A PERFORMANCE EVALUATION OF A HOMOGENEOUS WIRELESS NETWORK USING OPNET IT GURU

A. Thesis
Presented to
the Faculty of the College of Science and Technology Morehead State University
In Partial Fulfillment
of the Requirements for the Degree
Master of Science
by
Roy Lee Gentry Jr.
November 30, 2005

Accepted by the faculty of the College of Science and Technology, Morehead State University, in partial fulfillment of the requirements for the Master of Science Degree.

Director of Thesis

$11-30 \cdot 2005$
Date

A PERFORMANCE EVALUATION OF A HOMOGENEOUS WIRELESS

NETWORK USING OPNET IT GURU

Roy Lee Gentry Jr., M.S.
Morehead State University, 2005

Director of Thesis: Dr. Yudi Gondokaryono

With the advancement of computer technology comes the advancement of methods used to network computers together. One of the newest forms of computer networks is the wireless network. Wireless communication has been around for many years, but only recently has wireless technology become prevalent in computer networking applications.

This study focuses on the factors that have significant impacts on the performance of a wireless network. The network modeled in this study is intended to represent a real-life classroom setting in which students have the ability to transfer and download files, check email, and surf the web.

The tool of evaluation for this study is OPNET IT Guru. OPNET IT Guru is a network simulation tool capable of modeling wired and wireless networks. OPNET will be used to simulate network activity and record performance based on changing the parameters of two main factors. These factors include application load and number of hosts. The sole response that will be used to evaluate the network performance is the mean delay on the network in seconds.

The collected data from the simulations were analyzed using a General Linear Model in Minitab and a two-factor full factorial experimental design. According to
the collected data, it was determined that all factors and combinations of factors were statistically significant. It was also determined that increasing the number of hosts alone on a network has a greater impact on the mean delay than increasing the application load alone.

CHAPTER I 1
INTRODUCTION 1
Problem Statement 1
CHAPTER II 4
REVIEW OF LITERATURE 4
Network Cabling 4
Network Topology 5
Network Devices 7
MAC and IP Addresses 13
Wireless Research 15
Historical Overview 17
Wireless Technology 18
WLANS 21
Wireless Standards 22
CHAPTER III 26
METHODOLOGY 26
Network Simulators 27
CHAPTER IV 32
OPNET IT GURU 32
CHAPTER V 42
SIMULATION SETUP 42
Factors 42
Response 42
Assumptions of Study 43
Limitations of Simulator 44
Setup 45
Chapter VI 47
RESULTS 47
Analysis 51
CHAPTER VII 57
CONCLUSION 57
Solutions 60
References 62
Appendix A 64
Appendix B 92

ACKNOWLEDGEMENTS

The Author wishes to express his gratitude toward all of the people who played a vital role in the revision and completion of this Thesis. Many people provided motivation, support, and guidance throughout this entire process and their efforts are greatly appreciated.

Special thanks go out to Dr. Yudi Gondokaryono for the incomparable efforts and concern he has shown as my Thesis Advisor and Director. Amidst situations that are inconceivable to most of us, Dr. Gondokaryono was always available to answer questions that greatly contributed to the successful completion of this Thesis.

I would also like to thank Dr. Ahmad Zargari for the instrumental role he has played in encouraging me to further my education at Morehead State University, as well as sharing life lessons and knowledge that has been invaluable in the completion of my Master's Degree.

Last but not least, I would like to thank Dr. Greg Russell for his guidance and support during the completion of this Thesis. In conjunction with the busy schedule of running a separate department, Dr. Russell was always available to make reviews and answer any questions I had for him.

CHAPTERI

INTRODUCTION

Computer networks are omnipresent in this age that has been deemed the "Information Age." It is difficult to find an electronic system today that does not contain a computer or a microcontroller. Once this computer or microcontroller is connected to another computer or microcontroller, then a computer network exists.

Computer networks come in several varieties, but the general functioning of them are all the same. The Institute for Electrical and Electronic Engineers (IEEE) has set up a set of standards that govern the way networks should function. Networks can vary by their configuration and the medium by which data is transferred. This Thesis closely examines the use of one of those mediums of transfer, wireless.

Problem Statement

The purpose of this Thesis is to evaluate the performance of a wireless network using the OPNET IT Guru Network Simulator. The study will use the simulator to perform an experimental design of a wireless network in a classroom. The experiment will examine the performance of a wireless network with various numbers of users, and various application loads. Upon completion of the study, the results are hoped to achieve three goals. They are as follows:

1. To demonstrate how OPNET IT Guru can model networks; specifically Wireless Local Area Networks.
2. To demonstrate that increasing the number of hosts and/or the application load of a network will increase the delay.
3. To determine which parameter (if any), application load or number of hosts, causes the mean delay to increase the most.

Chapter 2 of this Thesis presents some of the basic terminology and concepts involved with computer networks. The chapter gives a brief overview of network cabling, network topology, network devices, and MAC and IP addresses. The chapter then goes into more detailed information regarding the problem statement. Examples of wireless research, a historical overview, and the concepts of wireless technology are presented in Chapter 2.

Chapter 3 of this Thesis is entitled "Methodology." The purpose of this chapter is to describe the methods used to achieve the goals in the problem statement. Several methods of experiment and data collection are discussed and analyzed, and reasons for choosing one particular method are given.

Chapter 4 of this Thesis is a Chapter devoted solely to OPNET IT Guru. The purpose of Chapter 4 is to demonstrate the capabilities of the simulation software chosen for this Thesis.

Chapter 5 of this Thesis is entitled "Simulation Setup." This chapter describes how the simulations will be performed. The chapter includes descriptions of factors, responses, assumptions, and limitations.

Chapter 6 presents the results from the performed simulations. This chapter includes graphs and tables that visually represent the collected data. The chapter also contains a General Linear Model created in Minitab and a factorial design of experiments to analyze the percent variation for each factor.

Chapter 7 of this Thesis is the conclusion. This chapter contains information that demonstrates the achievement of the goals listed in the Problem Statement. The chapter also presents solutions and suggestions for improving the performance of various wireless network configurations.

CHAPTER II

REVIEW OF LITERATURE

This chapter will provide a glance at other research done on wireless network modeling and a historical overview of wireless technology. This section will conclude with a review of wireless concepts.

Network Cabling

Coaxial cable is not as commonly used now as it used to be due to slower speeds and the difficulty involved with installation. Some applications of coaxial cable include IEEE 802.3 10Base5 Ethernet LAN, IEEE 802.4 token bus LAN, and Systems Network Architecture. The maximum speed of data through coaxial cable is only 10 Mbps . One advantage of coaxial cable is that it can transfer data over a great distance. The Broadband 75 ohm coaxial cable has a distance limitation of 3600 meters between nodes (Harwood, 2003).

Fiber-optic cable is becoming more common in network applications today. Single-mode fiber and multimode fiber are the two types of available fiber optic cable. Single-mode fiber sends a single beam of light through the cable during transmission. Multi-mode fiber sends many beams of light through the cable during transmission. Speeds of fiber optic transmissions can reach more than 100 Mbps , with distances covering 2 km (Harwood, 2003).

Unshielded twisted pair (UTP) is the most commonly used form of media in current network applications. Unshielded twisted pair has four pairs of wires twisted together in a non-metallic sheath. RJ-45 connecters are used to construct patch cables with UTP cable. Depending on the application, the speeds of UTP can reach 1,544 Mbps over 1950 meters. The application for which UTP cable is intended is identified by its category number. There are seven UTP categories. Category 1 and Category 2 are associated with voice transmissions. Categories 3 through 7 are associated with data transmissions. The most common application has a CAT 5 UTP cable transmitting at 100 Mbps over a distance no greater than 100 meters (Harwood, 2003).

Network Topology

A second distinguishing characteristic of a computer network is the topology of the network. A network's topology refers to the physical and logical layout of the network. The physical layout of the network is what can actually be seen. This is the way the computers, cables, and network devices are laid out in the network. The logical layout of the network refers to the way the network looks to the devices that use it. The most common topologies used in current networking applications are bus, ring, and mesh topologies (Harwood, 2003).

A bus network contains a backbone to which all the computers on the network are linked. Computers are connected to the backbone using T connectors, taps, or splitters. In order to prevent disruptions in data rate transmissions, bus topology
requires that each end of the physical bus be terminated. Bus topology is generally very cheap to implement because it requires less cable than other topologies. There are also no special network devices used for bus topology (Harwood, 2003).

Bus topology creates a dilemma when computers must be added to the network. In order to add computers to the network, the entire network must be disrupted because all systems connect to a single backbone. A break in the backbone causes the entire network to go down. A bus network is also extremely difficult to troubleshoot since a fault causes the entire network to shut down rather than just the faulty device(s) (Harwood, 2003).

A network with a ring topology functions exactly as it sounds. The logical topology of the network is a ring. In a ring network, the data will travel in a circle from one computer to another on the same network. The physical layout of a ring network is not the same as the logical network. Physically, a ring network is usually connected in a star configuration (discussed later). As with bus topology, if a computer or a piece of cable is removed from a ring network, the entire network is disrupted. A ring network can be compared to a series circuit in electricity. The ring topology is not a logical choice for network in which computers will need to be constantly added or removed.

The star topology is very common in current network applications. In the star topology, all computers and devices on the network are connected to a centralized hub or switch, with each device connected to the hub or switch individually. This approach prevents the problem of network disruption when adding and removing
computers. This configuration also allows the network to remain accessible if a cable or computer is faulty. Due to the amount of cabling needed to implement a star network, the cost is greater than that of other topologies. Another disadvantage of the star topology is that the hub or switch allows for a single point of failure for the entire network. If the hub or switch fails, then the entire network will be inaccessible.

Due to its configuration, the mesh topology is the most reliable topology. In a mesh network, each computer or device on the network is connected to every other computer or device on the network. The mesh topology provides a great amount of redundancy which makes it an extremely fault tolerant topology. If one path in the network fails, the data will always have an alternate path to travel. Mesh networks require an even greater amount of cabling than does the star topology; making this design the most costly to implement.

Network Devices

Now that the cabling and topology of computer networks have been described, the devices that make up the network need to be introduced. A network can contain a number of devices depending on the application and purpose of the network. Some of the more common devices found on smaller networks are hubs, switches, routers, modems, and network interface cards. These devices are generally found on a Local Area Network or LAN. A LAN is simply a network that is restricted in geographic location, and only covers a small area such as an office, classroom, or small building.

Other devices that may be found on larger networks include bridges, gateways, and system area network cards. These devices can be used in Wide Area Network or WAN applications. A WAN is a network that spans over more than one location. A WAN generally connects two or more LANs.

In order for LANs and WANs to function, several devices are required. The most basic necessary device is a hub. Hubs are used to connect computers and devices on a LAN. A hub will send all data to every computer that is connected to it. Two types of hubs are available, the passive hub and the active hub. Passive hubs do nothing but provide a path for electrical signals to travel along. An active hub provides the same path, but it will regenerate a signal before passing it along to the connected devices. A hub does not process the data or check for errors, thus making the hub a highly inefficient device.

Switches are very similar to hubs in providing a connection point and pathway for devices and data. However, a switch performs a task that a hub does not. A switch will only send data to the port that connects to the destination device, rather than sending the data to all connected devices. A switch does this by matching the MAC address of the device to the destination MAC address in the data it receives. A switch is highly efficient in improving network performance. Switches create a direct path between two devices, and reduce the number of times two devices attempt to transmit at exactly the same time on the same network (collisions).

Bridges are devices that are used on large networks to create smaller, more manageable network sections. A bridge is placed between two physical network
segments to manage the flow of data between these two segments. A bridge will look at the MAC address of the devices connected to each segment and then either forward the data or block it from crossing. This decision is based on whether the bridge determines that the destination address is on another interface. If the destination address is on another interface, the bridge will forward the data; otherwise the data is blocked. Bridges can be highly complicated to implement correctly.

In order to place a bridge on a network properly, the $80 / 20$ rule must be used. This means that 80% of the data coming to the bridge should transmitted locally (same interface), with the other 20% destined for devices on other interfaces.

Another complication that occurs when implementing bridges is a loop. Bridging loops are common when more than one bridge is placed on a network. Confusion among bridges can occur when one bridge believes that a destination device is located on a segment that it is not. The Spanning Tree protocol is used to prevent bridging loops. The Spanning Tree Protocol allows bridge interfaces to be assigned a value that can be used to control the learning process of the bridge.

There are three types of bridges that are used in network applications: transparent bridges, source route bridges, and translational bridges. A transparent bridge is a bridge that exists on a network without other devices on the network being aware of it. A transparent bridge will block or forward data based on the source MAC address. Source route bridges are most often used in token ring networks. In this application, the path that the data is to take is embedded within the data, and the bridge routes the data to the appropriate path. Translational bridges are used to
convert one networking data format to another. For example, if data from an Ethernet network was destined for a Token Ring network, a translational bridge would be used to convert the format of the data from Ethernet format to Token Ring format.

While a bridge can be used to split a network into smaller sections, a router is used to combine two networks to make a larger network. A router has the capability to route information it receives from one network to another. Once a router receives a packet, it reads the header of the packet to determine the destination address. Once the router has determined the destination address, it looks in its routing table to determine whether it knows a path to the destination. If the router knows the path, it will forward the packet to the next hop on the route. The next hop could either be the final destination, or another router. If it is another router, that particular router will perform the same task until the packet reaches its destination. A router sees a network differently than the network is designed, only seeing devices that are one hop away. In other words, a router can only see devices to which it is directly connected. When forwarding a packet, the router will choose the shortest path from those that are directly connected to the router. Each router along the path will perform the same task.

Very similar to a router, a gateway is a device that translates one data format to another. A gateway can be a router that translates data from one network protocol to another. A gateway is only responsible for translating the data format, and not the data itself. It is common to confuse the term gateway with the term default gateway. A default gateway is a router on a network that is connected to another network. If a
device on a particular network has a packet to send to a device on another network, the packet will be sent to the default gateway first. The default gateway handles all transmissions that are not destined for the local network. The default gateway will then examine the destination address, and forward the packet appropriately.

In order for the network to be fully functional, there must be some interface between the computer and the network. Two devices that can be used to interface a personal computer with a network are modems and network interface cards.

The term modem is short for modulator/demodulator. A modem converts digital signals generated by a computer into analog signals that are capable of traveling over conventional phone lines. A modem that receives a transmission will convert the analog signal back to a digital signal so that the receiving computer can understand the information.

Modems can either be internal or external devices. In most current applications, modems are internally installed into a computer. This is generally done via PCI expansion cards. Older computers have modems that use the ISA slot; however, computers are being built today without the ISA slots. External modems can either be connected via the serial or USB port of the computer. Proper configuration of the modem depends on if the modem is internal or external.

Internal modems can be very easy to install depending on the operating system of the computer. Most current operating systems will automatically install the modem properly. However, it is important for a user to know the proper procedure for installing the modem. First, the modem must be configured with an interrupt
request (IRQ) and a memory I/O address. It is extremely important to make sure these addresses do not conflict with the addresses of another device or the system will not function. If the modem is configured to a serial interface, the resources of that interface will be assigned to the modem. If the operating system does not automatically make these assignments, the user must do so.

In cases where the operating system will not automatically install an internal modem, external modems can be less complicated to configure. External modems connect directly to a port; therefore the resources for that port will be used automatically. Modems that connect to a USB port are considered plug-and-play devices and do not require the user to assign resources. The system will automatically recognize the device. In any installation case, the drivers for the modem must be installed to the computer before the device will be enabled.

A concern in any network is the speed of the network and the devices on the network. There are two factors that can affect the speed of a modem connection. First, the speed of the modem itself, and second, the speed of the Universal Asynchronous Receiver/Transmitter (UART) chip in the computer to which the modem is connected. The UART chip is responsible for controlling the serial communication of the computer. It is important that the speed of the UART chip is sufficient to support the installed modem.

The other interfacing device used to connect computers to a network is the Network Interface Card. Network Interface Cards are usually installed in a PCI expansion slot of a computer. Older Network Interface Cards may use the ISA slot,
but this is highly uncommon now. Like a modem or any other device installed on a computer, the Network Interface Card must have an IRQ and a memory I/O address. These addresses can not conflict with any other device on the system or system devices will not function properly. It is also vital to consider the compatibility of the Network Interface Card with the cabling and type of network on which the card is being installed. The vast majority of Network Interface Cards sold in stores are configured to be used with twisted pair cabling with Ethernet. There are cards available for coaxial and fiber-optic, but they must be ordered specifically. Wireless network cards are also becoming a standard in laptop computers and portable devices. Other network types, such as Token Ring, must also be specified. Unlike Ethernet, every network card on a Token Ring network must be configured to transmit at the same speed, or else the network will not function properly.

MAC and IP Addresses

In order for devices to communicate over a network, there must be a means for the devices to identify each other. MAC and IP addresses serve this very purpose. A MAC address is known as an identifier for hardware. The MAC address is burned into each network interface on the network. A MAC address is a 6-byte address that is unique to a network interface and is used to identify each interface on the network. MAC addresses are expressed in hexadecimal form, with each byte of the address separated by either a colon or a hyphen. According to the rules of a hexadecimal number, the values of a MAC address can only take on the numbers 1-9 and the
letters A-F. IEEE is responsible for managing the use of MAC addresses. This organization makes sure that each MAC address is unique to the device to which it is assigned.

An example of a valid MAC address would be 12-1F-D3-FF-D5-A1. Examining the address, the first three bytes identify the manufacturer of the device. Therefore, each device that is manufactured by this particular company will contain $12-1 \mathrm{~F}-\mathrm{D} 3$ as the first three bytes of the MAC address. These numbers are called Organizationally Unique Identifiers and are assigned by IEEE. The last three bytes of the address are assigned by the manufacturer. This portion of the address is called the Universal LAN MAC address.

An IP address can be a little more complicated than the MAC address. An IP address is software-based, and is also unique to each device on a network. An IP address is composed of four sets of 8 bits or octets. Each octet is separated by a period. For example, a valid IP address would be 192.168.41.143. This address identifies the individual system as well as the network to which the system is attached. It is possible to determine which part of the address is the device and which part is the network by examining what is called the subnet mask. In a subnet mask, the part of the IP address that refers to the network is assigned a binary value of 1 . The node address will be assigned a binary value of 0 . For the given address of 192.168.41.143, it will be assumed that 192.168 is the network address. Given the rules of subnet masks, a binary 1 will be assigned to each bit of the network address.

The remaining bytes will be assigned 0 . Therefore, the binary subnet mask will appear as 11111111.11111111 .00000000 .00000000 , or 255.255.0.0 (Harwood, 2002).

Wireless Research

Since wireless communication is becoming more widely used, many researchers are evaluating how a wireless network functions. Mineo Takai, Jay Martin, and Rajive Bagrodia (n.d.) of UCLA performed a study on Mobile Ad Hoc Networks. In their paper, "Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks," they show that factors at the physical layer affect the absolute performance of a routing protocol as well as the relative ranking among protocols for the same scenario. This study does not include the use of OPNET IT Guru due to the specificity of the results. Instead, the researchers chose to utilize ns-2 and GloMoSim. These two simulators are commonly used in mobile ad hoc network studies.

Takai et al. (n.d.) studied four modeling factors of the wireless physical layer that were examined. These factors included the physical layer preamble, interference computation and signal reception; fading and path loss, and physical layer models of common simulation tools.

The Takai et al. study examined the packet delivery ratio with different signal reception and fading models. The study also examined the end-to-end delays of the various cases. The experiment was designed to compare the performance of the AODV routing protocol to the DSR routing protocol. Takai et al. used the free space
path loss model and the two ray path loss model to conduct the experiment. They determined that the end-to-end delay increased as the estimated channel condition became more severe.

OPNET has been previously used to perform wireless data simulations. Michael Jiang, Stephen Hardy, and Ljiljana Trajkovic (n.d.) performed a study involving a performance evaluation of wireless data using OPNET. Their paper, "Simulating CDPD Networks Using OPNET," describes how they used OPNET to "investigate the impact of self-similar traffic on performance of a cellular digital packet data (CDPD) network." (p. 1)

This study used genuine traffic traces collected from an existing company. According to the results of the paper, genuine traffic traces are responsible for producing longer queues. As a result, these traffic traces require larger buffers in the switching element of the network.

While many studies have been done to evaluate the performance of wireless local area networks, some studies are being done to improve the capacity of wireless networks. Harkirat Singh and Suresh Singh (n.d.) wrote a paper entitled, "Improving Wireless Network Capacity Using Smart Antennas in OPNET." The study developed a "novel slotted ALOHA protocol (Direction-Of-Arrival ALOHA) for use in ad hoc networks where nodes are equipped with smart antennas" (Singh and Singh, n.d.). Singh and Singh exploit the benefits of adaptive array antennas to yield throughputs that are two to four times higher than recent protocols. The final results indicated that by adding 8 Smart Antennae to the wireless network, the throughput is two to three
times more than other protocols. When 16 antennae were used, they determined that the throughput was three to four times greater than previous protocols. This study essentially provides a way to increase the amount of data a wireless network will transmit. Therefore, performance is evaluated based on the throughput of the network.

Historical Overview

Wireless communication has been around for more than 60 years. The vast majority of wireless communication has been voice communication for many of these years. Even during World War II, soldiers communicated with wireless communication devices on the battle field. Wireless data access got its start in the mid 1980s. This is when wireless networks such as Ardis and RAM/Mobitex came about. These networks could provide data transfer speeds of $8 \mathrm{Kbps}-19.2 \mathrm{Kbps}$. By the early 1990s, the necessary hardware became available to connect a laptop modem to an analog cellular phone. These two technologies were not designed specifically to be interfaced with each other; therefore there were several problems that arose. In 1995, CDPD technology began using idle channels in the analog cellular systems to achieve data rates of 19.2 Kbps .

GSM and CDMA marked the modern beginning of wireless data transfer. These standards included provisions for data transmission speeds of $9.6 \mathrm{Kbps}-$ 14.4 Kbps . These transmissions were digital rather than analog, and the coverage was better than that of previous wireless networks.

Mainstream Wireless LAN (WLAN) devices and products began with the original 802.11 standard. This standard was developed in 1997 by IEEE. In the years to follow, the standard was enhanced and given letter notations after the 802.11 name. The enhancement standards include 802.11b, 802.11a, and 802.11g. The letter following 802.11 represents the task group that defines the extension to the standard. Enhancements of 802.11 brought forth increases in data rate and functionality. This eventually would lead to the rapid progression of WLAN products. In July of 1999, IEEE ratified 802.11 b and 802.11 a . Nearly four years later, in June of $2003,802.11 \mathrm{~g}$ was ratified by IEEE (WLAN Standards, 2003).

Wireless Technology

In order to begin a discussion on the concepts of wireless technology, it is essential to explore some of the terminology that is used when discussion wireless networks. Two important terms that will be mentioned are complementary code keying modulation (CCK) and orthogonal frequency division multiplexing modulation (OFDM).

CCK was adopted in 1999 to replace the Barker code in wireless digital networks. A complementary code contains a pair of finite bit sequences of equal length, such that the number of pairs of identical elements with any given separation in one sequence is equal to the number of pairs of unlike elements having the same separation in the other sequence. A wireless network that uses CCK is capable of transferring more data per unit time for a given signal bandwidth than wireless
network using the outdated Barker code. This is possible because CCK makes more efficient use of the bit sequences.

OFDM is a method of digital modulation in which a signal is split into several narrowband channels. These channels are split at different frequencies. OFDM was first examined in the 1960s when research was performed to discover a way to minimize interference among channels near each other in frequency. OFDM is very similar to frequency division multiplexing (FDM). The main difference between the two is the way in which the signals are modulated and demodulated. Priority is given to minimizing the interference among the channels and symbols comprising the data stream. Less priority is given to perfecting individual channels. OFDM is used in European digital audio broadcast services. OFDM is also being considered as a method of obtaining high-speed digital data transmission over conventional telephone lines (Vaughan-Nichols, 2002).

OFDM has been proven to be a superior technology, but numerous incompatible OFDM standards may prove to limit the usefulness of the technology. The principle driving force behind the increasing popularity of OFDM in the wireless world is the ubiquitous demand for faster data speeds. Multimedia applications are also becoming more prevalent in the communication world. Such applications are data intensive, and require higher bandwidths. OFDM relies on high-speed digital signal processors which make it capable of satisfying the desires of those wishing for higher data rates (Vaughan-Nichols, 2002).

Another sought-after quality of OFDM is the reduced interference. A common form of interference associated with wireless communication is called multipath distortion or delay. This type of delay occurs when a transmitted signal is echoed off objects in a room such as walls, floors, and furniture. As a result of these echoed signals, series of signals reach the receiving antenna at different times because they travel different paths. OFDM protects against this interference through forward error correction. OFDM also transmits each bit relatively slowly. This method simply alters the number of bits sent per second by the transmitter. For example, a system that wished to send 1 Megabit per second could opt to send 1 bit per microsecond. This would give exactly 1 Megabit per second. However, in the case of a delayed transmission of more than 1 microsecond, an overlap would occur and interference would be produced. To combat this, a system can send 1000 bits in parallel over 1000 OFDM subchannels. In this case, one bit can be transmitted every millisecond and the 1 Megabit per second data rate would be achieved. Through this method, a signal delay of more than 1 microsecond would only overlap onethousandth of the next bit transmission period. This reduces the interference to nearly nothing (Vaughan-Nichols, 2002).

One major issue surrounding the implementation of OFDM is the amount of power it consumes. An OFDM component is designed to run at a system's peak power usage. The problem occurs in battery-powered devices such as laptops and handheld devices. Since wireless technology's major advantage is its convenience,
many users wishing to access a wireless network will be using a battery-powered device (Vaughan-Nichols, 2002).

WLANS

Wireless local area networks or WLANs have been around for many years. Only recently has the technology become more understood and prominent in the market. WLANs operate in the Industrial, Scientific, and Medical (ISM) frequency spectrum. Any product can use this spectrum as long as it complies with certain regulatory rules. These regulatory rules include characteristics such as radiated power and modulation methods (Held, 2001).

The two major ISM bands are the 2.4 GHz band and the 5.7 GHZ band. The 5.7 GHz band is also referred to as the National Industrial Infrastructure (NII) band. Several WLAN devices use these bands because the FCC does not require licensing. Microwaves and many portable phones operate on the 2.4 GHz band. Some portable phones can be found to operate on the 5.7 GHz band (Held, 2001).

As mentioned earlier, wireless networks raise concerns about the security of information being sent through the air. The current security standard for WLANs is WEP (Brain, 2005). In WEP, administrators deploy a secret key on both the access point and wireless device. The key is then used to encrypt data and check data integrity. The access point can also use the key to authenticate its clients.

As wireless networks become more widely used in personal and business applications, it is essential for users to have ample information on the devices used to
access the wireless networks. When a network administrator implements access points in a wireless network, it is essential to provide ample security measures for the network. In general, wireless access points are shipped by a manufacturer with WEP disabled. An administrator must realize this, and enable WEP before deploying the access points. Other security features with the access point are assigned default values by the manufacturer. It is imperative that these values be changed before the deployment of the access point. Such features include passwords, the simple network management protocol or SNMP parameters, channel selection, dynamic host configuration protocol or DHCP setup, and the firewall configuration.

Wireless Standards

Currently, the IEEE has three standards for wireless local area networks. These standards are identified as $802.11 \mathrm{~b}, 802.11 \mathrm{a}$, and 802.11 g .

802.11b

802.11b was ratified by the IEEE in July of 1999. This standard extends the original IEEE 802.11 direct sequence spread spectrum standard to operate up to 11 Mbps. 802.11 b operates in the 2.4 GHz spectrum using CCK modulation (Stallings, 2004). One major setback with 802.11 b is that it is not interoperable with 802.11 a products. However, 802.11 b covers a larger area than 802.11 a, therefore, less access points are needed. While the specifications of 802.11 b indicate data speeds of up to 11 Mbps , the expected maximum throughput of 802.11 b is about 5.8 Mbps . This rate decreases as the distance from the access point increases. A user can expect to have
speeds of 5.8 Mbps up to 150 feet away from an 802.11 b access point. At 200 feet, a user can expect to have a maximum throughput of 3.7 Mbps . At 300 feet, the maximum throughput drops to only 0.9 Mbps (WLAN Standards, 2003).

802.11a

802.11a was ratified by the IEEE at the same time as 802.11 b. 802.11 a is significantly different than the 802.11 b standard. 802.11 a products operate in the 5 GHz spectrum. 802.11a was designed for higher bandwidth applications that 802.11b. 802.11a uses OFDM modulation on up to 12 discrete channels (Stallings, 2004). The theoretical maximum data rate of 802.11 a is 54 Mbps . However, a user can expect a maximum throughput of about 24.7 Mbps . The range of 802.1 la is considerably less than that of 802.11 b . The maximum expected data rate of 24.7 Mbps can only be reached at distances of 0 to 50 feet from an access point. From 50 to 100 feet, a user can expect a maximum rate of 19.8 Mbps .802 .11 a is not capable of transmitting over distances greater than 200 feet (WLAN Standards, 2003).

802.11g

802.1 lg is the standard that will be used in this experiment. 802.11 g is the most recent of the wireless local area network standards to be ratified. In July of 1999, an 802.11 g subcommittee was tasked to extend the 2.4 GHz spectrum to data rates faster than 20 Mbps (Stallings, 2004). In June of 2003, the 802.11 g standard was ratified as a result of the works of the committee. 802.11 g has a theoretical
maximum data rate of 54 Mbps , and it is backwards compatible with 802.11 b devices. 802.11 g specifies OFDM and CCK as the mandatory modulation schemes with 24 Mbps as the maximum mandatory data rate. Optional data rates of 36,48 , and 54 Mbps are also provided.

Figuring out the actual expected throughput of 802.11 g networks is slightly more complex than that of 802.11 a and 802.11 b . The compatibility of 802.11 g with 802.11 b makes it necessary to consider 802.11 b products in the area when determining throughput. Performance is best in environments where an 802.11 g access point is only communicating with 802.11 g clients in a homogeneous WLAN. In such an environment, the data rate within 75 feet of the access point is 54 Mbps and the throughput is $22-24 \mathrm{Mbps}$.

As mentioned before, one of the main advantages of 801.11 g is its backward compatibility with 802.11 b products. 802.11 g uses the same radio signaling as 802.11 b at the lower four 802.11 g data rates. This allows 802.11 g networks to support 802.11 b devices when migrating to the higher performance standard.

In a mixed environment of 802.11 g and 802.11 b devices, it is essential to have protection mechanisms to manage the communication. 802.11 b devices are not capable of hearing when airspace is busy with 802.11 g OFDM signals. Protection devices are used to prevent 802.11 b clients from transmitting during the period when 802.11 g OFDM signals are being transmitted. This is accomplished by sending a short 802.11 b rate message signal to 802.11 b devices ordering them not to transmit during a specified period of time (WLAN Standards, 2003).

There are two signaling methods that are used in mixed $802.11 \mathrm{~g} / \mathrm{b}$ environments. These two methods are request to send/clear to send (RTS/CTS), and CTS-to-self. The RTS/CTS is exactly what the term implies. A client will make a request to send a packet, and it will wait for clearance before sending the packet. The CTS-to-self method sends a CTS message using an 802.11 b rate to clear the air. This message will immediately be followed with data using an 802.11 g data rate (WLAN Standards, 2003).

CHAPTER III

METHODOLOGY

As mentioned in the problem statement, the purpose of this thesis is to determine the factors that have the greatest impact on the performance of a wireless network using OPNET IT Guru as a modeling tool. The most efficient way to determine this is to do an experimental design. The experimental design will consist of combining factors in various ways to determine the affect on the performance of the network. For the purpose of this thesis, the performance of the network will be based on the total delay (in seconds) that can be anticipated with the given network scenario.

There are various research methods that can be utilized to collect the desired data for and study. These methods include but are not limited to theoretical, experimentation, and simulation.

A theory can be defined as "a set of systematically interrelated concepts, definitions, and propositions that are advanced to explain and predict phenomena (facts)."(Cooper, 2001) Theoretical research is performed in order to explain or predict what goes on around us. Theoretical research is generally complex, abstract, and includes several variables.

Experimentation in research involves intervention by the researcher that goes beyond that required for measurement. In most cases, a researcher will manipulate a variable in a specified setting, and make observations of the effects it has on the studied subjects. Experimentation usually includes independent and dependent variables. Independent variables are the variables that can be changed or manipulated by the researcher. Dependent variables are those variables that change as a response to the changing independent variables.

The method of research chosen for this Thesis is simulation research.
Simulations are most commonly used in operations research. Characteristics of various conditions in actual situations can be represented in mathematical models when simulations are performed. Simulation research was chosen for this Thesis because a real-life network needs to be modeled in order to evaluate the performance. It is impractical to perform experimentation because of the number of devices that would be necessary to gather for this research. Theoretical research does not apply to this Thesis because an evaluation is being performed rather than a development of Wireless Technology theory. Therefore, the logical choice of research is simulation research.

Network Simulators

The best way to gain an understanding of how a network will perform and function is to actually set up the network and run various tests. However, this can take valuable time, and cost lots of money. In most cases, it is not practical to run
trial and error experiments with network implementations. Therefore, network simulators are the best way to decide the most efficient way to set up a functional network. Simulators allow an administrator to perform various tests using various scenarios in order to obtain optimal performance for a network. Simulators are highly effective in saving time and money in the network implementation and installation phases. The market is currently saturated with network simulators for researchers, network administrators, and universities to use as a tool to implement an efficient network. The choice of simulator is based on what the individual or individuals are looking to gain from the experiments. Some simulators are designed just for wireless networks, while others are designed to evaluate a network's interaction at the physical and MAC layers. This section will give a basic overview of some of the network simulators on the market today, including OPNET IT Guru.

QualNet

In December of 2004, Scalable Network Technologies launched QualNet Version 3.8. This particular program can be used to design and test communication networks. This includes ad-hoc wireless networks as well as other wireless networks and wired networks. QualNet is equipped with the capability to accept packet data traffic from a real network. This capability is made possible through the add-on called the Real-time Interface Module. This add-on gives QualNet the capability to directly support hardware-and-software-in-the-loop simulation (Scalable Networks, 2004). Some of the protocol models for Version 3.8 include the following:

- Policy Based routing
- Session Initiated Protocol
- Routing Information Protocol next generation
- Address Resolution Protocol
- Bordercast Resolution Protocol

The wireless physical models include the following:

- Microwave
- Fast Rayleigh Fading
- Advanced Stand Alone Prediction System Propagation
- Automatic Link Establishment for High Frequency Radios
- Weather Model for Troposphere Fading

QualNet WiFi Network Simulator

In May of 2004, Scalable Network Technologies released QualNet WiFi
Network Simulator. This software is a WLAN simulation tool. This software is designed to simulate the interaction between the MAC and physical layers of wireless networks. The software contains a library of wireless protocols. It also contains wireless access points, distributed coordination functions, point coordination functions, power consumption and management analysis, and dynamic association and reassociation analysis (Scalable Networks, 2004).

GloMoSim

GloMoSim is a commonly used network simulator for the performance evaluation of wireless ad hoc routing protocols. GloMoSim contains a scalable simulation environment for both wireless and wired network systems. This software was designed using parallel discrete event simulation capability. This software currently supports protocols for purely wireless network environments. The designers of GloMoSim designed their software using a layered approach similar to the OSI layered network architecture. The layers used in GloMoSim include the following:

- Mobility
- Rapid Propagation
- Radio model
- Packet Reception Models
- Data Link (MAC)
- Network (Routing)
- Transport
- Application

While GloMoSim is an extremely powerful network simulator, it has one major disadvantage. The range of users that can use GloMoSim is very narrow, and it may not be practical for some applications. In order to run GloMoSim, a user must have what is known as the Parsec compiler. The user also must be familiar with the parsec
compiler in order to develop protocols in GloMoSim. The user must also have knowledge of C code; as Parsec is a C-based simulation language. It is also necessary to write code in C when developing protocols (GloMoSim, 1999).

CHAPTER IV

OPNET IT GURU

The network simulator chosen for this experiment is OPNET IT Guru.
OPNET IT Guru has the ability to model an entire network including routers, switches, protocols, servers, as well as the individual applications they support. IT Guru is capable of simulating the performance of wireless networks as well as wired networks and hybrid networks. The OPNET environment is extremely user friendly, and provides a sense of reality that makes it easier to set up modeled networks.

Figure 4.1 shows a screen capture from OPNET IT Guru.

Figure 4.1. Virtual Private Network in OPNET IT Guru

Figure 4.1 shows a very basic image in OPNET. The capture shows a map of the United States with three subnets placed in the cities of New York, Dallas, and Miami. OPNET allows you to choose various scales of the networks you wish to simulate. These scales include World, Enterprise, Campus, Office, and Logical. There is also a "choose from maps" option. This option allows you to choose a map from one of the several that are stored in OPNET's database. As in Figure 4.1, the user can choose the map of a country, and place subnets or networks in various locations around the country. This particular scenario may simulate a franchise that has corporate headquarters in Dallas, New York, and Miami. It is beneficial to the franchise to have all of its headquarter locations directly connected to each other to expedite communication and data transfer. For such applications, many companies choose to use what is called a Virtual Private Network (VPN). A private network is a network which is composed of company computers and leased telephone lines. These networks are very secure, and they work perfectly fine. Someone wishing to intrude on the company's information transfers must physically wiretap the telephone lines. The major problem with this concept is the extreme cost. In order to lease these lines, companies must pay thousands of dollars per month (Tanenbaum, 2003).

Once public data networks came about, many companies figured it would be more economical to place their data traffic on public networks. However, this brought about security concerns. This is when the Virtual Private Network was invented. A VPN is an overlay network on top of public networks. VPNs have most of the properties of private networks. In Figure 4.1 there are three subnets or offices.

Within each office are several computers that are placed behind a firewall. Between each of the offices or subnets is a link. The links are connected to the firewall in each office. In this situation, a firewall is a router that is set up to only allow traffic from specific networks to flow to the other side. All other traffic will be blocked (Tanenbaum, 2003).

OPNET IT Guru also has options that allow a user to configure a network based on its topology. Once OPNET is opened, the user can choose the "Topology" menu from the toolbar. This menu contains an option called "Rapid Configuration." The Rapid Configuration option allows a user to choose the topology of the modeled network from an array of topologies. Once the topology is chosen, the user is then able to choose the type of nodes and number of hosts to be placed on the network. In network topologies such as the Star topology, the user is able to choose the radius of the network. Rapid Configuration is a useful tool that assists in keeping the uniformity of a modeled network. If a user wishes to model a network that is irregular, then he/she cannot use the rapid configuration option. Figure 4.2 shows the Rapid Configuration window in OPNET IT Guru.

Figure 4.2. Rapid Configuration Window in OPNET IT Guru

Once a user determines the devices and manner in which to organize the network, he/she must configure the network. Configuration of a network model in OPNET IT Guru consists of setting up tasks, applications, and profiles that will be used on the modeled network.

In OPNET IT Guru, a task is something that a user wishes to be performed when an application is run. There are example tasks contained with OPNET IT Guru, or a user can define his/her own tasks. When defining a task, a user must configure various phases for the task. For example, if a user wants to create an application to read the temperature from a remote microcontroller the user must define the steps that need to be taken to acquire the temperature reading. The user might choose for a server and client to contact each other before the temperature reading takes place. This is the first phase of the task. The next phase will be for a client to actually take the reading. The third stage will be for the client to send the reading to the server or another computer. Finally, the server or other computer will acknowledge the receipt of the temperature reading. Within the task configuration menu, a user can specify when a specific phase will begin, how much information is transmitted during the phase, and how long the phase will last.

The next vital component to configuring a network model in OPNET IT Guru is defining applications. Applications are programs that a user wishes to run on a modeled network during a simulation. Applications include Email, File Transfer Protocol, Web Browsing, Print, Telnet, Database, Video Conferencing, and Voice. A user can also create custom applications by defining tasks to be performed within an
application. When configuring an application, a user has the option of choosing the amount of data being transferred during the execution of the application, the duration of the application, and how often the application is executed.

In order for OPNET to know which hosts will perform which applications, the Profile configuration tool must be used. Profile configuration allows a user to assign various applications to various hosts on the network. A user can create a number of profiles by defining the applications used for a particular profile. A user will then assign a profile to the desired host or hosts on the modeled network. For example, in a classroom, there is a teacher and many students. In order to model the traffic on a classroom network in OPNET, the user must setup a profile for the teacher and the student. The teacher might have access to File Transfer, Web Browsing, and Email; while the student will only have access to File Transfer. An OPNET user will configure a profile for a teacher which will include the File Transfer, Web Browsing, and Email applications. The user will configure a separate profile for the student which will only include the File Transfer application. The OPNET user will then assign these profiles to the appropriate hosts on the modeled network. Figure 4.3 shows the wireless network that will be modeled for this Thesis.

Figure 4.3. Wireless Local Area Network in OPNET IT Guru

Once a user has configured the network, the actual simulation of the network can take place. Prior to running a simulation in OPNET IT Guru, it is essential to tell OPNET IT Guru what to record from the simulation. A user must go to the "Choose Individual Statistics" menu in OPNET in order to do this. The three types of statistics that can be recorded in OPNET are Global Statistics, Node Statistics, and Link Statistics. Global Statistics show results from the entire network. Node Statistics will only show information about a selected node on the modeled network. Link Statistics will only show information about a selected link on the modeled network.

Subsequent to selecting statistics to gather from a simulation, the actual event simulation can be performed. In order to perform a simulation, OPNET needs to know the duration of the simulated model, the value for each statistic, the update interval, and the seed of the simulation. The seed is a value OPNET uses to tell the register when to begin counting. This value is merely used to add statistical confidence to various simulation runs. Figure 4.4 shows the Simulation Configuration window in OPNET IT Guru.


```
    Duration 1 , hmar[s) I
        Seed }12
    Vahues per slatisic: 100
        Update interyed 100000 Evenls
```

 IV Endble simuditionbog
 Bin \quad Help \quad Cancel $\quad \mathrm{K}$

Figure 4．4．Simulation Configuration Window in OPNET IT Guru

CHAPTER V

SIMULATION SETUP

Factors

The factors chosen for this experiment are application load and number of hosts. An application is a program that a user will be running on the computer that will require access to the server on the network. Applications that will be examined for this experiment will include Email, Web Browsing, and File Transfer Protocol (FTP). OPNET IT Guru allows a user to specify the load that will be expected from each of these applications. There are options for light and heavy loads. The experiment will consist of testing the network performance for light and heavy loads of each of the mentioned applications. The second factor is the number of hosts on the network. The number of hosts will take on the discrete values of 10,20 and 30 .

Response

The sole response that will be examined in this experiment is the total delay in seconds. The delay will be used to evaluate the overall performance of the WLAN. Delay was chosen as the evaluating response due to the nature in which network simulators model network performance. The most accurate response that can be examined is the delay of the traffic over the network. Other responses such as data rate are extremely unpredictable in the wireless environment. The routing of packets
in a wireless network is different than the routing of packets in a wired network, and this variation makes the data rates of wireless networks unpredictable.

Assumptions of Study

Wireless networks are extremely difficult to model using a network simulator. The transport medium for wireless networks is the atmosphere. Therefore, it is difficult to predict how a wireless network will perform because the performance can vary based on changing atmospheric conditions and surroundings. For this experiment, it is necessary to make some assumptions to facilitate the results of the experiment.

The first assumption that will be made is that each device on the network will be an 802.11 g device. As mentioned earlier, the 802.11 g standard requires that 802.11 g products be backward compatible with 802.11 b products. When an environment is mixed with 802.11 b and 802.11 g products, the performance of the network will diminish. Therefore, this experiment will assume that there are no 802.11 b devices or products within transmitting range of the modeled network. It is also assumed that the speed of the processors for each computer on the network is the same. Processor speed of a computer is important because the computer can only operate as fast as the processor can process the information. If the network were to include computers with different processing speeds, the network can only be as fast as the slowest computer connected to the network. Realistically, the network will actually be slower than the slowest computer due to the bottleneck that will be created
by the different speeds of the processors. Therefore, for simplicity and practicality, this experiment will assume that all computers on the network will have the same processor speed.

Limitations of Simulator

There is one major limitation that comes from performing this experiment with OPNET IT Guru. The only version of the software available for this Thesis is the Academic version of OPNET IT Guru. Inherent to this version are some designed limitations of features. The major limitation that will affect this experiment is the number of events that can be simulated for any given setup. The Academic version only allows $50,000,000$ events to be simulated for any one simulation run. This means some of the parameters for the experiment will need to be altered to stay under this limit. This also means that some of the simulations will be run for less than a simulated hour while others will be run for an entire simulated hour. In the "Results" section of this thesis, it will be noted when an experiment was run for less than an hour. Results from experiments running less than an hour will only be compared with results in the same time frame of other experiments. For example, if one experiment ran for 25 minutes while another ran for an hour, only the results from 25 minutes will be used for the latter experiment.

Setup

Table 5.1 shows the parameters and their values that will be used for each simulation in the research. The first column shows the number of hosts or computers involved in the particular simulation. The discrete values for this column are 10, 20, 30, and 40. The second column is labeled "seed". OPNET uses this value to initialize the state of the random number generator. Using different seed values for a simulation with all other parameters the same will allow for statistical confidence to be established. This column can take on discrete values of 64,128 , or 1024. The final three columns show the applications that will be used in this research. The applications are Web Browsing (Web), File Transfer Protocol (FTP), and Email. The values in these columns will either be heavy or light. Heavy and light refer to the loads at which the applications will be executed. In Web and Email, the main different between heavy and light is how often the application is accessed in a given amount of time by any one host. For FTP, the file size on a light load is 1.5 MB as opposed to the 2.0 MB size of the file for the heavy load. Like Email and Web, the number of times the application is executed during a given amount of time by any one host also varies between light and heavy.

Each parameter and factor was chosen to simulate real-world applications. The models are intended to simulate a typical classroom environment. The file size was chosen based on the size of a typical PowerPoint presentation with $30-40$ slides. In a typical classroom setting, students will need to download these particular
presentations from an instructor's website in order to follow the lecture. The seeds were chosen to simply add statistical confidence to the data. The actual value of the seed is not important for this experiment; however it is important to choose values that are significantly different.

Number of Hosts	Seed	Web	FTP	Email
$10,20,30$	$64,128,1024$	Light	Light	Light
$10,20,30$	$64,128,1024$	Heavy	Light	Light
$10,20,30$	$64,128,1024$	Heavy	Heavy	Heavy

Table 5.1. Simulation Parameters

Chapter VI

RESULTS

The purpose of this thesis was to determine the factors that have the greatest effect on the performance of a Wireless Local Area Network. Specifically, the research used factors such as application load and number of hosts to determine one response, delay. Through the use of OPNET IT Guru, several simulations were performed to model a Wireless Local Area Network using different combinations of parameters. This chapter will present the data and analysis that came from those experiments.

To begin, various graphs will be examined from the simulations that were performed in OPNET IT Guru. After that, a General Linear Model from Minitab will be presented. Finally, all given data will be analyzed using full factorial design of experiments to show the parameters that had the greatest affect on the delay.

Figure 4.7. Overlaid statistics 30 Hosts Heavy Loads vs. 10 Hosts Heavy Loads

Figure 4.7 shows overlaid statistics of two separate simulations. The top line indicates a simulation with 30 hosts and heavy loads on all applications. The bottom line shows the same heavy load on applications, but for only 10 hosts. It is only necessary to compare the data up until the point where the red line ends. This is when the simulation was halted due to limitations in the software. Up until this point, a great difference can be seen between the delays of the two scenarios.

Figure 4.8. 30 Hosts Heavy Loads vs. 30 Hosts Light Loads

While Figure 4.7 examined the factor of number of hosts, Figure $4.8 \cdot$ examines the factor of application load. The top line indicates a scenario in which load for all applications is heavy, and the number of hosts is 30 . The bottom line indicates a scenario with 30 hosts, and a light load for all applications. It is easy to see that there is a great difference between the delays for each scenario; however it is not easy to determine if this difference is greater than the difference in Figure 4.7. This will be determined using other statistical means.

Analysis

In order to provide a proper analysis of the data, a statistical model must be presented. A general linear model was created using Minitab in order to achieve statistical confidence in the acquired data. The model shows the statistical significance of number of hosts and amount of application load in relation to the response of delay. Table 6.1 shows the analysis of variance for delay. The factors used to perform this analysis are number of hosts and application load.

Source	P Value
Hosts	0.000
Load	0.000
Host*Load	0.000

Table 6.1. Analysis of Variance P-values

The table lists the statistical significance of hosts, load, and the interaction of hosts and load. Minitab yielded a p-value of less than 0.00001 for each of these factors. Therefore, it can be determined that each of the factors in the table have a significant effect on the delay. The next step is to determine which parameters of these factors have the most significant effect on the delay. In order to determine this, it is essential to perform a design of experiment analysis. For this particular application, a two-factor, full factorial design with replications is used. The following model is applicable to this case.

$$
y i j k=\mu+\alpha_{j}+\beta_{i}+\gamma_{i j}+e_{i j k}
$$

In this situation,
$y \mathrm{yjk}=$ response (observation) in the kth replication of experiment with factor A at level j and factor B at level i
$\mu=$ mean response
$\alpha_{j}=$ effect of factor A at level j
$\beta_{\mathrm{i}}=$ effect of factor B at level i
$\gamma_{\mathrm{ij}}=$ effect of interaction between factor A at level j and factor B at level i
$\mathrm{e}_{\mathrm{ijk}}=$ experimental error
Table 6.2 shows the collected mean delay from each simulation. The results from each seed are displayed in the table.

FACTORS	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
LLL	0.02036	0.04476	0.06072
	0.02744	0.03844	0.06895
	0.02105	0.04563	0.0806
HLL	0.02277	0.0402	0.05772
	0.02536	0.03625	0.07031
HHH	0.01966	0.04892	0.07331
	0.03288	0.07021	0.5031
	0.04279	0.0981	0.3505
	0.03892	0.08919	0.364

Table 6.2. Mean Delays for Various Interactions

Table 6.2 shows the mean delay for each interaction. Each interaction has three means due to the three seeds used for each simulation run. Table 6.3 shows the averages of these simulation runs.

FACTOR	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
LLL	0.02295	0.042943	0.07009
HLL	0.022597	0.04179	0.067113
HHH	0.038197	0.085833	0.405867

Table 6.3. Mean Delays of All interactions and Seeds

Table 6.3 shows the mean delay for all interactions and all seeds. The next step is to determine which factor has the greatest impact on the mean delay on the network. This is done by a simple factorial design of experiment calculation. By using the sum of squares calculation for each factor and their interaction, the percent variation can be determined. The variation percentage will show which factor or interaction of factors have the greatest impact on the mean delay of the network.

Table 6.4 shows the sum of squares calculation results and the variation percentage for the various factors.

Interaction		Variation Percentage
Sum of Square for Load (SSA)		28.58246
Sum of Squares for Hosts (SSB)		32.53149
Sum of Square for Hosts and Load	(SSAB)	34.72681
Error (SSE)		4.159248

Table 6.3. DOE Results
The allocation for variation is computed by using Equation 6.1 listed below.

$$
\begin{array}{r}
\sum_{i j k} y^{2} i j k=a b r \mu^{2}+b r \sum_{j j} \alpha^{2} j+a r \sum_{i} \beta^{2} i+r \sum_{i j} \gamma^{2} i j+\sum_{i j k} e^{2} i j k \\
\text { SSY }
\end{array}
$$

Equation 6.1. Allocation of Variation Equation

The final analysis step is to determine the confidence interval for the presented calculations. Table 6.4 shows each factor individually, along with the calculated confidence interval. In order for the factors to be considered statistically significant, the confidence interval must not contain zero.

Factor	Confidence Interval
LLL	$(-0.02979,-0.05675)$
HLL	$(-0.3128,-0.05825)$
HHH	$(0.101515,0.074554)$
10	$(-0472,-0.07416)$
20	$(-0.01826,-0.04522)$
30	$(0.105906,0.078945)$

Table 6.6. Confidence intervals for given factors

In order to compute these values, an F-value must be computed for each factor. This value is computed by dividing the mean square of the factor by the mean square of the error. The F -value is used because the degree of freedom is less than 30 . Once this F-value is calculated, any statistical software can produce an interval based on the amount of confidence the researcher desires. The figures in Table 4.6 are based on the 0.95 quantile.

CHAPTER VII

CONCLUSION

This Thesis research had three main goals. They were as follows:

1. To demonstrate how OPNET IT Guru can model networks; specifically Wireless Local Area Networks.
2. To demonstrate that increasing the number of hosts and/or the application load of a network will increase the delay.
3. To determine which parameter (if any), application load or number of hosts, causes delay to increase the most.

In order to achieve these goals, several simulations were performed to model a Wireless Local Area Network. The modeled network was to simulate a classroom setting in which students would access a Wireless Local Area Network in order to download presentations, check Email, or browse the web for resources. In order to demonstrate that OPNET could model this environment, it was necessary to perform simulations and provide graphs and data from the simulations. The graphs from the modeled network can be found in Appendix A, and the data spreadsheets can be found in Appendix B. The spreadsheets show a breakdown of the delay at each recorded interval during the simulation run. The graphs are a visual representation of the spreadsheets.

The second goal of this research was achieved by altering the parameters of each simulation. In order to demonstrate that application load and number of hosts caused an increase in delay, it was necessary to control the number of hosts and application load throughout each simulation. Table 5.1 in Chapter 5 demonstrates how the various parameters of the simulations were altered. By comparing Table 5.1 to the graphs and spreadsheets, it is clear that as the number of hosts and/or the application load was increased, the delay also increased.

The third goal of this research was achieved in the same manner as the second. However, an analysis tool other than graphs and spreadsheets was necessary to achieve the third goal. Therefore, a powerful statistical software program, Minitab, was used to create a General Linear Model of the collected data. In order to create the model, it was necessary to enter the data from the spreadsheets into the Minitab software.

The p-value of any given set of data is used to determine the statistical significance of the data. In Chapter 6, this value was used to determine how significant the collected data was. The tests concluded that the following factors and interactions were statistically significant.

Factor Interaction	P-Value
Hosts	0.0000
Load	0.0000
Hosts*Load	0.0000

Table 7.1. Factor Interaction and P-values for Collected Data
The table demonstrates that the given factor interactions have a p-value of 0.0000 or less than 0.00001 . All tests were performed using 95% confidence. Therefore, a p-value less than 0.05 would indicate that the data is statistically significant.

Once statistical significance was determined for the data, it was essential to demonstrate which of the factors had the greatest impact on the mean delay. This was determined by performing a full factorial design model. The following table from Chapter 6 shows the results of this analysis.

Interaction	Variation Percentage
Sum of Square for Load (SSA)	28.58246
Sum of Squares for Hosts (SSB)	32.53149
Sum of Square for Hosts and Load (SSAB)	34.72681
Error (SSE)	4.159248

Table 6.3. DOE Results

Table 6.3 is the most conclusive evidence of which factor has the greatest impact on the mean delay of the network. Using the variation percentage column, it is evident that the number of hosts has a greater impact on the delay than the application load. An even greater impact is shown by increasing both the number of hosts and the application loads together. However, the data demonstrates that increasing only the number of hosts alone will have a greater affect on the mean delay than increasing only the application loads alone.

Solutions

Due to the nature of the modeled network, it is difficult to offer a solution to the presented problem. The collected data and analysis show that increasing the number of hosts on the modeled network had a greater impact on the mean delay than increasing the application load on the network. If the modeled network was a wired network, the solution would be simple. In order to decrease the number of hosts on the network, an administrator could simply divide one network into two by adding another server. However, the modeled network is a wireless network, and adding another server would not solve the problem. The communication medium for a wireless network is the atmosphere. Therefore if you place two wireless routers in the same room, they will interfere with each other whether they are on a separate network or not. The only way to prevent the wireless routers from interfering with each other is to place them in a separate room, or out of transmitting range of each other. This solution is not practical to this Thesis because the network is modeled for
a single classroom. Therefore there is no feasible way to combat the problem of increasing delay due to increasing the number of hosts on the network other than reducing the number of hosts on the network.

References

Brain, Marshall (2005). How WiFi Works. Howstuffworks. Retrieved February 2, 2005, from http://money.howstuffworks.com/wireless-network.htm/printable.

Cooper, Donald R., \& Schindler, Pamela S. (2001). Business Research Methods. Boston: McGraw-Hill Irwin.

Gast, Michael (2002). Wireless LAN Security: A Short History. Retrieved June 8, 2005, from http://www.oreillynet.com/pub/a/wireless/2002/4/19/security.html.

GloMoSim (1999). Retrieved June 20, 2005 from http://pcl.cs.ucla.edu/projects/glomosim/.

Harwood, Mike (2003). Exam Cram 2: Network+. Que Certification.
Held, Gilbert (2001, December). The ABCs of IEEE 802.11. IT Pro.
Jiang, Michael, Hardy, Stephen, \& Trajkovic, Ljiljana (n.d.). Simulating CDPD Networks Using OPNET.

Scalable Networks Launches QualNet Software Version 3.8 (2004). Retrieved June 10, 2005, from http://www.scalablenetworks.com/news/press/pressreleases14.php.

Scalable Networks Technologies Releases QualtNet WiFi Network Simulator (2004). Retrieved June 10, 2005, from http://www.scalablenetworks.com/news/press/pressreleases 13.php.

Singh, Harkirat, \& Singh, Suresh (n.d.). Improving Wireless Network Capacity using Smart Antennas in OPNET.

Stallings, William (2004, September). IEEE 802.11: Wireless LANs from a to n. IT Pro.

Takai, Mineo, Martin, Jay, \& Bagrodia, Rajive (n.d.). Effects of Wireless Physical Layer Modeling in Mobile Ad Hoc Networks.

Tanenbaum, Andrew S. (2003). Computer Networks. Upper Saddle River, NJ: Prentice Hall PTR.

Vaughan-Nichols, Steven J. (2002, December). OFDM: Back to the Wireless Future. Computer.

WLAN Standards (2003, July). Retrieved June 2, 2005, from http://:www.54g.org.

Appendix A
Graph Results from OPNET Simulations

Figure A-1. Results from 10 Hosts, Light Application Loads, Seed 64

Figure A-2. Results from 10 Hosts, Light Application Loads, Seed 128

Figure A-3. Results from 10 Hosts, Light Application Loads, Seed 1024

Figure A-4. Results from 20 Hosts, Light Application Loads, Seed 64

Figure A-5. Results from 20 Hosts, Light Application Loads, Seed 128

Figure A-6. Results from 20 Hosts, Light Application Loads, Seed 1024

Figure A-7. Results from 30 Hosts, Light Application Loads, Seed 64

Figure A-8. Results from 30 Hosts, Light Application Loads, Seed 128

Figure A-9. Results from 30 Hosts, Light Application Load, Seed 1024

Figure A-10. Results from 10 Hosts, Heavy Web, Seed 64

Figure A-11. Results from 10 Hosts, Heavy Web, Seed 128

Figure A-12. Results from 10 Hosts, Heavy Web, Seed 1024

Figure A-13. Results from 20 Hosts, Heavy Web, Seed 64

Figure A-14. Results from 20 Hosts, Heavy Web, Seed 128

Figure A-15. Results from 20 Hosts, Heavy Web, Seed 1024

Figure A-16. Results from 30 Hosts, Heavy Web, Seed 64

Figure A-17. Results from 30 Hosts, Heavy Web, Seed 128

Figure A-18. Result from 30 Hosts, Heavy Web, Seed 1024

Figure A-19. Results from 10 Hosts, Heavy Application Loads, Seed 64

Figure A-20. Results from 10 Hosts, Heavy Application Loads, Seed 128

Figure A-21. Results from 10 Hosts, Heavy Application Loads, Seed 1024

Figure A-22. Results from 20 Hosts, Heavy Application Loads, Seed 64

Figure A-23. Results from 20 Hosts, Heavy Application Loads, Seed 128

Figure A-24. Results from 20 Hosts, Heavy Application Loads, Seed 1024

Figure A-25. Results from 30 Hosts, Heavy Application Loads, Seed 64

Figure A-26. Results from 30 Hosts, Heavy Application Loads, Seed 128

Figure A-27. Results from 30 Hosts, Heavy Application Loads, Seed 1024

Appendix B
Data Spreadsheets

Results from 10 Hosts, Light Application Loads, Seed 64

| Time (sec) | Delay (sec) | Time (sec) | Delay (sec; Time (sec) | Delay (sec) | Time (sec) | Delay (sec) | Time (sec) | Delay(sec) | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.001088 | 576 | 0.008788 | 1296 | 0.0463861 | 2376 | 0.0065348 | 3276 | 0.008391 | |
| 0 | 0.001088 | 576 | 0.008788 | 1296 | 0.0463861 | 2376 | 0.0065348 | 3276 | 0.008391 | |
| 36 | 0.0633271 | 612 | 0.00711 | 1332 | 0.0462233 | 24.12 | 0.0097637 | 3348 | 0.008092 | |
| 36 | 0.0633271 | 612 | 0.00711 | 1332 | 0.0462233 | 2412 | 0.0097637 | 3348 | 0.008092 | |
| 72 | 0.1520328 | 648 | 0.010935 | 1404 | 0.0096235 | 2448 | 0.008997 | 3384 | 0.00805 | |
| 72 | 0.1520328 | 648 | 0.010935 | 1404 | 0.0096235 | 2448 | 0.008997 | 3384 | 0.00805 | |
| 108 | 0.0901439 | 720 | 0.009553 | 1548 | 0.0078047 | 2484 | 0.000672 | 3420 | 0.000672 | |
| 108 | 0.0901439 | 720 | 0.009553 | 1548 | 0.0078047 | 2484 | 0.000672 | 3420 | 0.000672 | |
| 180 | 0.0453899 | 756 | 0.007603 | 1656 | 0.0046876 | 2520 | 0.0092858 | 3456 | 0.009314 | |
| 180 | 0.0453899 | 756 | 0.007603 | 1656 | 0.0046876 | 2520 | 0.0092858 | 3456 | 0.009314 | |
| 216 | 0.0725138 | 792 | 0.000672 | 1800 | 0.008624 | 2556 | 0.0055596 | 3492 | 0.004353 | |
| 216 | 0.0725138 | 792 | 0.000672 | 1800 | 0.008624 | 2556 | 0.0055596 | 3492 | 0.004353 | |
| 252 | 0.1666555 | 864 | 0.007334 | 1872 | 0.0090268 | 2736 | 0.0429722 | 3528 | 0.00947 | |
| 252 | 0.1656555 | 864 | 0.007334 | 1872 | 0.0090268 | 2736 | 0.0429722 | 3528 | 0.00947 | |
| 288 | 0.0939236 | 900 | 0.008577 | 1944 | 0.0088924 | 2772 | 0.0479297 | | | |
| 288 | 0.0939236 | 900 | 0.008577 | 1944 | 0.0088924 | 2772 | 0.0479297 | | | |
| 324 | 0.0079704 | 936 | 0.000672 | 1980 | 0.0080896 | 2844 | 0.0082029 | | | |
| 324 | 0.0079704 | 936 | 0.000672 | 1980 | 0.0080896 | 2844 | 0.0082029 | | | |
| 360 | 0.0081855 | 972 | 0.00826 | 2052 | 0.0065197 | 2880 | 0.0045934 | | | |
| 360 | 0.0081855 | 972 | 0.00826 | 2052 | 0.0065197 | 2880 | 0.0045934 | | | |
| 396 | 0.0469315 | 1080 | 0.010132 | -2088 | 0.0088164 | 3024 | 0.0061638 | | | |
| 396 | 0.0469315 | 1080 | 0.010132 | 2088 | 0.0088164 | 3024 | 0.0061638 | | | |
| 432 | 0.008803 | 1116 | 0.008659 | 2160 | 0.0083047 | 3168 | 0.0080267 | | | |
| 432 | 0.008803 | 1116 | 0.008659 | 2160 | 0.0083047 | 3168 | 0.0080267 | | | |
| 468 | 0.0087561 | 1152 | 0.006431 | 2196 | 0.0080026 | 3204 | 0.0076091 | | | |
| 468 | 0.0087561 | 1152 | 0.006431 | 2196 | 0.0080026 | 3204 | 0.0076091 | | | |
| 540 | 0.0060201 | 1188 | 0.007587 | 2340 | 0.008442 | 3240 | 0.0043792 | 1 | | |
| 540 | 0.0060201 | 1188 | 0.007587 | 2340 | 0.008442 | 3240 | 0.0043792 | | | |

Table A-1. Results from 10 Hosts, Light Loads, Seed 64

Results from 10 Hosts, Light Application Loads, Seed 128

Time (sec)	Delay (sec)	Time (sec)	Delay (sec)	Time (sec)	Delay (sec)	Time (Delay (sec)	Time (sec)	Delay (sec)
0	0.0443188	720	0.0060393	1296	0.0079456	2376	0.0045113	3096	0.0048295
0	0.0443188	720	0.0060393	1296	0.0079456	2376	0.0045113	3096	0.0048295
36	0.0451186	756	0.0434575	1332	0.0086535	2412	0.0066229	3132	0.0078773
36	0.0451186	756	0.0434575	1332	0.0086535	2412	0.0066229	3132	0.0078773
72	0.0474957	792	0.0464966	1368	0.0452126	2484	0.0465144	3168	0.0062729
72	0.0474957	792	0.0464966	1368	0.0452126	2484	0.0465144	3168	0.0062729
108	0.1092586	828	0.0082862	1584	0.00859	2520	0.022969	3240	0.0081999
108	0.1092586	828	0.0082862	1584	0.00859	2520	0.022969	3240	0.0081999
144	0.1849133	900	0.006949	1764	0.0045185	2556	0.0081009	3276	0.000672
144	0.1849133	900	0.006949	1764	0.0045185	2556	0.0081009	3276	0.000672
180	0.1256939	972	0.0084789	1836	0.0080583	2592	0.0092755	3312	0.0074728
180	0.1256939	972	0.0084789	1836	0.0080583	2592	0.0092755	3312	0.0074728
216	0.0802299	1008	0.0476142	1872	0.000672	2628	0.000672	3420	0.0061677
216	0.0802299	1008	0.0476142	1872	0.000672	2628	0.000672	3420	0.0061677
252	0.0728121	1044	0.0082195	1908	0.0070095	2700	0.0072822	3564	0.0061932
252	0.0728121	1044	0.0082195	1908	0:0070095	2700	0.0072822	3564	0.0061932
288	0.0463077	1080	0.0059971	1944	0.000672	2736	0.0468884		
288	0.0463077	1080	0.0059971	1944	0.000672	2736	0.0468884		
360	0.0062831	1116	0.0061278	2088	0.0060355	2772	0.0463165		
360	0.0062831	1116	0.0061278	2088	0.0060355	2772	0.0463165		
540	0.008557	1152	0.0427597	2124	0.0066727	2880	0.0081881.		
540	0.008557	1152	0.0427597	2124	0.0066727	2880	0.0081881		
576	0.0079735	1188	0.0477842	2160	0.000672	2916	0.0468261		
576	0.0079735	1188	0.0477842	2160	0.000672	2916	0.0468261		
648	0.0076805	1224	0.0855122	2232	0.0085378	2988	0.0085893		
648	0.0076805	1224	0.0855122	2232	0.0085378	2988	0.0085893		

Table A-2. Results from 10 Hosts, Light Loads, Seed 128

Results from 10 Hosts, Heavy Application Loads, Seed 1024

Time (sec)	Delay (sec)								
0	0.0470624	648	0.000672	1584	0.0462314	2484	0.0061138	3420	0.0082497
0	0.0470624	648	0.000672	1584	0.0462314	2484	0.0061138	3420	0.0082497
36	0.0091292	684	0.006174	1728	0.0067242	2664	0.0079869	3564	0.0092615
36	0.0091292	684	0.006174	1728	0.0067242	2664	0.0079869	3564	0.0092615
72	0.000672	720	0.0099393	1764	0.010081	2736	0.0080155		
72	0.000672	720	0.0099393	1764	0.010081	2736	0.0080155		
108	0.0819496	756	0.0086259	1800	0.000672	2772	0.0084322		
108	0.0819496	756	0.0086259	1800	0.000672	2772	0.0084322		
144	0.0648341	828	0.0461745	1872	0.0080561	2808	0.000672		
144	0.0648341	828	0.0461745	1872	0.0080561	2808	0.000672		
180	0.0755311	864	0.0459916	1908	0.0463216	2880	0.0083935		
180	0.0755311	864	0.0459916	1908	0.0463216	2880	0.0083935		
216	0.0764307	936	0.0083029	1944	0.0085072	2952	0.0089183		
216	0.0764307	936	0.0083029	1944	0.0085072	2952	0.0089183		
252	0.0831627	1008	0.0092266	2016	0.0085763	2988	0.000672		
252	0.0831627	1008	0.0092266	2016	0.0085763	2988	0.000672		
288	0.1515312	1152	$0: 0352915$	2052	0.0066666	3060	0.0099151		
288	0.1515312	1152	0.0352915	2052	0.0066666	3060	0.0099151		
324	0.000672	1188	0.0466637	2088	0.0408867	3096	0.0056537		
324	0.000672	1188	0.0466637	2088	0.0408867	3096	0.0056537		
396	0.0062292	1224	0.0046626	2124	0.0477067	3132	0.0062921		
396	0.0062292	1224	0.0046626	2124	0.0477067	3132	0.0062921		
432	0.0045876	1296	0.0067624	2268	0.0083393	3204	0.0087373		
432	0.0045876	1296	0.0067624	2268	0.0083393	3204	0.0087373		
468	0.0080432	1368	0.0084632	2304	0.000672	3240	0.0080245		
468	0.0080432	1368	0.0084632	2304	0.000672	3240	0.0080245		

Table A-3. Results from 10 Hosts, Heavy Loads, Seed 1024

Results from 20 Hosts, Light Application Loads, Seed 64

Table A-4. Results from 20 Hosts, Light Loads, Seed 64

Results from 20 Hosts, Light Application Loads, Seed 128

Tme (sec) Delay (sec)	Delay (sec)	(sec) Delay (sec)	(sec) Delay (sec)	(sec) Delay (sec)	(sec) Delay (sec)	e (sec) Delay (sec)
00.0451283	5400.0469752	10440.0063138	17280.009153	23040.0047197	28440.0056238	34560.000672
00.0451283	5400.0469752	10440.0063138	17280.009163	23040.0047197	28440.0056238	34560.000672
360.0520032	5760.0462461	10800.0074297	17640.0468676	23400.0102592	29520.0445448	34920.0472561
360.0520032	5760.0462451	10800.0074297	17640.0468676	23400.0102592	29520.0445948	34920.0472561
720.2052504	6120.0083709	11160.0095464	18000.0045769	23760.0458143	29880.0461466	35280.0469819
720.2052504	6120.0083709	11160.0095464	18000.0045769	23760.0458143	29880.0461466	35280.0469819
1080.3217561	6480.0472697	115200100846	18360.0467207	24120.0581673	30240.000672	
1080.3217561	6480.0472697	115200100846	18360.0467207	24120.0581673	30240.000672	
1440.370657	6840.0078682	12240.046765	18720.0378917	24480.0086279	30600.0072576	
1440.376057	6840.0078682	12240.046765	18720.0378917	24480.0086279	30600.0072576	
1800.367891	720000463366	12560.0459377	19080.0465241	24840.0072898	30960.0080934	
1800.367891	720000469365	12960.045937	19080.0465241	24840.0072898	30960.0080934	
2160.2721738	7560.0069186	13320.0440357	19440.0047626	25200.007871	31320.0075907	
2160.2721738	7560.0869186	13320.0440367	19440.047626	25200.007871	31320.0075907	
2520.2452152	7920.0069148	13680.0079274	19800.0073932	25560.000672	31680.0082146	
2520.2452152	7920.0069148	13680.0079274	19800.0073932	25560.000672	31680.0082146	
2880.8803344	8280.0062492	14400.0082572	20160.0464108	25920.0463012	32040.0049723	
2880.2803344	8280.0062492	14400.0082572	20160.0464108	25920.0463012	32040.0049723	
3240.1887453	8640.0885582	14760.0082759	20520.047319	26280.0483185	32400.0074164	
3240.1887153	8640.0085582	14760.0082759	20520.047319	26280.0483185	32400.0074164	
3500.0088456	9000.0058838	15120.0096533	21240.0100862	27000.0093017	32760.0059108	
3500.0088456	9000.0558838	15120.0096533	21240.0100852	27000.0093017	32760.0059108	
3960.0091723	9360.0066221	15480.0465541	21960.0093476	27360.0070806	33480.0081157	
3960.0091723	9360.0066221	15480.0465541	21960.0093476	27360.0070806	33480.0081157	
4680.0090051	9720.0090734	15840.0458882	23320.0466745	27720.0070248	33840.0078264	
4680.0090551	9720.0090734	15840.0458829	23320.0466745	2720.0070148	33840.0078264	

Table A-5. Results from 20 Hosts, Light Loads, Seed 128

Results from 20 Hosis, Light Application Loads, Seed 1024

(sec) De	(ec) Delay (sec)	Delay (sec)	Deay (sec)	ec) Delay (sem	(sec) Delay (sec)	(sec) Delay (sec)
0.001088	5040.0081433	11160.0080033	17640.0074728	23040.0091261	28080.0083411	33840.005588
0.001088	5040.0081433	11160.0080033	17640.0074728	23040.0091261	28080.0083411	33840.005588
360.0816759	5400.0084707	11520.0087525	18000.0456568	23400.0087212	28440.000672	34200.046826
360.0816759	5400.0084707	11520.0087525	18000.0456568	23400.0087212	28440.000672	34200.046826
720.0995509	5760.0891592	11880.0080315	18350.0074415	23760.0088428	29520.0092388	34560.046752
720.0995809	5760.0891592	11880.0080315	18360.0074415	23760.0088428	29520.0092388	34560.046752
1080.1509371	6120.0668488	12600.0048055	18720.0011131	24120.00791	29880.000672	34920.008874
1080.1509371	6120.0868488	12600.0048055	18720.0011131	24120.00791	29880.000672	34920.008874
14402819252	6480.0094331	12960.0050152	19080.009196	24480.0079861	30240.0076531	35280.00741
1440.2819252	6480.0094331	12960.0050152	19080.009196	24480.0079861	30240.0076531	35280.00741
1800.2835009	6840.0088872	13580.0467117	19800.0083379	24840.0096925	30600.0090444	35640.006792
1800.2835009	684000888872	13680.0467117	19800.0083379	24840.0096925	30600.0090444	35640.006792
2160.2359774	7200.0070425	14040.0175609	20160.0078865	25200.0472555	30960.0084312	
2160.2359174	7200.0070425	14040.0175609	20160.0070865	25200.0472555	30960.0084312	
2520.1800775	7920.0459778	14400.0084292	20520.0068978	25560.0473595	31320.0060415	
2520.1890775	7920.0459778	14400.0084292	20520.0068978	25560.0473595	31320.0060415	
2880.2251781	8280.0465546	14760.0086804	20880.0087568	259200086747	3168 0.000672	
2880.2251781	8280.0460546	14760.0086884	20880.0087568	25920.0086747	31680.000672	
3240.2237268	86400076707	15120.0062952	21240.0468078	26280.006552	32040.0088336	
3240.2237268	8640.0076707	15120.0062952	21240.0468078	26280.006952	32040.0088336	
3600.1851834	9000.0070969	15480.0066854	21600.0461915	26640.0083602	324000462817	
3600.18551834	9000.0070969	15480.0066854	21600.0461915	26640.0083502	324000452817	
3500.087447	9360.0473634	15840.045887	21960.0103224	27000.0080144	32760.0083564	
3960.0874474	9360.0473634	15540.0458877	21960.0103224	27000.008014	32760.0083564	
43200452875	9720.046401	16200.0068252	22320.007595	27360.00581	33120.00824	

Table A-6. Results from 20 Hosts, Light Loads, Seed 1024

Results from 30 Hosts, Light Application Loads, Seed 64

Table A-7. Results from 30 Hosts, Light Loads, Seed 64

Results from 30 Hosts, Light Application Loads, Seed 128
Tme (sec) Delay (sec) Time (sec) Delay (sec)

0.001088	5040.1548693	10440.0062932	15840.0465213	21240.0074137	26640.0084058	31680.006828
0.001088	5040.1548693	10440.0062932	15840.0465213	21240.0074137	26640.0084058	$3168 \quad 0.006828$
360.1686546	5400.0091159	10800.0091411	16200.0083927	21600.0100479	27000.0090217	32040.0059381
360.1686546	5400.0091159	10800.0091411	16200.0083927	21600.0106479	27000.0090217	32040.0059381
720.2601318	5760.0469086	11160.0084805	16560.0081302	21960.0074661	27360.000672	32400.0458572
720.2601318	5760.0469086	11160.0084885	16560.0081302	21960.0074661	27360.000672	32400.0458572
1080.2835534	6480.0088013	11520.0071684	16920.0045543	22320.008878	27720046277	32760.0462926
1080.2835534	6480.0088013	11520.0071684	16920.0045543	22320.008878	27720.046271	32760.0452226
1440.2755427	6840.0470796	11880.0755872	17640.0079891	22680.004709	28080.0078754	33120.045725
1440.2755427	6840.0470796	11880.0755872	17640.0079891	22680.004709	28080.0078754	33120.0457253
1800.3400359	7200.0095611	12240.0758896	18000.0056648	23040.0065478	28440.0060673	33480.006815
1800.3400359	7200.0096611	12240.0758898	18000.0056648	23040.0065478	28440.0060673	33480.0068156
2160.4666213	7560.0479668	12600.000672	18360.0464188	23400.0458335	28800.0088591	33840.0471623
2160.4066213	7560.0479668	12600.000672	18360.0464188	23400.0458335	28800.0088591	33840.0471623
2520.4862742	7920.0094559	12960.0072373	18720.0238813	23760.0087274	29160.0084383	34200.00579
2520.4862742	7920.0094559	12980.0072373	18720.0238813	23760.0087274	29160.0084383	34200.00579
2880.5300527	828000457319	13320.0077608	19080.0065157	24120.004634	29520.0079475	34560.0072907
2880.530527	8280.0457319	13320.0077608	19080.0065157	24120.004634	29520.0079475	34560.00729
3240.5338031	8640.0465092	13680.0071519	19440.0080033	24840.0428142	29880.045499	34920.00858
3240.5338031	8540.0455092	13680.0074519	19440.0080033	24840.0488142	29880.045499	34920.008585
3600.4565634	9000.0102629	14040.007677	19800.0079562	25200.0478884	30240.0474682	35280.000672
3600.4565634	9000.0002629	14040.007674	19800.0079562	25200.0478884	30240.0474682	35280.000672
3560.3652008	9360.0449124	14760.045945	20160.0463254	25560.0084788	30600.0076677	35640.0813348
3360.3652008	9360.0449124	14760.0459451	20160.0463254	25560.0084788	30600.007667	35640.0813348
4320.2302678	9720.0436469	15120.0450847	20520.044799	25920.0079533	30960.0923062	
4320.2302678	9720.0436459	15120.0450847	20520.044799	25920.0079533	309600923362	

Table A-8. Results from 30 Hosts, Light Loads, Seed 128

Results from 30 Hosts, Light Application Loads, Seed 1024

Tme (sec)	Delay (sec) Time (sec)		Delay (sec)	Time (sec)	Tme (sec)		Delay (sec) T	Time (sec)	Delay (sec)	Time (sec)	c) Time (sec) Delay (sec)		
	0.0702	504	0.1529547	1044	0.0459207	1584	0.0058144	2088	0.0626715	2628	0.0462848	3204	0.0469572
0	0.0702	504	0.1529547	1044	0.0459207	1584	0.0058144	2088	0.0626715	2628	0.0462848	3204	0.0459572
36	0.1617814	540	0.0081074	1080	0.000672	1620	0.0064441	2124	0.1064513	2736	0.0145492	3240	0.0093829
36	0.1617814	540	0.0081074	1080	0.000672	1620	0.0064441	2124	0.1064513	2736	0.0145492	3240	0.0093829
72	0.3681812	576	0.0091688	1116	0.0084215	1656	0.0092947	2160	0.0229055	2772	0.0474143	3276	0.000672
72	0.3681812	576	0.0091688	1145	0.0084215	1656	0.0092947	2160	0.0229055	2772	0.0474143	3276	0.000672
108	0.4096822	612	0.0087401	1152	0.0339679	1692	0.0046863	2196	0.0469234	2808	0.0067909	3312	0.0070275
108	0.4096822	612	0.0087401	1152	0.0339679	1692	0.0046863	2196	0.0469234	2808	0.0067909	3312	0.0070275
144	0.5511291	648	0.046269	1188	0.0456479	1728	0.0076047	2232	0.0097265	2844	0.0074342	3348	0.0081113
144	0.5511291	648	0.046269	1188	0.0456479	1728	0.0076047	2232	0.0097265	2844^{\prime}	0.0074342	3348	0.0081113
180	0.6139831	720	0.0089108	1224	0.0445827	1764	0.0447658	2268	0.000672	2880	0.005449	3384	0.007513
180	0.6139831	720	0.0089108	1224	0.0446827	1764	0.0447658	2268	0.000672	2880	0.005449	3384	0.007513
216	0.6828123	756	0.0466165	1260	0.0458411	1800	0.04554	2304	0.0475121	2916	0.0446611	3420	0.0081872
216	0.6828123	756	0.0466165	1260	0.0458411	1800	0.04554	2304	0.0475121	2916	0.0446611	3420	0.0081872
252	0.5987616	792	0.0064978	1296	0.006898	1836	0.046508	2340	0.0482465	2952	0.0466663	3456	0.0073162
252	0.5987616	792	0.0064978	1295	0.006898	1836	0.046508	2340	0.0482465	2952	0.0466663	3456	0.0073162
288	0.5145016	828	0.0046019	1332	0.0468239	1872	0.0461393	2412	0.0072407	2988	0.0656541	3492	0.0464611
288	0.5145016	828	0.0046019	1332	0.0468239	1872	0.0461393	2412	0.0072407	2988	0.0656541	3492	0.0464511
324	0.4804316	854	0.007189	1368	0.079183	1908	0.0082984	2448	0.0062792	3024	0.004834	3528	0.0468771
324	0.4804316	864	0.007189	1368	0.079183	1908	0.0082984	2448	0.0062792	3024	0.004834	3528	0.0468771
350	0.3153966	900	0.0467186	1404	0.0658414	1944	0.0784445	2484	0.0086719	3060	0.0070164		
360	0.3153966	900	0.0467186	1404	0.0658414	1944	0.0784445	2484	0.0086719	3060	0.0070164		
396	0.1769968	936	0.0092336	1476	0.0048116	1980	0.0816565	2520	0.0478627	3098	0.0464172		
396	0.1769968	936	0.0092336	1476	0.0048116	1980	0.0816565	2520	0.0478627	3095	0.0464172		
432	0.16478	972	0.0457838	1512	0.0065493	2016	0.0095335	2556	0.0075026	3132	0.0456366		
432	0.16478	972	0.0457838	1512	0.0065493	2016	0.0095335	2556	0.0075026	3132	0.0456366		
468	0.1677706	1008	0.0078645	1548	0.008709	2052	0.0358068	2592	0.0071441	3168	0.0064923		

Table A-9. Results from 30 Hosts, Light Loads, Seed 1024

Results from 10 Hosts, Heary Web, Seed 64
Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Deity (sec) Tome (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) $00.0010885540 .0127213-10880013231$
$\begin{array}{llllllllll}0 & 0.001088 & 504 & 0.0127213 & 1008 & 0.0132341 & 1512 & 0.0120528 & 2016 & 0.0130386 \\ & 2520 & 0.0466158 & 3024 & 0.015248\end{array}$
$\begin{array}{llllll}36 & 0.055098 & 540 & 0.014115 & 1044 & 0.0151636\end{array}$
$\begin{array}{llll}36 & 0.059098 & 540 & 0.014115\end{array}$
$720.1278977 \quad 5760.0126392$
$720.1278977 \quad 5760.0126392$
$1080.0719016 \quad 6120.0168374$
$1080.0719016 \quad 6120.0168374$
$1440.0137849 \quad 6480.0468325$
$1440.0137849 \quad 6480.0468325$
$1800.0455642 \quad 6840.0140764$
1800.046542
2160.0731141
2160.073141
$720 \quad 0.016055$ 10440.0151636 15480.0135552 15480.0135552 $1080 \quad 0.012487 \quad 15840.0138081$ $1080 \quad 0.012487 \quad 15840.0138081$ $11160.0130191 \quad 16200.0140305$ 11160.0130191 16200.0140305 11520.0154242 16560.0158705 11520.0154242 11880.012452 16560.0158705 16920.0130187
16920.0130187 $\begin{array}{lll}1188 & 0.0124522 & 1692 \\ & 0.0130187 \\ 1224 & 0.0141079 & 1728 \\ 0.0129796\end{array}$ 12240.014079 17280.0129796 17640.0451496 $17640.0451496{ }^{\circ}$
18000 2520.1591137 2880.0864069 2880.0864069 3240.0151855 3240.015885 3500.0141884 3600.0141884 3960.0149436 3960.0149436 4320.019882 4320.0119862 $\begin{array}{lllll}468 & 0.0154821 & 972 & 0.0146993 & 1476 \\ & 0.013488\end{array}$ 18000.0479409 18360.0128542 18360.0128542 18720.0146833 18720.0146833 19080.0454556 19080.0454556 19440.0121627 19440.0121627 $\begin{array}{llllllll}1980 & 0.0141985 & 2484 & 0.0185429 & 2988 & 0.0154773 & 3492 & 0.016679\end{array}$

Table A-10. Results from 10 Hosts, Heavy Web, Seed 64

Results from 10 Hosts, Heary Web, Seed 128
Tme (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Tme (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec)

0	0.0449447	5040.0126921	1008	0.0856115	15120.0120571	2016	0.010772	2520	0.0137219	30	182
0	0.0449447	5040.0126921	1008	0.0856115	15120.0120571	2016	0.010772	2520	0.0137219	3024	0.0141821
36	0.0474793	5400.0128821	1044	0.0141031	15480.0401446	2052	0.0148553	2556	0.0145845	3060	0.0418942
36	0.0474793	5400.0128821	1044	0.0141031	15480.0401446	2052	0.0148653	2556	0.0145845	3060	0.0418942
72	0.0457	5760.0158449	1080	0.0145256	15840.0476872	2088	0.014312	2592	0.0140391	3096	0.0466727
72	0.0457	5760.0158449	10	0.0145256	15840.0476872	2088	0.014312	2592	0.0140391	3096	0.0466727
108	0.1466791	6120.0144635	1116	0.0143547	16200.0139941	2124	0.0132211	2628	0.0133198	3132	0.015097
108	0.1466791	6120.0144635	1116	0.0143547	16200.0139941	2124	0.0132211	2628	0.0133198	3132	0.015097
144	0.1750225	6480.0153237	1152	0.0122337	16560.0137112	2160	0.0148046	2664	0.0116148	3168	0.0136831
14	0.1750225	6480.0153237	1152	0.0122337	16550.0137112	2160	0.0148046	2664	0.0116148	3168	0.0136831
180	0.1310453	6840.0149066	1188	0.0133587	16920.0133316	2196	0.0140454	2700	0.0170625	3204	0.0146102
180	0.1310463	6840.0149056	1188	0.0133687	16920.0133316	2196	0.0140454	2700	0.0170625	3204	0.0146102
216	0.0831726	7200.0144329	1224	0.0144394	17280.0115614	2232	0.0144144	2736	0.0135697	3240	0.0135387
216	0.0831726	7200.0144329	1224	0.0144394	17280.0115614	2232	0.0144144	2736	0.0135697	3240	0.0135387
252	0.0459317	7560.0123393	1260	0.0175811	17640.0144301	2268	0.0149414	2772	0.0134593	3276	0.0133536
252	0.0459317	7560.0123393	1260	0.0175811	17640.0144301	2268	0.0149414	2772	0.0134593	3276	0.0133536
288	0.0474354	7920.0174651	1296	0.0126162	18000.0109264	2304	0.016408	2808	0.0130346	3312	0.012399
288	0.0474354	7920.0174651	1296	0.0126162	18000.0109264	2304	0.016408	2888	0.0130346	3312	0.012399
324	0.0124633	8280.0128956	1332	0.0154068	18350.012123	2340	0.0421483	2844	0.0138107	3348	0.0843747
324	0.0124633	8280.0128956	1332	0.0154058	18360.012123	2340	0.0421483	2844	0.0138107	3348	0.0843747
350	0.0150223	8640.0149023	1368	0.0139283	18720.0121599	2376	0.0461427	2880	0.0140189	3384	0.0561594
360	0.0150223	8640.0149023	1368	0.0139283	18720.0121599	2376	0.0461427	2880	0.0140189	3384	0.0561594
396	0.0137494	9000.0138389	1404	0.011601	19080.0152729	2412	0.0471252	2916	0.0120928	3420	0.0134768
396	0.0137494	9000.0138389	1404	0.019601	19080.0152729	2412	0.0471252	2916	0.0120928	3420	0.0134768
432	0.0133428	9360.0133855	1440	0.0128462	19440.0350214	2448	0.0128073	2952	0.011288	3456	0.0140837
432	0.0133428	936000133855	1440	0.0128462	19440.0350214	2448	0.0128073	2952	0.011288	3456	0.0140837
468	0.0132896	9720.0124439	1476	0.0114275	19800.0467378	2484	0.012927	2988	0.0168344	3492	0.01381

Table A-11. Results from 10 Hosts, Heavy Web, Seed 128

Results from 10 Hosts, Heavy Web, Seed 9024

Tine (sec)	Delay (sec)	(sec) Dela	me(sec)	me(sec) Delay (sec)	Iime (sec) Deiay (sec)	(sec) Deiay (scm)		Dela
	00.0469865	5040.0142532	10080.0133032	15120.0162669	20160.0143553	25200.0140178	3024	0.014009
	00.0469865	5040.0142532	10080.0133032	15120.0162669	20160.0147353	25200.0140178	3024	0.01
36	6.0044421	5400.016142	10440.0141156	15480.0131527	20520.0142068	25560.0449034	3060	0.04
	0.0044421	5400.016142	1044000141156	15480.0131527	20520.0142068	25560.0449034	3060	0.04
	0.0131965	5760.0143508	10800.0147492	15840.015567	20880.014925	25920.0144841	3056	0.0
	0.0131965	5760.01435	108000014742	15840.015567	20880.014925	25920.0144841	3096	0.13
108	0.0663589	6120.0131868	11160.014208	16200.0139069	21240.0140097	26280.0140504	3132	0.01
108	0.0663689	6120.0131868	11160.014208	16200.0139669	21240.0140097	26280.0140604	313	0.014853
144	0.0486217	6480.014874	11520.013257	16560.013382	21600.0149359	26640.0141641	316	0.00
144	0.0466217	6480.011874	11520.013257	16560.013382	21600.0149359	26640.0141641	3158	0.00067
180	0.0752921	6840.0153616	11880.0140253	16920.01306	21980.0140954	27000.014405	320	0.0153
180	0.0752921	6840.0153616	11880.0140253	16920.01306	21950.014054	27000.014405	3204	0.01538
216	0.0689077	7200.0130885	1224000139945	17280.0463992	22320.0130181	27360.0121323	3240	0.014271
216	0.0689077	7200.0130885	12240.013994	17280.0463992	22320.0130181	27360.0121323	3240	
252	0.086951	7560.0173255	12600.013056	17640.0423789	22680.0133441	27720.0132837	3276	. 013
252	0.086951	7560.0173255	126000.013056	17640.0423789	22680.0133441	27720.0132837	3276	0.013435
288	0.1316087	7920.0174642	12960.0131889	18000.013779	23040.0144195	28080.0130645	3312	0.016855
288	0.1316087	7920.0174642	12980.0131889	18000.013779	23040.0144195	28080.0130645	3312	0.016055
324	0.0140388	8280.0133492	13320.0125132	18360.0134425	23400.0144168	28440.013617	3348	0.0142
324	0.0140388	8280.0138492	13320.0125132	18360.0134425	23400.0144168	28440.013617	3348	0.014297
360	0.0148555	8640.0147934	136800.013005	18720.0129263	23760.0151688	28800.0163928	3384	0.012529
360	0.0148555	8840.0147934	13580.013005	18720.0129263	23760.0151688	28800.0163928	3384	0.012529
396	0.0141036	9500.0134126	14040.0147233	19080.0103261	24120.0129383	29160.0134513	3420	0.01
396	0.0141036	9000.0134125	14040.0147233	19880.0103261	24120.0123883	29160.0134513	3420	0.013762
432	0.014801	9360.0154433	14400.014646	19440.0144079	24480.013479	29520.0135632	3456	0.0149974
432	0.014801	9360.0154433	14400.0444646	19440.0144079	24480.0134779	2952.0 .0135632	3456	0.014997
	0.01476	9720.046	14760.0	19800.0	24840.01	29880.0	3492	

Table A-12. Results from 10 Hosts, Heavy Web, Seed 1024

Results from 20 Hosts, Heary Web, Seed 64

Tme (sec)	Delay (sec)								
	0.001088	5040.0137417	1008	0.0153827	15120.0165378	20160.013694	25200.0126312	3024	0.014557
0	0.001088	5040.0137417	1008	0.0153827	15120.0165378	20160.013594	25200.0126312	3024	0.01
36	0.0612301	5400.0145318	1044	0.01342	15480.011239	20520.012921	25560.0143022	3060	0.01371
36	0.0612301	5400.0145318	1044	0.01342	15480.0112239	20520.012921	25560.0143022	3060	0.013
72	0.2168479	5760.0127127	1080	0.0454936	15840.0468043	20880.01523	25920.0138182	3096	0.0145
72	0.2168479	5760.0127127	1080	0.0464936	15840.0468843	20880.015232	25920.0138182	3096	0.01
108	0.2047665	6120.0140682	1116	0.0145952	16200.0403639	21240.01439	$2628 \quad 0.01377$	3132	0.01546
108	0.2047665	6120.0140682	1116	0.0146552	16200.0433639	21240.0143913	$2628 \quad 0.01377$	3132	0.01546
144	0.1604879	6480.0150315	1152	0.0133906	16560.0425007	21600.0346003	26640.0132204	3168	0.013
144	0.1604879	6480.0150315	1152	0.0133906	16560.0425007	0.03460	26640.01322	3168	0.013925
180	0.1395334	6840.0132571	1188	0.0139158	16920.0383938	21960.04602	27000.0435163	3204	0.015
180	0.1353334	6840.0132571	1188	0.0139158	16920.0383338	21960.0466293	27000.0435163	3224	0.0151564
216	0.2450138	7200.014587	122	0.0142446	17280.062957	23320.0140553	27360.0454883	3240	0.013
216	0.2450138	7200.014587	1224	0.0142466	17280.062957	22320.01405	27360.04524	3240	0.01
252	0.2994331	7560.0130848	1260	0.0363753	17640.0492766	26880.0154897	27720.0141465	3276	0.01573
252	0.2994331	7560.0130848	1260	0.0363753	17640.0492766	22680.0154897	27720.0141465	3276	0.015773
288	0.2896902	7920.0473997	1296	0.0435824	18000.0132512	23040.0139926	28080.0155887	3312	20.013805
288	0.2889902	7920.0473997	\%	0.0435824	18000.0132512	23040.01399	28080.015588	3312	0.0138
324	0.2088578	8280.0467485	1332	0.0131433	183600.04473	23400.014146	28440.040009	3348	0.01390
324	0.2088578	8280.0467485	1332	0.0134433	18360.01473	23400.014146	28440.040009	3348	0.013902
360	0.0742056	8640.0147599	1368	0.0150608	18720.016307	23760.0361924	28800.0450714	3384	0.047403
360	0.0742056	8640.0147599	1368	0.0150608	18720.016307	23760.0361924	28800.0450714	3384	0.047403
396	0.046443	9000.0340487	1404	0.0134931	19080.0146081	24120.0476727	29160.0490728	3420	0.04853
396	0.0454434	9000.0344487	1404	0.0134931	19080.0145081	24120.0476727	29160.0490728	3420	0.048534
432	0.0148815	9360.0438876	1440	0.0150168	19440.01436	24480.0151261	29520.015707	3456	0.04607\%
432	0.0148815	9360.0438876	1440	0.0150168	19440.01436	24480.0151261	29520.015707	3456	0.0460706
468	0.014756	9720.0142841	1476	0.014857	19800.0456202	24840.0473087	29880.0178461	3492	0.01302
468	0.0141756	9720.014284	1476	0.01	19800.04562	2484	29880.017	3492	

Table A-13. Results from 20 Hosts, Heavy Web, Seed 64

Results from 20 Hosts, Heavy Web, Seed 128

Trme (sec) Delay (sec) Tme (sec) Delay (sec) Time (sec) Delay (sec) Tme (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Tine (sec) Delay (sec)

0.001088	5040.0136854	10080.0140417	15120.0470097	20160.0131927	25200.0133039	30240.0146535
0.001088	5040.0136854	10080.0140417	15120.0470097	20160.0131927	25200.0133339	30240.0146535
360.0952149	5400.014914	10440.0409211	15480.043465	20520.0424403	25560.0131882	30600.0479522
360.0952149	5400.014914	10440.0402211	15480.043465	20520.0424403	25560.0131882	30600.047
720.1015856	5760.014868	10800.0400961	15840.0133305	20880.0468942	25920.0152775	30950.035433
720.1015856	5760.0148688	10800.0400961	15840.0133305	20880.0468942	25920.0152775	309600.035433
1080.1335935	6120.0138833	11160.015601	16200.0130537	21240.0142423	26280.014836	31320.0464535
1080.1335935	6120.0139833	11160.015601	16200.0130537	21240.0142423	26280.014836	31320.0464535
1440.2757751	6480.014296	11520.0134655	16550.0150377	21600.0149067	26640.0143887	31680.02045
1440.2757751	6480.0141296	11520.0134655	16560.0150377	21600.0149967	26640.0143887	31680.0204569
1800.2460394	6840.014743	11880.0178047	16920.0136652	21900.0140141	27000.047263	32040.01
1800.2460394	6840.014743	11880.0178047	16920.0136652	21960.0140141	27000.047263	32040.0118192
2160.1888856	7200.0462683	12240.0145053	17280.0136809	22320.0151713	27360.0146336	32400.01
2160.1886856	7200.0462683	12240.0445053	17280.0136809	22320.0151713	27360.0146936	32400.0165502
2520.1919574	7560.046438	12600.0148847	17640.0449158	22680.0149163	27720.0155275	32760.0135777
2520.1919574	7560.046438	12600.0140847	17640.0449158	22680.0149163	27720.0155275	32760.0135777
2880.1979807	7920.0146512	12960.0133548	18000.0147364	23040.0478027	28080.0134328	33120.0150248
2880.1979807	7920.0146512	12960.0133548	18000.0147364	23040.0478027	28080.0134328	33120.0150248
3240.1652195	8280.0446772	13320.0144592	18360.0138724	23400.0143088	284400.0138633	33480.0149707
3240.1652195	828000446772	13320.0144592	18360.0138724	23400.0143088	28440.0138633	33480.0149707
3500.1638408	864000153339	136800.01452	18720.0140446	23760.0447604	28800.0150198	33840.0150972
3500.1638408	8640.0153339	13680.01452	18720.0140446	23760.0447604	28800.0150198	33840.0150972
3960.1045168	9000.0149556	14040.0143498	19080.0148802	24120.0146644	29160.0443558	34200.0142075
3960.1045168	9000.0149556	14040.0143488	19080.0148802	24120.0146644	29160.0143558	34200.0142075
4320.0456223	9360.0175503	14400.0140519	19440.0154714	24480.0138437	29520.0127881	34560.0142255
4320.0456223.	9360.0179503	14400.0140519	19440.0	24480	29520.0	34

Table A-14. Results from 20 Hosts, Heavy Web, Seed 128

Results from 20 Hosts, Heary Web, Seed 1024

Tme (sec)	Delay (sec)	me(sec)	(sec)	(sec) Delay	(sec) Delay(sac)	me(sec) Delay (sec)	Time (sec) Delay (sec)
	0.0448149	5040.0743678	10080.0116231	15120.0133129	20600.0463411	25200.0434904	30240.014285
0	0.0448149	5040.0743678	10880.0116231	15120.0133129	20160.0463411	25200.0434904	30240.0142563
36	0.0471638	5400.0434489	10440.0145754	15480.0143776	20520.0130587	25560.0151293	30600.0146278
36	0.0471638	5400.0434489	. 10440.0145754	15480.0143776	20520.0130587	25560.0151293	30600.0145278
72	0.2199388	5760.0305905	10800.0148567	15840.0146716	20880.0445713	25920.0140101	30960.0166805
72	0.2199388	5760.0305905	10800.0148667	15840.0146716	20880.0445713	25920.0140101	30960.0166805
108	0.3195493	6120.0136858	11160.0128895	16200.042857	21240.012697	26280.0449259	31320.0144355
108	0.3195493	6120.0136858	11160.0128895	16200.0442857	21240.0126977	26280.0149259	31320.0144355
144	0.478436	6480.0153352	11520.0146172	16550.0332729	21600.0142674	26640.0158841	31680.0145557
144	0.478436	6480.0153362	11520.0146172	16560.0332729	21600.0142674	26640.0158841	31680.0145557
180	0.473042	6840.017833	11880.0145738	16920.0170559	21980.0446589	27000.0120009	32040.0466843
180	0.4734042	6840.017833	11880.0145738	16920.0170559	21960.0446589	27000.0120009	3204.0 .0406843
216	0.3480181	7200.0156337	12240.0148554	17280.0182322	22320.0137324	27360.0140853	32400.047238
216	0.3480181	7200.0156337	12240.0148654	17280.0182322	22320.0137324	27360.0140853	32400.047238
252	0.3178462	$756 \quad 0.014509$	12600.0128187	17640.0121991	22880.0148839	27720.0139746	32760.0145734
252	0.3178462	7560.014509	12600.0128187	17640.0121991	22680.0148839	27720.0139745	32780.0145734
288	0.2192254	7920.045232	12960.0151727.	18000.013379	23040.0142489	28080.0140404	33120.0127948
288	0.2192254	7920.046232	12980.0151727	18000.0133779	23040.0142489	28080.0140404	33120.0127948
324	0.2205907	8280.0324015	13320.0499177	18360.0456926	23400.0137957	28440.014403	33480.0155626
324	0.2205907	8280.0324015	13320.0499177	18360.0456926	23400.0137957	28440.0144403	334800155626
360	0.148213	8640.0439392	13680.0397259	18720.0463143	23760.0146194	28800.0157849	3384000136393
360	0.148213	8640.0439392	13680.0397259	18720.0663143	23760.0146194	28800.0157849	33840.0136333
396	0.0299706	9000.0762764	14040.0444462	19080.0151159	24120.0138752	29160.0131491	34200.0164747
396	0.0299706	9000.0762764	14040.044462	19080.0151159	24120.0138752	29160.0131491	34200.0164747
432	0.0143103	9360.0137283	14400.0136358	19440.0474261	24480.015206	29520.0157979	34560.0142976
	0.0143103	9360.0137283	14400.0133558	19440.0474261	24480.015206	29520.0157979	34560.0142976

Table A-15. Results from 20 Hosts, Heavy Web, Seed 1024

Resulis from 30 Hosts, HeayWeb, Seed 64

Table A-16. Results from 30 Hosts, Heavy Web, Seed 64

Results from 30 Hosts, Heary Web, Seed 128
Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Deiay (sec) Tme (sec) Deatay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) 5040.167822 $\begin{array}{llllllllll}0 & 0.001088 & 504 & 0.1677822 & 1008 & 0.0741745 & 1512 & 0.0131765 & 2016 & 0.0140847 \\ 25020 & 0.0135563 & 3024 & 0.014583\end{array}$
360.1676227
360.1676227
720.2580705
720.2580705
1080.3075337
1080.3075337
1440.3020937
1440.3020937
1800.3202892
1800.3202892
2160.3365229
2160.3355229
2520.332477
2520.332477
2880.3951917
2880.3961917
3240.4255617
3240.4255617
$360 \quad 0.464351$
3600.464351
3950.4576105
3960.4576105
4320.3242341
4320.3242341
5400.1681929 5400.1681929 5760.1687859 5760.167859 6120.1646245 6120.1646245 6480.0503082 6480.0503082 6840.0304332 6840.0304332 7200.0147135 7200.0147135 7560.0162315 7560.0162315 7920.0134826 7920.0134826 8280.0137641 8280.0137641 8640.0453628 8640.0463628 9000.0148413 9000.0448413 9360.0150538 9360.0150538
10440.0406227 10440.0406227 10800.0135478 10800.0135478 11160.0466081 11160.0466081 11520.0451418 11520.045148 11880.0137396 11880.0137396 12240.0460003 12240.0460003 12600.0175595 12600.0175595 12880.0140341 12960.0140341 13320.014056 13320.014056 13580.0119129 13580.0119129 14040.0460049 14040.0460049 14400.0430863 14400.0430863
$15480.0138359 \quad 20520.0153923$ 15480.0138359 15840.0144555 15840.0144955 16200.0159711 16200.0159711 16560.0140344 16560.0140344 $1692 \quad 0.013141 \quad 2196 \quad 0.014816$ $\begin{array}{llll}1692 & 0.013141 & 2196 & 0.014816\end{array}$ $17280.0464476 \quad 22320.015355$ $17280.0454476 \quad 22320.015355$ $17640.0238563 \quad 22680.0153451$ $17640.0238563 \quad 22680.0153451$ $18000.0250816 \quad 23040.0160523$ $18000.0250816 \quad 23040.0160523$ 18360.0473682 18360.0473682 18720.014432 18720.0141432 19080.0166387 19080.0166387 19440.0144398 248.0463415 24480.0463415
$25560.0142885 \quad 30600.0143177$ $25560.0142885 \quad 30600.0143177$ $25920.0148607 \quad 30960.0148625$ $25920.0149607 \quad 30560.0148625$ $2628 \quad 0.013783 \quad 31320.0162514$ $2628 \quad 0.013783 \quad 31320.0162514$ 26640.044444231680 .0429236 $26640.0444442 \quad 31680.0429236$ $27000.0480233 \quad 32040.0378738$ $27000.0480233 \quad 32040.03378738$ $27360.0157551 \quad 32400.0137817$ $27360.0157551 \quad 32400.0137817$ $27720.0427089 \quad 32760.0146886$ $27720.0427089 \quad 32760.0146886$ $28080.0144724 \quad 33120.0145289$ $28080.0147724 \quad 33120.0145289$ $28440.0160042 \quad 33480.0167746$ $28440.0160042 \quad 33480.016745$ $28800.0486029 \quad 33840.0145008$ $28800.0488029 \quad 33840.0145008$ $29160.0158799 \quad 34200.0133535$ $29160.0158799 \quad 34200.0133335$ $29520.0447492 \quad 34560.0414875$ $29520.0447423 \quad 34500.0414875$

Table A-17. Results from 30 Hosts, Heavy Web, Seed 128

Resulis from 30 Hosts, Heaw Web, Seed 1024

Table A-18. Results from 30 Hosts, Heavy Web, Seed 1024

Resulus from to Hosts, Heaw Appraction Loads, Seed 64

0.001088	5040.0138897	10440.0450934	15480.013496	20520.0153697	25560.0424212	305000.0189452
0.001088	5040.0138897	10440.0450934	15480.013496	20520.0153697	25560.0424212	30600.0189452
360.0628897	5400.0155337	10800.0458341	15840.0108563	20880.0470511	25920.0467203	30960.048009
360.0628897	5400.0155337 .	108000.0458341	15840.0108563	20880.0470511	25920.0467203	30560.048009
720.147447	5760.0136322	111600.0159233	16200.0156598	21240.0448346	26280.0141971	31320.0123836
720.1471447	5760.013632	11160.015923	162000.0166598	21240.0148346	26280.0141971	31320.0123836
1080.118749	6120.0714425	11520.0454224	16560.0135739	21600.045994	26640.0167111	31680.0139793
1080.1187749	6120.0714425	11520.0454224	16560.0135739	21600.045904	26640.0667111	31680.0139793
1440.0181885	6480.0665987	11880.0444426	16920.0453928	21960.0111292	27000.0151831	32040.0139253
1440.0181885	6480.0665987	11880.0444426	16920.0453528	21960.0111292	27000.0551831	32040.0139253
1800.0461571	6840.0475579	12240.0324384	17280.0140821	23320.0804728	27360.0123329	32400.0138402
1800.0461571	6840.0475579	12240.0324384	17280.0140821	23320.0804728	27360.0129329	32400.0138402
2160.0682672	7200.013286	12600.047558	17640.015523	22680.0468158	27720.0446589	32760.0134438
2160.0682672	7200.013286	12600.047558	17640.0155233	22680.0468158	27720.0446589	32760.0134438
2520.16933647	7920.0140975	12960.0154424	18000.0126324	23040.046914	28080.0438654	33120.0779195
2520.1693647	7920.0140975	12560.0154424	18000.0126324	23040.046914	28080.0438654	33120.0779195
2880.1531234	8280.0149687	13320.0146988	18360.0148048	234000457878	28440.046906	33480.0918329
2880.1531234	8280.0149687	13320.0146988	18360.0148048	23400.0457878	28440.046806	33480.0988329
3240.0222245	8640.0133565	13680.0149709	18720.0136973	23760.0129221	28800.0147074	33840.0621721
3240.0292245	8840.0133565	13680.0449709	18720.0136973	23760.012921	28800.0147074	33840.0621721
3600.0143699	9000.0133271	140400471839	19080.0140035	24120.0134739	29160.0134008	34200.0158884
3600.0143699	9000.0133271	14040.0471839	19080.0140035	24120.0134739	29160.0134088	34200.0158884
3960.046447	9360.0135682	14400.0436008	19440.0132356	24480.015871	29520.0114376	34560.014382
3950.046447	9360.0135682	14400.0436008	19440.0132366	24480.015871	29520.0114376	34560.014382
4320.0117449	9720.049273	14760.0119373	188000.0458209	24840.0472975	29880.0152882	349200168271
3320.01	972	147600119373	198000046829	24840.0472975	2	349200468271

Table A-19. Results from 10 Hosts, Heavy Loads, Seed 64

Results from 10 Hosts, Heaw Appication Loads, Seed 128

Table A-20. Results from 10 Hosts, Heavy Loads, Seed 128

Resulis from 10 Hosts, Heaw Appication Loads, Seed 1024

Tone(sec) Delay	Delay (sec)		day (sec)	(sec) Deiay (sec)	(sec) Delay (s)	(sec) Delay (ses		Delay (sec)
00.0472035	5400.0459937	1044	0.03588	15480.0944092	20520.0148761	25560.0470586	3096	0.05317
00.0472035	5400.0457937	1044	0.035888	15480.0944092	20520.0148761	25560.0470586	3096	0.05317
360.0465443	5760.0120593	1080	0.047149	15840.1372888	20880.0133585	25920.0144055	3132	0.1196275
360.0465443	5760.0120593	1080	0.0477149	15840.1372268	20880.0133585	25920.0144055	3132	0.1196275
1080.0770641	6120.0118384	1116	0.0441994	16200.0821074	21240.0128188	26280.0152486	3168	0.1074442
1080.0770641	6120.0118384	1116	0.0441994	16200.0821074	21240.0128188	26280.0152488	3168	0.0707442
1440.070435	6480.043658	1152	0.0110628	16560.0476436	21600.0129319	26640.0148683	3204	0.015275
1440.074335	6480.043658	1152	0.0110628	16550.0476436	21600.0129319	26640.0148683	3204	0.016275
1800.1055914	6840.0473361	1188	0.0314556	16920.0474957	21960.0114873	27000.0155136	3240	0.0151951
1800.1055914	6840.0472361	1188	0.0314596	16920.0474957	21960.014873	27000.0155136	3240	0.0151951
2160.0833669	7200.0486232	1224	0.0474093	17280.0138312	22320.0118074	27360.0137219	3276	0.0159195
2160.0836669	7200.0466332	1224	0.0474093	17280.0138312	22320.0118074	27360.0137219	3276	0.0159195
2520.0783934	756 '0.0168689	1260	0.0127938	17640.0462697	22680.0149367	28080.0455309	3312	0.0158769
2520.0783934	7560.0168889	1260	0.0127938	17640.0462697	22680.0149367	28080.0455309	3312	0.0158769
2880.1393932	7920.0152393	1296	0.0151533	18000.0462611	23040.0134177	28440.0799343	33	0.0472364
2880.1339392	7920.0152393	1296	0.0151533	18000.0462811	23040.0134177	28440.0799343	3348	0.0472364
3240.1199019	8280.0128513	1332	0.0462912	18360.0453499	23400.1116018	28800.1164303	3384	0.0163506
3240.1199019	8280.0128513	1332	0.0452912	18360.0453499	23400.1116018	28800.1164303		0.0163506
3500.0128238	8840.0137546	1358	0.0132928	18720.0112563	23760.124517	29160.0620635	3420	0.0117217
3500.0128238	8840.0137545	1368	0.0132288	18720.0112563	23760.124517	29160.0620636	3420	0.0117217
3380.0134094	9000.0136092	1404	0.0131947	19080.0130158	24120.048063	29520.0160701	3456	0.0101465
3960.0134094	9000.0136092	1404	0.0131947	19080.0130158	24120.048063	29520.0160701	3456	0.0101465
4320.0197829	9360.0479315	1440	0.035426	19440.0145855	24480.0362556	29880.0102885	3492	0.0364118
4320.0197829	9360.0479315	1440	0.0350426	19440.0145855	24480.0362556	29880.0102855	3492	0.0354118
4580.0440887	9720.0118886	1476	0.0459226	19800.012448	24840.012883	30240.0140194	3528	0.0475711
4680.0446687	9720.0118686	1476	0.0459226	19800.012248	24840.012883	30240.0140194	3528	0.0475711

Table A-21. Results from 10 Hosts, Heavy Loads, Seed 1024

Resuls from 20 Hosts, Heaw Application Loads, Seed 64

0.001088	5040.1640195	10080.0126848	15120.0144442	20160.0476216	25200.0792689	30240
0.001088	5040.1640195	10080.0126848	15120.0144442	20160.0476216	25200.0792689	30240.0125019
360.0655253	5400.1488088	10440.0150799	15480.0105586	20520.0301317	25560.0671879	30600.0
360.0655253	5400.1486086	10440.0150799	. 15480.01005586	20520.0301317	25560.0671879	30600.0145953
720.1979458	5760.0139792	10800.0132914	15840.0171138	20880.0454102	25920.0471466	30960.0140603
720.197948	5760.0139792	10800.0132914	15840.0571138	20880.0454102	25920.0471466	30960.0140603
1080.2729608	6120.0152543	11160.0130124	16200.0474183	21240.0500994	26280.0415659	31320.0479576
1880.2726608	6120.0152543	11160.0030124	15200.0474183	21240.050019	26280.0415659	3132004795
1440.291768	6480.0704457	11520.0131321	16560.0453822	21600.1022249	26640.0134742	31680.0128663
1440.2917168	6480.0709457	11520.0131321	16560.0453822	21600.1029249	26640.0134742	3168
1800.2916159	6840.0706198	11880.0453531	16920.069927	21960.070762	27000.0133726	32040.0244356
1800.2961659	6840.0766188	11880.0453531	16920.069927	21960.070762	27000.0133726	32040.0144356
2160.339923	7200.084472	12240.0442735	17280.1286074	223200484539	27360.0110292	32400.0493921
2160.3399223	7200.084472	12240.0442735	17280.1286074	22320.0484539	27360.0110292	3240
2520.3438542	7560.0469468	12600.0138005	17640.1042404	22680.0153094	27720.0128861	32760.0143852
2520.3438542	7560.0464468	126000.0138005	17640.1042404	22680.0153994	27720.0128861	3276
2880.3561063	7920.051895	12960.0388482	18000.0158848	23040.0942261	28880.0165419	3312
2880.3566063	7920.051895	12960.0389482	18000.0158848	23040.094261	28080.0165419	33120.0406136
3240.3524421	8280.0468665	13320.0458051	18360.0123687	23400.0892196	28440.015879	33480.0463256
3240.3529421	8280.0458665	$\dagger 3320.0458051$	18360.0123687	23400.0892196	28400.015879	33480.0463256
3600.3232168	864000139083	13680.0142827	18720.01234	23760.0472035	28800.0121555	33840.0015844
3600.3232168	864000139083	13680.0148827	18720.012346	23760.0472035	28800.0121555	33840.0151844
3560.2811134	9000.0464548	14040.0466512	19080.012267	24120.0146	29160.0131758	34200.0162633
3950.2811134	9000.0446448	14040.0466512	19080.01287	24120.0146	29160.0131758	34200.0162633
4320.2300576	9360.0463938	14400.0485649	19440.0382139	24480.0478103	29520.0138482	34550.1188123
4320.230576	9360.0463938	14400.0485649	19440.0382139	24480.0478103	29520.0138482	34560.118

Table A-22. Results from 20 Hosts, Heavy Loads, Seed 64

Resulls from 20 Hosts, Heaw Application Loads, Seed 128
Time (sec) Delay (sec) Tme (sec) Delay (sec) Time (sec) Delay (sec) Tmee (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Delay (sec) Time (sec) Deilay (sec) $00.001088-5040.4058568-100800145379.151200480578-201500454683$ $360.088309 \quad 5040.4058868$
360.0888399
720.117366
720.117356
1080.1266538
1080.1266538
1440.2953092
1440.2953092
1800.4530474
$180 \quad 0.4530474$
2160.4367389 2160.4367389 2520.4647927 2520.4647927 2880.5408234 2880.5408234 3240.6001555 3240.6001555 3600.5871679 3600.587679 3960.5821793 3960.5821793 4320.4802391 4320.4802391 4680.4305505
5400.2564867 5400.2664867 5760.1629103 5760.1629103 6120.0933922 6120.093392 6480.0275202 6480.0275202 $684 \quad 0.041352$ 6840.041352 7200.044632 7200.044632 7560.0145329 7560.0145329 7920.0163318 7920.0163018 8280.0126566 8280.0126566 8640.0145647 8640.0145647 9000.0476369 9000.0476369 9360.0129427 9360.0129427 9720.0121188
$1008 \quad 0.0145379 \quad 15120.0480578$ $10440.0139207 \quad 15480.0663745$ 10440.0132207 10800.0472896 10800.0472896 11160.0151785 11160.0151785 11520.0468282 11520.0462882 18880.1240674 18880.124067 12240.0707194 12240.0707194 12600.0293078 12600.0233078 12950.0145516 12950.0145516 13320.0461765 13320.0461765 13680.0455644 13680.0455844 14040.013879 14040.013879 14400.0502581 14400.0502581 $14760.0465512 \quad 18800.0546392$

$20160.0454683 \quad 25200.0116856$ $20520.0153769 \quad 25560.0070052$ $20520.0153769 \quad 25560.00700052$ $20880.0598048 \quad 25920.111871 \quad 30560.0461293$ $20880.0598048 \quad 25920.111871 \quad 30960.0461293$ $21240.0571753 \quad 26280.0884039 \quad 31320.0443801$ $21240.0571753 \quad 26280.0884039 \quad 31320.0443801$ $21600.0414068 \quad 26640.0136032 \quad 31680.0138464$ $21600.0414068 \quad 26640.0136032 \quad 31680.0138464$ $21950.0471644 \quad 270000.01274563204 \quad 0.046699$ $21960.0471644 \quad 27000.0127496 \quad 32040.046699$ $22320.0670981 \quad 27360.0146827 \quad 32400.0268372$ $22320.0670981 \quad 27360.0146627 \quad 32400.0268372$ $22580.0588334 \quad 27720.0149091 \quad 32760.0885173$ $\begin{array}{lllll}2258 & 0.0586334 & 2772 & 0.0440991 & 3276 \\ 0 & 0.0885173\end{array}$ $23040.0182386 \quad 2808 \quad 0.0733807 \quad 33120.0429795$ $23040.0182386 \quad 2808 \quad 0.0733807 \quad 33120.0429796$ $234000.0481579 \quad 28440.00787214 \quad 3348 \quad 0.045265$ $23400.0481579 \quad 28440.0787214 \quad 3348 \quad 0.045265$ $\begin{array}{lllll}2376 & 0.0573518 & 2880 & 0.0135511 & 3384 \\ 0 & 0.0593572\end{array}$ $23760.0573518 \quad 28800.0135511 \quad 33840.0559352$ $24120.0470652 \quad 29460.0449051 \quad 34200.0649045$ $\begin{array}{llllll}2412 & 0.0470662 & 2916 & 0.0449051 & 3420 & 0.0649045 \\ 2448 & 0.01196 & 2952 & 0.0440235 & 3456 & 0.013352\end{array}$ | 2448 | 0.01196 | 2952 | 0.0440255 | 3456 |
| :--- | :--- | :--- | :--- | :--- |
| | 0.013352 | | | |
| 2448 | 0.01196 | 29552 | | |
| | 0.0440255 | 3456 | 0.013352 | | $24840.0135374 \quad 2988 \quad 0.046412 \quad 3492 \quad 0.085008$

Table A-23. Results from 20 Hosts, Heavy Loads, Seed 128

Resulis from 20 Hosts, Heaw Application Loads, Seed 1024

Table A-24. Results from 20 Hosts, Heavy Loads, Seed 1024

Results from 30 Hosts, Heavy Application Loads, Seed 64

Time (sec)	Delay (sec)	Time (sec)	Delay (sec)	Time (sec)	Delay (sec)
0	0.0211934	504	0.8896089	1008	0.3510942
0	0.0211934	504	0.8896089	1008	0.3510942
36	0.1074476	540	0.9084398	1044	0.3534921
36	0.1074476	540	0.9084398	1044	0.3534921
72	0.2387885	576	0.8866328	1080	0.2915073
72	0.2387885	576	0.8866328	1080	0.2915073
108	0.3127575	612	0.8637647	1116	0.2854892
108	0.3127575	612	0.8637647	1116	0.2854892
144	0.3857014	648	0.7765579	1152	0.1993977
144	0.3857014	648	0.7765579	1152	0.1993977
180	0.4400805	684	0.6524245	1188	0.1992497
180	0.4400805	684	0.6524245	1188	0.1992497
216	0.6081129	720	0.5060237		
216	0.6081129	720	0.5060237		
252	0.6591514	756	0.2381315		
252	0.6591514	756	0.2381315		
288	0.7443224	792	0.20898		
288	0.7443224	792	0.20898		
324	0.8767833	828	0.212961		
324	0.8767833	828	0.212961		
360	0.9702456	864	0.2443335		
360	0.9702456	864	0.2443335		
396	1.0115749	900	0.2210013		
396	1.0115749	900	0.2210013		
432	0.9981666	936	0.2744255		
432	0.9981666	936	0.2744255		

Table A-25. Results from 30 Hosts, Heavy Loads, Seed 64

Results from 30 Hosts, Heavy Application Loads, Seed 128

Time (sec)	Delay (sec)	Time (sec)	Delay (sec)	Time (sec)	Delay (sec)
0	0.001088	504	0.6239585	1008	0.2471079
0	0.001088	504	0.6239585	1008	0.2471079
36	0.1607322	540	0.5701482	1044	0.244457
36	0.1607322	540	0.5701482	1044	0.244457
72	0.2488195	576	0.4604299	1080	0.2269823
72	0.2488195	576	0.4604299	1080	0.2269823
108	0.3116622	612	0.2763838	1116	0.1693531
108	0.3116622	612	0.2763838	1116	0.1693531
144	0.4031782	648	0.2408484	1152	0.1636254
144	0.4031782	648	0.2408484	1152	0.1636254
180	0.4481101	684	0.2118623	1188	0.168824
180	0.4481101	684	0.2118623	1188	0.168824
216	0.4257901	720	0.2082434		
216	0.4257901	720	0.2082434		
252	0.5161765	756	0.1805658		
252	0.5161765	756	0.1805658		
288	0.6546294	792	0.1724967		
288	0.6546294	792	0.1724967		
324	0.7139752	828	0.2337369		
324	0.7139752	828	0.2337369		
360	0.7218058	864	0.2434542		
360	0.7218058	864	0.2434542		
396	0.7008185	900	0.2478348		
396	0.7008185	900	0.2478348		
432	0.6769626	936	0.2122493		
432	0.6769626	936	0.2122493		

Table A-26. Results from 30 Hosts, Heavy Loads, Seed 128

Results from 30 Hosts, Heavy Application Loads, Seed 1024

Time (sec)	Delay (sec)	Time (sec)	Delay (sec)	Time (sec)	Delay (sec)
0	0.0791965	504	0.32928	1008	0.172009
0	0.0791965	504	0.32928	1008	0.172009
36	0.1835665	540	0.3082717	1044	0.1705658
36	0.1835665	540	0.3082717	1044	0.1705658
72	0.2954557	576	0.3171612	1080	0.2055388
72	0.2954557	576	0.3171612	1080	0.2055388
108	0.4136896	612	0.3169084	1116	0.2033179
108	0.4136896	612	0.3169084	1116	0.2033179
144	0.5637197	648	0.3194093	1152	0.2298925
144	0.5637197	648	0.3194093	1152	0.2298925
180	0.629904	684	0.3161155		
180	0.629904	684	0.3161155		
216	0.6913806	720	0.2986862		
216	0.6913806	720	0.2986862		
252	0.6889622	756	0.2925985		
252	0.6889622	756	0.2925985		
288	0.7348878	792	0.3094749		
288	0.7348878	792	0.3094749		
324	0.7360039	828	0.2266834		
324	0.7360039	828	0.2266834		
360	0.6842808	864	0.2379442		
360	0.6842808	864	0.2379442	.	
396	0.5914214	900	0.2149434		
396	0.5914214	900	0.2149434		
432	0.4915079	936	0.2087102		
432	0.4915079	936	0.2087102		

Table A-27. Results from 30 Hosts, Heavy Loads, Seed 1024

