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Highlights21

 Propensity score method is applied to analyze how multiple speed cameras affect road safety.22

 Doubly robust estimation is conducted by using a pairwise comparison approach.23

 Sites with more speed cameras perform better in reducing casualties.24

 Multiple speed cameras are most effective with a radius of 200 m.25
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ABSTRACT26

Most previous studies investigate the safety effects of a single speed camera, ignoring the27

potential impacts from adjacent speed cameras. The mutual influence between two or even more adjacent28

speed cameras is a relevant attribute worth taking into account when evaluating the safety impacts of29

speed cameras. This paper investigates the safety effects of two or more speed cameras observed within a30

specific radius which are defined as multiple speed cameras. A total of 464 speed cameras at treated sites31

and 3119 control sites are observed and related to road traffic accident data from 1999 to 2007. The32

effects of multiple speed cameras are evaluated using pairwise comparisons between treatment units with33

different doses based on the propensity score methods. The spatial effect of multiple speed cameras is34

investigated by testing various radii. There are two major findings in this study. First, sites with multiple35

speed cameras perform better in reducing the absolute number of road accidents than those with a single36

camera. Second, speed camera sites are found to be most effective with a radius of 200 m. For a radius of37

200 m and 300 m, the reduction in the personal injury collisions by multiple speed cameras are 21.4% and38

13.2% more than a single camera. Our results also suggest that multiple speed cameras are effective39

within a small radius (200 m and 300 m).40

41
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1 INTRODUCTION43

There were 1792 people killed on Britain's roads in 2016, which was the highest number on44

record since 2011 (Saarinen, 2018). At the same time, the number of serious injuries came to 24,101 in45

2016. In order to tackle this road safety problem, the UK government has implemented a number of safety46

measures, such as speed limit enforcement cameras. Speed cameras have been worldwide adopted as a47

prominent road safety strategy.48

Although most studies show that the installation of speed cameras has significantly improved the49

safety level near camera sites (Christie et al., 2003; Li et al., 2013; Montella et al., 2015; Mountain et al.,50

2005), there is still debate about the effectiveness of speed cameras, especially in relation to their costs51

(Lawson, 2011). There were 2838 speed cameras installed on Britain’s roads from 1991 till 2017 (BBC52

News, 2017), with wide variation in the density of speed cameras across different areas One question53

raised here is that whether sites with multiple speed cameras are more effective in reducing road54

casualties than those with a single one. In other words, is it beneficial for road safety to cluster speed55

camera interventions?56

This paper investigates the safety effects of multiple fixed speed cameras using the propensity57

score (PS) method to make pairwise comparisons between treatment units with different doses. Compared58

to the traditional matching approach, the PS method enables matching to be reduced to a single dimension,59

providing a solution to the problem of similarity in the empirical Bayes methods (Li et al., 2013;60

Rosenbaum and Rubin, 1983; Sasidharan and Donnell, 2013). Moreover, the PS methods can control for61
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the RTM and confounding factors, which cannot be fully addressed by the conventional before-after or62

cross-sectional studies. In addition, this study employ circle based approaches to identify the spatial area63

over which speed cameras are effective.64

The paper is organized as follows. Section 2 reviews relevant literature in the field. The PS65

method and data used in this study are introduced in Section 3 and 4. Results are presented in section 5,66

followed by the discussions and conclusions in the final section.67

68

2 LITERATURE REVIEW69

A number of studies have been conducted to investigate the impacts of speed cameras on road70

safety (Carnis and Blais, 2013; Christie et al., 2003; De Pauw et al., 2014a,b; Gains et al., 2004; Graham71

et al., 2019; Høye, 2015; Li et al., 2013; Li and Graham, 2016; Montella et al., 2015; Mountain et al.,72

2005), which show that the implementation of speed cameras has significantly reduced the vehicle speed73

and the number of accidents near camera sites. Furthermore, previous studies have largely focused on the74

effects in the immediate area of the camera site itself whereas only a few of them have investigated the75

spatial distribution of effects over from the cameras (Christie et al., 2003; De Pauw et al., 2014b; Høye,76

2015; Kaygisiz and Sümer, 2019; Li et al., 2013; Carnis, 2010). For example, works done by Cameron77

and Newstead (2003) regarding the Queensland speed camera program dealt with the spatial effect or halo78

effect. Their results showed that the deterrent effect evolves with the distance from the location of the79

camera. Besides, a study by De Pauw et al. (2014b) shows that the reduction of severe crashes is 27%80
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within 250 m from the camera, while the reduction is 23% for 250 to 500 m.81

Despite that most previous studies have shown significant safety impacts of speed cameras, it82

remains unclear that whether sites with multiple speed cameras are more effective in reducing road83

casualties than those with a single one. It can be speculated that driving behavior may differ in locations84

with multiple speed cameras from those with a single isolated camera. For example, at a site with single85

camera, drivers would slow down ahead of a camera and speeding up once they are clear of it, which is86

known as “kangaroo effect” (Elvik, 1997; Thomas et al., 2008). And it is also possible that drivers may87

choose alternative routes to avoid single speed camera (Mountain et al., 2005). To the best of the authors’88

knowledge, the safety effects of multiple speed cameras have never been formally studied. Most previous89

studies have focused on the effects of a single speed camera on road safety (e.g., Christie et al., 2003;90

Goldenbeld and van Schagen, 2005; Høye, 2015; Li and Graham, 2016; Montella et al., 2015; Shin et al.,91

2009), which have ignored potential impacts from adjacent speed cameras which could be important92

when studying the safety impacts of speed cameras. In addition, some studies have investigated the93

dose-response relationship between the number of speed cameras and traffic fatalities and injuries (e.g.,94

Blais and Carnis, 2015; Carnis and Blais, 2013). However, these studies are based on descriptive statistics95

or incorporate parameters, estimating the growing effect of speed camera programs as the number of96

devices increases.97

Most previous studies used route based methods, while circle methods are rarely studied.98

Christie et al. (2003) compared the route and circle methods for evaluating the effectiveness of speed99

cameras. Although there are a few drawbacks of the circle methods, it also has some advantages over the100



7

routes methods. First, it is possible that speed cameras may cause accidents migration to alternative routes101

(Mountain et al., 2005), which is a critical issue in the route based analysis especially when the traffic102

flow data for the before and after periods are unavailable. Second, the crash locations recorded by the103

police can be imprecise, which may lead to underestimations of the camera effects in routes analysis (e.g.,104

Abay, 2015; Amoros et al., 2006; Watson et al., 2015). However, such imprecision would not have105

substantially affected the circles analyses (Christie et al., 2003). Finally, the route based method only106

investigates the local effect of a particular camera site, while the circle method can estimate the107

generalized effect of speed cameras in an entire police force area. In this study, we investigate the safety108

effects of speed cameras within circular areas with various radii.109

Several approaches have been applied in previous road safety evaluation studies (Christie et al.,110

2003; Gu et al., 2019; Guo et al., 2018; Hauer et al., 2002; Li et al., 2017; Martínez-Ruíza et al., 2019;111

Wood and Donnell, 2017; Xu et al., 2018;). Before and after study with control groups is one of the most112

commonly used methods to estimate the impacts of speed cameras on speed and the number of accidents113

(De Pauw et al., 2014a; Bar-Gera et al., 2017). However, the traditional before-after method usually114

suffers from the regression to the mean (RTM) effect. The empirical Bayes (EB) method has been widely115

used over the last decades, which can account for the RTM (Elvik et al., 2017; Hauer et al., 2002; Høye,116

2015; Wood and Donnell, 2017). However, the performance of the EB approach can be adversely affected117

if the similarity issue is not properly addressed. Thus, an alternative method to the EB approach, the PS118

method, are proposed as a solution to this problem of similarity in recent studies to estimate the impact of119

road safety countermeasures (e.g. Li et al, 2019; Sasidharan and Donnell, 2013; Wood et al., 2015a, b).120
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PS methods are based on the rule that the control or reference group should have similar121

characteristics with the treated ones. Propensity scores can be constructed as a scalar value, which122

summarizes a potentially high-dimensional covariate vector accounting for the probability that a unit is123

assigned to the treatment (Rosenbaum and Rubin, 1983). The PS methods have been widely applied in124

numerous sociology, epidemiology and economic studies (e.g., Chattopadhyay et al., 2016;125

Kowaleski-Jones et al., 2018; Shahidi et al., 2019). Over recent decades, the PS methods have also been126

used to estimate the impact of road safety measures as well (e.g., Hou et al., 2019; Li et al., 2013;127

Sasidharan and Donnell, 2013; Wood et al., 2015a, b). For example, Wood et al. (2015b) investigated the128

safety effect of four lane widths (9, 10, 11, and 12 ft.). In their study, the comparisons of different lane129

widths are performed respectively via the PS methods.130

131

3 METHOD132

3.1 PS methods with multiple treatment levels133

The PS methods are based on the idea that the control group should have similar characteristics134

with the treated ones. We first introduce the potential outcomes framework with multiple treatment levels.135

Each unit (i.e. speed camera site) is assigned one of J+1 possible treatment levels (i.e. number of136

cameras), where j=0, 1, ..., J corresponding to J+1 treatment conditions and Ti denotes the treatment level137

of unit i. The treatment indicator dij=1 if unit i receives the j level treatment and dij=0 otherwise, where i =138

1, …, N, and N denotes the total number of units. Referring to the potential outcome framework of Rubin139

(1974), Yi denotes the observed outcomes (i.e. observed accidents) and Yij are the potential outcomes (i.e.140
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the potential accidents without speed camera in the site). Thus, the observed outcome is given by:141





J

j
ijiiji YTdY

0
)( (1)142

Therefore, the individual-level treatment effect φi corresponding to treatment level u versus v (u≠v)143

for unit i can be written:144

iviui YY  (2)145

Accordingly, in practice, the population average treatment effect on the treated φATT is given by the146

difference in the means of two potential outcomes, which can be written:147

  vuiviuATT YYE   (3)148

where λu and λv denote the averages of the observed outcomes for the treatment groups U and V149

respectively.150

Three crucial assumptions need to be satisfied to ensure the validity of the PS method151

(Rosenbaum and Rubin, 1983). The first assumption is stable unit treatment value assumption (SUTVA),152

which defines the treatment assigned to a unit have no impact on the outcomes of others. The second is153

conditional independence assumption (CIA), which states that the potential outcomes are independent of154

the treatment status after controlling for covariates X. The last is common support condition (CSC), which155

is also known as the overlap condition, ensuring the probability of being treated and untreated is positive156

for the units with the same X values.157
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Several PS based methods can be used to estimate the effects of treatment, such as158

regression-adjusted estimators, inverse-probability weighted (IPW) estimators, matching estimators, and159

doubly robust (DR) estimators. Recent studies have shown that the DR methods can provide an additional160

level of robustness and model both the probability of treatment and the outcome simultaneously within161

the same framework, providing the investigator two opportunities to derive consistent treatment effects162

(Funk et al., 2011; Robins et al., 1995). Besides, the DR estimator can maintain asymptotically unbiased163

estimates when only one of the two models is correctly specified. For more details, please refer to the164

works by Lunceford and Davidian (2004) and Graham et al. (2015).165

166

3.2 Estimating the safety effects of speed cameras using the PS methods167

The PS method has been widely used for the binary treatment framework. The procedure for168

estimation of treatment effects using PS method can be illustrated as follow.169

The first step is to estimate the propensity scores. The propensity score indicates the probability170

of an observation having multiple speed cameras. So the propensity scores range from 0 to 1. For a binary171

treatment variable, logit and probit models are usually preferred to a linear probability model. And logit172

and probit models usually produce similar results (Smith, 1997), the choice is not critical. In this paper, a173

binary logit model is used to estimate the propensity score:174

   
 X

XXdP ij 






exp1
exp1 (5)175
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where P is the propensity score for each observation, X is the vector of covariates, α is the intercept, and β176

is the vector of parameters to be estimated.177

The second step is to select a matching algorithm. A number of matching algorithms have been178

discussed in previous studies, including nearest neighbor matching, K-nearest neighbor matching, kernel179

and local linear matching, caliper and radius matching, mahalanobis matching and genetic matching (e.g.,180

Heinrich et al., 2010; Wood and Donnell, 2016). There is no theoretical guidance on how to choose the181

most appropriate algorithm for matching. Given a large sample, the result from different algorithms182

should be similar and therefore the choice is not critical. It is suggested to use multiple matching183

algorithms for more credible results (please refer to Heinrich et al., 2010 for detailed discussion).184

The third step is to estimate the treatment effects. Once treatment units have identified matches185

from the untreated group, the treatment effect can be estimated by taking differences in the outcomes186

between treated units and their matches. A number of programs are available. The program used in this187

study is psmatch2 in STATA developed by Leuven and Sianesi (2003).188

In summary, the procedures for using the PS method to evaluate safety effects of multiple speed189

cameras can be illustrated as following steps.190

(1) The data for different types of speed camera sites, such as accidents record and site information, is191

collected and constructed in a single data set.192

(2) Covariates are selected to be included in the logit model to estimate the propensity score.193
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(3) The distributions of propensity scores are compared between different types of speed camera sites to194

check the overlap condition. If the condition is not satisfied, then covariates included in the PS model195

need to be re-selected. In our study, multiple matching algorithms are applied to increase the196

credibility of the PS method.197

(4) A balancing test is conducted to test whether different types of speed camera sites are statistically198

similar after matching. If significant differences are found, the logit model is re-specified and the199

process is repeated from the beginning.200

(5) The safety effects of multiple speed cameras can be evaluated by taking differences in outcomes201

between different types of camera sites.202

(6) DR estimation is applied to increase our confidence in the estimation results.203

204

4 DATA205

4.1 Sample size206

Due to the data availability, 464 speed cameras, which measure speed in both directions, are207

selected from ten following English administrative districts, including Cheshire, Dorset, Hertfordshire,208

Lancashire, Leicester, London, Manchester, Merseyside, Sussex and West midlands. “Handbook of Rules209

and Guidance for the National Safety Camera Programme for England and Wales” defines the rules and210

guidelines that the partnerships are required to follow (DfT, 2006). Fixed and mobile cameras are both211
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used in Britain and some of them are hidden. However, because the data on mobile cameras were limited212

and the installation time of mobile speed cameras was unavailable, the mobile cameras were not taken213

into consideration in this study. Figure 1 shows an example of speed camera clusters in London and these214

speed cameras were all installed between 2002 and 2004, which shows great diversity in the density of215

speed cameras across different areas.216

Since the criteria for selecting camera sites and the safety effects may change over time (DfT,217

2004 & 2006; Høye, 2015), it is necessary to limit our study to a short period. In addition, as suggested by218

previous studies (Gains et al., 2004; Høye, 2015; Li and Graham, 2016; Mountain et al., 2005), three-year219

data before and after the installation of all speed camera sites are usually required. Since speed cameras220

were installed at different time, if the study period covers too many years, it would be difficult to define221

the before and after periods for each camera site. Therefore, only speed cameras installed between 2002222

and 2004 are chosen.223
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224

Fig. 1. An example of speed camera clusters in London.225

226

4.2 Covariates227

In this study, a site is a circular area and the site length corresponds to the radius of the area.228

Several studies have been conducted to explore the most effective monitoring length for speed cameras229

(e.g., Gains et al., 2004; Li et al., 2013). In this paper, in order to investigate the effect area of speed230

cameras, circles approaches are applied. The effective area is investigated by using different radii to the231

camera sites, including 200, 300, 400, 500, 600, and 1000 m.232

The covariates included in the PS model should be based on the criterion that they affect both233

treatment and outcome, not on their statistical significance (Rubin and Thomas, 1996; Sasidharan and234

Donnell, 2013). According to the UK guidelines for selecting camera sites (Gains et al., 2005), and235

previous studies on speed cameras and road safety (Li and Graham, 2016; Mountain et al., 2005; Wang236

../../../../mm/AppData/Local/youdao/dict/Application/8.5.3.0/resultui/html/index.html
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and Huang, 2016), the following covariates are included in the PS model:237

(1) FSCs: the number of fatal and serious collisions occurred within a circular zone around the site in238

baseline years (3 years before the installation of speed cameras).239

(2) PICs: the number of personal injury collisions occurred within a circular zone around the site in240

baseline years.241

(3) AADT: the annual average daily traffic within a circular zone around the site.242

(4) Road length: the total road length within a circular zone around the site.243

(5) Intersections per km: the number of intersections per km within a circular zone around the site.244

Although the selection of the speed camera sites is primarily based on accident history (DfT,245

2006), there are also secondary criteria, such as the 85th percentile speed and percentages of vehicles over246

the speed limit, which are normally unavailable. As discussed in previous studies (Gains et al., 2004;247

Mountain et al., 2005), however, the national average mean speed and percentages of speeding are similar248

for the untreated sites and camera sites with the speed limit of 30 mph and 40 mph, which are the focus249

groups in this study. It is reasonable to assume that there is no significant difference in the speed250

distribution between the treated and control groups and the exclusion of the speed data will not affect the251

accuracy of estimation results. In addition, it is also difficult to identify the road class and speed limit252

when using the circle method. Thus, these factors are also not considered.253

It is suggested that a sufficient number of control group candidates should be included to254
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guarantee the matching quality (Kurth et al., 2006; Peikes et al., 2008). Therefore, a total of 3119255

potential control sites were chosen randomly within ten districts mentioned above. These sites had no256

speed cameras before 2008 and are at least 2 km away from any camera sites. For the control sites, the257

study periods are defined as the same as those of the proximate treated sites.258

Safety impacts of different numbers of speed cameras are evaluated in a circular area. Every259

camera has its own circle and circles are drawn around all speed cameras. The circles are combined if260

they overlap. Figure 2 shows three types of speed camera sites, which are defined based on the number of261

speed cameras within a circular zone:262

(1) Single speed camera: there is no other speed camera within a specific radius of a speed camera.263

(2) A site with two speed cameras: there is one other speed camera within a specific radius of a speed264

camera.265

(3) A site with multiple speed cameras: there are more than one other speed cameras within a specific266

radius of a speed camera.267

268

Fig. 2. Three types of speed camera sites.269

270
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Table 1 shows different speed camera sites with radii of 200, 300, 400, 500, 600, and 1000 m.271

The numbers of the treated and control sites are also shown in the table. However, the number of sites272

with three or more speed cameras is too small when the radii are 200, 300, 400, and 500 m. Thus, only the273

sites with a radius of 600 m and 1000 m are used to estimate the effect of multiple speed cameras.274

275

Table 1276

The number of treatment and control group for different radii.277

Radius Number of speed camera Number of treatment group Number of control group

200 m
1 413 2631
2 50 479

300 m
1 384 2790
2 76 639

400 m
1 346 2821
2 100 828

500 m
1 312 3119
2 111 910

600 m
1 282 2940
2 105 1043

3 or more 76 635

1000 m
1 199 2239
2 110 1087

3 or more 154 1287

278

5 RESULTS279

5.1 Estimating the propensity scores280

We first estimate the propensity scores for all the treated and untreated units using a logit model.281

The results in Table 2 show that the covariates included in the PS model are all essential in predicting the282
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probability of being chosen as the camera sites. However, Westreich et al. (2011) suggested that the main283

purpose of the PS method is not to predict the treatment assignment, but to balance the covariates so that284

the confoundedness can be controlled for.285

Table 2286

Results of the PS model.287

Coef. S.E. z P>z [95% Conf. Interval]

PICs in baseline years -0.019 (0.004) -4.64 0.000 -0.027 -0.011

FSCs in baseline years 0.131 (0.027) 4.79 0.000 0.078 0.185

The number of intersection per km 0.325 (0.068) 4.79 0.000 0.192 0.458

Road length 1.82E-04 (4.22E-05) 4.32 0.000 9.95E-05 0.000

AADT in baseline years -1.19E-05 (5.72E-06) -2.07 0.038 -2.31E-05 0.000

Constant -6.335 (0.510) -12.42 0.000 -7.335 -5.336

288

5.2 Tests of matching quality289

We then examine the validity of the PS method through two approaches, one of which is a visual290

inspection of the propensity score distributions for both the treatment and control groups. Figure 3 shows291

an example of the distributions of the propensity scores in percentage, which indicates sufficient292

overlapping of the distributions. In addition, the total number of speed cameras involved in the estimation293

is 464, and the ratio of the number of control candidates to the treated ones ranges from 6:1 to over 10:1.294

The common support condition is well satisfied in this study.295
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296

Fig. 3. Propensity score distribution.297

A balance test is also performed to check the validity of conditional independence assumption.298

Theoretically there should be no significant differences in the covariates means between the treated and299

control groups after matching. Table 3 shows an example of the t-test of the differences in covariates300

means before and after matching. Significant differences are observed for all covariates before matching,301

indicating that the characteristics of the treated and control units are not similar if the traditional302

before-after control methods are used. In contrast, all covariates are well balanced between the treated and303

matched control groups after matching.304

305
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Table 3306

Balance test between groups (k = 5 nearest neighbors matching).307

Covariate Sample Mean %reduced t-test

Treated Control %bias |bias| t p>|t|

PICs in baseline years Unmatched 39.705 22.734 59.6 5.42 0.000

Matched 38.312 36.766 5.4 90.9 0.31 0.758

FSCs in baseline years Unmatched 6.1667 3.5614 57.2 5.19 0.000

Matched 5.8571 5.5974 5.7 90 0.35 0.726

The number of intersection per km Unmatched 6.2705 5.2484 43.8 3.53 0.000

Matched 6.2626 6.3871 -5.3 87.8 -0.34 0.738

Road length Unmatched 3215.8 2842.4 32.1 2.42 0.016

Matched 3204.7 3182.9 1.9 94.2 0.12 0.903

AADT in baseline years Unmatched 32442 29423 12.8 0.99 0.324

Matched 32510 34529 -8.6 33.1 -0.49 0.626

308

5.3 Evaluating the safety impacts of multiple speed cameras309

In order to estimate the effects of treatments with different doses, we follow the practice by Wood310

et al. (2015). For example, the comparisons between one speed camera and no speed camera within a311

circular zone can be defined as “1:0”. The comparisons between two speed cameras and no speed camera312

within a circular zone is defined as “2:0”. Additionally, the comparisons between three or more speed313

cameras and no speed camera within a circular zone is defined as “3:0”. When performing the comparison314

of “1:2”, only 200 m and 300 m are selected to guarantee sufficient sample sizes of the treated and control315

groups. Similarly, the comparison of “3:0” are only performed for the radii of 600 m and 1000 m due to316

the limitation of the number of the treated sites.317

Table 4 shows the effects of speed cameras on annual PICs and FSCs per km in absolute number.318

The safety effects of installing multiple speed cameras are estimated by taking the differences in the crash319
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frequency between the matched observations of treated and control groups. The effects of different320

numbers of cameras on PICs and FSCs are presented for different radii. The estimation results based on321

different matching algorithms and the DR approach are very similar, which increases our confidence in322

the PS method. It is found that the speed cameras are most effective within 200 m radius of camera sites,323

where the reduction in the annual PICs per km in absolute number is 0.481 for the sites with single speed324

camera. The estimations are 0.219 for up to 400 m, 0.152 for up to 600 m and 0.069 for up to 1 km325

respectively for “1:0”. Generally, the effectiveness decreases as the radius increases, which is consistent326

with the traditional halo effect and the main findings of previous studies (Cameron, 2008; Christie et al.,327

2003; De Pauw et al., 2014b; Høye, 2015; Li et al., 2013).328

It is also found that the effectiveness increases as the number of speed cameras increases. The329

reduction in annual PICs per km in absolute number ranges from 0.069 to 0.481 for “1:0”, while the330

annual reduction per km for “2:0” ranges from 0.094 to 1.362. Similarly, the reductions in the annual331

PICs per km in absolute number are 0.152 for “1:0”, 0.155 for “2:0” and 0.371 for “3:0” respectively332

when the radius is 600 m. When the radius is 1000 m, however, the estimated results are only partly333

significant at the 10% level for the “1:0” group, while the treatment effects are all insignificant for “2:0”334

and “3:0”. Moreover, we also compare the safety impacts of one speed camera with two cameras directly.335

The results from Table 4 show that the sites with two speed cameras are more effective in reducing road336

accidents compared to those with single speed camera.337

Table 5 shows the average effects of speed cameras on annual PICs per km in percentages.338
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Similarly, the results suggest that, comparing to 400, 500, 600, and 1000 m, when the radius is 200 m, the339

speed cameras are most effective (14.97% for “1:0” and 34.63% for “2:0”). As for “2:1”, average effects340

on the annual PICs is 21.44% for 200 m and 13.23% for 300 m, suggesting that the sites with two speed341

cameras are more effective than those with one camera with small radii of 200 m and 300 m. However,342

for “3:0”, effects on the annual PICs is 9.94% for 600 m and 1.84% for 1000 m, indicating that sites with343

three or more speed cameras are less effective with radii over 500 m.. Meanwhile, for 400, 500, 600, and344

1000 m, the safety effectiveness of two or more speed cameras are not larger than the sites with one345

camera. The results indicate that the sites with multiple speed cameras are more effective in reducing road346

accidents with a radius of 300 m. Our results are partly consistent with the findings by Christie et al.347

(2003).348
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Table 4349
Average effects of speed cameras on annual PICs/FSCs per km in absolute number.350

200 m 300 m 400 m 500 m 600 m 1000 m
Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat

Average effects on annual PICs per km in absolute number
1:0

Unmatched -0.781 -9.52 -0.467 -7.69 -0.286 -5.66 -0.208 -4.66 -0.173 -4.00 -0.067 -1.64
K-nearest Neighbors Matching (K = 1) -0.439 -2.87 -0.381 -3.96 -0.210 -3.11 -0.220 -3.80 -0.171 -2.79 -0.073 -1.44
K-nearest Neighbors Matching (K = 5) -0.443 -3.77 -0.339 -4.09 -0.214 -3.56 -0.155 -3.14 -0.124 -2.62 -0.064 -1.51
Kernel Matching (Bandwidth = 0.05) -0.524 -4.74 -0.332 -4.36 -0.228 -4.10 -0.174 -3.79 -0.151 -3.46 -0.069 -1.73
Radius Matching (Caliper = 0.05) -0.541 -4.90 -0.350 -4.61 -0.236 -4.24 -0.180 -3.93 -0.157 -3.61 -0.074 -1.87

Doubly robust -0.456 -3.47 -0.325 -4.01 -0.205 -2.98 -0.178 -3.23 -0.157 -3.55 -0.065 -1.79
Average Effect -0.481 -0.344 -0.219 -0.181 -0.152 -0.069

2:0
Unmatched -1.646 -5.90 -1.392 -9.45 -0.853 -8.61 -0.396 -4.13 -0.205 -2.45 -0.190 -2.79

K-nearest Neighbors Matching (K = 1) -1.342 -2.64 -1.001 -3.57 -0.514 -2.73 -0.300 -2.03 -0.124 -1.05 -0.101 -1.56
K-nearest Neighbors Matching (K = 5) -1.252 -3.08 -1.002 -3.80 -0.562 -3.31 -0.242 -2.14 -0.177 -1.99 -0.082 -1.03
Kernel Matching (Bandwidth = 0.05) -1.453 -3.88 -1.096 -4.29 -0.518 -3.15 -0.225 -2.21 -0.156 -1.97 -0.091 -1.34
Radius Matching (Caliper = 0.05) -1.505 -4.03 -1.129 -4.40 -0.532 -3.23 -0.233 -2.30 -0.171 -2.16 -0.105 -1.59

Doubly robust -1.259 -3.16 -0.963 -3.27 -0.511 -2.79 -0.225 -1.95 -0.146 -1.97 -0.094 -1.64
Average Effect -1.362 -1.038 -0.527 -0.245 -0.155 -0.094

2:1 3:0

Unmatched -1.114 -3.38 -0.883 -4.60 -0.713 -6.39 -0.396 -7.37
K-nearest Neighbors Matching (K = 1) -0.475 -1.09 -0.763 -2.47 -0.454 -2.04 -0.068 -0.59
K-nearest Neighbors Matching (K = 5) -0.701 -1.70 -0.529 -2.00 -0.390 -2.15 0.006 0.07
Kernel Matching (Bandwidth = 0.05) -0.783 -2.06 -0.563 -2.19 -0.331 -1.96 0.031 0.38
Radius Matching (Caliper = 0.05) -0.829 -2.19 -0.576 -2.27 -0.342 -2.03 0.026 0.03

Doubly robust -0.679 -2.02 -0.573 -2.02 -0.339 -1.93 -0.007 -0.06
Average Effect -0.693 -0.601 -0.371 -0.002
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Table 4 (continued)351
Average effects of speed cameras on annual PICs/FSCs per km in absolute number.352

200 m 300 m 400 m 500 m 600 m 1000 m
Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat

Average effects on annual FSCs per km in absolute number
1:0

Unmatched -0.240 -9.39 -0.171 -9.47 -0.114 -8.15 -0.088 -7.54 -0.072 -6.74 -0.037 -4.23
K-nearest Neighbors Matching (K = 1) -0.095 -2.09 -0.093 -3.22 -0.060 -2.78 -0.058 -3.17 -0.055 -3.36 -0.017 -1.38
K-nearest Neighbors Matching (K = 5) -0.085 -2.62 -0.087 -3.51 -0.060 -3.35 -0.051 -3.35 -0.046 -3.49 -0.016 -1.50
Kernel Matching (Bandwidth = 0.05) -0.126 -3.64 -0.104 -4.34 -0.068 -4.08 -0.058 -4.08 -0.047 -3.77 -0.026 -2.59
Radius Matching (Caliper = 0.05) -0.136 -3.96 -0.112 -4.70 -0.073 -4.42 -0.063 -4.40 -0.051 -4.10 -0.029 -2.94

Doubly robust -0.102 -2.58 -0.098 -3.87 -0.063 -3.93 -0.054 -3.11 0.048 2.76 0.022 2.12
Average Effect -0.109 -0.099 -0.065 -0.057 -0.030 -0.013

2:0
Unmatched -0.482 -5.55 -0.337 -7.11 -0.199 -6.64 -0.104 -4.88 -0.054 -3.07 -0.047 -3.72

K-nearest Neighbors Matching (K = 1) -0.425 -2.41 -0.247 -2.59 -0.132 -2.61 -0.075 -2.28 -0.065 -2.66 -0.024 -1.22
K-nearest Neighbors Matching (K = 5) -0.358 -2.22 -0.218 -2.23 -0.149 -2.98 -0.073 -2.88 -0.049 -2.41 -0.023 -1.50
Kernel Matching (Bandwidth = 0.05) -0.411 -2.67 -0.235 -2.58 -0.127 -2.59 -0.070 -2.90 -0.048 -2.51 -0.025 -1.75
Radius Matching (Caliper = 0.05) -0.422 -2.84 -0.254 -2.71 -0.129 -2.67 -0.072 -3.03 -0.050 -2.63 -0.028 -1.97

Doubly robust -0.397 -2.63 -0.219 -2.66 -0.136 -3.01 -0.065 -2.75 -0.046 -2.59 -0.017 -1.52
Average Effect -0.403 -0.235 -0.135 -0.071 -0.052 -0.023

2:1 3:1

Unmatched -0.246 -2.19 -0.187 -2.97 -0.158 -6.88 0.078 -7.44
K-nearest Neighbors Matching (K = 1) -0.058 -0.60 -0.187 -1.69 -0.094 -1.99 -0.026 -1.42
K-nearest Neighbors Matching (K = 5) -0.135 -1.04 -0.125 -1.25 -0.093 -2.31 -0.014 -0.09
Kernel Matching (Bandwidth = 0.05) -0.203 -1.56 -0.132 -1.35 -0.089 -2.27 -0.02 -1.27
Radius Matching (Caliper = 0.05) -0.205 -1.57 -0.137 -1.39 -0.091 -2.33 -0.021 -1.31

Doubly robust -0.167 -1.68 -0.136 -1.60 -0.107 -1.90 -0.039 -1.70
Average Effect -0.154 -0.143 -0.095 -0.024
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Table 5 Average effects of speed cameras on annual PICs per km in percentage.353

200 m 300 m 400 m 500 m 600 m 1000 m
Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat Effects T-stat

Average effects on annual PICs per km in Percentage
1:0

Unmatched -20.20 -5.46 -17.26 -3.76 -17.02 -3.73 -15.47 -3.73 -13.85 -3.22 -6.35 -1.70
K-nearest Neighbors Matching (K = 1) -15.42 -2.77 -16.66 -2.70 -12.27 -3.63 -11.88 -2.87 -11.62 -2.56 -7.93 -1.89
K-nearest Neighbors Matching (K = 5) -13.01 -2.78 -13.84 -3.65 -13.54 -4.02 -14.55 -4.57 -12.96 -3.98 -6.73 -2.43
Kernel Matching (Bandwidth = 0.05) -15.05 -3.41 -13.51 -4.12 -15.31 -5.70 -13.59 -5.64 -11.89 -4.55 -5.32 -2.14
Radius Matching (Caliper = 0.05) -15.51 -3.53 -14.00 -4.30 -15.71 -5.91 -13.88 -5.80 -12.30 -4.74 -5.79 -2.34

Doubly robust -15.86 -3.28 -15.10 -4.37 -15.03 -5.08 -14.34 -5.23 -11.88 -3.99 -6.11 -2.18
Average Effect -14.97 -14.62 -14.37 -13.65 -12.13 -6.38

2:0
Unmatched -36.10 -2.66 -27.17 -3.64 -19.13 -2.78 -12.77 -1.97 -8.15 -1.72 -7.35 -1.86

K-nearest Neighbors Matching (K = 1) -30.41 -2.36 -15.03 -2.31 -11.44 -1.70 -10.93 2.00 -6.40 -2.59 -2.84 -0.88
K-nearest Neighbors Matching (K = 5) -34.70 -3.15 -18.66 -3.65 -11.24 -3.07 -8.94 -2.58 -5.65 -1.99 -3.94 -1.83
Kernel Matching (Bandwidth = 0.05) -35.48 -4.29 -21.63 -3.58 -11.32 -2.75 -8.55 -2.83 -6.47 -2.42 -3.77 -1.77
Radius Matching (Caliper = 0.05) -35.82 -4.42 -22.19 -3.74 -12.01 -3.00 -8.99 -2.68 -6.77 -2.56 -4.18 -1.98

Doubly robust -36.73 -4.61 -21.32 -3.13 -14.91 -3.25 -10.06 -2.67 -7.43 -2.62 -5.19 2.66
Average Effect -34.63 -19.77 -12.18 -9.49 -6.54 -4.27

2:1 3:1
Unmatched -21.91 -1.92 -15.40 -2.53 -14.66 -2.06 -14.38 -3.27

K-nearest Neighbors Matching (K = 1) -29.14 -2.01 -16.90 -2.38 -10.51 -2.04 -2.87 -1.52
K-nearest Neighbors Matching (K = 5) -21.20 -2.60 -11.60 -2.23 -9.63 -2.64 -2.97 -1.61
Kernel Matching (Bandwidth = 0.05) -17.80 -2.46 -12.50 -2.39 -10.63 -2.62 -0.86 -0.69
Radius Matching (Caliper = 0.05) -18.57 -2.58 -12.75 -2.48 -10.80 -2.71 -1.17 -0.75

Doubly robust -20.50 -2.74 -12.39 -2.62 -8.12 -1.97 -1.70 -1.70
Average Effect -21.44 -13.23 -9.94 -1.84

354
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6 DISCUSSIONSAND CONCLUSIONS355

As an important safety countermeasure taken by the UK government to improve road safety, the356

implementation of speed cameras is expected to regulate driving speed and reduce road accidents.357

Numerous studies have been conducted to investigate whether the introduction of speed cameras are358

uniformly effective in reducing traffic accidents. However, a number of issues associated with speed359

cameras have never been analyzed before, such as how multiple speed cameras affect road safety and360

under what conditions multiple speed cameras can obtain optimal effectiveness. This paper applied the PS361

method to address these issues. The safety effects were evaluated by using a pairwise comparison362

approach based on the DR estimators.363

This paper has two major findings on the safety effects of different speed cameras sites. The first364

finding concerns the safety effects at sites with different number of speed cameras. The pairwise365

comparison results indicate that the sites with two or more speed cameras have greater effects in reducing366

the absolute number of road accidents than those with a single camera. Moreover, a direct comparison367

between one and two speed cameras is conducted and the results also show that circular areas with two368

speed cameras are more effective in decreasing the number of road accidents. However, when369

investigating the safety effects in percentages, it is found that multiple speed cameras are only more370

effective in the areas with small radii (200 m and 300 m). As for 400, 500, 600, and 1000 m, the sites with371

multiple speed cameras are less effective in reducing the PICs in percentages. A possible explanation is372

that as the radius increases, the accidents number in the baseline years also increases dramatically for sites373
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with multiple speed cameras while the accidents reduction number remains unchanged.374

The second finding relates to the radius over which the camera site is effective. Most previous375

studies used the route method, while the circle method has rarely been used (Li and Graham, 2016; De376

Pauw et al., 2014a; Høye, 2015; Christie et al., 2003). For all types of speed camera sites, the reductions377

in both PICs and FSCs decrease as the radius increases. For “1:0”, “2:0” and “2:1”, the speed camera sites378

are found to be most effective when the radius is 200 m. The effects of the speed cameras reach the peak379

value when the radius is 300 m. And for the sites with two speed cameras, the safety effects in380

percentages decrease when the radius is larger than 300 m. The results from Christie et al. (2003) suggest381

that camera sites had less injurious crashes than the expected numbers up to 300 m, which is partly382

consistent with our findings. However, it is unclear whether this relationship holds when the radius is383

larger than 1000 m.384

In summary, this paper contributes to the literature by evaluating the effects of multiple speed385

cameras using causal methods. The results indicate that multiple speed cameras are more effective than a386

single one and the authors suggest that multiple speed cameras could be installed at high-risk locations to387

improve the road safety level. However, it is also worth noting that multiple speed cameras can provide388

better performance only in the areas with a small radius (i.e. under 500 m). Another contribution of this389

study relies on the fact that we apply the PS methods to assess the impact of multiple speed cameras. The390

PS method is able to select proper control groups to account for the effects of confounding factors, RTM391

and time trend, which cannot be fully addressed by the conventional methods for road safety evaluation392



28

studies. Moreover, the PS method provides a solution to the problem of similarity in the EB approach.393

Therefore, we suggest the PS methods can be further used in future road safety studies, more specifically,394

on multiple treatments and time varying effects.395

There are also some limitations in this study. First, the safety effects of multiple speed cameras396

are not compared for both routes and circle analysis. It is required that the multiple speed cameras397

investigated should be those installed in the same period. However, due to the data restriction in this study,398

it is difficult to find sufficient observations of road sections with two or more speed cameras installed in399

the same time period. Second, as pointed out by Christie et al. (2003), some of the accidents may be400

double counted and contribute to the estimation of multiple sites when using the circles methods, which401

may also influence our estimation results.402
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