 light bottle-dark bottle incubations were done between 

10:00 a.m. and 4:00 p.m. (following the methodology of Wetzel and Likens 1991). 

Incubation times ranged from 2 to 5 hours. We chose to measure oxygen rather than 

14
C uptake because the sensitivity provided by 14C was unnecessary in such a highly 

productive system. Similarly, problems with 14C uptake and subsequent respiration -­

inaccuracies inherent in uptake measurements, are amplified in productive systems 

(Hall and Moll 1975). Because water turbulence usually stimulates production 

(Westlake 1967; Mann et al. 1972; Odum 1988; Campbell et al. 1991) bottles were 

attached to a rope which allowed some movement with wind and ambient water 

movement (Fig. 2). 

Chlorophyll a concentrations were determined by filtering I 00-300 ml of water 

through a 0.45 micron membrane filter and analyzing the pigments extracted in 90% 

alkalized acetone spectrophotometrically using a 4 cm path length cell. Filters were 

kept at < 0°C in the dark and analyzed within 24 hours of collecting the sample. 

Chlorophyll concentrations were determined using Lorenzen's (1967) equation. 
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Figure 2: Light and dark bottle incubation apparatus. allowing the bottles to move 
freely with wind and water currents, which may help to stimulate production estimates, 
and reduce some of the bottle effects associated with this method of estimating open 
water primary production. 

Water 

Net Production Respiration Net Production 

Sediment 
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Algae were concentrated from 500 ml water samples and settled using Lugol's 

iodine. Algae were identified and enumerated using a Nikon light microscope 

equipped with Hoffinan Modulation Contrast, at 400X and 630X. Measurements 

were made on at least 12 representative samples of each species, when possible, and 

volumes were calculated based on geometric shape equivalents (Wetzel and Likens 

1991). 

Statistics were run using StatView 4.02 software for the Apple Macintosh. 

For regressions, we used algal volume as an independent variable, because we felt it 

would be the best static indicator of water column production. All production 

measurements and concentrations are presented per unit volume in order to make 

comparisons less susceptible to depth factors. Each variable is compared to the algal 

volume determined at the same site on the same day. 

1.3. Results 

During 1987 and 1988 the average depth in the wetland was greater than in 

1992 and 1993, despite a drought, because the barrier beach remained closed. During 

1992 there was a high amount of rainfall, and the barrier beach was open to the 

wetland most of the growing season. Submerged aquatic vascular vegetation (SA V) 

was much greater in extent and diversity during the lower water levels in 1992-93 

versus 1987-88. 



Table 1: Mean(+/- sd) mid-summer primary production measurements at Old Woman Creek wetland, Ohio. 
GPP = Gross Primary Production, NPP = Net Primary Production 

Method Diel Diel DDD DDD Daily LBDB LBDB Chi. a Algal Vol. 
Year NPP GPP NPP GPP AgH NPP GPP 
1987-88 7.9 (3.3) 24.4 (10.7) 7.2 (1.6) 26.0 (8.0) 1.3 (0.3) 156 (76) 
1992" 6.9 (6.4) 17.0 (12.8) 3.2 (3.2) 9.2 (9.9) 0.9 (0.5) 7.6 (5.5) 15.1 (9.1 76 (42) 8.9 (5.3) 
1993" 5.1 (3.2) 15.1 (9.3) I.I (1.5) 2.9 (3.5) 0.8 (0.4) 9.3 (8.2) I 1.0 (8.2) 116 (73) 7.4 (3.8) 

• Diurnals were only done at site 4, all other values are means for all sites. 
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Productivity in this wetland was very high during both high and low water 

years. Oxygen levels were more prone to go towards anoxia ( <3 mg r1
) during the 

high water (low inflow) years when compared to the lower water level (higher inflow, 

more Lake Erie interaction) years. Oxygen levels in the water often were below 2 mg 

r1 
for a few hours before dawn. On extremely productive days (>20 mg 0 2 m

3 d-1
) 

oxygen levels could range from 33% saturation near sun-up to 137% before dusk. 

July and August appear to be the most productive months (having the highest algal 

volumes). Table 1 indicates that water column production has decreased with water 

level increases and invasion of SA V's. 

Light and dark bottle incubations provided lower gross primary production 

estimates than diurnal measurements (mean= 11.1 mg 0 2 m
3 d-1 

). Dark bottles 

occasionally became nearly anoxic, and incubation times were shortened accordingly. 

The light and dark bottle incubations produced the highest estimates of production in 

June and July (Fig. 3); however, LBDB production estimates were typically not as 

high as those recorded by diurnal methods. 

The daily change in pH produced values ranging from 6.7 -7.8. The average 

pH change was 0.98 units per day. This is a very large change considering this is a 

well buffered ecosystem. The largest pH changes (ca. 2) were recorded during the 

drought year (1988). The daily changes in pH tended to be the highest during June and 

July. 
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Figure 3: Mean monthly water column primary production estimates(+/-) for 1992-
93 growing seasons at Old Woman Creek, Ohio. GPP = Gross Primary Production, 
NPP = Net Primary Production. 
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Table 2: Results of regression analysis indicating the relationship between the 
production estimate method and algal volume, showing that the die! estimates of 
production are the best estimates of primary production in this wetland. 

Production Estimate Regression Equation Rl 

Die!NPP Diel NPP = -0.366 + 0.559 * Algal Volume r= o.94o 

Diel GPP Diel GPP = 0.286 + 1.694 * Algal Volume r2 = 0.661 

Dawn-dusk NPP DDD NPP = 0.718 + 0.111 * Algal Volume r2 = 0.049 

Dawn-dusk GPP DDD GPP= 1.148 + 0.391 * Algal Volume r2 = 0.068 

Daily A pH Daily A pH= 0.449 + 0.052 * Algal Volume r=o.394 

LBDBNPP LBDB NPP = 7.20 + 0.167 * Algal Volume r2 = 0.013 

LBDBGPP LBDB GPP = 8.935 + 0.443 * Algal Volume r2 = 0.067 

Chlorophyll a Chi. a= 69.443 + 3.754 * Algal Volume r2 = 0.073 
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Chlorophyll a values are extraordinarily high when compared to other types of 

aquatic systems. Table 1 indicates that chlorophyll a values were highest during the 

drought year (1988). It was not unusual to have levels greater than 100 mg m"3 during 

the most productive periods. Algal volumes tended to be the highest in July and 

August and lowest during June in both the 1992 and 1993 growing seasons. The 

maximum algal volume was 15.9xl06 µm3 ml"1 in July of 1992 (mean= 7.09xl06 µm3 

m1·
1
). Algal populations were dominated by diatoms, euglenophytes, and small 

chlorophytes ( even though the latter did not contribute as much to volume) during 

growing season. The small chlorophytes achieved their peak biomass in July and 

August at all sites. Diatoms and euglenophytes dominated the volume at nearly all 

sites throughout the growing season. Algal volumes were not recorded for the 1987 

and 1988 growing seasons. 

Regression analysis implies that the most commonly used indicator of 

production, chlorophyll a, is one of the least sensitive indicators of algal volume 

(Table 2). Similarly, bottle incubations were also very poor indicators of algal volume; 

however when respiration estimates were calculated in, the probability of predicting 

algal volume decreased. Second to die! oxygen production in predicting algal volume 

were dawn to dusk changes in pH. Dawn to dusk changes in dissolved oxygen did not 

provide good estimates of algal volume. Although only eight dates are included in the 

regressions for diurnal production, the other methods were not significant ( a = 0. 05) 

when analyzed for the same eight sampling dates. 
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1.4. Discussion 

1.4.1. Diel Changes 

Diurnal oxygen was often the highest estimator of production and correlated 

well with algal volume. It is evident that oxygen concentrations must be measured 

every 2-4 hours, since dawn to dusk differences were not adequate to predict daily 

gross primary production. This is mostly due to the high production directly after 

daybreak, and respiration exceeding production later in the day. Cronk and Mitsch 

(1994), in recently constructed wetlands on the Des Plaines River, found that oxygen 

minimum and maximum provided the same estimate of production as full diurnals. At 

Old Woman Creek, dusk measurements were sometimes not much different than dawn 

measurements, even though significant changes occurred over the course of the 

daylight hours. Often the dawn and dusk measurements did not represent daily 

extremes. Full diets also allow the effects of differential light patterns ( e.g. cloud 

cover or turbidity changes) to be taken into account. 

Diurnal estimates of gross primary production in the water column produced 

values ranging from 4.3 - 48.3 mg 02 r 1 (mean = 20.3 mg 0 2 r
1 
). These values 

indicate this to be a very productive system. In another die! study of wetland 

production, Cronk and Mitsch (1994) found ranges of<l.0 mg O2r1 to 12.8 mg 021"1 

in newly constructed freshwater wetlands in Illinois. Adjacent Lake Erie has 

productivity values from 100 - 15,867 mg 0 2m·2f1 (Vollenweider et al. 1974) whereas 
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Old Woman Creek has much higher values of 2,150 - 24,150 mg 0 2m-2y"1 (mean= 

10,150 mg 0 2m-2y-1 
). Although our values seem high when compared to other 

published rates of algal production in wetlands (for example Vymazal's (1995) 

comparisons of measured productions report the highest production in a hatchery 

pond: 150 - 10,000 mg 0 2m-2d-1 
), we caution that the diurnal estimates may be much 

higher than measurements obtained with incubation techniques, or by using chlorophyll 

as a surrogate for production. 

Because the die! oxygen method was measuring epiphytic, planktonic, and 

vascular plant metabolism, it may be overestimating water column production. 

However, when years with low aquatic plant growth are compared to the relatively 

high year of 1993, there is little significant difference. It may be that epiphytes are not 

as important as phytoplankton, in 0 2 / CO2 changes in this wetland. 

When production levels were highest (1987-88) dawn-dusk-dawn calculations 

provided an estimate of daily production similar to hourly measurements. As vascular 

plant invasion increased, and water column production decreased, dawn to dusk 

changes failed to reflect diurnal changes. This could be because we have a greater 

variability with sunlight and production throughout the day or because turbidity 

created greater variations in daily production (Reeder 1990; Heath 1992). 

We found little relationship between insolation and algal production. This is 

not unusual, Fennessey et al. (I 994) did not find a correlation between insolation and 

algal production ( as measured by oxygen flux) in the Des Plaines River constructed 
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wetlands. Berger (1989), in a blue-green algae dominated shallow lake in the 

Netherlands, also found no relationship between production and either insolation or 

temperature. This suggests that standard models of algal production ( e.g. Bannister 

1974; Vollenweider 1974) may not be applicable to wetland studies. 

Measurable changes in pH in a well buffered system, such as Old Woman 

Creek, show that it is a good general estimate of production. Changes in pH show the 

same trend of decreasing with production in different years. Based on stable isotope 

dat~ in a Lake Superior estuary, Jan Keough (in review) has shown that submerged 

aquatic vegetation recycles respired carbon. This could be increased by utilizing 

HCO3" as a carbon source. Similar evidence has been seen for macrophyte uptake of 

bicarbonate in Old Woman Creek (David Francko, pers. comm.). 

1.4.2. Bottle Incubations 

Kemp and Boynton (1980) noted that isolating some wetland systems in 

containers would give inaccurate measures of primary production. We found that 

bottle incubation production rates were similar to measurements obtained using diurnal 

oxygen, but respiration rates were often lower. It would be convenient to assume that 

chlorophyll a and light and dark bottle incubations were measuring production of 

planktonic algae, and that the extra production measured with whole system oxygen 

measurements represents epiphytic, macrophytic, and benthic metabolism. However, 

in Old Woman Creek, benthic algae can be resuspended into the water column during 
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storms and due to wind (Krieger and Klarer 1991). Ifit is assumed that the higher 

measurements obtained using die! oxygen techniques represented the contribution of 

both bottled and non-bottled components to oxygen change, we could also expect that 

bottle incubations of algae would correlate with open water algal volumes and/or 

chlorophyll. Since they do not , we suggest that the dynamic water action created in 

shallow water by winds (Krieger and Klarer 1991; Heath 1992; Klarer and Millie 

1992) and biota (King and Hunt 1967; Heath 1992) must remain intact to allow the 

algae to get natural light and nutrient concentrations. Bottles eliminate both of these 

production enhancing conditions. 

Because the rates of photosynthesis showed considerable daily variation, we 

would surmise that if bottle incubations are to be used in wetland studies, multiple 

incubations should be employed over the course of the day -- so that production can 

be evaluated over the entire daylight period. In this wetland, light bottles may reach 

over 100% 02 saturation after incubating a couple of hours; consequently, performing 

multiple incubations over the course of a Summer day could be labor intensive. 

Another problem with bottle incubations may be daily variability in production; 

changes in turbidity and insolation cannot be accounted for in the short time the bottles 

can be left out. 
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1.4.3. Chlorophyll a Measurements 

Chlorophyll a measurements, one of the most common estimates of biomass 

and correlated to primary production, did not seem to coincide with estimates of 

production in this wetland. Therefore, the assumption is often that since chlorophyll a 

is the ultimate acceptor of energy from electrons excited by sunlight, it should 

correlate with production and carbon uptake. However, when chlorophyll a is not 

used to normalize the data, it has not correlated with other measures of production in 

wetland studies (Hall and Moll 1975; Bott et al. 1978; Berger 1989; Fennessy et al. 

1994), and we would caution against its use as an estimate of primary production in 

wetland studies. 

The reasons for this lack of correlation are numerous. For example, algae 

represent a taxonomically and biochemically diverse group, which have a long 

evolutionary history. Little is known about the metabolism of many common species. 

In this study, we recorded over 70 algal species, which may not be unusual in a 

wetland. Due to the energy capturing variability with the various accessory pigments, 

it seems reasonable to assume that chlorophyll a may not be the dominant pigment in 

highly productive ecosystems. 

Chlorophyll a is probably also not a good estimate of biomass in wetlands. For 

example, many shallow water bodies have high turbidity due to algae and other 

suspended material, and algae can also be shaded by macrophytes or other algae. It 

could be that light limited algae respond to low light conditions by increasing 
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chlorophyll production, only to reduce it when light levels are high again. Cells 

adapted to high light levels have less chlorophyll per cell, than do those grown at low 

light conditions (Wassink 1959). In Chiarella pyrenoidosa a doubling of light 

intensity reduced the amount of chlorophyll per cell an order of magnitude, with a 

negligible increase in production (Steemann Nielsen and Jorgensen (1968), as cited in 

Wetzel (1983)). Photosynthetic efficiency also increases in dim light conditions. This 

could be due to photoinhibition during high light conditions, or the inability to capture 

all the available energy. The dominant algal taxa in this study (by volume) used 

chlorophyll a as the major pigment. However, given the phenomenal concentrations 

of algae (compared to lakes and the ocean), even if only 25% of the pigment 

concentration was other pigments, it could result in a significant underestimate of 

production. 

1.4.4. Unique Ecology of Old Woman Creek 

The factors specifically limiting the phytoplankton production in Old Woman 

Creek is enigmatic. Nutrients, specifically nitrogen and phosphorus (Shindler 1980), 

are often limiting to production in aquatic systems. Heath (1992) showed that 

phosphorus is most likely not the limiting nutrient at OWC. All other nutrients appear 

to be plentiful as well. In fact, Klarer and Millie ( 1992) found storm events resulted in 

a rapid growth of the phytoplankton population. The storms may enhance production 

by increasing nutrients and flow (Klarer and Millie 1992), reducing zooplankton 
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(Krieger and Klarer 1991) and the lack of flushing with increased flow due to the 

unique hydrology (Klarer and Millie 1994). Also, agricultural runoff may lead to 

increased levels of pesticides in Old Woman Creek, which may hamper primary 

production. The main factor limiting to phytoplankton production at Old Woman 

Creek appears to be sunlight, due to the high turbidity levels measured (typically 60-80 

NTU (Heath 1992)). Therefore, the factors limiting phytoplankton production in Old 

Woman Creek are complicated and may vary throughout the year. 

The effect of zooplankton grazing must be considered as a method to regulate 

phytoplankton production. Zooplankton grazing appears to be less important early in 

the year, when zooplankton populations are kept in check by agricultural storm runoff 

(Krieger and Klarer 1991 ). In turbid waters, such as Old Woman Creek, zooplankton 

may have more difficulty foraging on phytoplankton due to decreased successful 

capture per unit effort, resulting in a decrease in zooplankton and a corresponding 

increase in phytoplankton biomass. If the zoo plankton are limited in their ability to 

harvest phytoplankton, a corresponding reduction in fish standing crop should result 

(Carpenter et al. 1987). Havens (1993) measured both top-down, (fish removal) and 

bottom-up effects (sediment perturbation) on Old Woman Creek phytoplankton 

biomass. He demonstrated that fish can increase the algal biomass, measured by 

chlorophyll a, by reducing the number of planktivores. Havens ascribes the increase in 

chlorophyll a to cascading trophic interactions, and benthic nutrient recycling; 

however, the possibility that the phytoplankton concentrate the amount of chlorophyll 
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per cell in highly turbid, light limiting conditions, was not considered. The treatments 

with a net covering the sediments resulted in much less of an increase in chlorophyll a. 

This fact may be considered largely influenced by the absence of benthic nutrient 

recycling, as indicated by Havens (1993), however, concentration of chlorophyll in 

phytoplankton may be significant. 

1.5. Conclusion 

Measuring primary production in wetlands is of utmost importance in assessing 

the value of wetlands as nutrient sources, sinks, or transformers; as well as 

understanding gross ecosystem function. Accurately measuring primary production in 

wetlands presents problems not encountered in lakes or terrestrial ecosystems. In 

summary, mean values suggest that all methods of measuring production provide 

similar estimates. Although there is a great deal of variability in all the measurements, 

the data suggests open water dissolved oxygen changes provide the best estimate of 

open water primary production. Further, we would caution against the use of bottle 

incubations or chlorophyll a to estimate open water primary production in wetlands. 



CHAPTER II 

Effect of Non-Point Pollution on Planktonic Community 

Structure in Old Woman Creek 

2.1. Introduction 

22. 

Coastal wetlands along the Great Lakes have been subjected to a number of 

perturbations -- including diking, drainage, introduction of exotic species, and 

increased pollution loading -- especially non-point runoff. Along western Lake Erie, 

non-point pollution is a concern both to the lake and adjacent coastal wetlands. There 

has been much focus on the eutrophication of Lake Erie, and many algal studies have 

been performed on the lake (Tiffany 1934, Chandler 1940, 1942, 1944, and Munawar 

and Munawar 1976); however, there have been relatively few on coastal wetland 

phytoplankton. There is a paucity of accurate information on the effects of non-point 

pollution on functional biodiversity and ecology of these estuarine systems. 

Research has been conducted on spatial variability in nutrient concentrations in 

Old Woman Creek National Estuarine Research Reserve and State Natural Area and 

Preserve (Old Woman Creek). The sites nearer the inflow have nutrient 

concentrations (Nitrogen and Phosphorus) greater than those found at the outflow into 

Lake Erie (Heath 1987; Richards and Baker 1985; Mitsch et al. 1989; Reeder 1990). 

Klarer (1988) found nutrient retention to be particularly apparent during storm events, 
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which are also known to export plankton (Kreiger and Klarer 1991). None of these 

studies examined the effect of the increased nutrients on biodiversity within the 

estuary. 

There are many factors that may effect phytoplankton and periphyton 

community structure in wetlands. Klarer and Millie ( 1994) found the effect of storms 

on phytoplankton communities at Old Woman Creek. They showed that storm events 

tend to export plankton to Lake Erie, and that the upper estuary (nearer the input) 

recovers more slowly than the lower estuary (near Lake Erie) due to more scouring 

and fewer refugia in the upper estuary. 

Havens (1991) showed that fish may be important in resuspending nutrients 

from the sediments, maintaining the algal communitites in an immature state, with 

relatively small algal species. Havens (1991) also showed that if sediment nutrients 

were denied to the algal communities larger algal species became dominant. Other 

factors, such as non-point nutrient loading may also be important in determining algal 

community structure. 

Evidence suggests that high nutrient loads affect species composition. It has 

been shown in lakes that increasing the trophic status of the lakes changes the algal 

community structure (Wetzel 1983). Nitrogen to phosphorus ratios have been shown 

to be important regulators of phytoplankton communities (Smith 1983). High N:P 

ratios have been shown to favor green algae, whereas low N:P ratios tend to favor 

blue-green algae for their nitrogen fixing abilities (Schindler 1977, Smith 1983, 
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Reynolds 1978b in Reynolds 1984). Nitrogen is also found in high concentrations at 

Old Woman Creek resulting in high N:P ratios exemplified by the dominance of green 

algae and the scarcity of blue-green species (Klarer 1985). However, if the nonpoint 

runoffbrings in copious amounts of herbicides and pesticides, we may see declines in 

community volumes, especially at sites nearer the "source" of the nonpoint pollution. 

The goal of this research is to quantify the effect of non-point pollution on 

diversity of the Old Woman Creek Estuary, and to determine the effects on community 

structure in phytoplankton and periphyton. 

2.2. Methods 

2.2.1. Site Description 

Old Woman Creek National Estuarine Research Reserve and State Natural 

Area and Preserve (Old Woman Creek) is a 56 ha wetland on the edge of western 

Lake Erie near Huron, Ohio, U.S.A. (Fig. 4.). Depths in the wetland average about 

0.5 m or less, but this can change dramatically (up to 1 m) throughout the year not 

only because of storm pulses from the watershed, but also because of adjacent lake 

level fluctuations and a barrier beach which may be opened or closed by hydrologic 

events. Normally, less than 30% of the wetland is covered by the dominant 

macrophyte, Nelumbo lutea; therefore, this system is often dominated by open water 

primary producers, rather than macrophytes (despite its shallow conditions). Detailed 
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Figure 4: Map of Old Woman Creek, showing sampling sites I and 3 in the lower 
estuary and sites 2 and 4 in the upper estuary. Sites 2 and 3 are in macrophyte beds, 
whereas sites 1 and 3 are in open water. 
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site descriptions of the study area are available in Klarer and Millie (1989, 1992) and 

Mitsch and Reeder (1991, 1992). 

To study the effect of non-point pollution on the community structure of the 

phytoplankton, we selected sites in the front and rear of the wetland. The rear sites 

are separated from the front of the wetland by a railroad bed, effectively dividing the 

wetland into two distinct basins. The back sites receive nonpoint pollution from the 

creek. The railroad bridge acts as a restriction to hold water and suspended sediments 

in the upper estuary. The front sites are near the wetland barrier beach in the lower 

estuary at the output into Lake Erie. Careful attention was paid to select sites of the 

same depth, to eliminate depth effects. At each site, samples were taken in and out of 

the macrophyte beds, to determine ifthere is a difference in community structure. 

2.2.2. Field and Laboratory Methods 

Sampling was performed from 12 May 1993 to 11 August 1993 at each of the 

four sites. To sample the phytoplankton at each site, 500 ml of Old Woman Creek 

water, collected with a 5 liter Van Dom sampler, was fixed with Lugol's iodine and 

allowed to settle in 500 ml Nalgene bottles. The algae-free water from the bottles was 

evacuated by siphoning from the top, being cautious not to disturb the settled algae. 

The volume of this algal slurry ( about 60 ml) was homogenized and 2 subsamples of 

known volume were mounted on slides. Algae were identified and enumerated using a 

Nikon light microscope with Hoffinan Modulation Contrast, generally at 63 OX. 
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Species determinations were made using Prescott (1982), Tiffany and Britton (1952), 

and Tiffany (1934). To estimate algal volume, measurements were made on at least 

12 representative taxa, when possible, and compared to equivalent geometric shapes 

to calculate the average species volume (Wetzel and Likens 1991). 

Periphyton samples were collected on artificial substrate at the front and back 

sites. Floating periphyton samplers suspended microscope slides in the water column 

for at least 3 weeks before collection of the slides for examination. One slide was 

randomly removed from a sampler at each sampling date and immediately placed in 

10% ethyl alcohol. The periphyton were removed with a razor blade and a slurry of a 

known volume was prepared for microscopic analysis as indicated above (APHA 

1985). 

Nutrient measurements included total phosphorus (TP) and soluble reactive 

phosphorus (SRP), nitrate (N03), nitrite(N02), and ammonia (NH3). SRP was 

determined as molybdate reactive phosphorus (Murphy and Riley 1962). TP was 

determined as orthophosphate released after digestion with ammonium persulfate 

(APHA 1985). Ammonia was analyzed using the phenate method (Weatherbum 

1967). Nitrate+ nitrite nitrogen species were determined by passing the samples 

through a cadmium reduction column. Nitrate concentrations were determined by 

subtracting the nitrite concentrations from the combined nitrogen concentrations after 

all nitrogen species were reduced to nitrite and measured spectrophotometrically. 
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Total inorganic nitrogen (TIN) was determined by combining nitrate, nitrite, and 

ammonia concentrations. 

To assess any community differences in diversity, several diversity indices were 

calculated, including number of species per site (species richness), Margalef, Inverse 

Simpson's, and Shannon diversities. 

2.3. Results 

Nutrients in the wetland were typically higher in the back sites than the front 

sites due to non-point loading. Total phosphorus was highly variable throughout the 

growing season ranging from 35-178 µgr1, however all sites were high in August (Fig. 

5). The back sites (111.9 ± 35.4 µgr') were significantly higher in TP concentrations 

than the front sites (91.5 ± 39.0 µgr1
). Temporally, SRP ranged from 9-64 µgr' 

throughout the growing season, with the highest concentration in June (Fig. 6). SRP 

was higher at the back sites (mean= 27.6 ± 15.9 µgr') than the front sites (mean= 

25.5 ± 11.3 µgr1
); however there were no significant differences in SRP in versus out 

of the macrophyte beds. Nitrite showed that the back sites (mean= 43.1 ± 45.5 µgr1
) 

were significantly higher than the front sites (mean= 18.5 ± 18.4 µgr'), and were the 

highest at all sites during June (Fig. 7). The mean of the back site nitrate 

measurements (103.4 ± 179.0 µgr') are greater than twice that of the front sites (mean 

= 37.8 ± 33.0 µg1"1
), however, due to a large variability, there is no significant 
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Figure 5: Total Phosphorus (TP) at Old Woman Creek, 1993. 
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Figure 6: Ortho-phosphate (SRP) at Old Woman Creek, 1993. 
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Figure 7: Nitrite (N02) at Old Woman Creek, 1993. 
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difference in the means (Fig. 8). Nitrate concentrations were relatively steady 

throughout the growing season (mean= 70.6 µgl" 1
), except for a huge increase of 

nitrate at the back sites during early June that was not present at the front sites. Total 

inorganic nitrogen exhibits a similar pattern to that of the nitrates (Fig. 9), that is, the 

back sites (mean= 276.0 ± 248.1 µg1"1
) are much higher than the front sites (mean= 

163.4 ± 69.0 µgl"1
), however there is no significant difference in the means, and it 

showed the same temporal trend as nitrate. Ammonia exhibited no statistically 

significant spatial variability; however it was the greatest at all sites in late June and 

early July, and lower in May and August (Fig. 10). 

The phytoplankton volume was the greatest during August, when production 

was generally lower than in June and July (see figures 11-14). The algal volumes of 

the back sites (9.013 x 106 µm31"1
) were significantly higher than the front sites (5.916 

x 106 µm31"1), however there were no significant differences in versus out of the 

macrophyte beds. Table 3 shows the occurrence of phytoplankton taxa during the 

sampling period. Many species appear to be present at nearly all sites throughout the 

sampling period. Common chlorophytes included Ankistrodesmus sp., Lagerheimia 

sp., and Scenedesmus sp. Other common species included Cryptomonas erosa; 

diatoms, such as Cyclotel/a menegheniana, Diploneis sp., Melosira (=Aulacoseira) 

sp., Navicula sp, and Nitzschia sp. Some species were typically located at the front 

sites, such as Treubaria setigera, however, patterns were not well-



Figure 8: Nitrate (N03) at Old Woman Creek, 1993. 
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Figure 9: Total Inorganic Nitrogen (TIN) at Old Woman Creek, 1993 
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Figure 10: Ammonia (NH3) at Old Woman Creek, 1993. 
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Figure 11: Phytoplankton volumes at Old Woman Creek, 1993 -- Site I. 
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Figure 12: Phytoplankton volumes at Old Woman Creek, 1993 -- Site 2. 
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Figure 13: Algal Volumes at Old Woman Creek, 1993 -- Site 3. 
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Figure 14: Algal Volumes at Old Woman Creek, 1993 -- Site 4. 
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Table 3: Occurrence of algal species in whole water samples between 12 May and 8 August 1993 at Old Woman Creek, 

indicating location of sampling site in the 

estuary. 

11-May 16-May 8-Jun ZJ-Jun 7..J'ul U-Jul 8-AUK 
E•tuar1 Poslllon Front Back Fronc Back Front Back Front B ■ck Front Batk Front Back Front Back 
Macrophyte Bed Out In In Out Out In In Out Out In In Oot Ont In In Out Ont In lo Oot Oot lo lo Oot Oot In lo Out 
Site I 3 l • I 3 l • I 3 ' • I 3 ' • I 3 ' • I 3 ' • I 3 ' • 
Cbloromonadophyta 
Cryptomana11 ero:,a X X X X X X X X X X X X X X X X 

Chlorophyta 
- Chlorococcaln 

Aellna1trum hant;:11chll X X X X X X X X X X X X X X 
Ankl11trod,smu11 con11ulutu1 X X X X X X X X X X X X X X X X X X X X X X X X X 
AnkUtrodumusfalrahu X X X X X X X X X X X X X X X X X X X X X X X X X X X 

Characium omblguum X X X X 
Chlorella vu/garb X X X X X X X 
Crucigenia /enutrata X X X X X 
Cnulgenla quadrata X X X X X X 
Crudgenia urrapedia X X X X X X X X X X 
Francela droncherl X X X X 
Klrchnerldla 11u6.roll1a,-/a X X X X X X X X X X X X 
lag,rheimlo qutJdrl11ta X X X X X X X X X X X X X X X X X X X X 
Lag,rhelmia wrat111lavfen1/11 X X X X X X X X X X X X 
Mlcracllnlum pu#/lum X X X X X X X X X 
Pediaslrum duplu X X X X X X X X X X 
Ped/a:,trum ldra11 X X X 
Scencdumus bijuga X X X X X X X X X X X 
Seencdumu11 dentlculatu11 X X 
Sccnedumu.J dlmarphus X X X X X X X 
Scenede.rmus opolien.rill X X X X X 
Sctn1dumu$ quadrlcauda X X X X X X X X X X X X X X X X X X X X X X X X X X 
Schrattdttrla nllgttra X X X X X X X X X X X X X X X X X X X X X X X X X X 
T,1ra,dron quadrawm X 
Tttlro,dron r,gular, X X X X X X X X X X X X X X 
T11ra$1rum gla6rum X X X X X X X X X X X X X X 
Tt1ra.1trum h1ttracan1hum X X X 

Trttu6arla Hllg,rum X X X X X X 
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Table 3: Occurrence of algal species in whole water samples between 12 May and 8 August 1993 at Old Woman Creek, 

indicating location of sampling site in the estuary. 

12-Mny 26-May 8-Jun 23-Jun 7-Jul 21-Jul 8-Aug 
Estuary PoslUon Front Buk Front Back Front Back Front Back Front Back Front Back Front Ba,k 
Mncropbyte Bed Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out 
SIie J 2 4 I J 2 4 I J 2 4 I J 2 4 J 2 4 1 J 2 4 I J 2 4 

-Tetra1porale1 

Gloeocystis ampla X X X X X X X X X 
- Volvocnles 

Chlamydomonas globosa X X X X X X X X X X X X X X X 

- Zygnematnles 

Closlerium acuosum X X X X X X X X X X X X X X X X X X X 

Cosmarium biretum X X X X X X X X X X X X X X X X X X X 

Chrysophyta 
-- Chrysophyceae 

Dinobryon divergens X X X X X X X X 
-- Bm::lllariophyceae 

Cyclotella menegheniona X X X X X X X X X X X X X X X X X X X X X X X X 
Diploneis puella X X X X X X X X X X X X X X X X X X X X X X X X X X X 
Gomphonema sp. X X X X X X X X X X X X 
Melosira distons X X X X X X X X X X X X X X X X X X X X X X X X X X X 
Melosira granulata X X X X X X X X 
Novicula mutica X X X X X X X X X X X X X X X X X X X X X X X X X X X 
Nltzschia ocicularis X X X X X X X X X X X X X X X X X X X X X X X X X X X X 
Rhoicosphenia sp. X X X 

Cyanophyta 

Aphanocapsa rivularis X X X X X X 
Merlsmopedia tenuissima X X X X X X X X X X X X X X X X X X X X X X X X 
Phormidium tenue X X X X X X X X X 
Splrulina nordstedtii X X X X X X X 
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Table 3: Occurrence of algal species in whole water samples between 12 May and 8 August 1993 at Old Woman Creek, 

indicating location of sampling site in the estuary. 

12-May 26-May 8-Jun 23-Jun 7'1ul 21-Jul 8-Aug 

Estuary Posilion Front Back Front Back Front Back Front Back Front Back Front Back Front Back 
Macrophyte Bed Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out Out In In Out 
Site I 3 2 4 I 3 2 4 I 3 2 4 I 3 2 4 I 3 2 4 I 3 2 4 I 3 2 4 

Euglenopbyta 
Euglena acus X X X X X X X X X X X X X X X X X 
Eug/ena convo/uta X X X X X X X X X X X X X X X X X X X X X X X X 
Eug/ena gracl1is X X X X X X X X X X X X X X X X 
Eug/ena minuta X X X X X X X 
Phacus caudatu.r X X X X X X X X X X X X X X X X X X X X X X X X 
Phacus longicauda X X X X X X X X X X 
Trache/omomu annata X X X X X X 
Trachelomonas playfairii X X X 
Trache/omonas vo/vocina X X X X X X X X X X 

Pyrrhophyta 
Glenodinium lvisculus X X X X 
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defined. To compare community diversity, several biotic indices were calculated. All 

of the diversity indices showed that phytoplankton community diversity was highest in 

the back sites, and the sites in the macrophyte beds (Table 4); however, there was no 

significant difference in the means of the diversity indices by site. The front sites were 

dominated by diatoms nearly exclusively; however, euglenophytes and small green 

algae are also important contributors to the community volume. The back sites are 

dominated mutually by diatoms and euglenophytes, with other algal groups making 

less of a contribution to total community volume. Sites located within a macrophyte 

bed tend to be dominated by euglenophytes in early June and by diatoms at the other 

times in the growing season, whereas those in open water are dominated by diatoms 

early in the year and euglenophytes in late July. 

All periphyton communities were dominated by diatoms (see figures 15-16) -­

which composed 48% of the community volume, with euglenophytes (18%) and green 

algae (30%) also making large contributions to the community volume. The back 

sites, with typically higher nutrients than the front sites, were dominated by diatoms 

(42%) and green algae (37%). The front sites were dominated by diatoms (55%) with 

green algae (23%) and euglenophytes (19%) making less ofa contribution to 

community volume. 

Diatoms, such as Cyclotel/a menegheniana, Fragil/aria sp., Navicula sp. , and 

Nitzschia sp., were common members of the periphyton throughout the study period 

(Table 5). Chlorophytes such as Ankistrodesmus sp. and Scenedesmus sp. were 



44. 

Table 4: Phytoplankton diversity indices with algal volume and number for each sampling date and site at Old Woman 

Creek, from 12 May to 8 August 1993. 



Figure 15: Periphyton volumes at Old Woman Creek, 1993. 
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Figure 16: Periphyton Volumes at Old Woman Creek, 1993. 
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Table 5: Occurrence of species in periphyton between 8 May and 11 August 1993 at Old Woman Creek, indicating location 

of samplers in the estuary. 

r··•••••• .. ••·-----

~' ::-c---=--:-::-----+-,::--'2'-'6'--M;;,;;•:;:Y,-,._. 8-Jun : 23-Jun 7..Jul 21-Jul 11-Aug 
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Table 5: Occurrence of species in periphyton between 8 May and 11 August 1993 at Old Woman Creek, indicating location 

of samplers in the estuary. 
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common throughout the sampling period. Some were present only at the front site, 

which may be less tolerant of non-point nutrient loading, such as Gloeocystis ampla, 

Chlamydomonas globosa, Achnanthes sp. and T,-achelomonas volvocina. Others, 

however, were present only at the back sites, such as Phacus caudatus and 

Trachelomonas armata. Periphyton diversity was the highest during June when the 

periphyton density was also the greatest. All diversity indices indicated that diversity 

was highest at the back sites, and lower at the front sites (Table 6). 

2.4. Discussion 

One factor that may affect production and phytoplankton community structure 

is nutrient loading. Although not statistically significantly different during the study 

period, the back sites usually had much higher nutrient concentrations than the front 

sites. This may not be uncommon at Old Woman Creek or other wetlands which are 

driven by sporadic hydrologic events, creating spatial variability in nutrient loading. 

Klarer (1994) noted that storm events can increase the nutrients and turbidity rapidly. 

As the nutrient front moves through the wetland, the nutrient concentrations may 

decrease, however, our sampling regimen did not allow that fine of a temporal 

resolution. As storm water runs off of agricultural fields it collects nutrients, and 

brings them into the wetland. The back sites receive this nutrient input first where 

settling, from decreased water velocity, and biotic uptake remove some nutrients 

before the water reaches the front sites. This leads to lower nutrients at the front sites; 
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Table 6: Periphyton volumes and diversity indices by date and site at Old Woman Creek from 26 May to 11 August 1993. 
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however, due to the high variability created by storm pulses at both sites, statistically 

there is no significant difference in the nutrient means. This explanation is particularly 

pertinent for nitrate -- for which the mean of the back sites was greater than twice the 

mean of the front sites. Phosphorus was not spatially variable, which is not surprising, 

since phosphorus is rapidly sunk into the sediments through both biotic and physical 

action. However, phosphorus resuspension is significant in the entire wetland due to 

its shallow depth. 

Nutrient concentrations are not significantly different in and out of the 

macrophyte beds. This is not surprising due to the closeness of the sites, and the 

mixing of the water in the wetland due to wind action. The community differences 

appear not to affect the nutrients at each site significantly in a top-down manner 

(Carpenter and Kitchell 1987, Havens 1991). This is not to say that biotically induced 

nutrient release from the sediments is not important or does not occur, it is just not the 

most significant factor regulating nutrient concentrations between sites in versus out of 

macrophyte beds. Nitrite concentrations were unusually high for a freshwater system. 

This may be in part due to low oxygen concentrations in the water (Reynolds 1984). 

The back sites had higher periphyton volumes in the back sites than the front 

sites, indicating that periphyton would be more important contributors to primary 

production in higher nutrient conditions, as indicated by our production estimates. In 

the back sites, the green algae composed a larger percentage of the community of 

periphyton than at the front sites. Due to the higher nutrient loading, especially 
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nitrogen, we would expect such a relationship to exist. This also explains the higher 

chlorophyll a measurements at the back sites, due to the higher percentage of green 

algae, which possess higher concentrations of chlorophyll a relative to other pigments. 

Algal communities at Old Woman Creek have been shown to have a bimodal 

seasonality (Klarer and Millie 1992). This trend exhibits a vernal peak in May and an 

autumnal peak in July or August, and is common in phytoplankton dynamics of 

temperate wetlands (Vymazal 1995). In 1993, algal numbers exhibit this same trend, 

however, the peak in early May is quite large. The early May peak has 1.81 x 109 

phytoplankton 1"1, which is larger than the May peaks reported by Millie and Klarer 

(1992). This high volume during the vernal peak was largely due to a bloom of 

euglenophytes. The autumnal peak, which actually begins in late July and early 

August, is of similar magnitude to that reported by Millie and Klarer ( 1992), having 

2.8 xl07 phytoplankton r1
. Algal volumes, however, do not show the same bimodal 

seasonality. They have a small peak in May, followed by a much larger peak in Late 

July and early August. This is somewhat related to algal numbers, however, we see 

temporal differences in communities. The early peak is dominated by small 

euglenophytes; whereas the late summer peak is dominated by much larger diatoms 

producing higher total community algal volumes. Algal volumes appear to relate more 

closely to production estimates than do algal numbers. 

Algal volumes indicate that the back sites are significantly higher than the front 

sites. Whether the community is located in the front or back of the wetland appears 
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not to be as important to community structure as the presence of macrophytes. The 

nutrient loading at the back sites appears to affect phytoplankton community algal 

volume more than community structure. The macrophytes tend to change the 

community structure, possibly due to shading. The dominant macrophyte, Nelumbo 

lutea, probably has little effect on the community structure due to shading until at least 

the middle of June, when the aerial leaves appear. At this time we see the sites in the 

macrophyte beds shift from a euglenophyte to diatom dominated community. This is 

not a common trend. Algal communities in eutrophic and hypereutrophic systems tend 

to shift from diatom dominated systems to some other group, such as green or blue­

green algae (Reynolds 1984). The macrophyte beds appear to have the opposite 

temporal pattern, shifting from euglenophyte to diatom dominated communities. The 

open water communities, at nearly the same time, shift from a diatom to a 

euglenophyte dominated community as would be considered a typical seasonal 

community succession (Reynolds 1984). The Nelumbo appears to provide some 

competitive advantage for the diatoms over the euglenophytes, be it shading, or 

substrate for attachment. However, this raises the question, why don't euglenophytes 

dominate the open water early in the year. It may be that the young underwater shoots 

of Nelumbo provide good habitat for the euglenophytes, more food or possibly 

provide less turbid water. The largest answer may lie in the nutrient concentrations 

from nonpoint pollution. High nutrient levels early in the growing season may 



promote an increase in the trophic status, allowing diatoms to be more efficient 

competitors. 
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There are few well-defined successional species replacements in the 

phytoplankton communities at Old Woman Creek. This may be due to sediment 

perturbation, either by wind and water, or biotic action. The phytoplankton 

community may remain in an early successional stage due to this perturbation. This is 

supported by Havens (1991) who demonstrated that biotically-induced sediment 

resuspension created this kind of early successional stage community, composed 

largely of r-strategists. 

The wetland may be somewhat nutrient limited at times, however, this may not 

be the most important limitation. The peak nutrient input is in late May and early 

June. This is not when production is at its greatest. Production reaches its peak in 

July, when nutrients are similar at nearly all sites, and much lower than the maximum 

values. However, we do see that the algal volume is significantly higher at the back 

sites, with higher nutrient loading. It appears that sunlight may also be an important 

limiting factor and shading may be responsible for community structure shifts. 

2.5. Conclusion 

Non-point pollution is a current problem facing or aquatic resources. Few 

studies have focused on the effect of non-point nutrient loading on the algal 

communities in wetlands, which are important in nutrient removal. In summary, we 
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found that while the closer the community is to the non-point "source" the greater the 

community volume, it had no significant effect on community structure. The presence 

of macrophytes appeared to be more important in altering community structure than 

did non-point nutrient loading. 
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f ....... i!:E:~:H· ........ :·!!· ........................................................ ·--+-••··············

1

··••·················· ·········································1······················· ............................ . 
...... T ..... 

27-May-93 147 +----1---+----' 
8-Jun-93 1591 --,;--- +----f---·-+--- ---+---1~4~0:+!--~----=5~.2~74 9-Jun-93 I 60 l ! 

, ........ 2_3,..-.,,J_un_--c9cc3·· ...... 1..?:1. ! ........................................ ········--+-- ---······ .............................. ?..1.L. ... .0..:.3.. ......... . ......... 5..:.0..3.. 
24-Jun-93 175; 1----1----+-- ·,-----+ ! 

L ........ .?-Jul:..9..3.. . ... ..1..~.~ I·· .... f:}.{ .. .1 .. 2. :5..1. .............. .] .......... ·.··.···.·.··} .... 3..:.1..3... ... . . ~.:.~.~ . ........ 1..3..0..l . 1 .. :.1 ........................ .7..:.1..5. .. 

1 ............ i.!·:~:::.: : ....... ~~i.j. ...... 
1 

.. ~.:~.9. ....... .1~.:.~.~ .................... .../ ................ ..!. ............ : .:! .......... i :~ ! .......... '. .. 2..9.. , ......................... __ 
6 

· .. !.:. 
! l 1-Aug-93 223, 5.41 2.88 ; ! -0.15 -0.37; 229; 10.7 

is ite 4 
iD ate 

, , I , 
i-:i'ulian! LB~}~.J........ Diurnai: ·: DDD.. i Chi. a 1 A Al~'-"a-'-1--i 
i Date l NPP i GPP NPP i GPP j~-NPP GPP pH Volume 

i !mgo,r' !mco,r' i mgo,r' 1mgo,r' !mgo,r' imgo,r' img m·' ! x10' 11 m'mr' 
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NUTRIENT DATA 

66. 



67. 

site 1 . . . . I J;;-ii~;; T 
Date 1 Date i 

T ·, i' · T S i bl~ I Ammon·a ' Nitrit T''N'ii;:;;t~ T~t~i 
Phos;haon,s i Re:c~ive P '[ ... 

1 

")"· e ! Inon,anic N 

12-May-93) 132: 79.5) 11.2 48.5! 12.1 109.8 170.4, 

,___1_3_-_M_ay,~--9_3~! ___ 1_3_3-j ------~-~---................ ".:""::-r---·--:c:-:-,---:-:-:cl· 
26-Mav-93, 146j 35.6, 31.8 65.61 10.7 106.7 183 .. ! 

1--..c2cc7...c-M;..;;c.cav'-•-.;.9_3-t--__ 1_4_7..,, _____ 5_8_.l--;i _____ _,36.2 98.4, 13.3 9.4 121.1 
8-Jun-93 159! 128, 61.1 134.51 23.8 1 18.8 177.1 

L 21-Jul-93, 202, 
22-Jul-93/ . 203! .. . 73.91 36i 104.9: 3.4! ......... i!r1 133.3! 

l l-Aug-93 i 223, 



Site 3 Julian 
Date Date 

... 1:z~IIAay:93 .. . p:zJ 
13-Mav-93 133 ! 
26-May-93 146 
27-May-93 147 

Total 
Phosphorus 

8-Jun-93 159 135.9 1----1--------

Soluble Ammonia Nitrite Nitrate 
Reactive P 

62.3 135.1 22.6 14.1 
9-Jun-93 160 77.3 37.3 65.6 6 14.1 

68. 

Total 
Inorganic N 

171.7 
85.8 ········································ .... ·····••«••······· ·····································"""'"" ·············•························ 23-Jun-93 174( 48 14.2 121.8, 28.9 50.2 200.9 

24-Jun-93, 175! 85.2 10.3 119.7\ 60.5! 70.1 
! 7-Jul-93. 188( ........... iii·:1············· 22.4 206.6 15.5! 6.3 228.4 

'.·.·: .......... 2...1..:.J.1:11-93 202 i ..................... ----:-::- ···i·········· .. ··· ................ i-----

······ ... 2}.:111\:.9..3. ... ....... J9.3.) ... ....................... 6..3.:8. ........................ 3._1_,,~ ....................... .3. .. 9.:.3. ............ ...... }. 9.J ........... :Z~:..1 ................................... ~-~-'-3 
l l-Aug-93 223 ! ! 

250.8 

!Site 4 . ) ... i;;,i;;:;; j To ia.ci_ .. _ ... _ ... _ ... ..., .. _._ ...... = :--''s:.c .. ~:..:l:.::u·~b~le-=,-:_-=.-=;_···...;A:;: ... .::;;,:.:;;,::.--·o:..:;.;:;ic.;;;_ .... -i:_· .. ...;N:..:.···-=it..::ri:.:.te;;__-+-... ..::N,;_; ... i:.:.·;~::..: .. ~:.:.·i,;:,·~·---·--1 .. _ .... _ .. -.:---'T:..o::.;t:.::ac:..l -:c---i 

!Date : Date Phosphorus Reactive P Inorganic N l 
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PHYTOPLANKTON VOLUMES 

69. 



70. 

!Mean(+/-sd) MFAN (+/-SD) MFAN (+/-SD) MFAN (+/-SD) MFAN (+/-SD) 

l~=rnir:..,')c....... __ -+---:--c=-=----:-:=:--::-c±--::-=-::T--=c:-::=:C":'::i---:-:c::::-:-:i---:c-::=-=~-=::::="'.:c'----::C-==-:-::' 
1.4~ l.87Et05! l.13Eloo, l. l2Et05j l.<Xilif05j 3.61Et0t .......... ~?~; ........ 7.Ci6Et03: 

[CHR.YSOPHYTA ............................... . .... O.OOE/00, ..... O.OOE!OO 0.OOEIOO! 0.OOE/W l.07Et05! 1.07Et05, 0.OOBOO 0.OOB<X}, 

!EUIENOPHYTA __ ,--__ i 7.1'7EJ-Oci, 4filE+Otj 4.64Et05/ 1.70Et-O.{. 1.7.5Etoo...... 1.31Et04 2~ _3.53Et05! 
!CHI..OROM:NAI:O 0.OOE!W 0.OOE/W 0.OOE/W 0.OOB<X}, 0.OOE/W 0.OOEIOO! 3.28EtOS 4.69E+Otj 
kYANOPHYTA 8.69~ 4.23Et03i 6.56Et03i 6.56Elffi! l.15E+Otj l.74Et03! 9.88Etfil. 9.65EI021 
[PYRRHJPHYTA ................. 0.OOEtOO O.OOE+OOj O.OOEJOO: 0.OOE/W 8.34Et0f. 8.34Et0t. 0.OOE/W 0.OOEtOO 

·•······•···•·•❖••---~-·················---

:CESMIB 281Et05] 1.roEtOSi l.ffiEl-06! 353Et05' 486Et05' 208Et05 7'.XlEtOS 447Et0!' 
l&\ciiiAruci>HYCFAE···························:·············i65Eioo··········241EtOS: 230soo, ······1:98E\Olj··········i_13~··········5.79E+Otj··········i_o1Et00······· 4:11Et0i. 

i'JOI,\L \WME(µnr T') ................... i ............ S.:OE-l(k;' 1.6'1E-iffi, ......... ?.-:19.E-l(k;' 3.81E-t<IS 5.63E-IOO 7.99E-IIB] 6.32E~ 3.17E-«l5! 

;: .... .... .. 26,M=9J •··················• :::: : . i l : . ; 
!Site ······················--+----·:.'.y.-:, ___ ......................... 2 --+-······3········: ············4·························•·········1 

!Mean(+/-sd) 1'fFAN (+I-SD) i MFAN i (+/-SD) MFAN i (+/-SD) MFAN , (+/-SD) i 

I~~.:? ...................... .!. ·············1.87Et<J.t ........ <>:.6.9.~ ...... 5.,?_8.EtOS:········· 1.~ ·········· 1.1sEtOS: ····· ... 5.03Et-Ot: ········· 3.51Et05:······ 3.7300lj 
iaJR.YSOPHYTA : 0.OOEtOO 0.OOB<X}, 1.57Et05l 3.21Et03! 0.OOEtoo, 0.OOE+OO: 0.OOEtOO 0.OOEIOOj 
(iiaENOPHYTA .... -....... 4.I0E!OS 3.98E+Otj 1.71EtW 4.74Et0t. 1.32E\OO 6.55Et0t. 3.02Et0S 6.88E+Otj 

r~ .............. :··· .. ·1i~~· ...... ~:~~····· ~:=: •::~= .. ~····~~:r :::=······· ~::: ~:::: 
i=~····•····•······•···················•····J···•···•·····~:~:········ .. ~:~:i ....... ··~:~:; ......... ~:~~ .......... ~:~=··········~:~= ······~::l .......... ~:.~:i 
,B\OllARIOPHYCFAE ' l.19Et06 l.43Et05i 4.<Xilif05j 1.38E!Oli l.11Et06 9.86Et{)'.I 4.99Et06 1.67Et05! 

i~~(µnt'll!'Li ... :2.,(),1_1<:~.. . .~<Ill_!<:~! 7.63E~ ).24E-!02j .. 2.112E-!Oi; 6.99E-IOI 9.79E~ 213E-tffi 



!We 
i!ite 
!Mean(+l-sd) 

SJw.93 
1 

MFAN (+I-SD) 

71. 

····i 2 i 3 I 4 1 I 
MFAN (+I-SD) MFAN I (+I- SD) MFAN (+I-SD) 

~ y,nlnr'> , . . •... . ~ , I . 
CHI.DROPHYTA i l.00~ 7~J 4.00EtOS! l.28Et<l5: l.79Et<l5 l.%E/Of, l.41Et<l5j 4.32E!OI! 
CHR.YSOPHYTA . 3.29Et<l5: I.37E«W, l.21Et<l5! l.21Et<l5! 7.63 ~ 7.63Et01i O.OOE!ID, O.OOE!ID, 
Ei:inNOPHYTA ............................... ·..... l.38BO'>,··········fi3~ 4.8800,j l.14Et051""········i071@ 3.36Et04! 4.~ I.rooo,j 

:~ __ ........ L.. 8.I0B-05: 1.94Et<l5i ...... 4.55EI05J 253EtOS! 2I4Et<l5! 8.44Et(),t 4.00EtOS! l.28Et<l5! 
j9.'.:ANOPHYTA l.31Ef04! 5.33Et<J:3( 255Ei04l l.%EI03 4.25Ef03! l.22EI0.3j 3.13El{Bj 3.13El{Bj 
[~YRROOPHYTA O.CXJ~ .... g,~~··· 9.43Et01\ 9.43Et0t 5.19B<»! 5.19EtOlj O.OOEtOO: O.OOEtOO: 
ill'SMIC6 ................. .. .. ...... ..:.... 6.34EtOS! I.87EIQ?L. .... 2:~4El95, . 8.98Et04' ........ 9.30 1 6.49El{B __ L ....... o.:.~B<X>: o.oo~ 
B<\CIUARIOPHYCFAE . 3.72EIOO 7.30Et04\ 280~ 6.97Et-O( I. 1.72B05\ 210~ 6.76El01! 

1000,"'-"""l,e/,ij _________ L ____ ._7,,.... !"""!) ~ ~--- _,_ I ,,.,.. --'~--------
!~ -~,,L ..... L;:~ ' ,····:' . i I 

:Mean(+l-sd) MFAN (+I-SD) MFAN : (+I-SD) MFAN i (+I-SD) MFAN (+I-SD) 

[~=-:.1::···:.·:···=~'.·::·::·:·::·:··.1}l~f-..-: ~~3-~ ·-.. -. -j~m; ... ~ ··3.14s-0i: ..1,!l!~f.. 3.76El01!······· ·4:-io~:·: 4.45E+03: 
jCHR.YSOPHYTA O.OOEtoo, O.OOE+OO O.OOEtoo, O.OOE!OO O.OOEIOOl O.OOE!OO 263Et<l5j 6.4JE!{Bj 

f~HYTA ..... : .•.• ·······~:~~··········~~ ········}~~ ... :::1_········~~~··:·:·:1:~~···········::~i·········l=! 
:.<=.Y.~HYTA ············----, ............. Q.OOEtoo. O.OOEtOO: 254Et<w, .. 5.}2~;. ....... }:~.. 2<BE!{Bj l.2lEtOI\ 6.29El{Bj 
i PYRROOPHYTA O.OOE!(X) O.OOEtOOj O.OOEIOOl O.OOE!OO, O.OOEIOOl O.OOE!OO O.OOEtOO: O.OOE!OO 
[~ ............... :::::::. . . 1,2.413l{l5C:·····::i#Ei<Bi ········"s:ii3iof····3:ii9i0i[":·· .. 2:iii~i::-···: ~·.5-'.I~ .. ······°'(X}~ .~.(X}Etaj 
)WlliARIOPHYCFAE 7.33Et<l5j 1.WEt-05, 223Et00. 8.88Et-Ot 200Etoo, l.31Et<l5, 3.2~ 6.6JEt01! 

i10L\L\UIME~nf1
) 200E-l(ki, 1.2fiE-t-05, 5.ffiE~ 9.73E-tffi 5.00:-l(ki, 200E-t05 4.20E-IOO 4.43E-!Oli 



72. 

!Sire 1 2 3 4 
!Mean (+I- sd) MFAN (+I- SD) MFAN (+I- SD) MFAN (+I- SD) MEAN (+I- SD) 

1~.(µmnf'l ........................... 1 ............................. ..i. ......................... 1 .......................... : .......................... 1 ......................................... __ _ 
jCHLOROPHYfA i 237EIOO. 3.70E!-05! 246Et-06i l.33E!-05i 3. ·-•h• 294E!-05j l.ti8Ei-06j l.20E!-05 
jCHRYSOPHYfA 0.00~ 0.OOEt-00! 0.00~ O.OOEt-OOj 0.OOEHX 0.OOEt-00! 0.OOEt-OOj 0.OOE!{)()j 

jHJG[ENQPHYfA i 7 .. ~~l ......... l,?.3.~j ...... ~:Pl3.+.()(;l l.56Et-05j l.9'JEt-06! l.00Et-04i 3.32EI06! 4.73EI05.j 
jCHLOROM'.)NAOOPHYfA . 0.00~ 0.00Et-00] 0.00~ 0.OOEt-00] 0.OOE!{)()j 0.OOEt-OOj 5.50E!-05j I.I0E!-05j 
!CYANOPHITA 4.42Et-04: I.OOB<»! o.ooEtOO! o.ooEt-OO! ...... 3.93E!-05' 3.54Et<»! l.9'JE!-05i 8.54Et<»j 

PYRROOPHITA l.05E!-05j 1.05E!-05j 0.OOE!{)()j 0.00Et-OOj 0.OOEt<JOil· 0.OOEt-00) 0.OOEt-00) 0.OOEt-OOj 
~ ........................................................ L ............ L64Et-06j ......... 8.42Et04j 8.S'JEt-0.5.j l.92EI05, 6.ISE!-05 3.00B<»i 7.20E!-05j l.47Et{l3j 
B<\ClllARIOPHYCFAE 5.8'JE+-06j 8.53Et<»j 3.7'7EIOO. 5.03E!-05' 6.87Et06(. 3.23E!-05j 5.87E+06! 1:4m+o5] 
10'W., VOUJME(µm nf

1
) ................. j .......... I.07E-f-Oi ....... 293E-t05i ......... t.33E-f-Oi ......... 7.18E-t<l5' ...... }.33E-t-07l ......... 6. 72E-f-05i ....... l.23E-I07t ....... 4.07E-!OS 
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73. 



74. 

Dare i 12-May-93 
Site , 1 I 2 3 4 
Meat(-lf-sd) MFAN (-If-SD) I MFAN (-If-SD) MFAN (-If-SD) MFAN (-If-SD) 

f~~Ds(QDsf~ ················r·······s.61Ei-06······1.26Et-06, ····5.57BI061········4.64E+05l_ 6.~ 5.89E+05:·· 2!»~ ····s.90EI<»] 
!CHR\'ln'HITA . . . f ... . .. O.OOBl-00 ..... O.OOEIOO! -8.38EI07i- 1.19EIOO. --6~-9.82B04' O.OOBl-00 O.OOEIOO! 

irnPHITA .. __ _ _ . _________ 1.91Et05C°" . 9.0IEHJ4L_ _l.72.EI-O')! 24300J' 5.56E+05! O.OOE!OO; l.58E!Q6L_ 4.72Et-05j 
\CfllDRCM:NP.JXJPHITA,............................ . ........... ~,Q<J~ .......... 2:<Xl~ . O.OOE!W .... :O.:~~ --o-:-ooEioo,--o.ooE+OO[ . 2C1JE+05° . 5.:~~ 
,CYANOPHITA 2558-05-L-- l.80E+05, 219E+05, 3.C1JE+05, 3.47EI05, 9.82Et-04 3.34E+05 O.OOE!W 
[PYRRIDPHITA 
!IESMJIB 
>···············---·· 

O.OOE!W O.OOE+OO O.OOE!W O.OOE+OO 6.95Et04, 9.82Et-04' O.OOEIOO O.OOE/W 
···················•········-~.-... -.... -.... -... 2-.. 5-.5.J3+05-.... -.[::::: Ili§.iB>s.[::: .. l:?~~l 5.4JE+05\ 4.~r-·· ··29580?] ??~~: .. 2·.<x.J~ 

4.91Ei-06 270E+05, 3.99Et06j 6.96E+05: 3.40~ 4.91Et05\ 2~ I.77EI05, IWJllARIOPHYCFAE 
2.5.5E-im' l.19E-IOT; 

f:;:··::::_ =~t ·+ ~ i : t-=~=i.:.:. .: t=_ 
~NUMBER.J~U.S..r.'L ............... --+-__ .. ~~~ ....... }~~~: 

' 
1.81E-IO)j 1.67E-!Oii_ ....... 7.88E~ 7.67E-fffij 

·············1 

, Mean (-lf-sd) MFAN i (+/- SD) MFAN (-If- SD) MFAN , (-If-SD) MFAN (-If- SD) , 

~Hii~,1s. (GDs r') . . ..... · J .... .5.54Et05! L57EI05; .... :inEio6L .. 222Et05' ... 3.72EtOG. 222Et05j .... 3.02B-061 ....... 6.iiBOS\ 
OlRYSOPHITA , O.OOE+OO O.OOE!W I.05E+05, O.OOEtOO l.05E+05, O.OOEtOO: O.OOEtOO 0.00EKJO: 
:~~~A , l.llE\06 3.13Et05i l.73Et06\ .J~_ }:?3.~ .?:~L .3.02Et06 3.0GE.+Q5.i 
/q1lpR.™JNAIXlPHITA 5.54Et04 7.83J3l:O'I( 5,?4.~: . l.48Et05 524~: l.48E+05, . ~,24~, ... I,53~: 

[<_;yANOP~ ................. ········· ··········;·······.7:<l:l~L ........ ~:!l:°-l3t06 2JOE+05, O:Q<l'?:<Xl, 210E+05/ ······o.ooEtOO o.ooEt00 ......... 2·.<x.J~ 
iPYRRIDPHITA : O.OOEtOO O.OOEKJO: O.OOEtOO, O.OOEtOO O.OOE!W o.ooEtOO: O.OOEtOO O.OOE!W 
~ ...... ························································;·············s:54B-0¥:··········:,.8.lB-04i··· ....... 3.67B05].········:,.4iB-04!········ic;7Et05L. ...... ·1.41Eto{········9.miios;·········1.s3E+05: 

IWlliARIOPHYCFAE j J.72E+06 235E+05, 6.50Et06j 296E+05' 6.50~ 296E+05, 7.99Et06 O.OOE+<Xlj 

~~ER(Qllsf
1
). ............. . 1.115E-t<J7' 266E-!Oii 1.31E-t<J7' 9.63E-f<l5 1.31E-t01' 9.63E-lffi ...... ·........... . 1.53E-!01 1.22E-IO,j 



75. 

Date~--------
Site 

.. ..I SJin.93 
1······· 1 2 3 4 

l\bi(i,'-sd) MFAN (i,'-SD) , MFAN i (-+I ---,-----,---........ ---,--~ Glls (Gllsf1
) : 

OWROPHYrA 6.98B-06! 290Et-05i 25!B<J6[ 0.00~ - ilIB-06[ 3.06El-05i l.68Ef-06: 264Et05; 
glRYSOPHYfA ; 2~L..... 0.00800; 7.86Et-01; l.l !Et-05) 433B0.1 6.12EI04) 0.00800; O.OOBOO; 

·SD) MFAN (i,'-SD) MFAN 

EIXllN)PHYTA 1 l.13E/OO 436Et05; 212Ei061 l.l!Et-051 8.22BI051 l.84Et05! l.68E/OO 518Et-05! ....•..•.•. ···•·•·•····· .................................. ,:. ............................... >·•·························:·········•·•···············< ... ,-•. , ................... _ • ❖ ••······················••!••··· . .. ............... , 
QJl.ORCMNAOOPHYfA ) 5.13Et-05] 1.45Et-05! 3.14Et-05) 222EI05! !JOEt-05] 6.12.Et<»l 280Et-051 !32Et-05; 
CYAIDPHYD\ L. 4.ll~L_ 290Et-051 8.64Et-05; l.l!Et-05 130Et05) 6.12Et<»l 934Et04 132Et-05] 

ryRRIDPHYTA ····························-~; .O.:()()~<:W:( ...... ~,()()~ .?:.~L. .... LI!Et-05) 1~~.. 6.12EI04) O.OOEIOO O.OOBOO; 
.~ ......... 6.16Et05L_ ..... 290Ef-05.1 236Et051 l.l!Et-051 8.65Et041 O.OOEIOO O.OOEIOO 0.008,:()()j 
B<\Oll.ARIOPHYCEAE 5.85EIOO 7.26Et05! 5.03EI06j 222EI05 238E1-06, l.84Et05j 3.64Et06 3.96Et05j 

/~,,.·~ ....... i ~ ~~'°}F7····=~···~7-·:J::'7 .:1 
i l\bt (i,'-sd) MFAN i (i,'-SD) i MFAN i (-ti-SD) ) MFAN ) (-1/-SD) MFAN 1 (-1/-SD) j 

["1J1opam1onGDs (Glls.r'> .................... L ............................ .J ........................... : ........................... L ......................... : ........................... L .................... ; .......................... : ......................... ] 
;QJl.OROPHYfA ) I.~········ 3.61Et-051 .. ~1.~i 333Et-051 256E1-06,···· 6.78Ef-05.L_ ...... 5.}8Et06 O.OOEIOQ 

l~~ ···························· · : ············1:~~········J~ ···i:;l .... :··i;~·.···~:;~ ..... ~i; ...... }::i:·:··J:.~ 
:~~PHYfA. ··························l ... _ .. ,_~:~~··········i:~~·········{~l ......... i:= .. "'!:::~:.... ~:~::: ........ !1~···· ~=: 
~PHYfA ···························•----i-••······· O.OOEf<l°: ....... O.OOEIOO O.OOEIOOi.. O.OOEIOO O.OOEIOO; o.oo~;. o.oosoo; ........ .0.:()()~ 
~ . . . .. . ........ }.. l.28Et051 O.OOEtOO .. 5.:!\?~i 833BIOt 2.,'.¥.)~5.! 1)~~5.; . .°-·()()~, _o.,()(J~ 
B<\ClUARIOPHYCEAE 1 l.'72Et-06 271Et-05, 4.66Et061 9.17Et051 439Et06 l.13Et05! 6.94EIOO l.06E/00 

[~NlMBFR (9."~lt___ }:~~ •........ ..1.,2.~~: ...... 8,(i(l!!:~L . )~7_E~ ~)!;~ ..... ),3.§.1!:~L. 1.33E-!07i . ),7.7.'!:~ 



76. 

Date 7..Jii-93 
Site 1 2 3 4 
Mem(+l-sdj MFAN (+I-SD) MFAN (if-SD) MFAN (+I-SD) MFAN (+I-SD) 

~ .(GDsf
1
) ....................... L ......................... i ......................... 1 ..................................................... l ........................... 1 ......................... .1 .... __ ~ 

Clll.OROPHYrA j Ul2Et-07! 8.44Et-05j 9.06E!-06j 1.73&0[ 635Et{)(>, l.18lM<i 431EIOO. l.62Eloo, 
CHRYSOPHYrA 7.46E+04j l.06El05] 0.OOEI-O()j 0.OOEl-00 !.28Et-05j 0.OOEt-OOj 0.OOE/W 0.OOEI-O()j 
EUIE\UPHYTA 5.22Et05j 1.06E!-05j 259Et-05j 0.OOEl-00 3.85Et-05j 0.OOEI-O()j 1.76Et-05l 0.OOE!oo, 

. Clll.OROM:NAOOPHYfA ........................................... o.ooEIOOj....... 0.OOE+oo, 0.OOEI-O()j 0.OOE+oo, 0.OOE\-OOi 0.OOE\-OOi 0.OOE+oo, 0.OOE/W 
jCYAN'.)PHYfA l.19Et-06; 0.OOE+oo, 6.47Et-05\ l.83Et-05, 9.62Ef05j 4.548-05! 265Et-05, l.25EI05\ 
\PYRRHJPHYrA 0.OOE\-OOi 0.OOE+oo, 0.OOEt-00; 0.OOEt-00 O.OOE\-OOi 0.OOEl-00 0.OOEl-00 0.OOEl-00 

:~...................................................... 29'.lE!-05~ ..... 211Et-05j . 9.71E!-05l... ..... 9.!5E!Oli.. 3.85Et-05; ......... ~:!x.>1¥00; 6.18Et-05) ...... 1.25Et-05j 
B4ClllARIOPHYCFAE 5.45El-06. 1.06El05j 9.901M6j 9.158-04, 7.57Et06j 1.81Et-05j 1.0!E+-07! 2508-05! 

.~l_WMBER(<::e,lls,tL,__ 1.m.:~...... 1.37E-t(K;: ......... 2.ffiE-!071··· ..... 3.<i6E~········ 1.58E4 ......... 1.81E-t(K;1 ......... 1~Ei-07; ....... 2.12E-!Oii 

·····---------- ---,---················------''--------+--······~-------+----;------;---::::::::,,'i. il>ate ii:j;icii............... . .. r .......... ____ ·,---
:Site 1 2 3 4 
j Mean (if- sci) MFAN +I- SD) MFAN +I- SD) j MFAN (+I- SD) , MFAN (if- SD) 

i~donGlls (GDsf') . . . i L .......... , ........... j 

,Clll.OROPHYrA ......... 3.741M6' ......... 3.53Et-05j ......... 3
0
.2
00

11M6Et-OO!,: ...... 6.488-05' ..... 4.SOB-06. 7.58Et-05i 4
0
3.009~ ......... 5

0 
.. 
00
03Et-05Et-OO!. 

[CHRYSOPHYrA 0.OOE+oo, 0.OOEl-00 0.OOEl-00 O.OOEIOO; O.OOEt-OOi = 
i~~PHYfA··············, }]~········{= ....... :::: ..... :~~=: ~:=: ····~~i1~~··~:= 
[CYAN'.)PHYfA , ...... i:568-06 265Et-05: 3.67Et-05L. ...... 259Et-05 7.S!Et-05] o.ooEt-OO; 4.ISB-05!_ ........ 838Et-04j 

~=~:::::::::::::::::::::::::::::::::::::::::::::::::~:::::::::::::~::It::::::::::~~=··········~~=l ...... :::~::::::::::::~:~ ........ ~~~1::::: ..... ~:: ......... i:~~ 
B4DllARIOPHYCFAE : 7.981M6 3.53!M5j 3.851M6j 259Et-05j 7.081M6 1.52Ef05l 3381M6 838Et<»j 

!.~NUMBER(<:l!lls f
1
) 1:~~ ......... 1.85E-t(K;i 1.00:-!07! 1.56E-!Oii 1.31E-!O'T;.... U4E-t(K;! UJE-!07': 1.0lE~ 



!lllte S-~93 
!Site 1 2 3 
M!at (+I- sci) MFAN (+I-SD) MFAN (+I-SD) MFAN 

l ~~Cell'i ((J>J)sf
1
) . _ _____ . 

gr:•······························ l·· ~:= ~:~:: ~·=;:.~, ~=~·~; ~__:~. 
I ml'ffii I '.DRKJ6 13RE!07; 

U.WCt\JUi V.WC1"\AI: u.wEt-00! 

~PHYn(··························+············}~~ ~:= :·:: 
: l.49Et-06; 620B-05! 

1 lOBf-06! O.OOBOO 
•❖••··""'"'''' • 

.... u.wEtOO! ......... O.OOEt-00: 
CYAl'OPHYrA 
PYRRI-DPHYD\ 
OOlMilll 

8.77EI-O'I! 
l.7.5E-l-06 

I.24B-05, 
248B-05/ 

IWlliARIOPHYrnAE , 128Et07; 248B-05/ 

O.OOEtOO! O.OOEt-00: 
O.OOEtOO/ 0.00800 

9.43B-05L ... 222B-05! 
6.84B-06! l.lIB-05/ 

I.49Et-06! 
O.OOEfOO! 
4.22B06/ 
O.OOEfOO! 
6.62B05! 
1.611310i 

4 
{+I-SD) MFAN 

.... 
I.OSEt-06' I.02Ef07! 
O.OOEtOO! O.OOEtOO! 
o.ooEtOO: l.32Et-06, 
O.OOEfOO! .... 3.67B-05, 
8.19B-05! 9.53B-05[ 
O.OOE/OOj O.OOEfOO! 
O.OOEtOO[ 7.33B-05[ 
l.17Et05, l.18Et07; 

l.92E-t07/ 1UfALNlMBER(O&.f
1
) ...................• : ......... 29JE-1(17j··········248E-i(kil __ ~ .... l.56E-IO,j ......... J.6.lE-1(17j ......... 1.99E·!iK( ....... 2.51E-t07' 

77. 

~+I-SD~ 

5.19B-05! 
O.OOE/OOj 
207El05! .................... , 
1.04B-05! 
1.04B-05! 
O.OOE!OO! 
O.OOE/OOj 
3.IIB-05! 
1.24E-i(kii ... : 



APPENDIXE 

PERIPHYTON VOLUMES 

78. 



79. 

Date 26-May-93 8-Jun-93 23-Jun-93 
Site 1 2 1 2 1 2 
Periphyton Volume (11m' cni') 

-------f----=-==--+----:--=::c-:,-=i---:-:=--:-c:-i---c--c=-:-l ............................................. -:c-:c=---1 
Chlorophyta ....... .... ...... ........................ . ......................... J·.2..3.l:>:t.<Jli. ....... 2.70E+o7 l.49E+o5, ... }}9J;;:t:()6. ............. }:.3..~1.>.+.Q! ....... 5.-.9.~l:>:r,Qli . 
. C::~.!!P.~ O.OOE+oo O.OOE+oO O.OOE+oo: 0.00E+oo O.OOE+oO O.OOE+oO 
Euglenophyta O.OOE+oO 7.50E+06 2.52E+o6, 5.49E+o5 2.52E+o5 5.99E+o6 

;::~~~=:: ... ::::::.::::.: ................. ···················i:::::::··.·.·.···!:!!~:!1· ... :· ::.;:~~iE;j .. :: .. :: .. ::!:~~!:~I ~:~~~:~ !:~!~:!I···••·••···~:~!::! 
IP.~.s.~s............................................. .. ... . ........ ..!. .............. o.ooE+oo: . o.ooE+oo: 2.osE+os: _J_}li.i,.:t:<J.6. ............ o.ooE+ooj . . .~:.1.3.l.>+.QS. 
!Diatoms I 1.52E+o7j 2.81E+o7j 2.73E+o6: 7.13E+o6 2.68E+o7J !.91E+o7 

.1.:9.!~.................. . .. ...... . ........... .. .. . .. 1.,ll~JJ::t.Q?.L 6.32E+o7: .. . . 6.toE+o6 :. . . .... 1 ... , .. ~ ... 9 ..... E ... ·.·+o .... ·.·.·.·? ... ,J······--················· .~:.I.~JJ::t.Q7J.

1 

.......... ·.·.·.·.·3···' .. ·2 .... o .... !ll ..... +o .... ·.·.·.·1 ... ·.•. ................................................................................................... : ······ .. ·····················: . I .i 
·---··············· .. ····---:-:---;---- ····•··························---'-

Date 7-Jul-93 21-Jul-93 ; 11-Au~-93 
Site 1 2 1 2 1 2 

Periphyton Volume _(µm'. cm·'> ............................. ····················--- .......................... • ....................... ~-- ..................... ···················---t-----

t~ .. · ·· .:: : :f ::: t:;::1-· -~-;.;-... ~-.;-;-i~-'··i-.... -:::-· ... --"-i'--:~-;;-·:_· .. _·;.,.r_-::_-.... -... ~=, :-0·:-~::~:=0-,:;~~~;~~:'-'-~;:~-=:e-c-:~~--"-~;~~:-=-t..,.I~:-:··!=-·:-::·!-:i!· 

~.hloro11Dmd.<JP.hyta .... ___ .......... . ............... o.OOE+oO: O,QQ.i,.:t:<>QL O.OOE+oO' 3.12E+os,....... O.OOE+oo[ O.OOE:t:<J.O., 
Cyanophyta ... L....... l.05E+o5; 5.99E+o5[ 6.82E+o4[ 5.~.2.§.+.9.5.. 3.IIE+05i 4.02E+os: 

~'.Jl;'J~~ ······--· + . ····6·:6·ci~:i1· ·i'.~i~~~:i:::::::::::.~:.~;::~: -tii::~ -~:~~::~l___ -~:iiri:~1 

Diatoms .... ! l.65E+o7j 1.72E+o7[ 2.40E+o7[ 1.16E+o7 4.IOE+o7 3.85E+o7 

.'J.:Q:f.~ ....... ___ .................................................1 ............... 2.31E+o7 i ...... 4.93E_+o_7~i __ 5 __ ._54_E_+o_7-[ __ 6.89E+o7l.._ __ 8_.4_0_E_+o __ 7~_5_.8_4E+o7 
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APPENDIXF 

TAXONOMIC LIST OF PHYTOPLANKTON SPECIES 



Taxonomic List of Phytoplankton species at Old Woman Creek, 1993 

Chloromonadophyta 
Cryptomonas erosa 

Chlorophyta 
- Chlorococcales 

Ankistrodesmus falcatus 
Crucigenia tetrapedia 
Kirchneriella subsolitaria 
Lagerheimia quadriseta 

Micractinium pusillum 
Pediastrum duplex 
Scenedesmus abundans 
Scenedesmus bijuga 
Scenedesmus denticulatus 
Scenedesmus dimorphus 
Scenedesmus opoliensis 
Scenedesmus quadricauda 
Schroederia setigera 
Tetraedron quadratum 
Tetrastrum glabrum 

- Oedo goniales 
Oedogonium sp. 

- Tetrasporales 
Gloeocystis amp/a 

- Volvocales 
Chlamydomonas globosa 

- Zygnematales 
Closterium acerosum 
Cosmarium biretum 

Chrysophyta 
- Bacillariophyceae 

Achnanthes sp. 
Cyclotella menegheniana 
Cymbella sp. 
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Taxonomic List of Phytoplankton Species at Old Woman Creek, 1993. 

Diploneis puella 
Fragillarla sp. 
Gomphonema sp. 
Melosira distans 
Melosira granulata 
Meridian sp. 
Navicula mutica 
Nitzschia acicularis 
Rhoicosphenia sp. 
Stauroneis sp. 
Terpsinoe sp. 

Cyanophyta 
Merlsmopedia tenuissima 
Oscillator/asp. 
Phormidium tenue 

Euglenophyta 
Euglena acus 
Euglena convoluta 
Euglena gracilis 
Euglena minuta 

Phacus caudatus 
Phacus pleuronectes 

Trachelomonas armata 
Trachelomonas volvocina 
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APPENDIXG 

TAXONOMIC LIST OF PERIPHYTON SPECIES 



Taxonomic List of Periphyton species at Old Woman Creek, 1993 

Chloromonadophyta 
Cryptomonas erosa 

Chlorophyta 
- Chlorococcales 

Ankistrodesmus falcatus 
Crucigenia tetrapedia 

Kirchneriella subsolitaria 
Lagerheimia quadriseta 
Micractinium pusillum 
Pediastrum duplex 
Scenedesmus abundans 
Scenedesmus bijuga 
Scenedesmus denticulatus 
Scenedesmus dimorphus 
Scenedesmus opoliensis 
Scenedesmus quadricauda 
Schroederia setigera 
Tetraedron quadratum 
Tetrastrum glabrum 

- Oedogoniales 
Oedogonium sp. 

- Tetrasporales 
Gloeocystis amp/a 

- Volvocales 
Chlamydomonas globosa 

- Zygnematales 
Closterium acerosum 
Cosmarium biretum 

Chrysophyta 
- Bacillariophyceae 

Achnanthes sp. 
Cyclotella menegheniana 
Cymbella sp. 

Diploneis puella 
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Taxonomic List of Periphyton species at Old Woman Creek, 1993 

Fragillaria sp. 
Gomphonema sp. 
Melosira distans 
Melosira granulata 

Meridian sp. 

Navicula mutica 

Nitzschia acicularis 
Rhoicosphenia sp. 

Stauroneis sp. 

Terpsinoe sp. 

Cyanophyta 
Merismopedia tenuissima 

Oscil/atoria sp. 
Phormidium tenue 

Euglenophyta 
Euglena acus 

Euglena convoluta 

Euglena graci /is 
Euglena minuta 

Phacus caudatus 

Phacus pleuronectes 

Trachelomonas armata 

Trachelomonas volvocina 
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