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ANALYTIC MAPS OF PARABOLIC AND ELLIPTIC TYPE WITH TRIVIAL

CENTRALISERS

ARTUR AVILA, DAVOUD CHERAGHI, AND ALEXANDER ELIAD

Abstract. We prove that for a dense set of irrational numbers α, the analytic centraliser of the map
e2πiαz + z2 near 0 is trivial. We also prove that some analytic circle diffeomorphisms in the Arnold
family, with irrational rotation numbers, have trivial centralisers. These provide the first examples
of such maps with trivial centralisers.

1. Introduction

For α ∈ R, let Hω
α denote the set of germs of holomorphic diffeomorphisms of (C, 0) of the form

h(z) = e2πiαz +O(z2),

defined near 0. We also consider the class Cω
α of orientation preserving analytic diffeomorphisms of the

circle R/Z with rotation number α. Let Hω = ∪α∈RH
ω
α and Cω = ∪α∈RC

ω
α .

The analytic centraliser of an element h ∈ Hω
α, denoted by Cent(h), is the set of elements of Hω

which commute with h near 0. From dynamical point of view, any element of Cent(h) is a conformal
symmetry of the dynamics of h, that is, the conformal change of coordinates g which conjugate h to
itself, g−1 ◦ h ◦ g = h. Evidently, Cent(h) forms a group, where the action is the composition of the
elements. For every k ∈ Z, a suitable restriction of the k-fold composition h◦k is defined near 0 and
belongs to Cent(h). If the only elements of Cent(h) are of the form h◦k for some k ∈ Z, it is said that
h has a trivial centraliser. In the same fashion, for h ∈ Cω, the collection Cent(h) of elements of Cω

which commute with h enjoys the same features.

Theorem 1.1. There is a dense set of α ∈ R \Q such that Cent(e2πiαz + z2) is trivial.

The above theorem is proved using a successive perturbation argument and the following statement
for parabolic maps which we prove in this paper.

Theorem 1.2. For every p/q ∈ Q, Cent(e2πiαz + z2) is trivial.

The main idea we employ to prove the above theorems also allows us to deal with analytic circle
diffeomorphisms in the Arnold family,

Sa,b(x) = x+ a+ b sin(2πx),

for a ∈ R and b ∈ (0, 1/(2π)).

Theorem 1.3. For every b ∈ (0, 1/(2π)) there is a ∈ R such that Cent(Sa,b) is trivial and the rotation

number of Sa,b belongs to R \Q.

Indeed, we prove that for each fixed b ∈ (0, 1/(2π)), the set of rotation numbers of the maps Sa,b

which have an irrational rotation number and a trivial centraliser is dense in R. The above theorem
is obtained from a successive perturbation argument and the analogue of Theorem 1.2 for maps Sa,b

with a parabolic cycle.
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The main tool used to deal with parabolic maps is Ecalle cylinders and horn maps, first studied
and applied by Douady-Hubbard [DH84] and Lavaures [Lav89].

To our knowledge, Theorems 1.1 and 1.3 provide the first examples in Hω and Cω with irrational
rotation numbers and trivial analytic centralisers. Below we briefly explain how these results fit in the
frame of the dynamics of such analytic diffeomorphisms.

When an element h ∈ Hω
α, for α ∈ R \ Q, is locally conformally conjugate to its linear part near

0, Cent(h) is a large set. That is, if φ−1 ◦ h ◦ φ(w) = e2πiαw near 0, for some φ ∈ Hω, then for
any µ ∈ C \ {0}, h commutes with the map z 7→ φ(µφ−1(z)). Indeed, here, Cent(h) is isomorphic to
C \ {0}. The problem of understanding Cent(h) precedes the problem of local conjugation of h to its
linear part. That is because, the space of solutions for the conjugation problem are the right-cosets of
Cent(h). In this spirit, the size of Cent(h) may be thought of a measure of linearisability of h near 0.
The same argument applies to analytic circle diffeomorphisms.

For h ∈ Hω, Cent(h) projects onto a subgroup of R/Z through g 7→ log g′(0)/(2πi). Similarly, for
h ∈ Cω, one maps g ∈ Cent(h) to its rotation number. Let G(h) ⊂ R/Z denote the image of this
projection.

By remarkable results of Siegel and Herman [Sie42, Her79] there is a full-measure set C ⊂ R \ Q

such that for every α ∈ C , any h ∈ Hω
α ∪ Cω

α is analytically linearisable. But, for genetic choice of
α, there are h ∈ Hω

α and h ∈ Cω
α which are not linearisable [Cre38, Arn61]. We note that if f and g

commute, and one of them is linearisable at 0, then the other one must also be linearisable through
the same map. This implies that if h ∈ Hω

α ∪ Cω
α is not linearisable, then G(h) ⊆ (R \ C )/Z. However,

by a profound result of Moser [Mos90], G(h) may not be any subgroup of that set. That is because
there is an arithmetic restriction on the rotations of commuting non-linearisable maps. The optimal
size of G(h), for nonlinearisable h in Hω

α and Cω
α , remains open. This complication is due to the rich

structure of the local dynamics of such maps near 0, see [PM95, Che17] and the references therein.
However, a complete solution for smooth circle diffeomorphisms is presented in [FK09].

In [Her79, Yoc95, Yoc02], Herman and Yoccoz carry out a ground breaking study of the centraliser
and conjugation problem for circle diffeomorphisms and germs of holomorphic diffeomorphisms of
(C, 0). In particular, Herman proves the existence of C∞ circle diffeomorphisms with irrational rotation
number having uncountably many C∞ symmetries, and Yoccoz proves the existence of C∞ circle
diffeomorphisms with irrational rotation numbers and trivial centralisers. Perez-Marco in [PM95]
elaborated a construction of Yoccoz to build elements h ∈ Hω and h ∈ Cω, with irrational rotation
number, such that G(h) is uncountable. His construction provides remarkable examples where G(h)
contains infinitely many elements of finite order. In this paper we close the problem of the existence
of maps in Hω and Cω with irrational rotation number and trivial centraliser. In light of the above
discussions, our result shows that quadratic polynomials and the Arnold family provide the least
linearisable elements inHω and Cω, respectively. This is consistent with the spirit of Yoccoz’s argument
in [Yoc95], that is, if some e2πiαz + z2 is linearisable, then any element of Hω

α is linearisable.
It is worth noting that the commutation problem for rational functions of the Riemann sphere

was already studied by Fatou and Julia in 1920’s [Jul22, Fat23] using iteration methods. A complete
classification of such pairs was successfully obtain by Ritt [Rit23], using topological and analytic
methods, and was reproved by Eremenko [Ere89] using modern iteration techniques. If iterates of g
and h are not identical, modulo conjugation, they are either power maps, Chebyshev polynomials, or
Lattès maps. The global commutation problem for entire functions of the complex plane still remains
open, although substantial progress has been made so far, see for instance [GI59, Bak62, Lan99, Ng01,
BRS16]. The global commutation problem on higher dimensional complex spaces has been widely
studied using iteration methods in recent years, see [DS02, DS04, Kau18] and the references therein.
For an extensive discussion on the centraliser and conjugation problems in low-dimensions one may
refer to [Kop70] and the more recent survey article [OR10].
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2. parabolic case

Fix an arbitrary rational number p/q ∈ Q with (p, q) = 1. Also fix an arbitrary g in Cent(Qp/q).

The map F = Q◦q
p/q has a parabolic fixed point at 0 with multiplier +1, and there are q attracting

directions. It follows that the parabolic fixed point of F at 0 has multiplicity q+1. That is, the Taylor
series expansion of F near 0 is of the form

(1) F (z) = Q◦q
p/q(z) = z +

2q
∑

k=q+1

akz
k,

with aq+1 6= 0.

Lemma 2.1. We have g′(0)q = 1.

Proof. Let g(z) =
∑∞

k=1 bkz
k denote the Taylor series expansion of g about 0. First we show that

b1 6= 0. Assume, for a contradiction, that n ≥ 2 is the smallest positive integer with bn 6= 0. Note that
F ◦ g = g ◦ F near 0. By identifying the coefficient of zn+q in the Taylor series expansion of F ◦ g and
g ◦F we conclude that bn+q+nbnaq+1 = bn+q. Since aq+1 6= 0, that gives us bn = 0, which contradicts
the choice of n.

Now we identify the coefficients of zq+1 in the power series expansions of F ◦g and g ◦F , and obtain
bq+1 + bq+1

1 aq+1 = bq+1 + b1aq+1. This implies that (bq+1
1 − b1)aq+1 = 0. Since aq+1 6= 0 and b1 6= 0,

we must have bq1 = 1. �

By Lemma 2.1, there is an integer j with 0 ≤ j ≤ q − 1 such that (Q◦j
p/q ◦ g)

′(0) = 1. Consider the

holomorphic map

(2) G(z) = Q◦j
p/q ◦ g,

which is defined near 0 and commutes with F .

Lemma 2.2. The multiplicity of G at 0 is q + 1. That is, G(z) = z +
∑∞

i=q+1 biz
i, with bq+1 6= 0.

Proof. Assume that G(z) = z+bn+1z
n+1+bn+2z

n+2+ . . . is a convergent Taylor series with bn+1 6= 0.
Observe that

F ◦G(z) =
(

z + bn+1z
n+1 + bn+2z

n+2 + . . .
)

+ aq+1

(

z + bn+1z
n+1 + bn+2z

n+2 + . . .
)q+1

...

+ aq+j

(

z + bn+1z
n+1 + bn+2z

n+2 + . . .
)q+j

...

=
(

z + bn+1z
n+1 + bn+2z

n+2 + . . .
)

+ aq+1

(

zq+1 + bn+1(q + 1)zq+n+1 + . . .
)

...

+ aq+j

(

zq+j + bn+1(q + j)zq+n+j + . . .
)

....

The coefficient of zq+n+1 in the above expansion is

bq+n+1 + aq+1bn+1(q + 1) + aq+n+1.
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Similarly, the coefficient of zn+q+1 in the expansion of G ◦ F is

aq+n+1 + bn+1aq+1(n+ 1) + bq+n+1.

Since F ◦ G = G ◦ F near 0, the above values must be identical. Using aq+1 6= 0 and bn+1 6= 0, we
conclude that q = n. �

We shall use the theory of Leau-Fatou flower, Fatou coordinates, and horn maps to exploit the local
dynamics of F near 0. One may refer to [Mil06] and [Dou94] for the basic definitions and constructions
we present below, although conventions may be different.

For s > 0, define the open sets

Ωs
att = {ζ ∈ C | Re ζ > s− | Im ζ|}, Ωs

rep = {ζ ∈ C | Re ζ < −s+ | Im ζ|}.

Also, consider the map I : C \ {0} → C \ {0},

I(z) =
−1

qaq+1zq
.

For s > 0 there are holomorphic and injective branches of I−1 defined on Ωs
att and Ωs

rep.
Consider two complex numbers vatt and vrep such that

qaq+1v
q
att = −1, vrep = e−πi/qvatt.

Evidently, I(vatt) = +1 and I(vrep) = −1. For s > 0, there is an injective and holomorphic branch
of I−1 defined on Ωs

att such that I−1(Ωs
att) contains εvatt, for sufficiently small ε > 0. Similarly, there

is an injective branch of I−1 defined on Ωs
rep such that I−1(Ωs

rep) contains εvrep, for sufficiently small

ε > 0. From now on, we shall fix these choices of inverse branches for I−1 on Ωs
att and Ωs

rep. This is
independent of s > 0.

Let
Watt = {z ∈ C \ {0} | | arg(z/vatt)| ≤ π/q} ,

Wrep = {z ∈ C \ {0} | | arg(z/vrep)| ≤ π/q} ,

W ′
att = {z ∈ C \ {0} | | arg(z/vatt)| ≤ π/q − π/(4q)} ,

W ′
rep = {z ∈ C \ {0} | | arg(z/vrep)| ≤ π/q − π/(4q)} ,

where arg denotes a branch of argument with values in [−π,+π].
Let U be a Jordan neighbourhood of 0 such that G is defined on U and both G and F are injective

on U . Since F ′(0) = 1 and G′(0) = 1, there is δ > 0 such that B(0, δ) ⊂ U and

(3)
F (W ′

att ∩B(0, δ)) ⊂ Watt, F (W ′
rep ∩B(0, δ)) ⊂ Wrep,

G(W ′
att ∩B(0, δ)) ⊂ Watt, G(W ′

rep ∩B(0, δ)) ⊂ Wrep.

We may choose r > 0 such that

(4) I−1(Ωr
att) ⊂ W ′

att ∩B(0, δ), I−1(Ωr
rep) ⊂ W ′

rep ∩B(0, δ).

Now we may lift F : W ′
att∩B(0, δ) → Watt and F : W ′

rep∩B(0, δ) → Wrep via the change of coordinate
I(z) = ζ to define injective holomorphic maps

F̃att : Ω
r
att → C, and F̃rep : Ωr

rep → C.

Straightforward calculations show that F̃ is of the form

F̃att(ζ) = ζ + 1 +O(1/|ζ|1/q), F̃rep(ζ) = ζ + 1 +O(1/|ζ|1/q),

as |ζ| → +∞. There is s > 0 such that,

|F̃att(ζ) − (ζ + 1)| ≤ 1/4, ∀ζ ∈ Ωs
att,

|F̃rep(ζ) − (ζ + 1)| ≤ 1/4, ∀ζ ∈ Ωs
rep.
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There are injective holomorphic maps

Φatt : Ω
s
att → C, Φrep : Ωs

rep → C,

such that

Φatt ◦ F̃att = Φatt + 1, on Ωs
att,

Φrep ◦ F̃rep = Φrep + 1, on F̃−1
rep(Ω

s
rep).

It is known that

(5) |Φatt(ζ)/ζ − 1| → 0, as Re ζ → +∞,

(6) |Φrep(ζ)/ζ − 1| → 0, as Re ζ → −∞.

Let us define

Ps
att = I−1(Ωs

att), Ps
rep = I−1(Ωs

rep).

Then, the injective holomorphic maps

φatt = Φatt ◦ I : Ps
att → C, φrep = Φrep ◦ I : Ps

rep → C,

satisfy

(7)
φatt ◦ F = φatt + 1, on Ps

att,

φrep ◦ F = φrep + 1, on F−1(Ps
rep).

The map φatt is an attracting Fatou coordinate for F , and φrep is a repelling Fatou coordinate for F .
Let

µ = bq+1/aq+1.

Lemma 2.3. There is t ≥ 0 such that

(i) G(z) = φ−1
att ◦ Tµ ◦ φatt(z), for all z ∈ Pt

att,

(ii) G(z) = φ−1
rep ◦ Tµ ◦ φrep(z), for all z ∈ Pt

rep.

Proof. By Equations (3) and (4), we may lift G : W ′
att ∩B(0, δ) → Watt via the change of coordinate

I(z) = ζ to define an injective holomorphic map G̃att : Ω
r
att → C. We note that G̃att is of the form

G̃att(ζ) = ζ +
bq+1

aq+1
+O

(

1

|ζ|1/q

)

, as |ζ| → +∞.

In particular, if |ζ| is large enough, |G̃att(ζ) − (ζ + µ)| ≤ 1. This implies that there is t > s such that

G̃att(Ω
t
att) ⊂ Ωs

att.

Let

V = Φatt(Ω
t
att).

Note that since F̃att(Ω
t
att) ⊂ Ωt

att, V +1 ⊂ V . By Equation (5), if Re ζ is large enough, |Φatt(ζ)− ζ| ≤
|ζ|/3. This implies that

V/Z = C/Z.

Consider the injective holomorphic map

Ĝatt = Φatt ◦ G̃att ◦ Φ
−1
att : V → C.
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Since F commutes with G near 0, F̃att commutes with G̃att on the common domain of definition Ωt
att.

Therefore, for w ∈ V , we have

Ĝatt ◦ T1(w) = Φatt ◦ G̃att ◦Φ
−1
att ◦ T1(w)

= Φatt ◦ G̃att ◦ F̃att ◦ Φ
−1
att(w)

= Φatt ◦ F̃att ◦ G̃att ◦ Φ
−1
att(w)

= T1 ◦ Φatt ◦ G̃att ◦ Φ
−1
att(w) = T1 ◦ Ĝatt(w).

Since V/Z = C/Z, the above relation implies that Ĝatt induces a well-defined injective holomorphic

map from C/Z to C/Z. Thus, Ĝatt is a translation on V/Z, and hence, Ĝatt is a translation on V , say

Tτ . However, since Φ′
att(ζ) → +1, as Re ζ → +∞, and G̃att(ζ) is asymptotically a translation by µ

near +∞, we must have τ = µ. That is, Ĝatt = Tµ.
For z ∈ Pt

att, we have

φ−1
att ◦ Tµ ◦ φatt = I−1 ◦Φ−1

att ◦ Tµ ◦ Φatt ◦ I

= I−1 ◦Φ−1
att ◦ Ĝatt ◦ Φatt ◦ I = I−1 ◦ G̃att ◦ I = G.

Part (ii): As in the previous part, we may lift G : W ′
rep ∩ B(0, δ) → Wrep to obtain an injective

holomorphic map G̃rep : Ωr
rep → C of the form G̃rep = ζ + µ + o(1), as |ζ| → +∞. Then, one may

repeat the argument in part (i) with F̃rep and Φrep. �

Let B denote the set of z ∈ C such that F ◦n(z) → 0, as n → +∞. Evidently, Ps
att is contained in

B. Let B1 denote the connected component of B which contains Ps
att. (That is, B1 is the immediate

basin of attraction of 0 in the direction of vatt.) For every z ∈ B1, there is k ∈ N with F ◦k(z) ∈ Ps
att.

By the maximum principle, B1 is a simply connected subset of C. We may employ the functional
relation in Equation 7, to extend φatt : P

s
att → C to a holomorphic map

φatt : B1 → C,

such that φatt ◦ F = φatt + 1 over all of B1.
Consider the trip

Π = {w ∈ C | −t− |µ| − 1 < Rew < −t} ⊂ Ωt
rep.

By the estimate in (6), if w ∈ Π with Imw sufficiently large, Φ−1
rep(w) ∈ Ωs

att, and hence φrep(w) ∈ B1.
On the other hand, for some w ∈ Π, φrep(w) does not belong to B1. Otherwise, a neighbourhood of 0
lies in B1, which is not possible since 0 belongs to the Julia set of F .

Let Π′ denote the connected component of the set {w ∈ Π | φ−1
rep(w) ∈ B1} which contains the top

end of Π. We may consider the map

h = φatt ◦ φ
−1
rep : Π′ → C.

This is a horn map of F . By the functional equations for φatt and φrep, we must have h(ζ+1) = h(ζ)+1,
whenever both side of the equation are defined. Thus, h induces a holomorphic map

H : DomH → C,

on a punctured neighbourhood of 0 so that H ◦ e2πiζ = e2πih(ζ). By the estimates in (5) and (6),
Imh(ζ) → +∞, as Im ζ → +∞. This implies that H has a removable singularity at 0. That is DomH
contains a neighbourhood of 0. 1

Lemma 2.4. The map H has infinitely many critical points, all mapped to the same value.

1 The map H is only defined modulo pre-composition and post-composition by linear maps of the form w 7→ λw.
This is due to the freedom in the choice of φatt and φrep up to post-compositions with translations. However, we are

not concerned with those choices here.
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Proof. Let c1 denoted the unique critical point of F within B1. The map φatt has a simple critical
point at c1. It follows from Equation (7) that any z ∈ B1 which is mapped to c1 under some iterate
of F is a critical point of φatt. The closure of the set of such points is equal to the boundary of B1.

On the other hand, by Equation (7), those critical points are mapped to φatt(c1), φatt(c1) − 1,
φatt(c1)− 2, . . . . Since φ−1

rep is conformal on Π′ ⊂ Ωt
rep, we conclude that the only critical values of h

are at φatt(c1), φatt(c1)− 1, φatt(c1)− 2, . . . . All those points project to the same value in C/Z. �

Lemma 2.5. The map H commutes with ξ 7→ e2πiµξ near 0.

Proof. By Lemma 2.3, G = φ−1
att ◦ Tµ ◦ φatt on Pt

att, and G = φ−1
rep ◦ Tµ ◦ φrep on Pt

rep. Thus,

φ−1
att ◦ Tµ ◦ φatt = φ−1

rep ◦ Tµ ◦ φrep,

at any point in Pt
att ∩ Pt

rep where both sides of the equation are defined. Equivalently,

Tµ ◦ φatt ◦ φ
−1
rep = φatt ◦ φ

−1
rep ◦ Tµ,

whenever both sides of the equation are defined. We note that T−1
µ (Π′) ∩Π′ is a non-empty open set,

where both sides of the above equation are defined. This implies that the horn map h commutes with
Tµ. Hence, H commutes with the map ξ 7→ e2πiµξ. �

Lemma 2.6. We have µ ∈ Z.

Proof. First note that DomH is invariant under multiplication by e2πiµ. That is, on the set e2πiµ ·
DomH we may define H as ξ 7→ e2πiµH(e−2πiµξ). This matches H on (e2πiµ ·DomH) ∩DomH .

Let c denote a critical point of H . Differentiating H(e2πiµξ) = e2πiµH(ξ) at c, we note that e2πiµc
is a critical point of H . However, H(e2πiµc) = e2πiµH(c) is a critical value of H . By Lemma 2.4, we
must have H(c) = e2πiµH(c), which using H(c) 6= 0, we conclude that µ ∈ Z. �

Proof of Theorem 1.2. By Lemma 2.3, G = φ−1
att ◦Tµ ◦φatt on Pt

att, and by Lemma 2.6, µ is an integer.
Thus, on Pt

att,

G = φ−1
att ◦ T

◦µ
1 ◦ φatt = (φ−1

att ◦ T1 ◦ φatt) ◦ (φ
−1
att ◦ T1 ◦ φatt) ◦ · · · ◦ (φ

−1
att ◦ T1 ◦ φatt) = F ◦µ.

As Pt
att is a non-empty open set, we must have G = F ◦µ on a neighbourhood of 0.

Looking back at definitions (1) and (2), we conclude that (Q◦q
p/q)

◦µ = Q◦j
p/q ◦ g, on a neighbourhood

of 0, for some 0 ≤ j ≤ q − 1. Thus, g = Q
◦(qµ−j)
p/q near 0. �

3. Elliptic case

Let g(z) =
∑∞

k=1 gkz
k ∈ Cent(Qα). It is easy to see that |g1| = 1. Let us say that g is r-good, if

|gk| ≤ r1−k for all k ≥ 1. Note that if g is r-good, then it is defined and holomorphic on the disk
|z| < r.

Lemma 3.1. For every p/q ∈ Q and every r > 0, Q◦k
p/q is r-good for only finitely many values of

k ∈ Z.

Proof. As Qp/q has a parabolic fixed point at 0, the family of iterates {Q◦k
p/q}k≥0 and {Q◦−k

p/q }k≥0 have

no uniformly convergent subsequence on any neighbourhood of 0. �

We let

K(p/q, r) =
{

k ∈ Z ; Q◦k
p/q is r-good

}

.

By the above lemma, K(p/q, r) is a finite set.

Lemma 3.2. For every p/q ∈ Q and every r > 0, there exists δ(p/q, r) > 0 such that for every

p′/q′ ∈ Q with |p′/q′ − p/q| ≤ δ(p/q, r) we have K(p′/q′, r) ⊆ K(p/q, r).
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Proof. By the compactness of the set of r-good holomorphic maps, there is N(r) such that any r-good
map has less than N(r) critical points is the disk |z| < r/2.

As L tends to +∞, the set of the critical points of Q◦L
p/q increases, and accumulates on 0. Let L ∈ N

be such that Q◦L
p/q has at least N(r) critical points in the open disk |z| < r/2. If p′/q′ is close enough

to p/q, then Q◦L
p′/q′ has at least N(R) critical points in the open disk |z| < r/2. For l ≥ L, Q◦l

p′/q′ has

at least all those critical points, so it is not r-good.
Let M ∈ N be such that Q◦−M

p/q , and hence Q◦−m
p/q for any m ≥ M , does not extend to the open disk

|z| < r. Then, the same is true for p′/q′ close to p/q.
Finally, if k /∈ K(p/q, r) and −M ≤ k ≤ L, Q◦k

p′/q′ may not be r-good if p′/q′ is too close to p/q,

because otherwise one could take limits to conclude that Q◦k
p/q is r-good. �

Lemma 3.3. For every p/q ∈ Q, every r > 0, and every ǫ > 0, there exists κ(p/q, r, ǫ) > 0 which

satisfies the following. For every α ∈ R\Q with |α−p/q| ≤ κ(p/q, r, ǫ), and every g(z) = e2πiβz+O(z2)
which commutes with Qα and is r-good, there exists k ∈ K(p/q, r) such that |β − kp/q| < ǫ mod Z.

Proof. If the result does not hold, we may take a sequence αn → p/q and r-good maps gn(z) =
e2πiβnz + O(z2) which commute with Qαn

. By the compactness of the set of r-good maps, we may
choose a convergent subsequence of the gn converging to a limit g which is r-good and commutes with
Qp/q. Then, g will not be of the form Q◦k

p/q for some k ∈ K(p/q, r). This contradicts Theorem 1.2 and

Lemma 3.1. �

Lemma 3.4. For every α ∈ R \ Q, if a holomorphic germ of the form g(z) = e2πikαz + O(z2), for
some k ∈ Z, commutes with Qα, then g = Q◦k

α near 0.

Proof. By considering Q◦−k
α ◦ g instead, we may assume that k = 0. Then, by an inductive argument,

one may show that the coefficients of the Taylor series expansion of g, except the first term, must be
0. That is, g(z) = z. �

proof of Theorem 1.1. Start with any rational number p1/q1. We inductively define a strictly increasing
sequence of rational numbers pn/qn, for n ≥ 1, so that for all 1 ≤ l ≤ j < n we have

(8) |pn/qn − pj/qj| < δ(pj/qj , 1/j),

(9) |pn/qn − pj/qj| < κ(pj/qj , 1/l, 1/j),

(10) |pn/qn − pj/qj| < 1/q2j .

Let α = limn→∞ pn/qn. Since the sequence pn/qn is strictly increasing, it follows from Equation (10)
that qn → ∞, as n → ∞, and α ∈ R \Q.

Taking limit as n → ∞ in Equation (9), we note that |α − pj/qj | ≤ κ(pj/qj, 1/l, 1/j), for every
1 ≤ l ≤ j.

Assume that g(z) = e2πiβz + O(z2) is a germ of a holomorphic map which commutes with Qα.
There is l ≥ 1 such that g is 1/l-good.

By Equation (8) and Lemma 3.2, we obtain K(pj/qj, 1/l) ⊆ K(pl/ql, 1/l), for 1 ≤ l ≤ j.
By Lemma 3.3, for every j ≥ l, there exists k ∈ Z with k ∈ K(pj/qj, 1/l) ⊆ K(pl/ql, 1/l) such that

|β − kpj/qj| < 1/j mod Z. Taking limits of the latter inequality, as j → ∞, we obtain β = kα, for
some k in the same range. Combining with Lemma 3.4, we conclude that g = Q◦k

α near 0. �
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4. Circle maps

We shall employ techniques from complex dynamics to study the analytic symmetries of the maps
Sa,b. So we consider the complexified family of maps Sa,b(z) = z + a+ b sin(2πz), for z ∈ C, but real
values of a and b. Using the projection z 7→ e2πiz from C to C∗ = C\{0}, Sa,b induces the holomorphic
map

fa,b(w) = e2πiaweπb(w−1/w)

from C∗ to C∗. Evidently, fa,b preserves the unit circle T = {w ∈⊂ C ; |z| = 1}, and for a ∈ R and
b ∈ (0, 1/(2π)), fa,b is a diffeomorphism of T. Below we always assume that a ∈ R and b ∈ (0, 1/(2π)).

Theorem 4.1. Assume that fa,b has a parabolic cycle on T, for some a and b. Then, Cent(fa,b) is

trivial.

Let us fix an arbitrary fa,b which has a parabolic cycle on T, say {wi}
n
i=1, of period n ≥ 1. By

relabelling if necessary, we may assume that fa,b(wi) = wi+1, with the subscripts calculated modulo
n. Consider the map

Fa,b = f◦n
a,b : C

∗ → C∗.

Each wi is a parabolic fixed point of Fa,b with multiplier +1. For 1 ≤ i ≤ n, let Ui ⊂ C∗ denote the
immediate basin of attraction of wi for the iterates of Fa,b. That is, Ui is the union of the connected
components of the basin of attraction of wi which contain wi on their boundary. The following lemma
is a special case of a more general result by Geyer [Gey01, thm 4.4].

Lemma 4.2. For every 1 ≤ i ≤ n, Ui consists of a single connected component, which is invariant

under τ , and contains precisely two distinct critical points of Fa,b. Moreover, ∪n
i=1Ui = T.

Proof. The critical points of fa,b are the solutions of the equation f ′
a,b(w) = e2πiaeπb(w−1/w)(1+πb(w+

1/w)) = 0. Evidently, if w is a solution of this equation, then w, 1/w and 1/w are all solutions of
the equation. Thus, w = w, and hence, the distinct solution of the equation are of the form c1 and
c2 = τ(c1), for some c1 ∈ (−1, 0).

Since Fa,b is τ -symmetric, it follows that τ(Ui) = Ui, for 1 ≤ i ≤ n. Moreover, since Fa,b(wi) = wi,
every connected component of each Ui is invariant under Fa,b. By a classical result of Fatou, see [Mil06],
every connected component of each Ui contains at least one critical point of Fa,b. On the other hand,
the critical points of Fa,b are the pre-images of the critical points of fa,b. Since fa,b(Ui) = Ui+1, it
follows that there is j with 1 ≤ j ≤ n, such that Uj contains the critical points c1 and c2. Moreover,
c1 and c2 are the only critical points of Fa,b inside Uj . Then, the critical values of fa,b belong to Uj+1,
which is distinct from Uj .

By the maximum principle, every connected component of each Ui is a simply connected region.
Since the critical values of fa,b belong to Uj+1, any other Ui does not contain any critical values of fa,b.

These imply that for 1 ≤ l ≤ n − 1 there is a conformal branch of f◦−l
a,b from Uj to Uj−l. Therefore,

each Ui contains exactly two critical points of Fa,b.
Every connected component of each Ui is invariant under Fa,b and τ , and contains at least one

critical point of Fa,b. Therefore, the number of the critical points in Ui is two times the number of
the connected components of Ui. Since Ui contains exactly two critical points of Fa,b, Ui consists of a
single connected component containing both critical points.

Since each Ui has a single connected component, each wi has a single attraction vector and a single
repulsion vectors. As T is invariant, the attraction and repulsion vectors are the tangent vectors to
T at wi. Fix an arbitrary i and consider an arc of T cut off by wi and wi+1 which does not contain
any other wl. This arc is invariant under Fa,b, and the orbit of any point on this arc must converge
to either wi or wi+1. Otherwise, there will be another fixed point of Fa,b on this arc which is distinct
from wi and wi+1, and is either attracting or parabolic. This is a contradiction since such a cycle
requires its own critical points distinct from the grand orbit of c1 and c2. �
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By relabelling the points wi, and Ui accordingly, we may assume that U1 contains the critical points
c1 and c2 of fa,b.

Since there is only one attracting direction for Fa,b at w1, it follows that the multiplicity of the
parabolic fixed point at w1 is equal to +2. As in the previous section, there are attracting and
repelling Fatou coordinates

φatt : Patt → C, φrep : Prep → C,

satisfying the functional equations

φatt ◦ Fa,b = φatt + 1, φrep ◦ Fa,b = φrep + 1,

with φatt(Patt) = Ωs
att and φrep(Prep) = Ωs

rep for some s > 0, F ◦j
a,b converges to w1 uniformly on

compact subsets of Patt as j → +∞, and F ◦j
a,b converges to w1 uniformly on compact subsets of Prep

as j → −∞. The attracting coordinate may be extended to a holomorphic map φatt : U1 → C using
the above functional equation.

The map
h = φatt ◦ φ

−1
rep

has a maximal domain of definition, which is φ−1
rep(U1)+Z. This induces a holomorphic map H defined

on a neighbourhood of 0, with H(0) = 0.

Lemma 4.3. The horn map H has infinitely many critical points, which are mapped to critical values

v1 and v2 satisfying arg v1 = arg v2.

Proof. Any pre-image of c1 and c2 under Fa,b within U1 is a critical point of φatt. The set of the
accumulation points of those pre-images is equal to the boundary of U1 (which is contained in the
Julia set of Fa,b). By the functional equation for φatt, φatt maps those critical points into the set
φatt(c1) +Z or φatt(c2) +Z. On the other hand, φrep is conformal on Ωs

rep. This implies that the only
critical value of h are contained in (φatt(c1) + Z) ∪ (φatt(c2) + Z).

Since Fa,b is τ -symmetric, both φatt and φrep are τ -symmetric. That is, φatt ◦ τ = φatt and

φrep ◦ τ = φrep. This is due the uniqueness of a Fatou-coordinate up to translation by a constant.

Combining with the above paragraph, we conclude that φatt(c1) = φatt(c2), and hence the critical
values of H have the same argument. �

Proof of Theorem 4.1. The proof already starts at the beginning of this section. Fix an arbitrary
fa,b with a parabolic cycle {wi}

n
i=1 of period n. Let us also fix an arbitrary g ∈ Cent(fa,b). The

commutation implies that g(w1) is a periodic point of period n for fa,b. By Lemma 4.2, fa,b has a
unique periodic cycle, which is {wi}

n
i=1. Therefore, there is an integer k ≥ 1 such that f◦k

a,b◦g(w1) = w1.
Let us define the analytic map

G = f◦k
a,b ◦ g : T → T.

As Fa,b commutes with G, Fa,b(w1) = w1, F
′
a,b(w1) = 1 we may repeat Lemma2.1 to conclude that

G′(w1) = 1. On the other hand, since the multiplicity of Fa,b at w1 is equal to +2, we may repeat
Lemma 2.2 to conclude that the multiplicity of G at w1 is also equal to +2. That is, G is of the form

G(w) = G(w1) + (w − w1) + b2(w − w1)
2 + . . . ,

near 0, with b2 6= 0. As in the previous section, we must have G = φ−1
att ◦ Tµ ◦ φatt on Patt and

G = φ−1
rep ◦ Tµ ◦ φrep on Prep, where µ = 2b2/F

′′
a,b(0). Repeating Lemma 2.5, we conclude that

H must commute with the rotation ξ 7→ e2πiµξ near 0. Now, as in the proof of Lemma 2.6, we
use Lemma 4.3 instead of Lemma 2.5, to say that if c is a critical point of H , then we must have
argH(c) = arg(e2πiµH(c)). This implies that Reµ ∈ Z. On the other hand, if Imµ 6= 0, since the
domain of definition of H is invariant under ξ 7→ e2πiµ, we conclude that H is defined over all of C.
But this is a contraction since H has infinitely many critical points in a bounded region of the plane.
Therefore, µ ∈ Z, and hence G = F ◦µ

a,b. This completes the proof of Theorem 4.1 �
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Fix an arbitrary b ∈ (0, 1/(2π)). By a general theorem of Poincaré, fa,b has a period point on T

if and only if its rotation number ρ(fa,b) ∈ Q. Moreover, by classical results, the map a 7→ ρ(fa,b)
is an increasing function of a ∈ (0, 1). It is locally strictly increasing at irrational values, that is, if
ρ(fa,b) ∈ R \ Q for some a, then for a′ ∈ (0, 1) with a′ > a, ρ(fa′,b) > ρ(fa,b). However, at rational
values, the map is constant on a closed interval. 2

Given r > 1, we say that an analytic homeomorphism g : T → T is r-good, if g is holomorphic
on the annulus 1/r < |z| < r and maps that annulus to the annulus 1/2 < |z| < 2. Evidently, every
analytic homeomorphism of T is r-good for some r > 1. Moreover, by Schwarz-Pick lemma, for every
r > 1, the class of r-good analytic homeomorphisms of T forms a compact class of maps.

Let us consider the sets

P = {(a, b) ∈ (0, 1)× (0, 1/(2π)) ; fa,b has a parabolic cycle on T}.

and for each b ∈ (0, 1/(2π)),
Pb = {a ∈ (0, 1) ; (a, b) ∈ P}.

Lemma 4.4. For every (a, b) ∈ P , f◦k
a,b is r-good for only finitely many values of k.

Proof. The proof of Lemma 3.1 may be repeated here to show this statement. �

For (a, b) ∈ P , we define

K ′(a, b, r) =
{

k ∈ Z ; f◦k
a,b is r-good

}

.

Lemma 4.5. For every (a, b) ∈ P and every r > 0, there exists δ′(a, b, r) > 0 such that for every

a′ ∈ Pb with |a′ − a| ≤ δ′(a, b, r) we have

K ′(a′, b, r) ⊆ K ′(a, b, r).

Proof. This is the same as the proof of Lemma 3.2. �

Lemma 4.6. For every (a, b) ∈ P , every r > 0, and every ǫ > 0, there exists κ′(a, b, r, ǫ) > 0 which

satisfies the following. For every a′ ∈ Pb with |a′ − a| ≤ κ′(a, b, r, ǫ) and ρ(fa′,b) ∈ R \ Q, and every

r-good map g which commutes with fa′,b, there exists k ∈ K ′(a, b, r) such that |ρ(g) − kρ(fa,b)| < ǫ
mod Z.

Proof. The proof is identical to the one for Lemma 3.3. Here one uses the continuity of the map
x 7→ ρ(fx,b), for x ∈ R. �

Lemma 4.7. Assume that ρ(fa,b) ∈ R \Q. If g : T → T is an analytic map which commutes with fa,b
and ρ(g) = kρ(f) for some k ∈ Z, then g = f◦k on T.

Proof. By considering f◦−k
a,b ◦ g instead, we may assume that ρ(g) = 0. By Poincaré’s theorem, g has

a fixed point, and then by the commutation of fa,b and g, any iterate of that fixed point by fa,b must
be a fixed point of g. Since the orbit of any point in T by fa,b is dense on T, g has a dense set of fixed
points. Thus, g is the identity map on T. �

Proof of Theorem 1.3. The proof is similar to the one for Theorem 1.1, using Theorem 4.1 instead of
Theorem 1.2.

Fix an arbitrary b ∈ (0, 1/(2π)), and start with an arbitrary a ∈ Pb. We inductively define an
strictly increasing sequence of parameters an ∈ Pb, for n ≥ 1, so that for all 1 ≤ l ≤ j < n we have

(11) |an − aj | < δ′(aj , b, 1/j),

(12) |an − aj | < κ′(aj , b, 1/l, 1/j),

2The set of a and b where ρ(fa,b) is a rational number has non-empty interior, and is known as Arnold tongues.
One may refer to [Arn61], [Fag99] for basic features of those loci, and the global dynamics of the complexified standard
family.
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(13) |ρ(fan,b)− ρ(faj,b)| < 1/q2j ,

where pj/qj = ρ(faj ,b) ∈ Q and (pj , qj) = 1.
Let a = limn→∞ an. Since the sequence an is strictly increasing, the sequence pn/qn must be

increasing with at most two consecutive terms identical. It follows from Equation (13) that qn → ∞,
as n → ∞, and ρ(fa,b) ∈ R \Q.

Taking limit as n → ∞ in Equation (12), we note that |a − aj | ≤ κ′(aj , b, 1/l, 1/j), for every
1 ≤ l ≤ j.

Assume that g is a orientation preserving analytic homeomorphism of T which commutes with fa,b.
There is l ≥ 1 such that g is 1/l-good.

By Equation (8) and Lemma 3.2, we obtain K ′(aj , b, 1/l) ⊆ K ′(al, b, 1/l), for 1 ≤ l ≤ j.
By Lemma 3.3, for every j ≥ l, there exists k ∈ Z with k ∈ K ′(aj , b, 1/l) ⊆ K ′(al, b, 1/l) such

that |ρ(g) − kpj/qj| < 1/j mod Z. Taking limits of the latter inequality, as j → ∞, we obtain
ρ(g) = kρ(fa,b), for some k in the same range. Combining with Lemma 3.4, we conclude that g = f◦k

a,b

on T. �
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119–262; ibid. 26 (1972), 199–239. MR 0377192
[BRS16] Anna Miriam Benini, Philip J. Rippon, and Gwyneth M. Stallard, Permutable entire functions and multiply

connected wandering domains, Adv. Math. 287 (2016), 451–462. MR 3422682
[Che17] Davoud Cheraghi, Topology of irrationally indifferent attractors, Preprint: arXiv:1706.02678, 2017.
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[Fat23] Pierre Fatou, Sur l’itération analytique et les substitutions permutables (premier Mémoire), J. Math. Pures
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