2004.05703v1 [cs.LG] 12 Apr 2020

arxXiv

DarkneTZ: Towards Model Privacy at the Edge using Trusted
Execution Environments

Fan Mo
Imperial College London

Soteris Demetriou
Imperial College London

Ali Shahin Shamsabadi

Queen Mary University of London

Ilias Leontiadis
Samsung Al

Kleomenis Katevas
Telefonica Research

Andrea Cavallaro
Queen Mary University of London

Hamed Haddadi
Imperial College London

ABSTRACT

We present DarkneTZ, a framework that uses an edge device’s
Trusted Execution Environment (TEE) in conjunction with model
partitioning to limit the attack surface against Deep Neural Net-
works (DNN5s). Increasingly, edge devices (smartphones and con-
sumer IoT devices) are equipped with pre-trained DNNs for a vari-
ety of applications. This trend comes with privacy risks as models
can leak information about their training data through effective
membership inference attacks (MIAs).

We evaluate the performance of DarkneTZ, including CPU ex-
ecution time, memory usage, and accurate power consumption,
using two small and six large image classification models. Due to
the limited memory of the edge device’s TEE, we partition model
layers into more sensitive layers (to be executed inside the device
TEE), and a set of layers to be executed in the untrusted part of the
operating system. Our results show that even if a single layer is
hidden, we can provide reliable model privacy and defend against
state of the art MIAs, with only 3% performance overhead. When
fully utilizing the TEE, DarkneTZ provides model protections with
up to 10% overhead.

CCS CONCEPTS

« Security and privacy — Embedded systems security; « Com-
puting methodologies — Machine learning.

ACM Reference Format:

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou,
Ilias Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ:
Towards Model Privacy at the Edge using Trusted Execution Environments.
In The 18th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys °20), June 15-19, 2020, Toronto, ON, Canada. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3386901.3388946

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7954-0/20/06...$15.00
https://doi.org/10.1145/3386901.3388946

1 INTRODUCTION

Advances in memory and processing resources and the urge to
reduce data transmission latency have led to a rapid rise in the de-
ployment of various Deep Neural Networks (DNNs) on constrained
edge devices (e.g., wearable, smartphones, and consumer Internet
of Things (IoT) devices). Compared with centralized infrastructures
(i.e., Cloud-based systems), hybrid and edge-based learning tech-
niques enable methods for preserving users’ privacy, as raw data
can stay local [41]. Nonetheless, recent work demonstrated that
local models still leak private information [21, 33, 34, 47, 57, 61-63].
This can be used by adversaries aiming to compromise the confi-
dentiality of the model itself or that of the participants in training
the model [48, 57]. The latter, is part of a more general class of
attacks, known as Membership Inference Attacks (refer to as MIAs
henceforth).

MIAs can have severe privacy consequences [33, 47] motivating
a number of research works to focus on tackling them [1, 28, 35].
Predominantly, such mitigation approaches rely on differential
privacy [14, 68], whose improvement in privacy preservation comes
with an adverse effect on the model’s prediction accuracy.

We observe, that edge devices are now increasingly equipped
with a set of software and hardware security mechanisms powered
by processor (CPU) designs offering strong isolation guarantees.
System designs such as Arm TrustZone can enforce memory isola-
tion between an untrusted part of the system operating in a Rich
Execution Environment (REE), and a smaller trusted component op-
erating in hardware-isolated Trusted Execution Environment (TEE),
responsible for security critical operations. If we could efficiently
execute sensitive DNNs inside the trusted execution environments
of mobile devices, this would allow us to limit the attack surface of
models without impairing their classification performance. Previ-
ous work has demonstrated promising results in this space; recent
advancements allow for high-performance execution of sensitive
operations within a TEE [17, 19, 24, 50, 51]. These works have
almost exclusively experimented with integrating DNNs in cloud-
like devices equipped with Intel Software Guard eXtensions (SGX).
However, this paradigm does not translate well to edge computing
due to significant differences in the following three factors: attack
surface, protection goals, and computational performance. The at-
tack surface on servers is exploited to steal a user’s private data,
while the adversary on a user’s edge device focuses on compromis-
ing a model’s privacy. Consequently, the protection goal in most
works combining deep learning with TEEs on the server (e.g., [17]


https://doi.org/10.1145/3386901.3388946
https://doi.org/10.1145/3386901.3388946

MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

and [24]) is to preserve the privacy of a user’s data during inference,
while the protection on edge devices preserves both the model pri-
vacy and the privacy of the data used in training this model. Lastly,
edge devices (such as IoT sensors and actuators) have limited compu-
tational resources compared to cloud computing devices; hence we
cannot merely use performance results derived on an SGX-enabled
system on the server to extrapolate measurements for TEE-enabled
embedded systems. In particular, blindly integrating a DNN in an
edge device’s TEE might not be computationally practical or even
possible. We need a systematic measurement of the effects of such
designs on edge-like environments.

Since DNNss follow a layered architecture, this can be exploited
to partition a DNN, having a sequence of layers executed in the
untrusted part of the system while hiding the execution of sensi-
tive layers in the trusted, secure environment. We utilize the TEE
(i.e., Arm TrustZone) and perform a unique layer-wise analysis to
illustrate the privacy repercussions of an adversary on relevant
neural network models on edge devices with the corresponding
performance effects. To the best of our knowledge, we are the first
to embark on examining to what extent this is feasible on resource-
constrained mobile devices. Specifically, we lay out the following
research question:

ROQ1: Is it practical to store and execute a sequence of sensitive
DNN’s layers inside the TEE of an edge device?

To answer this question we design a framework, namely Dark-
neTZ, which enables an exhaustive layer by layer resource consump-
tion analysis during the execution of a DNN model. DarkneTZ
partitions a model into a set of non-sensitive layers ran within
the system’s REE and a set of sensitive layers executed within the
trusted TEE. We use DarkneTZ to measure, for a given DNN—we
evaluate two small and six large image classification models—the
underlying system’s CPU execution time, memory usage, and accu-
rate power consumption for different layer partition choices. We
demonstrate our prototype of DarkneTZ using the Open Portable
TEE (OP-TEE)! software stack running on a Hikey 960 board.? OP-
TEE is compatible with the mobile-popular Arm TrustZone-enabled
hardware, while our choice of hardware closely resembles common
edge devices’ capabilities [42, 58]. Our results show that DarkneTZ
only has 10% overhead when fully utilizing all available secure
memory of the TEE for protecting a model’s layers.

These results illustrate that REE-TEE partitions of certain DNNs
can be efficiently executed on resource constrained devices. Given
this, we next ask the following question:

RQ2: Are such partitions useful to both effectively and efficiently
tackle realistic attacks against DNNs on mobile devices?

To answer this question, we develop a threat model considering
state of the art MIAs against DNNs. We implement the respective at-
tacks and use DarkneTZ to measure their effectiveness (adversary’s
success rate) for different model partition choices. We show that
by hiding a single layer (the output layer) in the TEE of a resource-
constrained edge device, the adversary’s success rate degrades to
random guess while (a) the resource consumption overhead on
the device is negligible (3%) and (b) the accuracy of inference re-
mains intact. We also demonstrate the overhead of fully utilizing

https://www.op-tee.org/
https://www.96boards.org/product/hikey960/

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

TrustZone for protecting models, and show that DarkneTZ can
be an effective first step towards achieving hardware-based model
privacy on edge devices.

Paper Organisation. The rest of the paper is organized as follows:
Section 2 discusses background and related work and Section 3
presents the design and main components of DarkneTZ. Section 4
provides implementation details and describes our evaluation setup
(our implementation is available online®), while Section 5 presents
our system performance and privacy evaluation results. Lastly,
Section 6 discusses further performance and privacy implications
that can be drawn from our systematic evaluation and we conclude
on Section 7.

2 BACKGROUND AND RELATED WORK
2.1 Privacy risks of Deep Neural Networks

Model privacy risks. With successful training (i.e., the model con-
verging to an optimal solution), a DNN model “memorizes" features
of the input training data [44, 57] (see [32, 64] for more details
on deep learning), which it can then use to recognize unseen data
exhibiting similar patterns. However, models have the tendency
to include more specific information of the training dataset unre-
lated to the target patterns (i.e., the classes that the model aims to
classify) [9, 57].

Moreover, each layer of the model memorizes different informa-
tion about the input. Yosinki et al. [59] found that the first layers
(closer to the input) are more transferable to new datasets than
the last layers. That is, the first layers learn more general infor-
mation (e.g., ambient colors in images), while the last layers learn
information that is more specific to the classification task (e.g., face
identity). The memorization difference per layer has been verified
both in convolutional layers [60, 62] and in generative models [65].
Evidently, an untrusted party with access to the model can leverage
the memorized information to infer potentially sensitive properties
about the input data which leads to severe privacy risks.

Membership inference attack (MIA). MIAs form a possible at-
tack on devices which leverage memorized information on a mod-
els’ layers to determine whether a given data record was part of
the model’s training dataset [48]. In a black-box MIA, the attacker
leverages models’ outputs (e.g., confidence scores) and auxiliary
information (e.g., public datasets or public prediction accuracy of
the model) to train shadow models or classifiers without accessing
internal information of the model [48, 57]. However, in a white-box
MIA, the attacker utilizes the internal knowledge (i.e., gradients
and activation of layers) of the model in addition to the model’s
outputs to increase the effectiveness of the attack [38]. It is shown
that the last layer (model output) has the highest membership in-
formation about the training data [38]. We consider a white-box
adversary as our threat model, as DNNs are fully accessible after
being transferred from the server to edge devices [55]. In addition
to this, a white-box MIA is a stronger adversary than a black-box
MIA, as the information the adversary has access to in a black-box
attack is a subset of that used in a white-box attack.

3https://github.com/mofanv/darknetz


https://www.op-tee.org/
https://www.96boards.org/product/hikey960/
https://github.com/mofanv/darknetz

DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

2.2 Deep learning in the TEE

Trusted execution environment (TEE). A TEE is a trusted com-
ponent which runs in parallel with the untrusted Rich operating
system Execution Environment (REE) and is designed to provide
safeguards for ensuring the confidentiality and integrity of its data
and programs. This is achieved by establishing an isolated region
on the main processor, and both hardware and software approaches
are utilized to isolate this region. The chip includes additional el-
ements such as unchangeable private keys or secure bits during
manufacturing, which helps ensure that untrusted parts of the plat-
form (even privileged OS or hypervisor processes) cannot access
TEE content (7, 10].

In addition to strong security guarantees, TEEs also provide bet-
ter computational performance than existing software protections,
making it suitable for computationally-expensive deep learning
tasks. For example, advanced techniques such as fully homomor-
phic encryption enable operators to process the encrypted data and
models without decryption during deep learning, but significantly
increase the computation cost [3, 37]. Conversely, TEE protection
only requires additional operations to build the trusted environment
and the communication between trusted and untrusted parts, so its
performance is comparable to normal executions in an untrusted
environment (e.g., an OS).

Deep learning with TEEs. Previous work leveraged TEEs to pro-
tect deep learning models. Apart from the unique attack surface
and thus protection goals we consider, these also differ with our ap-
proach in one more aspect: they depend on an underlying computer
architecture which is more suitable for cloud environments. Recent
work has suggested executing a complete deep learning model in a
TEE [10], where during training, users’ private data is transferred to
the trusted environment using trusted paths. This prevents the host
Cloud form eavesdropping on the data [39]. Several other studies
improved the efficiency of TEE-resident models using Graphics
Processing Units (GPU) [51], multiple memory blocks [24], and
high-performance ML frameworks [25]. More similar to our ap-
proach, Gu et al. [17] partitioned DNN models and only enclosed
the first layers in an SGX-powered TEE to mitigate input informa-
tion disclosures of real-time fed device user images. In contrast,
membership inference attacks we consider, become more effective
by accessing information in the last layers. All these works use an
underlying architecture based on Intel’s SGX, which is not suitable
for edge devices. Edge devices usually have chips designed using
Reduced Instruction Set Computing (RISC), peripheral interfaces,
and much lower computational resources (around 16 mebibytes
(MiB) memory for TEE) [15]. Arm’s TrustZone is the most widely
used TEE implementation in edge devices. It involves a more com-
prehensive trusted environment, including the security extensions
for the AXI system bus, processors, interrupt controller, TrustZone
address space controller, etc. Camera or voice input connected to
the APB peripheral bus can be controlled as a part of the trusted
environment by the AXI-to-APB bridge. Utilizing TrustZone for
on-device deep learning requires more developments and investi-
gations because of its different features compared to SGX.

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

2.3 Privacy-preserving methods

An effective method for reducing the memorization of private
information of training data in a DNN model is to avoid over-
fitting via imposing constraints on the parameters and utilizing
dropouts [48]. Differential Privacy (DP) can also obfuscate the pa-
rameters (e.g., adding Gaussian noise to the gradients) during train-
ing to control each input’s impact on them [1, 61]. However, DP
may negatively affect the utility (i.e., the prediction accuracy) if
the noise is not carefully designed [45]. In order to obfuscate pri-
vate information only, one could apply methods such as generative
neural networks [54] or adversarial examples [29] to craft noises
for one particular data record (e.g., one image), but this requires
additional computational resources which are already limited on
edge devices.

Server-Client model partition. General information processed
in the first layers [59] during forward propagation of deep learning
often includes more important indicators for the inputs than those
in the last layers (which is opposite to membership indicators), since
reconstructing the updated gradients or activation of the first layers
can directly reveal private information of the input [6, 13]. Based
on this, hybrid training models have been proposed which run
several first layers at the client-side for feature extraction and then
upload these features to the server-side for classification [40]. Such
partition approaches delegate parts of the computation from the
servers to the clients, and thus, in these scenarios, striking a balance
between privacy and performance is of paramount importance.

Gu et al. [17] follow a similar layer-wise method and leverage
TEEs on the cloud to isolate the more private layers. Clients’ private
data are encrypted and then fed into the cloud TEE so that the data
and first several layers are protected. This method expands the
clients’ trusted boundary to include the server’s TEE and utilizes an
REE-TEE model partition at the server which does not significantly
increase clients’ computation cost compared to running the first
layers on client devices. To further increase training speed, it is
also possible to transfer all linear layers outside a cloud’s TEE
into an untrusted GPU [51]. All these partitioning approaches aim
to prevent leakage of private information of users (to the server
or others), yet do not prevent leakage from trained models when
models are executed on the users’ edge devices.

3 DARKNETZ

We now describe DarkneTZ, a framework for preserving DNN
models’ privacy on edge devices. We start with the threat model
which we focus on in this paper.

3.1 Threat Model

We consider an adversary with full access to the REE of an edge
device (e.g., the OS) on edge devices: this could be the actual user,
malicious third-party software installed on the devices, or a mali-
cious or compromised OS. We only trust the TEE of an edge device
to guarantee the integrity and confidentiality of the data and soft-
ware in it. In particular, we assume that a DNN model is pre-trained
using private data from the server or other participating nodes. We
assume the model providers can fully guarantee the model privacy
during training on their servers by utilizing existing protection



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

Edge Devices

i Model Preparation i

! . |
1 . .
' | ReE i TEE I!
1 . .l
®@invoke i
1
sl CA . »TA
! @reavet— TEE key ||}
, | using ,
1 : secure | 1
| ! | storage |. |
: ! i = | i
} I d |_ v N = ’ ! !
: ®load layers | @decrypt / !
1 " 1

L . ] Trust Boundary on Devices

Figure 1: DarkneTZ uses on-device TEE to protect a set
of layers of a deep neural network for both inference
and fine-tuning. (Note: The trusted compute base—or trust
boundary—for the model owner on edge devices is the TEE
of the device).

methods [39] or even by training the model offline, so the model
can be secret provisioned to the user devices without other privacy
issues.

3.2 Design Overview

DarkneTZ design aims at mitigating attacks on on-device models
by protecting layers and the output of the model with low cost
by utilizing an on-device TEE. It should be compatible with edge
devices. That is, it should integrate with TEEs which can run on
hardware technologies that can be found on commodity edge de-
vices (e.g. Arm TrustZone), use standard TEE system architectures
and corresponding APIs.

We propose DarkneTZ, illustrated in Figure 1, a framework that
enables DNN layers to be partitioned as two parts to be deployed re-
spectively into the REE and TEE of edge devices. DarkneTZ allows
users to do inference with or fine-tuning of a model seamlessly—the
partition is transparent to the user—while at the same time con-
siders the privacy concerns of the model’s owner. Corresponding
Client Application (CA) and Trusted Application (TA) perform the
operations in REE and TEE, respectively. Without loss of generality,
DarkneTZ’s CA runs layers 1 to [ in the REE, while its TA runs
layers [ + 1 to L located in the TEE during fine-tuning or inference

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

of a DNN. This DNN partitioning can help the server to mitigate
several attacks such as MIAs [36, 38], as the last layers have a higher
probability of leaking private information about training data (see
Section 2).

DarkneTZ expects sets of layers to be pre-provisioned in the TEE
by the analyst (if the framework is used for offline measurements)
or by the device OEM if a version of DarkneTZ is implemented on
consumer devices. Note that in the latter case, secret provisioning
of sensitive layers can also be performed over the air, which might
be useful when the sensitive layer selection needs to be dynamically
determined and provisioned to the edge device after supply. In this
case, one could extend DarkneTZ to follow a variation of the SIGMA
secure key exchange protocol [30], modified to include remote
attestation, similar to [66]. SIGMA is provably secure and efficient.
It guarantees perfect forward secrecy for the session key (to defend
against replay attacks) while its use of message authentication codes
ensures server and client identity protection. Integrating remote
attestation guarantees that the server provisions the model to a
non-compromised edge device.

3.3 Model Preparation

Once the model is provisioned, the CA requests the layers from
devices (e.g., solid-state disk drive (SSD)) and invokes the TA. The
CA will first build the DNN architecture and load the parameters of
the model into normal memory (i.e., non-secure memory) to process
all calculations and manipulations of the non-sensitive layers in the
REE. When encountering (secretly provisioned) encrypted layers
need to be executed in the TEE, which is determined by the model
owner’s setting, the CA passes them to the TA. The TA decrypts
these layers using a key that is securely stored in the TEE (using
secure storage), and then it runs the more sensitive layers in the
TEE’s secure memory. The secure memory is indicated by one
additional address bit introduced to all memory system transactions
(e.g., cache tags, memory, and peripherals) to block non-secure
access [7]. At this point, the model is ready for fine-tuning and
inference.

3.4 DNN Partitioned Execution

The forward pass of both inference and fine-tuning passes the input
a® to the DNN to produce activation of layers until the last layer, i.e.,
layer I’s activation is calculated by al = f (wlal=! + bl), where w!
and b are weights and biases of this layer, al=1 is activation of its
previous layer and f is the non-linear activation function. Therefore,
after the CA processes its inside layers from 1 to [, it invokes a
command to transfer the outputs (i.e., activation) of layer [ (i.e., the
last layer in the CA) to the secure memory through a buffer (in
shared memory). The TA switches to the forward_net_TA function
corresponding to the invoked command to receive parameters (i.e.,
outputs/activation) of layer I and processes the following forward
pass of the network (from layer I + 1 to layer L) in the TEE. In the
end, outputs of the last layer are first normalized as 4” to control
the membership information leakage and are returned via shared
memory as the prediction results.

The backward pass of fine-tuning computes gradients of the
loss function £(al, y) with respect to each weight w! and bias b’,
and updates the parameters of all layers, {w! }IL: . and {b’ }{“: , as



DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

= =b! —U%lj’y), where 7 is a constant
called the learning rate and y is the desired output (i.e., called label).
The TA can compute the gradient of the loss function by receiving
y from CA and back propagate it to the CA in order to update all
the parameters. In the end, to save the fine-tuned model on devices,
all layers in the TA are encrypted and transferred back to the CA.

4 EXPERIMENT SETTINGS

4.1 Models and Datasets

We first use two popular DNNs, namely AlexNet and VGG-7, to
measure the system’s performance. AlexNet has five convolutional
layers (i.e., with kernel size 11, 5, 3, 3, and 3) followed by a fully-
connected and a softmax layer, and VGG-7 has eight layers (i.e., seven
convolutional layers with kernel size 3, followed by a fully-connected
layer). Both AlexNet and VGG-7 use ReLU (Rectifier Linear Unit)
activation functions for all convolutional layers. The number of
neurons for AlexNet’s layers is 64, 192, 384, 256, and 256, while the
number of neurons for VGG-7’s layers is 64, 64, 124, 124, 124, 124,
and 124. We train the networks and conduct inference on CIFAR-
100 and ImageNet Tiny. We use image classification datasets, as
a recent empirical study shows that the majority of smartphone
applications (70.6%) that use deep learning are for image process-
ing [55]. Moreover, the state of the art MIA we are considering is
demonstrated against such datasets [38]. CIFAR-100 includes 50k
training and 10k test images of size 32 X 32 X 3 belonging to 100
classes. ImageNet Tiny is a simplified ImageNet challenge that has
100k training and 10k test images of size 64 X 64 X 3 belonging to
200 classes.

In addition to this, we use six available DNNs (Tiny Darknet
(4 megabytes (MB)), Darknet Reference (28MB), Extraction [49]
(90MB), Resnet-50 [20] (87MB), Densenet-201 [23] (66MB), and
Darknet-53-448 (159MB)) pre-trained on the original ImageNet [11]
dataset to measure DarkneTZ’s performance during inference. All
pre-trained models can be found online?. ImageNet has 1000 classes,
and consequently, these DNN models’ last layers occupy larger
memory that can exceed the TEE’s limits, compared to models with
100/200 classes. Therefore, for these six models, we only evaluate
the condition that their last layer is in the TEE.

To evaluate the defence’s effectiveness against MIAs, we use the
same models as those used in the demonstration of the attack[38]
(AlexNet, VGG-7, and ResNet-110). This ResNet with 110 depth is
an existing network architecture that has three blocks (each has 36
convolutional layers) in the middle and another one convolutional
layer at the beginning and one fully connected layer at the end [20].
We use published models trained (with 164 epochs) on CIFAR-
100 [31] online®. We also train three models on ImageNet Tiny®
with 300 epochs as target models (i.e., victim models during attacks).
Models with the highest valid accuracy are used after training. We
follow [38]’s methodology, and all training and test datasets are
split to two parts with equal sizes randomly so that the MIA model
learns both Member and Non-member images. For example, 25K
of training images and 5K of test CIFAR-100 images are chosen to
train the MIA model, and then the model’s test precision and recall

4https://pjreddie.com/darknet/imagenet/
Shttps://github.com/bearpaw/pytorch-classification
Shttps://tiny-imagenet.herokuapp.com/

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

are evaluated using 5K of training images and 5K of test images in
the rest of CIFAR-100 images.

4.2 Implementation and Evaluation Setup

We develop an implementation based on the Darknet [46] DNN
library. We chose this particular library because of its high com-
putational performance and small library dependencies which fits
within the limited secure memory of the TEE. We run the imple-
mentation on Open Portable TEE (OP-TEE), which provides the
software (i.e., operating systems) for an REE and a TEE designed to
run on top of Arm TrustZone-enabled hardware.

For TEE measurements, we focus on the performance of deep
learning since secret provisioning only happens once for updat-
ing the model from severs. We implement 128-bit AES-GCM for
on-device secure storage of sensitive layers. We test our implemen-
tation on a Hikey 960 board, a widely-used device [4, 8, 12, 58]
that is promising to be comparable with mobile phones (and other
existing products) due to its Android open source project support.
The board has four ARM Cortex-A73 cores and four ARM Cortex-
A53 cores (pre-configured to 2362MHz and 533MHz, respectively,
by the device OEM), 4GB LPDDR4 SDRAM, and provides 16 MiB
secure memory for trusted execution, which includes 14MiB for the
TA and 2MiB for TEE run-time. Another 2MiB shared memory is
allocated from non-secure memory. As the Hikey board adjusts the
CPU frequency automatically according to the CPU temperature,
we decrease and fix the frequency of Cortex A73 to 903MHz and
keep the frequency of Cortex A53 as 533Mhz. During experiments
we introduce a 120 seconds system sleep per trial to make sure that
the CPU temperature begins under 40°C to avoid underclocking.

Edge devices suffer from limited computational resources, and
as such, it is paramount to measure the efficiency of deep learning
models when partitioned to be executed partly by the OS and partly
by the TEE. In particular we monitor and report CPU execution time
(in seconds), memory usage (in megabytes), and power consumption
(in watts) when the complete model runs in the REE (i.e., OS) and
compare it with different partitioning configurations where more
sensitive layers are kept within the TEE. CPU execution time is the
amount of time that the CPU was used for deep learning operations
(i-e., fine-tuning or inference). Memory usage is the amount of
the mapping that is currently resident in the main memory (RAM)
occupied by our process for deep learning related operations. Power
consumption is the electrical energy consumption per unit time
that was required by the Hikey board.

More specifically, we utilized the REE’s /proc/self/status for
accessing the process information to measure the CPU execution
time and memory usage of our implementation. CPU execution
time is the amount of time for which the CPU was used for process-
ing instructions of software (as opposed to wall-clock time which
includes input/output operations) and is further split into (a) time
in user mode and (b) time in kernel mode. The REE kernel time
captures together (1) the time spent by the REE’s kernel and (2)
the time spent by the TEE (including both while in user mode and
kernel mode). This kernel time gives us a direct perception of the
overhead when including TEEs for deep learning versus using the
same REE without a TEE’s involvement.


https://pjreddie.com/darknet/imagenet/
https://github.com/bearpaw/pytorch-classification
https://tiny-imagenet.herokuapp.com/

MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

Memory usage is represented using resident set size (RSS) memory
in the REE, but the memory occupied in the TEE is not counted by
the RSS since the REE does not have access to gather memory usage
information of the TEE. The TEE is designed to conceal this sensitive
information (e.g., both CPU time and memory usage); otherwise,
the confidentiality of TEE contents would be easily breached by
utilizing side-channel attacks [53]. To overcome this, we trigger an
abort from the TEE after the process runs stably (memory usage
tends to be fixed) to obtain the memory usage of the TEE.

To accurately measure the power consumption, we used Mon-
soon High Voltage Power Monitor,” a high-precision power meter-
ing hardware capable of measuring the current consumed by a test
device with a voltage range of 0.8V to 13.5V and up to 6A continu-
ous current. We configured it to power the Hikey board using the
required 12V voltage while recording the consumed current in a
50Hz sampling rate.

For conducting the MIA, we use a machine with 4 Intel(R) Xeon(R)
E5-2620 CPUs (2.00GHz), an NVIDIA QUADRO RTX 6000 (24GB),
and 24GB DDR4 RAM. Pytorch v1.0.1 [43] is used as the DNN
library.

4.3 Measuring Privacy in MIAs

We define the adversarial strategy in our setting based on state-of-
the-art white-box MIAs which observe the behavior of all compo-
nents of the DNN model [38]. White-box MIAs can achieve higher
accuracy of distinguishing whether one input sample is presented
in the private training dataset compared to black-box MIAs since
the latter only have access to the models’ output [48, 57]. Besides,
white-box MIAs are also highly possible in on-device deep learn-
ing, where a model user can not only observe the output, but also
observe fine-grained information such as the values of the cost
function, gradients, and activation of layers.

We evaluate the membership information exposure of a set of
the target model’s layers by employing the white-box MIA [38]
on these layers. The attacker feeds the target data to the model
and leverages all possible information in the white-box setting
including activation of all layers, model’s output, loss function, and
the gradients of the loss function with respect to the parameter of
each layer. It then separately analyses each information source by
extracting features from the activation of each layer, the model’s
output and the loss function via fully connected neural networks
with one hidden layer, while using convolutional neural networks
for the gradients. All extracted features are combined in a global
feature vector that is later used as an input for an inference attack
model. The attack model predicts a single value (i.e., Member or
Non-member) that represents the membership information of the
target data (we refer the interested readers to [38] for a detailed
description of this MIA). We use the test accuracy of the MIA model
trained on a set of layers to represent the advantage of adversaries
as well as the sensitivity of these layers.

To measure the privacy risk when part of the model is in TEE,
we conduct this MIA on our target model in two different settings:
(i) starting from the first layer, we add the later layers one by one
until the end of the network, and (ii) starting from the last layer
we add the previous layers one by one until the beginning of the

"https://www.msoon.com/

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

network. However, the available information of one specific layer
during the fine-tuning phase and that during the inference phase are
different when starting from the first layers. Inference only has a
forward propagation phase which computes the activation of each
layer. During fine-tuning and because of the backward propagation,
in addition to the activation, gradients of layers are also visible. In
contrast to that, attacks starting from the last layers can observe the
same information in both inference and fine-tuning since layers’
gradients can be calculated based on the cost function. Therefore,
in setting (i), we utilize activation, gradients, and outputs. In setting
(ii), we only use the activation of each layer to evaluate inference
and use both activation and gradients to evaluate fine-tuning, since
the outputs of the model (e.g., confidence scores) are not accessible
in this setup.

5 EVALUATION RESULTS

In this Section we first evaluate the efficiency of DarkneTZ when
protecting a set of layers in the TrustZone to answer RQ1. To eval-
uate system efficiency, we measure CPU execution time, mem-
ory usage, and power consumption of our implementation for
both training and inference on AlexNet and VGG-7 trained on two
datasets. We protect the last layers (starting from the output) since
they are more vulnerable to attacks (e.g., MIAs) on models. The cost
layer (i.e., the cost function) and the softmax layer are considered
as a separate layer since they contain highly sensitive information
(i.e., confidence scores and cost function). Starting from the last
layer, we include the maximum number of layers that the Trust-
Zone can hold. To answer RQ2, we use the MIA success rate,
indicating the membership probability of target data (the more
DarkneTZ limits this, the stronger the privacy guarantees are). We
demonstrate the effect on performance and discuss the trade-off
between performance and privacy using MIAs as one example.

5.1 CPU Execution Time

As shown in Figure 2, the results indicate that including more layers
in the TrustZone results in an increasing CPU time for deep learning
operations, where the most expensive addition is to put the maxi-
mum number of layers. Figure 2a shows the CPU time when training
AlexNet and VGG-7 with TrustZone on CIFAR-100 and ImageNet
Tiny dataset, respectively. This increasing trend is significant and
consistent for both datasets (CIFAR-100: F(4 133) = 29.37,p < 0.001;
Fg,171) = 321.3,p < 0.001. ImageNet Tiny: F 133y = 37.52,p <
0.001; Fg 171) = 28.5,p < 0.001). We also observe that protecting
only the last layer in the TrustZone has negligible effect on the
CPU utilization, while including more layers to fully utilize the
TrustZone during training can increase CPU time (by 10%). For
inference, the increasing trend is also significant (see Figure 2b).
It only increases CPU time by around 3% when protecting only
the last layer which can increase up to 10X when the maximum
possible number of layers is included in the TrustZone.

To further investigate the increasing CPU execution time effect,
we analyzed all types of layers (both trainable and non-trainable)
separately in the TrustZone. Trainable layers have parameters (e.g.,
weights and biases) that are updated (i.e., trainable) during the train-
ing phase. Fully connected layers and convolutional layers are train-
able. Dropout, softmax, and maxpooling layers are non-trainable.


https://www.msoon.com/

DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

CPU execution time (s)

Dataset: —¥— CIFAR-100

__080 0.80
)
Q
£075
S
c
o
S 0.70
(5]
Q
x
@ 0.65
o]
o
(8}

0.60 0.60

1 2 3 4 1 2 3 4 5

Layers of Alexnet
in TrustZone

Layers of VGG-7
in TrustZone

(a) CPU time of training

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

— =X= - |mageNet Tiny
1.25 1.25
1.00 1.00
0.75
0.50
0.25
0.00 0.00
1 2 3 4 1 2 3 4 5

Layers of Alexnet
in TrustZone

Layers of VGG-7
in TrustZone

(b) CPU time of inference

Figure 2: The CPU time of each step of training models or conducting inference on CIFAR-100 and ImageNet Tiny, protecting
consecutive last layers using TrustZone (For example: when putting the last layers in the TrustZone, 1 refers to the cost func-
tion and the softmax layer, 2 includes 1 and the previous fully-connected layer, 3 includes 2 and the previous convolutional

layers, etc. Horizontal dashed lines (

and - ) represent the baseline where all layers are out of the TrustZone. 20 times for

each trial, and error bars are 95% CI. Several error bars of data points are invisible as they are too small to be shown in this

figure as well as the following figures).

As shown in Figure 3, different turning points exist where the CPU
time significantly increases (p < 0.001) compared to the previous
configuration (i.e., one more layer is moved into the TrustZone)
(Tukey HSD [2] was used for the post hoc pairwise comparison).
When conducting training, the turning points appear when putting
the maxpooling layer in the TrustZone for AlexNet (see Figure 3a)
and when putting the dropout layer and the maxpooling layer for
VGG-7 (see Figure 3b). All these layers are non-trainable. When
conducting inference, the turning points appear when including the
convolutional layers in TrustZone for both AlexNet (see Figure 3c)
and VGG-7 (see Figure 3d), which are one step behind those points
when conducting training.

One possible reason for the increased CPU time during inference
is that the TrustZone needs to conduct extra operations (e.g., related
secure memory allocation) for the trainable layer, as shown in
Figure 3c and Figure 3d where all increases happen when one
trainable layer is included in the TrustZone. Since we only conduct
one-time inference during experiments, the operations of invoking
TEE libraries, creating the TA, and allocating secure memory for the
first time significantly increased the execution time compared to the
next operations. Every subsequent inference attempt (continuously
without rebuilding the model) does not include additional CPU
time overhead. Figure 4 also shows that most of the increased CPU
execution time (from ~0.1s to ~0.6s) is observed in the kernel mode—
which includes the execution in TrustZone. The operation that
needs to create the TA (to restart the TEE and load TEE libraries
from scratch), such as one-time inference, should be taken care
of by preloading the TA before conducting inference in practical
applications.

During training, the main reason for the increased CPU time
is that protecting non-trainable layers in the TrustZone results in
an additional transmission of their previous trainable layers from
the REE to the TrustZone. Non-trainable layers (i.e., dropout and
max-pooling layers) are processed using a trainable layer as the
base, and the non-trainable operation manipulates its previous layer

(i.e., the trainable layer) directly. To hide the non-trainable layer and
to prevent its next layer from being transferred to the REE during
backward propagation (as mentioned in Section 3.4), we also move
the previous convolutional layer to the TrustZone, which results
in the turning points of the training are one layer in front of the
turning points during inference. Therefore, in practical applications,
we should protect the trainable layer and its previous non-trainable
layer together, since only protecting the non-trainable layer still
requires moving its trainable layer into TrustZone and does not
reduce the cost.

5.2 Memory Usage

Training with the TrustZone does not significantly influence the
memory usage (in the REE) as it is similar to training without Trust-
Zone (see Figure 5a). Inference with TrustZone uses less memory
(in the REE) (see Figure 5b) but there is still no difference when
more layers are placed into TrustZone. Memory usage (in the REE)
decreases since layers are moved to TrustZone and occupy secure
memory instead. We measure the TA’s memory usage using all map-
ping sizes in secure memory based on the TA’s abort information.
The TA uses five memory regions for sizes of 9x1000, 0x101000,
0x1e000, 0xa03000, and 0x1000 which is 11408KiB in total for all
configurations. The mapping size of secure memory is fixed when
the TEE run-time allocates memory for the TA, and it does not
influence when moving more layers into the memory. Therefore,
because of the different model sizes, a good setting is to maximize
the TA’s memory mapping size in TrustZone in order to hold several
layers of a possible large model.

5.3 Power Consumption

For training, the power consumption significantly decreases (p <
0.001) when more layers are moved inside TrustZone (see Figure 5c).
In contrast, the power consumption during inference significantly
increases (p < 0.001) as shown in Figure 5d. In both training and



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

CPU time (s)

CT sM FC MP C C
12 3 4
Layers in TrustZone

o
Y
al

CPU time (s)
o
3

0.654

CTSMFC D C MP C C
12 3 4 5
Layers in TrustZone

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

CPU time in: - Kernel mode User mode

_07 071
) @
g 0.6 g 0.64
Eos *—*‘ £ 051
S04 § 0.4
303 303
g g
@ 0.2 @ 0.2
Z o1 2 01 4
O O

0.0 0.0

(a) Training with Alexnet (b) Training with VGG-7

0.61 0.6
w w
) O
g 0.4 g o4
k=1 =
) >
a a
O 0.2 O 0.2

o
o
o
o

CT SM FC MP C C CTSMFC D C MP C C
1 2 3 4 1 2 3 4 5

Layers in TrustZone Layers in TrustZone

(c) Inference with Alexnet (d) Inference with VGG-7
Figure 3: The CPU time of each step of training models or
conducting inference on CIFAR-100, protecting consecutive
last layers using TrustZone (Note: The x-axis corresponds
to several last layers included in the TrustZone. CT, SM, FC,
D, MP, and C refer to the cost, softmax, fully connected,
dropout, maxpooling, convolutional layers. 1, 2, 3, 4, and 5
in the x-axis are corresponding to the x-axis of Figure 2. Hor-
izontal dashed lines ( --- ) represent the baseline where all
layers are out of the TrustZone. 20 times for each trial, and
error bars are 95% CI).

inference settings, the trend of power consumption is likely re-
lated to the change of CPU time (see Figure 2). More specifically,
trajectories of them in figures have the same turning points (i.e.,
decreases or increases when moving the same layer to the TEE).
One reason for the increased power consumption during inference
is the significant increase in the number of CPU executions for
invoking the required TEE libraries that consume additional power.
When a large number of low-power operations (e.g., memory op-
erations for mapping areas) are involved, the power consumption
(i.e., energy consumed per unit time) could be lower compared to
when a few CPU-bound computationally-intensive operations are
running. This might be one of the reasons behind the decreased
power consumption during training.

System performance on large models. We also test the perfor-
mance of DarkneTZ on several models trained on ImageNet when
protecting the last layer only, including the softmax layer (or the
pooling layer) and the cost layer in TrustZone, in order to hide
confidence scores and the calculation of cost. The results show that
the overhead of protecting large models is negligible (see Figure 6):
increases in CPU time, memory usage, and power consumption

1 2 3 4 5
Layers of VGG-7
in TrustZone

(a) Training on CIFAR-100

1 2 3 4 5
Layers of VGG-7
in TrustZone

(b) Inference on CIFAR-100

Figure 4: The CPU execution time in user mode and kernel
mode of each step of training the model or conducting infer-
ence on CIFAR-100, protecting consecutive last layers using
TrustZone (Note: Horizontal dot-dashed lines (- - ) repre-
sent the baseline where all layers are out of the TrustZone.
20 times for each trial. CPU time in user mode in Figure 4b
is too small to be shown).

are lower than 2% for all models. Among these models, the smaller
models (e.g., Tiny Darknet and Darknet Reference model) tend to
have a higher rate of increase of CPU time compared to the larger
models (e.g., Darknet-53 model), indicating that with larger models,
the influence of TrustZone protection on resource consumption
becomes relatively less.

System performance summary. In summary, it is practical to
process a sequence of sensitive DNN model’s layers inside the TEE of
a mobile device. Putting the last layer in the TrustZone does not
increase CPU time and only slightly increases memory usage (by
no more than 1%). The power consumption increase is also minor
(no more than 0.5%) when fine-tuning the models. For inference, se-
curing the last layer does not increase memory usage but increases
CPU time and power consumption (by 3%). Including more layers
to fully utilize the TrustZone during training can further increase
CPU time (by 10%) but does not harm power consumption. One-
time inference with multiple layers in the TrustZone still requires
further development, such as utilizing preliminary load of the TA,
in practical applications.

5.4 Privacy

We conduct the white-box MIA (Section 4.3) on all target models
(see Section 4.1 for the choice of models) to analyze the privacy
risk while protecting several layers in the TrustZone. We used the
standard precision and recall metrics, similar to previous works [48].
In our context, precision is the fraction of records that an attacker
infers as being members, that are indeed members in the training
set. Recall is the fraction of training records that had been identified
correctly as members. The performance for both models and MIAs
are shown in Table 1. Figure 7 shows the attack success precision
and recall for different configurations of DarkneTZ. In each con-
figuration, a different number of layers is protected by TrustZone
before we launch the attack. The configurations with zero layers



DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

Dataset: —¥— CIFAR-100 - =X-= - ImageNet Tiny
35 35 81 8
o % . R T e
S g0 e M T e 30 e = X=X =3
() ()
g g 6 6 .
ISt ISt
425 251 £ M = X = X = X = =X
> >
5 e % Sad 4
gzo 20+ g * * —k | |
= = O— H———%
15 15 2 2
1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5
Layers of Alexnet Layers of VGG-7 Layers of Alexnet Layers of VGG-7
in TrustZone in TrustZone in TrustZone in TrustZone
(a) Memory usage of training (b) Memory usage of inference
~35 35 ~3 3.0
2 2
Fe o e
S 3.4 *eo i 34 s
= = X 25
Qo Qo
g IS
7 33 3.3 7
j o o j o
S 8 2 2.01
5 3.2 3.2 5
] ]
g c
3.1 3.1 15 1.5
1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 5

Layers of Alexnet
in TrustZone

Layers of VGG-7
in TrustZone

(c) Power consumption of training

Layers of Alexnet
in TrustZone

Layers of VGG-7
in TrustZone

(d) Power consumption of inference

Figure 5: The memory usage and power consumption of training models, while conducting training or inference on CIFAR-100

and ImageNet Tiny, protecting consecutive last layers using TrustZone (Note: Horizontal dashed lines (

and - ) represent

the baseline where all layers are outside the TrustZone. 20 times for each trial, error bars are 95% CI).

2 2.0%]
§ . CPU time
[} 7
O 100 Memory usage
L_C) Power consumption
@
8 0.0% —
: %
k=]
= -1.0%
5
a
IS
8 -2.0%
. 2 = o & @
< & &° L D s
(\Q} & g @ & &
S & &8 & & &
R R s & &
Q & 2 &
'Zr& Q Q
Q
Model

Figure 6: Performance on protecting the last layer of models
trained on ImageNet in TrustZone for inference (Note: 20
times per trial; error bars are too small to be visible in the
plot).

protected correspond to DarkneTZ being disabled (i.e., with our
defense disabled). In particular, we measure the MIA adversary’s
success following two main configuration settings of DarkneTZ.
In the first setting, we incrementally add consecutive layers in the

Table 1: Training and testing accuracy (Acc.) and correspond-
ing MIA precision (Pre.) with or without DarkneTZ (DTZ) of
all models and datasets.

Train | Test | Attack Attack
Dataset Model Ace Ace Pre Pre.
: ' " | (DTZ)
CIFAR AlexNet 97.0% | 43.9% | 84.7% 51.1%
-100 VGG-7 83.8% | 62.7% | 71.5% 50.5%
ResNet-100 | 99.6% | 72.4% | 88.3% 50.6%
ImageNet AlexNet 40.3% | 31.5% | 56.7% 50.0%
Tiny VGG-7 57.1% | 48.6% | 54.2% 50.8%
ResNet-110 | 62.1% | 54.2% | 54.6% 50.2%

TrustZone starting from the front layers and moving to the last
layers until the complete model is protected. In the second setting
we do the opposite: we start from the last layer and keep adding
previous layers in TrustZone for each configuration. Our results
show that when protecting the first layers in TrustZone, the attack
success precision does not change significantly. In contrast, hiding
the last layers can significantly decrease the attack success preci-
sion, even when only a single layer (i.e., the last layer) is protected
by TrustZone. The precision decreases to ~50% (random guessing)



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

Protection from: ———

Metric:

First Layers =/

== Precision

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

85%
75% A
75% A
65%
65% A

55%
55% A

Precision & Recall
Precision & Recall

45% 45%1

35%

35% A

LastLayers _ _ __ LastLayers
(Inference) (Fine—tuning)
— Recall
95%
85%
©
o
D 75%
14
]
= 65%
i}
]
% 4
§ 55%
& L
45% 4
DAY /7 LN x
35% WX el x A

o 1 2

Layers of AlexNet
in TrustZone

3

Layers of VGG-7
in TrustZone

4 5 6 7 012 3 456 7 8 910
Layers of ResNet

in TrustZone

Figure 7: Precision and recall of white-box membership inference attacks when first or last layers of the model, trained on
CIFAR-100, are protected using TrustZone. (Note: For first layer protection, 1 refers to the first layer, 2 refers to the first and
the second layer, etc. For last layer protection, 1 refers to the last layer (i.e., the output layer), 2 refers to the last and second
last layer, etc. 0 means that all layers are out of the TrustZone. Dashed lines at 50% represent baselines (i.e., random guess).

Each trial has been repeated 5 times, and error bars are 95% CI).

no matter how accurate the attack is before the defense. For ex-
ample, for the AlexNet model trained on CIFAR-100, the precision
drops from 85% to ~50% when we only protect the last layer in
TrustZone. Precision is much higher than recall since the number
of members in the adversary’s training set is larger than that of
non-members, so the MIA model predicts member images better.
The results also show that the membership information that leaks
during inference and fine-tuning is very similar. Moreover, accord-
ing to [38] and [48], the attack success precision is influenced by
the size of the attackers’ training dataset. We used relatively large
datasets (half of the target datasets) for training MIA models so that
it is hard for the attacker to increase success precision significantly
in our defense setting. Therefore, by hiding the last layer in Trust-
Zone, the adversary’s attack precision degrades to 50% (random
guess) while the overhead is under 3%.

We also evaluated the privacy risk when DarkneTZ protects the
model’s outputs in TrustZone by normalizing it before outputting
prediction results. In this configuration we conduct the white-box
MIAs when all other layers (in the untrusted REE) are accessible by
the adversary. This means that the cost function is protected, and
the confidence score’s outputs are controlled by TrustZone. Three
combinations of models and datasets, including AlexNet, VGG-
7, and ResNet on CIFAR-100 are selected as they were identified
as more vulnerable (i.e., with high attack precision see Table 1)
to MIAs [38]. DarkneTZ is set to control the model’s outputs in
three different ways: (a) top-1 class with its confidence score; (b)
top-5 classes with their confidence scores; (c) all classes with their
confidence scores. As shown in Figure 8 all three methods can
significantly (p < 0.001) decrease the attack success performance
to around 50% (i.e., random guess). Therefore, we found that it is
highly practical to use DarkneTZ to tackle MIAs: it incurs low resource
consumption cost while achieving high privacy guarantees.

. All classes with scores

95.0% . Top-1 with scores

90.0%1 VA Top-5 with ranks

85.0% Al classes with ranks

80.0%

75.0%

70.0%

65.0%

60.0%

55.0% A

50.0% + = _ . )

AlexNet

100.0%

Precision

VGG-7
Model

ResNet

Figure 8: Precision of white-box membership inference at-
tacks on models trained on CIFAR-100 when only outputs
are protected using TrustZone (Dashed lines at 50% repre-
sent baselines (i.e., random guess). 5 times for each trial, and
error bars are 95% CI).

6 DISCUSSION

6.1 System Performance

Effects of the model size. We showed that protecting large mod-
els with TrustZone tends to have a lower rate of increase of CPU
execution time than protecting small models (see Figure 6). One pos-
sible explanation is that the last layer of a larger model uses a lower
proportion of computational resources in the whole model com-
pared to that of a smaller model. We have also examined the effect
of different hardware: we executed our implementation of Dark-
neTZ with similar model sizes on a Raspberry Pi 3 Model B (RPi3B)



DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

and found it to have a lower rate of increase of cost (i.e., lower
overhead) than when executed on the Hikey board [36]. This is
because the Hikey board has much faster processors optimized for
matrix calculations, which renders additional operations of utilizing
TrustZone more noticeable compared to other normal executions
(e.g., deep learning operations) in the REE. Moreover, our results
show that a typical configuration (16MiB secure memory) of the
TrustZone is sufficient to hold at least the last layer of practical
DNN models (e.g., trained on ImageNet). However, it is challenging
to fit multiple layers of large models in a significantly smaller TEE.
We tested a TEE with 5MiB secure memory on a Grapeboard®: only
1,000 neurons (corresponding to 1,000 classes) in the output layer
already occupy 4MiB memory when using floating-point arithmetic.
In such environments, model compression, such as pruning [18]
and quantization [27, 52], could be one way to facilitate including
more layers in the TEE. Lastly, we found that utilizing TEEs for
protecting the last layer does not necessarily lead to resource con-
sumption overhead, which deserves further investigation in future
work. Overall, our results show that utilizing TrustZone to protect
outputs of large DNN models is effective and highly efficient.

Extrapolating for other mobile-friendly models. We have used
Tiny Darknet and Darknet Reference for testing DarkneTZ’s per-
formance on mobile-friendly models (for ImageNet classification).
Another widely-used DNNs on mobile devices, Squeezenet [26]
and Mobilenet [22], define new types of convolutional layers are
not supported in Darknet framework currently. We expect these to
have a similar privacy and TEE performance footprint because of
the comparable size of model (4MB, 28MB, 4.8MB, 3.4MB for Tiny
Darknet, Darknet Reference, Squeezenet, and Mobilenet, respec-
tively), floating-point operations (980M, 810M, 837M, 579M), and
model accuracy (58.7%, 61.1%, 59.1%, and 71.6% for Top-l)g.

Improving performance. Modern mobile devices usually are equipped

with GPU or specialized processors for deep learning such as NPU.
Our current implementation only uses the CPU but can be extended
to utilizing faster chips (i.e., GPU) by moving the first layers of the
DNN that is always in the REE to these chips. By processing sev-
eral layers of a DNN in a TEE (SGX) and transfer all linear layers
to a GPU, Tramer et al. [51] have obtained 4x to 11x increase for
verifiable and private inference in terms of VGG16, MobileNet, and
ResNet. For edge devices, another way for expediting the deep
learning process is to utilize TrustZone’s AXI bus or peripheral bus,
which also has an additional secure bit on the address. Accessing a
GPU (or NPU) through the secure bus enables the TrustZone to con-
trol the GPU so that the confidentiality of DNN models on the GPU
cannot be breached and achieve faster executions for partitioned
deep learning on devices.

6.2 Models’ Privacy

Defending against other adversaries. DarkneTZ is not only ca-
pable of defending MIAs by controlling information from outputs,
but also capable of defending other types of attacks such as training-
based model inversion attack [16, 56] or GAN attack [21] as they
also highly depend on the model’s outputs. In addition to that, by
Shttps://www.grapeboard.com/

“https://github.com/albanie/convnet-burden and https://pjreddie.com/darknet/tiny-
darknet/

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

controlling the output information during inference, DarkneTZ can
provide different privacy settings depending on different privacy
policies to servers correspondingly. For example, options included
in our experiments are outputting Top-1 only with its confidence
scores, outputting Top-5 with their ranks, or outputting all classes
with their ranks which all achieve strong defense against MIAs.
Recent research [29] also manipulates confidence scores (i.e., by
adding noises) to defend against MIAs, but their protection can be
broken easily if the noise addition process is visible to the adver-
saries for a compromised OS. DarkneTZ also protects layers while
training models and conducting inference. The issue of private infor-
mation leaked from layers’ gradients becomes more serious consid-
ering that DNN models’ gradients are shared and exchanged among
devices in collaborated/federated learning. [34]’s work successfully
shows private (e.g., membership) information about participants’
training data using their updated gradients. Recent research [67]
further reveals that it is possible to recover images and texts from
gradients in pixel-level and token-level, respectively, and the last
layers have a low loss for the recovery. By using DarkneTZ to
limit information exposure of layers, this type of attack could be
weakened.

Preserving model utility. By "hiding" (instead of obfuscating)
parts of a DNN model with TrustZone, DarkneTZ preserves a
model’s privacy without reducing the utility of the model. Partition-
ing the DNN and moving its more sensitive part into an isolated
TEE maintains its prediction accuracy, as no obfuscating technique
(e.g., noise addition) is applied to the model. As one example of
obfuscation, applying differential privacy can decrease the predic-
tion accuracy of the model [61]. Adding noises to a model with
three layers trained on MNIST leads to the model accuracy drop by
5% for small noise levels (¢ = 8) and by 10% for large noise levels
(e = 2) [1, 5]. The drop increases to around 20% for large level
noises when training on CIFAR-10 [1]. To obtain considerable accu-
racy when using differential privacy, one needs to train the model
with more epochs, which is challenging for larger models since
more computational resources are needed. In recent work, carefully
crafted noise is added to confidence scores by applying adversar-
ial examples [29]. Compared to the inevitable decreasing utility of
adding noise, DarkneTZ achieves a better trade-off between privacy
and utility compared to differential privacy.

7 CONCLUSION

We demonstrated a technique to improve model privacy for a de-
ployed, pre-trained DNN model using on-device Trusted Execution
Environment (TrustZone). We applied the protection to individual
sensitive layers of the model (i.e., the last layers), which encode a
large amount of private information on training data with respect
to Membership Inference Attacks. We analyzed the performance
of our protection on two small models trained on the CIFAR-100
and ImageNet Tiny datasets, and six large models trained on the
ImageNet dataset, during training and inference. Our evaluation in-
dicates that, despite memory limitations, the proposed framework,
DarkneTZ, is effective in improving models’ privacy at a relatively
low performance cost. Using DarkneTZ adds a minor overhead of
under 3% for CPU time, memory usage, and power consumption
for protecting the last layer, and of 10% for fully utilizing a TEE’s


https://www.grapeboard.com/
https://github.com/albanie/convnet-burden
https://pjreddie.com/darknet/tiny-darknet/
https://pjreddie.com/darknet/tiny-darknet/

MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

available secure memory to protect the maximum number of layers
(depending on the model size and configuration) that the TEE can
hold. We believe that DarkneTZ is a step towards stronger privacy
protection and high model utility, without significant overhead in
local computing resources.

ACKNOWLEDGMENTS

We acknowledge the constructive feedback from the anonymous
reviewers. Katevas and Haddadi were partially supported by the
EPSRC Databox and DADA grants (EP/N028260/1, EP/R03351X/1).
This research was also funded by a gift from Huawei Technologies,
a generous scholarship from the Chinese Scholarship Council, and
a hardware gift from Arm.

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 308-318.

Hervé Abdi and Lynne ] Williams. 2010. Tukey’s honestly significant difference
(HSD) test. Encyclopedia of Research Design. Thousand Oaks, CA: Sage (2010),
1-5.

Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. 2018. A survey on
homomorphic encryption schemes: Theory and implementation. ACM Computing
Surveys (CSUR) 51, 4 (2018), 79.

Francis Akowuah, Amit Ahlawat, and Wenliang Du. 2018. Protecting Sensitive
Data in Android SQLite Databases Using TrustZone. In Proceedings of the Inter-
national Conference on Security and Management (SAM). The Steering Committee
of The World Congress in Computer Science, 227-233.

Galen Andrew, Steve Chien, and Nicolas Papernot. 2019. TensorFlow Privacy.
https://github.com/tensorflow/privacy

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2018. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2018), 1333-1345.

A Arm. 2009. Security technology-building a secure system using TrustZone
technology. ARM Technical White Paper (2009).

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. 2019. SANCTUARY: ARMing TrustZone with user-space enclaves..
In Network and Distributed Systems Security (NDSS) Symposium 2019.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in Neural
Information Processing Systems. 402—-408.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition. Ieee, 248-255.

Pan Dong, Alan Burns, Zhe Jiang, and Xiangke Liao. 2018. TZDKS: A New
TrustZone-Based Dual-Criticality System with Balanced Performance. In 2018
IEEE 24th International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE, 59-64.

Alexey Dosovitskiy and Thomas Brox. 2016. Inverting visual representations
with convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4829-4837.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3—4
(2014), 211-407.

[15] Jan-Erik Ekberg, Kari Kostiainen, and N Asokan. 2014. The untapped potential

[16

[17]

[18]

of trusted execution environments on mobile devices. IEEE Security & Privacy
12, 4 (2014), 29-37.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 2015 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1322-1333.

Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani Jamjoom, Ankita
Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. YerbaBuena: Securing Deep
Learning Inference Data via Enclave-based Ternary Model Partitioning. arXiv
preprint arXiv:1807.00969 (2018).

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149. In International Conference on Learning
Representations (ICLR). https://arxiv.org/abs/1510.00149

(19]

[20

[21

[22

(23]

[24]

[25]

[26

&
=

[28

[29]

(30]

[31

(32]

[33

[34

[35

&
2

[37

[38

[39

=
=

[41

F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro, and H. Haddadi

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin,
Michael Backes, and Mario Fritz. 2018. Mlcapsule: Guarded offline deployment
of machine learning as a service. arXiv preprint arXiv:1808.00590 (2018).
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 770-778.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models
under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 603-618.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. 4700-4708.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service. arXiv
preprint arXiv:1803.05961 (2018).

Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient deep learning on
multi-source private data. arXiv preprint arXiv:1807.06689 (2018).

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704-2713.

Bargav Jayaraman and David Evans. 2019. Evaluating Differentially Private
Machine Learning in Practice. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1895-1912. https://www.
usenix.org/conference/usenixsecurity19/presentation/jayaraman

Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang
Gong. 2019. MemGuard: Defending against Black-Box Membership Inference
Attacks via Adversarial Examples. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. 259-274.

Hugo Krawczyk. 2003. SIGMA: The ‘SIGn-and-MAc’approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Annual International Cryptology
Conference. Springer, 400-425.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n.d.]. CIFAR-100 (Canadian
Institute for Advanced Research). http://www.cs.toronto.edu/~kriz/cifar.html
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436-444.

Ninghui Li, Wahbeh Qardaji, Dong Su, Yi Wu, and Weining Yang. 2013. Member-
ship privacy: a unifying framework for privacy definitions. In Proceedings of the
2013 ACM SIGSAC conference on Computer and Communications Security. ACM,
889-900.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019.
Exploiting Unintended Feature Leakage in Collaborative Learning. In Proceedings
of 40th IEEE Symposium on Security & Privacy. IEEE, 480-495.

Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 263-275.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Andrea Cavallaro, and
Hamed Haddadi. 2019. Poster: Towards Characterizing and Limiting Information
Exposure in DNN Layers. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2653-2655.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-
morphic encryption be practical?. In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. ACM, 113-124.

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy
Analysis of Deep Learning: Stand-alone and Federated Learning under Passive
and Active White-box Inference Attacks. In Proceedings of 40th IEEE Symposium
on Security & Privacy. IEEE.

Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 619-636. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
Seyed Ali Osia, Ali Shahin Shamsabadi, Ali Taheri, Kleomenis Katevas, Sina
Sajadmanesh, Hamid R Rabiee, Nicholas D Lane, and Hamed Haddadi. 2020. A
hybrid deep learning architecture for privacy-preserving mobile analytics. IEEE
Internet of Things Journal (2020).

Seyed Ali Osia, Ali Shahin Shamsabadi, Ali Taheri, Hamid R Rabiee, and Hamed
Haddadi. 2018. Private and Scalable Personal Data Analytics Using Hybrid
Edge-to-Cloud Deep Learning. Computer 51, 5 (2018), 42-49.


https://github.com/tensorflow/privacy
https://arxiv.org/abs/1510.00149
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko

DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments

[42]

[43]

[44]

[48

[49

[50]

[51]

[52]

[53]

o
it

Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. 2019. StreamBox-TZ:
secure stream analytics at the edge with TrustZone. In 2019 {USENIX} Annual
Technical Conference 19. 537-554.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic Differentiation in PyTorch. In NIPS Autodiff Workshop.
Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. 2018.
Downsampling leads to Image Memorization in Convolutional Autoencoders.
arXiv preprint arXiv:1810.10333 (2018).

Md Atiqur Rahman, Tanzila Rahman, Robert Laganiere, Noman Mohammed, and
Yang Wang. 2018. Membership Inference Attack against Differentially Private
Deep Learning Model. Transactions on Data Privacy 11, 1 (2018), 61-79.

Joseph Redmon. 2013-2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz,
and Michael Backes. 2018. Ml-leaks: Model and data independent member-
ship inference attacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246. In Network and Distributed Systems Security (NDSS) Symposium
2018. https://arxiv.org/abs/1806.01246

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In Proceedings of 38th
IEEE Symposium on Security & Privacy. IEEE, 3-18.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 1-9.

Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran
Ramjee. 2018. Privado: Practical and secure DNN inference. arXiv preprint
arXiv:1810.00602 (2018).

Florian Tramér and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. arXiv preprint arXiv:1806.03287.
In International Conference on Learning Representations (ICLR). https://arxiv.org/
abs/1806.03287

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. Haq: Hardware-
aware automated quantization with mixed precision. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. 8612-8620.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2421-2434.

Chugui Xu, Ju Ren, Deyu Zhang, Yaoxue Zhang, Zhan Qin, and Kui Ren. 2019.
GANobfuscator: Mitigating information leakage under GAN via differential
privacy. IEEE Transactions on Information Forensics and Security 14, 9 (2019),
2358-2371.

[55

[56

[57

o
&

[59]

[60]

[64

[65

[66

=
=

(68

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and
Xuanzhe Liu. 2019. A first look at deep learning apps on smartphones. In The
World Wide Web Conference. 2125-2136.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. 2019. Neural Network
Inversion in Adversarial Setting via Background Knowledge Alignment. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 225-240.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy
risk in machine learning: Analyzing the connection to overfitting. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF). IEEE, 268-282.

Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and
Wenliang Du. 2018. TruZ-Droid: Integrating TrustZone with mobile operating
system. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 14-27.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-
able are features in deep neural networks?. In Advances in Neural Information
Processing Systems. 3320-3328.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579. In Deep Learning Workshop in International Conference on
Machine Learning. https://arxiv.org/abs/1506.06579

Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. 2019.
Differentially private model publishing for deep learning. In Proceedings of 40th
IEEE Symposium on Security & Privacy. IEEE, 332-349.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818-833.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2017. Understanding deep learning requires rethinking generalization. arXiv
preprint arXiv:1611.03530. In International Conference on Learning Representations
(ICLR). https://arxiv.org/abs/1611.03530

C. Zhang, P. Patras, and H. Haddadi. 2019. Deep Learning in Mobile and Wireless
Networking: A Survey. IEEE Communications Surveys Tutorials 21, 3 (2019),
2224-2287.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. 2017. Learning hierarchical
features from deep generative models. In International Conference on Machine
Learning. 4091-4099.

Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.
SecTEE: A Software-based Approach to Secure Enclave Architecture Using TEE.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 1723-1740.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In
Advances in Neural Information Processing Systems. 14747-14756.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
Scottsdale, Arizona. https://arxiv.org/abs/1407.6981


http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1806.01246
https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1506.06579
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1407.6981

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Privacy risks of Deep Neural Networks
	2.2 Deep learning in the TEE
	2.3 Privacy-preserving methods

	3 DarkneTZ
	3.1 Threat Model
	3.2 Design Overview
	3.3 Model Preparation
	3.4 DNN Partitioned Execution

	4 Experiment Settings
	4.1 Models and Datasets
	4.2 Implementation and Evaluation Setup
	4.3 Measuring Privacy in MIAs

	5 Evaluation Results
	5.1 CPU Execution Time
	5.2 Memory Usage
	5.3 Power Consumption
	5.4 Privacy

	6 Discussion
	6.1 System Performance
	6.2 Models' Privacy

	7 Conclusion
	References

