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Abstract 
 

In this study, artificial neural network (ANN) was used to predict the interface level height (ILH) of two immiscible liquids flowing 
in a horizontal pipe. A three-layer feed-forward back-propagation (FFBP) neural network was constructed and trained with 
experimental data of two different liquid-liquid flow systems reported in the literature. The all studied flow patterns were stratified 
flow (stratified smooth and stratified wavy with or without droplets at interface  ) . The input parameters of the ANN model were 
superficial velocity of phases, pipe diameter, the ratio of the lighter phase density to the heavier phase density (ρ lp/ρhp) and the ratio 
of the lighter phase viscosity to the heavier phase viscosity (µ lp/µ hp), while the interface level height (ILH) of phases was its output. 
The Levenberg–Marquardt (LM) algorithm, the hyperbolic tangent sigmoid and the linear activation functions were used for training 
and developing the ANN. Optimal configuration of the ANN model was determined using minimizing the mean absolute percent 
error (MAPE) and mean square errors (MSE) between experimental and predicted ILH data by the ANN model. The results showed 
that the optimal configuration was a network with five neurons in hidden layer that was highly accurate in predicting the interface 
level. MAPE and correlation coefficient (R) between the experimental and predicted values were determined as 1.8% and 0.9962 for 
training, and 1.52% and 0.9996 for testing date sets, respectively. 
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1. Introduction 

Flows of immiscible fluids mixture are very common in the 
design of a variety of industrial processes and equipment 
particularly in the petroleum industry, where mixtures of oil and 
water are often produced and transported together. Depending 
on the flow conditions, physical properties of the fluids (density 
and viscosity), the operational variables (flow rate and volume 
fraction of each phase) and the geometry of the channel (pipe 
material, diameter and inclination, etc.), the two phases can 
distribute themselves in several configurations which are called 
flow regimes or flow patterns. The flow patterns are generally 
grouped into segregated flow and dispersed flow. In the 
dispersed flow only one phase is continuous and another phase 
is dispersed in it in the form of droplets. The stratified and 
annular flow patterns are usually named separated flows. The 
stratified flow pattern is characterized by the heavier and lighter 

phases located at the bottom and top parts of the conduit, 
respectively. Depending on the liquids velocities, the phases are 
separated by an interface which can be smooth (stratified 
smooth), wavy (stratified wavy) or wavy with mixing at the 
interface (ST & MI). In ST & MI flow, droplets of one phase 
exist in the layer of another phase and the droplets remain close 
to the interface.  

In the stratified flow pattern, the instantaneous interface 
level height (ILH) is defined as the height of the interface level 
of the immiscible fluids from the bottom of the pipe. In the 
stratified two- or three-phase flow of oil, water and gas 
mixtures, as the water is the heaviest phase, it flowed at the 
bottom part of the pipe, so the height of interface level from the 
pipe bottom is usually called water layer thickness. 

Whenever water phase comes into contact with the internal 
wall of a pipeline, which is known as “water wetting”, there is a 
potential for an internal corrosion of the pipe inner walls. 
Corrosion in pipelines can be attributed to the presence of 
dissolved gases, such as carbon dioxide (CO2) and hydrogen 
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sulphide (H2S), in water [1]. In such cases, it is necessary to 
inject the water-soluble corrosion inhibitors into the water 
phase, and this can be accomplished if the interface level height 
(water layer thickness) is known. Also, knowing the interface 
level height, can be useful for a more accurate prediction of the 
transition from the stratified to non-stratified (dispersed) flows. 
Hence, it is necessary to be able to accurately predict the 
interface level height in stratified flows. 

Some studies have been conducted to predict the water layer 
thickness of two- or three-phase stratified flows. Taitel & 
Dukler [2] proposed a two-fluid model for two-phase stratified 
gas-liquid flow in pipes. Hall and Hewitt [3] investigated the 
application of a similar methodology to stratified oil-water 
flows. Neogi et al. [4] and Taitel et al. [5] suggested a three-
layer flow model to estimate the water layer thickness of gas-
water-oil three-phase stratified flow. They considered the 
phases of water and oil and a mixed layer between them as three 
different “phases” with each phase having its own distinct 
properties. Also, they assumed all the interfaces between the 
pure water layer/oil-water mixed layer/pure oil layer as flat. 
Vedapuri et al. [6] applied this three-layer segregated flow 
model to estimate the water layer thickness and in situ water 
phase for oil-water flows. Shi et al. [7] developed a four-layer 
segregated flow model to calculate in situ water, water film 
thickness and water film in situ velocity by further dividing the 
mixed layer into two different layers namely water-in-oil and 
oil-in-water dispersions. They proposed that these two layers 
are homogeneous layers and the interfaces are all flat. However 
their four-layer method gives rise to further difficulties when 
attempting to determine interfacial shear stresses. 

The accurate prediction of interface level is too difficult 
because of the complex geometry of stratified flow in a pipe [3]. 
Some investigators suggested the use of artificial neural 
network (ANN) method to overcome such complex problems. 
The ANNs can be applied for solving nonlinear, uncertain, or 
unknown complex engineering problems without a 
comprehensive understanding of the physical phenomena 
describing the system under analysis [8]. This method have 
been successfully used in several problems of gas-liquid flows 
such as prediction of the flow patterns [9,10], pressure drop 
[11,12], holdup [13,14] and heat transfer coefficient [15,16]. 
However, only a few researchers have attempted to model the 
main parameters of liquid-liquid flows. Shirley et al. [17] 
trained four different networks for predicting flow pattern of 
oil–water two-phase in a horizontal pipe based on the flow 
pattern map reported by Raj et al. [18]. Azizi and Karimi [19] 
developed an ANN model to predict the pressure gradient in 
horizontal liquid–liquid separated flow. They used superficial 
velocities, viscosity ratio and density ratio of oil to water, and 
roughness and inner diameter of pipe as input parameters of the 
network. Azizi et al. [20] trained an ANN for prediction of 
water holdup of oil–water two-phase flow in a pipe with 
inclination angles of 90°, 75°, 60° and 45° from horizontal.  

To the best of the authors' knowledge, there is no study for 
modelling the interface level height of liquid-liquid stratified 
flow using ANNs. Hence, in this work the efficiency of ANN 
techniques to develop a model for the reliable prediction of 

interface level height of stratified liquid-liquid two-phase flow 
in horizontal pipes is investigated. 

2. The artificial neural network model development 

2.1. Basics of artificial neural network 

Artificial neural networks (AANs) are inspired by the 
building and human brain functionality, which can be imagined 
as a network consisting of densely interconnected processing 
elements called neurons/nodes. The main advantages of ANNs 
are learning adaptation, generalization, massive parallelism, 
robustness, associative storage information and spatiotemporal 
information processing.  The most common network structure 
utilized in the ANNs is the multilayer perceptron (MLP) or 
feed-forward with back-propagation (BP) algorithm. This 
network has an input layer, one or more hidden layers and one 
output layer. Each layer has a number of artificial neurons, a 
weight matrix (w) and an output vector, and each neuron has a 
bias (b). A layer that produces the network output is called 
output layer and layers that are between the input and output 
layers are called hidden layers. Multiple layers of neurons with 
nonlinear transfer functions permit the network to learn linear 
and nonlinear relationships between input and output 
parameters [21]. In the feed-forward networks, individual 
element inputs are multiplied by weights values and then, the 
weighted inputs are fed to the summing junction and is summed 
with the bias of neurons as follows: 

1

P

ji i j

i

S w X b
=

 
= + 
 
∑      (1) 

in which P is the number of elements of the input vector Xi, and 
wji is the interconnection weight between the input and hidden 
layers, respectively, and S is the sum of the weighted inputs and 
the bias b [22]. Then, this sum, S, is considered as the input of a 
transfer/activation function (f) which will make an output. 
Hyperbolic tangent sigmoid (tansig) in one of the most 
commonly used transfer functions in the hidden layer(s):  
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where f(Sj) is the output of node j, is also an element of the 
inputs to the neurons of the next layer. Similarly, the hidden 
layer neurons generates the inputs of all the neurons in the 
output layer, and then the summation of their weighted inputs 
and bias of each neuron of output layer passes through a transfer 
function (commonly linear function), which is the last output, 
Yi. 
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where q is the number of elements of the hidden layer and wkj is 
the interconnection weight between the hidden and output 
layers. In this work, mean square error (MSE) as the 
performance function between the network outputs and the 
desired outputs was used as   
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where n is the number of data points, YPred is the predicted value 
obtained from the neural network model and YExp is the 
experimental value. Back-propagation (BP) algorithm adjusts 
the weights values by allowing the error to spread from output 
layers towards the lower layers (hidden layer and input layer) 
for adjusting the weights such that the error decreases at each 
iteration (epoch). This procedure that is called “training” is 
iterated again until the output reaches the prescribed tolerance 
value. During the training process of the MLP network, the 
values of weights and biases are iteratively adjusted according 
to the error between the predicted and the target (experimental) 
values to minimize the network performance function.  

One of the main problems related to the MLP network is 
over-training or over-fitting, where the produced ANN system 
can only produce good estimation for known data set while it is 
unable to give reasonable prediction for new data set [23]. One 
method to avoid over-training and improve generalization 
ability of the network is the usage of early-stopping technique 
[22]. In this method, all data is divided randomly into three 
subsets: training, validation and testing sets. The training set is 
applied to train the network (adjusting the weights and the 
biases values) and the validation set is utilized to ensure the 
accuracy and the generalization of the developed network 
during the training process. After increasing the MSE error of 
the validation set at some consecutive epochs, the training 
process of the network is terminated, even if further training of 
the network will continue to minimize the training set error 
[24]. Once the network training is finished the testing set is 
employed to examine the final performance of the network.  

2.2. The ANN model Development 

In this work, MLP network with one hidden layer was 
applied to predict the interface level height of stratified liquid-
liquid flow. The network were designed and trained using 
experimental data points of Morgan et al. [25] and Ibarra et al. 
[26] works. Morgan et al. [25] used an aliphatic hydrocarbon oil 
(Exxsol D80) and an aqueous solution of glycerol (the heavier 
phase) for studying a set of experiments on liquid–liquid flows 
in a horizontal circular tube. The obtained results by measuring 
interface level revealed that for a given superficial mixture 
velocity, the interface level decreases as the oil input fraction 
increases. This trend was realized to be more prominent for 
higher superficial mixture velocities. Also, they observed that 
the rate of decrease in interface level increases as the superficial 
mixture velocity is increased. Ibarra et al. [26] investigated the 
effect of flow velocities and inlet configurations on co-current 
flows of aliphatic oil (Exxol 140) and water (the heavier phase) 
in a horizontal pipe. Although they were not reported the 
measuring results of interface level, in this work those data were 
used for developing the ANN model. The details of both data 
sets applied for developing the ANN model are presented in 
Table 1. 

 
Table 1. Details of the data sets used for developing the ANN 
model. 

 
Source 

 
Morgan et al. 

[25] 
Ibarra et al. [26] 

uslp (m/s) 0.03-0.22 0.05-0.67 
ushp (m/s) 0.03-0.25 0.09-0.60 
D (cm) 0.26 0.32 
ρ lp/ ρhp 0.66 0.83 
µ lp/µhp 0.05 6.00 
No. data points 13 20 

 
Superficial velocity of lighter (uslp) and heavier (ushp) 

phases, pipe diameter (D), the ratio of the lighter phase density 
to the heavier phase density (ρ lp/ρ hp) and the ratio of the lighter 
phase viscosity to the heavier phase viscosity (µlp/µhp) were 
chosen as input variables of the network, while the 
corresponding interface level height (ILH) was selected as 
output variable. Configuration of the proposed network with 5 

neurons in the hidden layer is shown in Fig. 1. 
Fig. 1. Structure of the developed single hidden layer ANN 
model. 

In order to validate the trained ANN, the all data were 
randomly divided into three sets: training (70%), validation 
(15%) and testing (15%) data sets. All values of inputs and 
outputs were normalized between –1 and 1. The tansig transfer 
function was utilized for the hidden layer neurons while the 
linear transfer function was applied for output layer neuron. 
There are several BP learning algorithm. In this study, 
Levenberg-Marquardt (LM) algorithm was preferred owing to 
providing fast convergence and stability in training of ANN. 
The number of neurons in the input and output layers is equal to 
the number of input and output variables, respectively, whereas 
the optimum number of neurons in the hidden layer depends on 
the complexity of the problem. The topology of an MLP 
network associated with the number of neurons in the hidden 
layer exerts a substantial influence on prediction accuracy and 
generalization ability of the network and consequently should 
be optimized. However, there is no a general rule for the 
determination of the optimal topology of MLP network and it is 
commonly concluded through the trial-and-error method [27].  

3. Results and discussion 

In this study, different single hidden layer networks were 
formulated and applied to predict the ILH. The number of 
neurons in each hidden layer were varied from 1 to 20 so that 
each network was repeatedly run for 100 times. The accuracy of 
the networks was evaluated by MSE, mean absolute percent 
error (MAPE) and correlation coefficient (R) between the 
experimental and predicted values: 
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where 
Exp

Y  and 
Pred

Y  are the average of the experimental and 

predicted values, respectively. The best obtained results for 
different numbers of neurons in the single hidden layer 
networks for testing data are shown in Fig. 2. 

 
Fig. 2. Variations of minimum MSE and MAPE of testing data 
against the different numbers of neurons in hidden layer 

As is shown in this figure, the network with 5 neurons in the 
hidden layer (5-5-1) was found to be the optimum network with 
the best performance in which the MSE and the MAPE of 
testing data were achieved 0.05429 and 1.52%, respectively. In 
Fig. 3, MSE against epochs during the training process of the 
optimum network (5-5-1) are plotted, in which the best results 
were achieved in epoch of 8 with minimum MSE of 0.51038 for 
validation data set. 

 
Fig. 3. Variations of mean squared error (MSE) versus epoch 
during the training of the optimal network. 

Fig. 4 shows the scatter plot of the predicted ILH values by 
the developed ANN model against experimental values for the 
all data sets. Also, Table 2 represent the details of performance 
of the ANN for all data sets. 

Fig. 4. Scatter plot of the predicted ILH by the ANN model 
versus the experimental data for training and testing data sets. 

Table 2. Performance evaluation of the developed ANN model 
for training, validation, testing and all data sets. 
Data set MSE MAPE (%) R 
Training 0.13194 1.80 0.9962 
Validation 0.51038 3.34 0.9864 
Test 0.05429 1.52 0.9996 
All data 0.17751 1.99 0.9951 

As can be seen from Table 2, the accuracy between the 
neural network predictions and experimental data was attained 
with low mean absolute percent error and high correlation 
coefficient for both training data set (MAPE = 1.8%, R = 
0.9962) and testing data set (MAPE = 1.52% and R = 0.9996). 
The MAPE and R value for all data were also calculated as 
1.98% and 0.99951, respectively. These results show the 
excellent fitting between the experimental and the predicted 
ILH, and so confirm the high ability of the developed ANN to 
predict the interface level height of the stratified liquid-liquid 
flow.  

4. Conclusion  

In this work a three-layer feed-forward back propagation 
(FFBP) neural network model with 5 neurons in the hidden 
layer as optimal configuration were utilized to predict the 
interface level height of stratified liquid-liquid flow. The 
network was designed and trained using the experimental data 
points of Morgan et al. [25] and Ibarra et al. [26] works. Input 
variables of this network included superficial velocity of phases, 
pipe diameter, the ratio of the lighter phase density to the 
heavier phase density (ρ lp/ρhp) and the ratio of the lighter phase 
viscosity to the heavier phase viscosity (µlp/µhp), while the 
interface level height (ILH) of phases was selected as its output 
variable. The obtained results from the optimal structure of 
network confirmed that the proposed ANN model have a high 
accuracy for predicting the ILH under all studied situations with 
a MAPE of 1.8% and R value of  0.9962 for training data and 
MAPE of 1.52% and R value of 0.9996 for tasting data. As a 
result, the ANNs can be used for predicting the interface level 
height of stratified liquid-liquid flow or the water thickness 
layer of stratified oil-water flow with a high accuracy. Although 
in this study a relatively small number of data was used to train 
the network, but the network was able to accurately predict the 
testing data set. For future work, by training the network using 
data obtained from more sources with various flow conditions, a 
more comprehensive model can be achieved.  
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