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Abstract

The scramjet propulsion system is regarded to be a key technology to deliver the next

generation of hypersonic planes. It consists of a ramjet engine in which the combustion

occurs at supersonic speed. Experiments have been used to investigate the scramjet en-

gine, however, the high costs of gathering data is a limiting factor in its development.

In this context, the numerical simulation is an affordable alternative to shed a light into

supersonic combustion. The simulation of high-speed compressible and reactive flows,

however, is not straightforward, including shock/boundary layer interactions and com-

bustion. Nonetheless, most combustion models have been designed for subsonic flames

and their portability to high-speed flows is non-trivial.

This work investigates the use of the Probability Density Function (PDF) method

for supersonic combustion within the Large Eddy Simulation (LES) framework. Two

methods are considered: one is an extension of a joint scalar PDF model (SPDF) for

high speed flows and the other is a new joint velocity-scalar PDF formulation (VSPDF).

The LES-PDF equations are solved using the Eulerian stochastic fields method, which

is implemented into the in-house compressible code CompReal. Their performance are

evaluated through a reactive shock-tube, mixing layers and a homogeneous isotropic tur-

bulence cube simulation. Two supersonic burner configurations are simulated to validate

the code against experimental data. The results show that sub-grid contributions are im-

portant at coarse meshes and the stochastic fields approach can reproduce experimental

results. The University of Virginia scramjet configuration A is also simulated using the

joint scalar PDF model. Results of topwall pressure, temperature and molar fractions

are compared with experimental data.

Overall, the results suggest that the joint scalar PDF is the most robust and reliable

formulation and the sub-grid closures for the joint velocity-scalar PDF require further

investigation.
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MDF Mass Density Function

PDF Probability Density Function

RANS Reynolds Averaged Navier-Stokes

TVD Total Variation Diminishing
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Chapter 1

Introduction

Hypersonic planes could play an important role in the future of civil aviation. For in-

stance, they would enable flights from London to New York to be completed in an hour or

less. Various propulsion systems for such aircraft have been investigated and the scram-

jet (supersonic combustion ramjet) engine is one of the most promising technology. The

scramjet is an airbreathing engine and it uses ram compression to decelerate and pres-

surize the hypersonic incoming air, making the combustion occur at supersonic speeds.

It therefore has a simple design, without the moving parts necessary in gas-turbine en-

gines. On the other hand, scramjets involve more complex physical phenomena due to

the supersonic combustion than conventional engines, where the combustion occurs at

subsonic speed.

Figure 1.1 provides an overview of a typical scramjet along with its main physical

features. As air enters the engine, oblique shock waves begin to be reflected at the walls

and a shock train is formed. There are severe shock/boundary-layer interactions at this

stage. The velocity is also reduced from hypersonic to supersonic as pressure increases.

At last, gas fuel is injected from wall orifices allowing combustion to occur at supersonic

speed and generating thrust.

Experimental investigation has been conducted to better understand the physics as-

sociated with supersonic combustion, such as shock waves and flame interaction. The

HIFiRE (Hypersonic International Flight Research Experimentation) project is a leading

22
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Figure 1.1: Typical scramjet model - figure extracted from NASA website1.

initiative in scramjet development [1]. It has a jointly development including, but not

limited to, the Air Force Research Laboratory (AFRL) and NASA in the USA, and the

Defense Science Technology Organisation (DSTO) in Australia. The HyShot project from

the University of Queensland, within the HIFire programme, have performed a successful

launch of a re-entry vehicle, in which the supersonic combustion occurred for approxi-

mately 3 seconds, as reported by Hass et al. [2]. This experiment provided useful data

as the wall pressure, being used for numerical modelling and validation [3, 4].

Ground-based experiments have also been conducted [5, 6, 7, 8], providing valuable

insights into the physics of a scramjet. However, despite being the best method for ob-

taining reliable data, intensive experiments in such harsh conditions are very expensive.

Researchers therefore have heavily relied on numerical simulation to investigate differ-

ent parameters on scramjets, such as fuel injection position and velocity, geometrical

factors and structural analysis [9, 3, 10, 11, 12]. The complex physical features present

in supersonic combustion, however, imposes a severe numerical modelling challenge and

state-of-the-art techniques are required to reproduce the scramjet behaviour in a compu-

tational simulation.

1Use of the figure is for educational and informational purposes only, following NASA Media Usage
Guidelines for non-commercial use.
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1.1 Motivation and Objectives

With increasing computing capacity, advanced turbulence modelling techniques have be-

come largely popular for simulating reacting systems. The Large Eddy Simulation (LES)

method has therefore been used for combustion research. This technique consists in ap-

plying a spatial filter to the transport and constitutive equations, thereby solving the

filtered part and modelling the part within the spatial cutoff of the filter, called subgrid

scale. However, the modelling of the filtered chemical source term in the conservation

equation for the mass fractions due to the combustion reactions still poses a challenge.

Because of its high non-linearity, the subgrid contribution of the source term is very

difficult to predict.

In this context, the Probability Density Function (PDF) combustion model [13] has

been investigated for supersonic combustion applications [9, 10, 14, 15, 16]. This is

because of its ability to exactly solve the reacting term [17] even after filtering the trans-

port equations. Therefore, the subgrid contribution of the reactive source term does not

require explicit modelling in a LES simulation. This approach is potentially less com-

putational demanding than the quasi-laminar approach, which uses the filtered values to

model the reactive term and neglects the subgrid part. In this way, the mesh size has

to be finer than conventional LES and the simulation can cost up to 200 millions nodes

[18] to achieve a subgrid Damköhler number smaller than 0.1 in the domain and preserve

accuracy.

The most common PDF models are able to close the reactive term and are called joint

scalar PDFs, usually including one thermodynamic variable and the mass fractions into

their sample space. The joint velocity-scalar PDF models have a very important prop-

erty of closing not only the reactive term, but the convective terms as well within any

turbulence modelling framework. These PDFs include the velocity components in addi-

tion to the scalar variables in their sample space. This work proposes a new formulation

for the solution of a joint velocity-scalar PDF. All the variables of the flow are evalu-

ated in the same one-point, one-time, fine-grained PDF, allowing exact solution for the

convective and reactive terms, which represent the most dominant physics in supersonic
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combustion. The novelty of this approach is the solution method proposed for solving the

LES-PDF transport equation. A new compressible formulation for a joint-scalar PDF is

also proposed, which models a quasi-closure for the reactive term and uses traditional

LES modelling for the convective term.

The Eulerian stochastic fields technique by Valiño [19] is used to solve the filtered

transport equations for the proposed PDFs, thereby resulting in a full Eulerian solver. In

contrast to Lagrangian methods, widely used by Pope and co-workers [20, 21], the imple-

mentation of Eulerian stochastic fields in traditional CFD codes is straightforward. The

present work develops Eulerian stochastic differential equations aiming for high-Mach

number applications in a LES framework. The equations are implemented in the com-

pressible finite difference in-house code CompReal. Several numerical tests are performed

in order to verify and validate the models developed in this work. These numerical tests

range from one to three-dimensional test cases, including the verification of statistical in-

dependence, mesh resolution and the simulation of real supersonic burners and a scramjet

configuration. The proposed approach is able to simulate the complex features in a su-

personic combustion system and hopes to push forward the development of scramjets

engines.

1.2 Structure of the text

The following chapter presents the transport conservation equations along with the large

eddy simulation method. Filtered equations are exposed and the unclosed subgrid terms

are highlighted. Classical modelling for the unclosed terms are reviewed. A historical

review of the probability density function method is performed, with focus on combustion

applications and stochastic modelling.

Afterwards, Chapter 3 introduces the new developed PDF methods. A more classi-

cal compressible scalar PDF formulation is firstly presented. This method couples the

thermodynamic pressure with the Eulerian stochastic fields information, potentially in-

creasing its accuracy in comparison to the conventional scalar PDFs models. A joint
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scalar-velocity-total energy PDF is also proposed. In this PDF, the convective and re-

active terms are solved exactly, and the Eulerian stochastic fields are also employed as

a solution method. The in-house compressible code CompReal, in which all the new

equations are implemented, is introduced in the end of this chapter.

In Chapter 4, the numerical tests performed are presented. These tests aim the

numerical verification and validation of the models developed in this work. The code dis-

cretisation accuracy, statistical convergence and experimental agreement are investigated

to assess the new models and identify possible limitations and future improvement.

At last, Chapter 5 depicts a scramjet simulation performed with the code imple-

mented. The simulated scramjet is the University of Virginia (UVa) configuration A, a

ground-based test. This simulation exposes the advantages and limitations of the Eule-

rian stochastic fields formulation to perform complex simulations. The conclusions are

then summarised in Chapter 6.

1.3 Scientific production

The present work has been presented in the following conferences:

• 16th Conference on Numerical Combustion (Orlando, USA), 3-5 April, 2017. Oral

presentation: “Large eddy simulation and probability density function modelling of

high-speed reacting flows”.

• 8th European Combustion Meeting (Dubrovnik, Croatia), 18-21 April, 2017. Poster

presentation: “Eulerian probability density function modelling of compressible re-

acting flows using Large Eddy Simulation”.

• Special Interest Group Meeting (Newcastle, UK), 26th March, 2018. Oral and

Poster presentation: “Large Eddy Simulation of Supersonic Combustion using Eu-

lerian Stochastic Fields”.

• Combustion Institute British Section Spring Meeting on Advanced Combustion

Methods (Manchester, UK), 5th April, 2018. Oral presentation: “Large Eddy
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Simulation of supersonic combustion using the Eulerian stochastic fields method”.

• 9th Symposium on Turbulence, Heat and Mass Transfer (Rio de Janeiro, Brazil), 10-

13 July, 2018. Oral presentation: “Large eddy simulation of supersonic combustion

using the Eulerian stochastic fields method”.

• 37th International Symposium on Combustion (Dublin, Ireland), 29 July - 3 August,

2018. Oral presentation: “Large Eddy Simulation of a supersonic lifted flame using

the Eulerian stochastic fields method”.

and has been published:

• Y. P. Almeida and S. Navarro-Martinez. Eulerian probability density function mod-

elling of compressible reacting flows using Large Eddy Simulation. 8th European

Combustion Meeting, 18-21 April 2017, Dubrovnik, Croatia.

• Y. P. Almeida and S. Navarro-Martinez. Large eddy simulation of a supersonic lifted

flame using the eulerian stochastic fields method. Proceedings of the Combustion

Institute, 37(3):3693 – 3701, 2019.

• Y. P. Almeida and S. Navarro-Martinez. Large eddy simulation of supersonic com-

bustion using the Eulerian stochastic fields method. Flow, Turbulence and Com-

bustion, 2019. (Submitted).



Chapter 2

Numerical methods

2.1 Introduction

The numerical simulation of supersonic combustion and scramjets have been carried out

by several research groups with different methods. A recent review by Urzay [22] describes

the current challenges of scramjet experimental and numerical investigation. These chal-

lenges mainly derive from the high speed required of the air-intake into the combustion

chamber, which results in a difficult environment to sustain the flame. The engine must

also generate higher thrust than drag, which is complex because of the expected hyper-

sonic speed of the aircraft. The Direct Numerical Simulation of the governing equations

can in principle provide a better understanding of combustion phenomena along with a

description of the flow properties within the scramjet, facilitating the optimisation of cur-

rent models applicable to realistic combustion systems [23]. However, the DNS demands

large computational effort and few authors have investigated it for supersonic combustion

purposes.

Jin et al. [24, 25] performed a DNS investigation of a supersonic lifted hydrogen

jet using 975 millions cells, for instance. Ferrer [26] simulated supersonic compressible

reactive spatially developing mixing layers in which hydrogen and vitiated air mix and

burn using almost a hundred million cells. Koo et al. [4] studied thermal nonequilibrium

effects using DNS, simulating a hydrogen burner with Reynolds number of 6900 and

28
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the same inlet conditions as the HyShot-2 experiment, employing 27.5 millions cells.

However, a DNS investigation of a realistic configuration is still impractical for most

applications and limited to small Reynolds numbers. In DNS, all scales of turbulence,

including the Kolmogorov scale, and the flame thickness must be correctly captured,

requiring extremely fine mesh and therefore great computational processing capacity.

Nonetheless, the main challenges for simulating supersonic combustion using less com-

putational resources are the modelling of the convective and reactive terms, along with

accurate discretisation methods demanded by compressible flow. Large Eddy Simulation

(LES) modelling, exposed in the next section, has been intensively used to investigate

supersonic combustion. LES filters the small scales of the flow and simulate only the

large ones, saving computational resources.

Berglund and Fureby [27] employed a two-equation flamelet model to obtain the fil-

tered reactive mass fractions, along with the Smagorinsky model [28] to close the subgrid

convective part. They simulated the DLR scramjet and obtained reasonable agreement

with experimental data. Gong et al. [29] also studied the DLR scramjet configuration

employing LES, using an one-equation model to close the subgrid fluxes and the PDF

model, coupled with the Eulerian stochastic fields method, to solve the reactive term.

They compared the LES-PDF model with the quasi-laminar/well-stirred reactor model,

which is the use of the filtered values in the reactive term, and obtained better experi-

mental agreement with the former model. Genin and Menon [30] investigated the DLR

configuration using a non-reactive LES simulation, employing a one-equation model for

closure and a localised dynamic model to determine the model coefficients.

In Fureby et al. [3], a mixed subgrid scale flow model [31] is used to close the convective

terms and the Partially Stirred Reactor (PaSR) model is employed to obtain the source

term. The HyShot 2 [2] has been investigated and also good experimental agreement has

been obtained.

The work of Moule et al. [32] investigated the hydrogen-air supersonic burner of Cheng

et al. [7] through the use of an unsteady partially stirred reactor (UPaSR) using large eddy

simulation and the Smagorinsky model. The simulation used a number of 31 millions cells,
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though, being classified as a highly-resolved LES simulation. Bouheraoua et al. [18] also

employed a highly-resolved LES mesh to simulate the Cheng et al. [7] burner, employing

268 millions cells. The authors used the Smagorinsky model to close the convective terms.

However, they have not used an explicit combustion model, employing the quasi-laminar

(QL) method. They justified this approximation because of the high resolution employed,

which results in a subgrid Damköhler number smaller than unity for the whole domain.

Chan and Ihme [33] performed LES studies of the University of Virginia’s Scramjet,

using the Vreman eddy-viscosity subgrid-scale model [34] to close subgrid momentum

terms. The quasi-laminar (QL) combustion assumption using finite-rate chemistry and

the flamelet/progess variable model of Pecnik et al. [35] have been employed, the latter

achieving better results. Another approach is the quadrature-based moment method,

developed by Koo et al. [36] and Donde et al. [37]. This method has been investigated for

the simulation of canonical test cases including a supersonic cavity stabilised combustor.

In summary, supersonic combustion researchers usually employ models such as flamelet,

PaSR, PDF methods and quasi-laminar chemistry to model the source term subgrid con-

tribution. However, with the exception of Gong et al. [29] that used a PDF method

coupled with the Eulerian stochastic fields model, the combustion models have been em-

ployed along with a fast chemistry mechanism. This reduces the subgrid numerical error,

however, the chemical mechanism may not be the most accurate. In contrast, the PDF

methods are able to preserve accuracy when used with complex chemical mechanisms as

well.

In this work, the probability density function (PDF) method along with the large eddy

simulation is the chosen numerical approach to simulate supersonic combustion. The LES

method provides a good compromise between accuracy and cost, and coupled with the

PDF method to solve the filtered combustion part results in a very powerful approach

for supersonic combustion. In the following sections, the governing equations, along with

their filtered counterpart and respective modelling are shown. The PDF method is also

introduced and its inherent advantages are exposed, clarifying its choice to investigate

the supersonic combustion phenomena.
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2.2 Governing equations

The following equations describe the conservation of mass, momentum, total energy (in-

ternal, kinetic and chemical energy) and chemical species in a multicomponent system

using Einstein summation convention [38, 39]:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρ
Ns∑

α=1

Yαbα,i (2.2)

∂ρet
∂t

+
∂ρuiet
∂xi

= − ∂qi
∂xi
− ∂pui

∂xi
+
∂τijuj
∂xi

+ ρ
Ns∑

α=1

Yαbα,i (ui + Vα,i) + Q̇ (2.3)

∂ρYα
∂t

+
∂

∂xi
(ρ (ui + Vα,i)Yα) = ρSα (2.4)

where ρ is the density, ui is the velocity, p is thermodynamic pressure, τij is the viscous

stress tensor, et is the total energy, qi is the heat flux vector and Q̇ is an external heat

source. The diffusion velocity, mass fraction and reaction rate of the chemical specie α

are represented by Vα,i, Yα and Sα, respectively. The body forces acting at the system

are described by bα,i.

The viscous stress tensor can be described using the Newtonian approach:

τij =

[(
µb −

2

3
µ

)
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
(2.5)

where µb is the bulk viscosity, µ is the dynamic viscosity and δij is the Kronecker delta

function. The bulk viscosity is usually neglected following the Stokes’ hypothesis [40], so

the tensor τij becomes deviatoric and its analysis simplified. This hypothesis is also used

here and therefore µb ≈ 0.

The total heat flux vector, qi, including the effects of heat diffusion is expressed by
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Fourier’s Law and interdiffusion heat flux:

qi = −λ ∂T
∂xi

+ ρ
Ns∑

α=1

hαYαVα,i (2.6)

where λ is the thermal conductivity. Hereafter the gravity gi is the only body force con-

sidered, interdiffusion heat flux is neglected and external heat sources are not considered.

Mass diffusion is approximated using the Fick’s Law:

−ρVα,iYα = −Jα,i = ρΓα
∂Yα
∂xi

(2.7)

and the equations of momentum, total energy and chemical species are therefore described

as:

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi (2.8)

∂ρet
∂t

+
∂ρuiet
∂xi

= − ∂qi
∂xi
− ∂pui

∂xi
+
∂τijuj
∂xi

+ ρgiui (2.9)

∂ρYα
∂t

+
∂ρuiYα
∂xi

=
∂

∂xi

(
ρΓα

∂Yα
∂xi

)
+ ρSα (2.10)

Equations (2.1), (2.8), (2.9) and (2.10), coupled with a equation of state, are sufficient

to describe a multicomponent reactive system, taking into account the simplifications

aforementioned. However, they do not have analytical solution unless in very simple con-

figurations, requiring numerical methods to be solved. As mentioned, the direct numerical

simulation of these equations still requires a large amount of computational power.

In order to diminish the number of scales to be solved two main techniques exist,

the Reynolds averaged Navier-Stokes (RANS) and the large eddy simulation (LES). In

RANS, a temporal average is performed in the transport equations, requiring modelling

to all scales of turbulence. In LES, a spatial filter is applied to the equations. The large

scales remain in the flow and are directly simulated whereas the small ones are filtered

and require modelling. As a consequence, LES demands less modelling effort and it is

potentially more accurate. Its advantages and drawbacks are outlined in the next section.
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2.3 Large Eddy Simulation

Large eddy simulation consists of applying a spatial filter to the flow variables, directly

solving the large scales and modelling the small scales. The filtering operation is the

convolution integral of a function and a filter in the space. It is defined as:

Q (x, t) =

∫ +∞

−∞
Q (x′, t)G(x− x′,∆) dx′ (2.11)

where the function G(x− x′,∆) is the filter and it respects the normalisation condition

[41]: ∫ +∞

−∞
G(x− x′,∆) dx′ = 1 (2.12)

The operator (·) represents the filtering operation. Different sorts of filters can be applied

such as the box, Gaussian, sharp spectral and Cauchy filters [42, 41]. In this work, the

box or top-hat filter is used:

G(x− x′,∆) =





1

∆3
, if |x− x′| ≤ ∆

2

0, otherwise

(2.13)

where ∆ is the cut-off scale or filter width in space, usually taken by the cubic root of the

volume of the cell in the mesh, ∆ = (∆x1∆x2∆x3)1/3. This is called implicit filtering in

this text to avoid confusion with numerical damping techniques, which are called explicit

filtering. This filter satisfies the normalization condition and it is also considered that

the filtering operation commutes with spatial differentiation:

∫ +∞

−∞

∂Q (x′, t)

∂x
G(x− x′,∆) dx′ ≈ ∂

∂x

∫ +∞

−∞
Q (x′, t)G(x− x′,∆) dx′ (2.14)

Equation (2.14) becomes an equality if the filter is constant in the domain, like in an

uniform mesh mesh using the box filter. It is useful to introduce the Favre filtering
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operation in variable density flows, defined below:

Q̃i(x, t) =

∫ +∞

−∞
ρ (x′, t)Qi (x

′, t)G(x− x′,∆) dx′

∫ +∞

−∞
ρ (x′, t)G(x− x′,∆) dx′

=
ρQi

ρ
; ρQi = ρQ̃i (2.15)

where the operator (̃·) denotes the Favre filtering. Applying the filtering operation to

Equations (2.1), (2.8), (2.9) and (2.10) it is possible to obtain the following system of

partial differential equations:

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (2.16)

∂ρũi
∂t

+
∂ρũjũi
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
τ ij − τ sgsij

)
+ ρgi (2.17)

∂ρẽt
∂t

+
∂ρũiẽt
∂xi

=− ∂qi
∂xi
− ∂pũi

∂xi
+
∂τ̃ijũj
∂xi

+ ρgiũi

+
∂

∂xi

(
−Hsgs

i + σsgsij

) (2.18)

∂ρỸα
∂t

+
∂ρũiỸα
∂xi

=
∂

∂xi

(
ρΓα

∂Ỹα
∂xi

)
+ ρ

︷ ︸
Sα (p, Yα, T )−∂J

sgs
i

∂xi
(2.19)

where the new subgrid terms are defined using the same notation as Gong et al. [29]:

τ sgsij = ρũjui − ρũjũi (2.20)

Hsgs
i = ρũiet − ρũiẽt + pũi − pui (2.21)

σsgsij = τijuj − τ̃ijũj (2.22)

Jsgsi = ρũiYα − ρũiỸα (2.23)
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The filtered continuity Equation(2.16) is perfectly closed, however, comparing Equations

(2.17), (2.19) and (2.18) with Equations (2.8), (2.9) and (2.10) it is possible to verify

that extra terms arise due to the filtering operation. The last two terms on Equations

(2.17) and (2.19) and the last six terms on Equation (2.18) must be modelled. On the

derivation of Eqs.(2.17), (2.19) and (2.18) it is assumed that diffusion coefficients vary

slowly in space and therefore do not have subgrid scales themselves.

2.3.1 Momentum equation

The filtered momentum Equation (2.17) requires modelling for the filtered viscous stress

tensor and the convective terms. Convective terms can be modelled using classical LES

closure models, such as the Smagorinsky model [28] or the Germano dynamic model

[43, 44]. The Smagorinsky model assumes isotropy on the small scales of turbulence

and it models the convective term using a turbulent subgrid viscosity concept, where the

subgrid viscous stress tensor is modelled as:

−τ sgsij = 2ρνsgs

[
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3

∂ũk
∂xk

δij

]
+

2

3
ρksgsδij (2.24)

where νsgs is the kinematic subgrid viscosity and ksgs is the subgrid kinetic energy. The

filtered viscous tensor in Eq. (2.17) is approximated as:

τ ij ≈ 2ρν

[
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3

∂ũk
∂xk

δij

]
(2.25)

The filtered momentum equation is therefore modelled as:

∂ρũi
∂t

+
∂ρũjũi
∂xj

=− ∂p

∂xi
+

∂

∂xj

[
ρ (ν + νsgs)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)]

+
∂

∂xj

(
2

3
ρksgsδij

)
+ ρgi

(2.26)
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whereas the subgrid kinematic viscosity, νsgs, and the subgrid kinetic energy, ksgs, requires

closure. Using the Smagorinsky model the subgrid kinematic viscosity is modelled as:

νsgs = (Cµ∆)2 ||S̃ij||; S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.27)

where the operator || · || represents the module of a tensor and the S̃ij is the filtered

deformation tensor. The subgrid kinetic energy is defined as:

ksgs =
1

2

(
ũiui − ũ2

i

)
(2.28)

and it can be modelled using the Yoshizawa model [45]:

ksgs = CY

(
||S̃ij||∆

)2

(2.29)

where the constant CY is taken to be equal to 0.0066 [42], unless stated otherwise. It

is also possible to use a one-equation model to obtain the subgrid kinetic energy, where

a transport equation is used to solve for ksgs as investigated by Gong et al. [29] and

Genin and Menon [30]. The Yoshizawa model is used here to avoid the inclusion of an

extra transport equation and preserve computational effort to the combustion part. The

present closure models have been used in compressible LES flows within the context of

not too large turbulent Mach number [46, 30, 29].

Along with the models shown in Eqs.(2.27) and (2.29) the filtered momentum equation

is closed, apart from thermodynamic variables such as pressure and dynamic viscosity.

The models for these and other thermodynamical properties calculated in a large eddy

simulation framework are reviewed in section 2.3.4.

2.3.2 Total energy equation

It is useful to first redefine the total energy including the subgrid kinetic energy:

ρẽt = ρŨ +
1

2
ρũiũi + ρksgs (2.30)
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where Ũ is the Favre filtered internal energy. The subgrid convective, pressure-velocity

correlation and viscous dissipation terms on Equation (2.18) can be jointly modelled as

a function of gradient of total enthalpy, in a similar fashion as Gong et al. [29]:

−Hsgs
i + σsgsij = ρ

νsgs
Prsgs

(
∂h̃

∂xi
+ ũj

∂ũj
∂xi

+
∂ksgs
∂xi

)
(2.31)

where Prsgs is the subgrid Prandtl number, usually taken as unity, and h̃ is the resolved

enthalpy Ũ + p/ρ of the mixture. The filtered heat flux can also be rewritten in terms of

enthalpy using the molecular Prandtl number:

qi = −ρ ν
Pr

∂h̃

∂xi
(2.32)

The filtered total energy equation can therefore be finally obtained with all terms already

closed:

∂ρẽt
∂t

+
∂ρũiẽt
∂xi

=
∂

∂xi

[
ρ

(
ν

Pr
+

νsgs
Prsgs

)
∂h̃

∂xi

]
− ∂pũi

∂xi
+
∂τ̃ijũj
∂xi

+ ρgiũi

+
∂

∂xi

[
ρ
νsgs

Prsgs

(
ũj
∂ũj
∂xi

+
∂ksgs
∂xi

)] (2.33)

Equation (2.33) presents closures for all subgrid terms and few assumptions have been

performed. The closure in Eq. (2.31) considers an eddy-viscosity model typically used in

non-reacting flows, which implicitly assumes that scales in turbulence are well separated

from those important to combustion [46]. In other words, the subgrid combustion terms

would only affect the turbulence field at the resolved scale, which would only be accurate

when using a fine mesh. Terms with medium to large influence in the solution of the

equation are still modelled, like the subgrid convective terms [42]. Although the potential

modelling error in LES environment is considered small in comparison to RANS approach,

it can still be somewhat large in regions where small scales are very difficult to simulate,

like in flame fronts, shock-waves and near wall flow.
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2.3.3 Mass fraction equation

The Favre filtered mass fraction transport equation requires closure for the convective

and reactive term. The convective term can be modelled in same fashion as before, using

the subgrid viscosity concept:

−Jsgsi = ρ
νsgs
Scsgs

∂Ỹα
∂xi

(2.34)

where Scsgs is the subgrid Schmidt number, usually taken as unity. By considering unity

Lewis number and that all species share the same diffusion coefficient, the filtered equation

is therefore written as:

∂ρỸα
∂t

+
∂ρũiỸα
∂xi

=
∂

∂xi

[
ρ

(
ν

Sc
+

νsgs
Scsgs

)
∂Ỹα
∂xi

]
+ ρ

︷ ︸
Sα (p, Yα, T ) (2.35)

It should be pointed out that the source term, Sα, is a function of the empirical Arrhenius

law, resulting in exponential expressions [38, 39]. It is therefore highly non-linear and the

filtering operation yields subgrid terms that requires strong modelling effort because:

︷ ︸
Sα (p, Yα, T ) 6= Sα

(
p, Ỹα, T̃

)
(2.36)

Different closures have been proposed to model it in the context of large eddy simulation,

such as the Eddy Dissipation Concept [47], the flamelet model [48], the Conditional

Moment Closure (CMC) [49], thickened flame model [50] and perfectly stirred reactor

(PSR)/quasi-laminar (QL) [18]. A review of such methods is presented in Pitsch [51] or

Fureby [52].

The Eddy Dissipation Concept relies in an intermittent factor used to weight two

measures within the same filtered volume, a fine structure and its surroundings, the

latter representing a non-homogeneous inefficient mixing process [32]. Although its use is

straightforward, it may heavily depends on constant adjustment that has to be performed

case by case. The flamelet model is part of the tabulated chemistry models and, although

it has widely been validated, it requires a lookup table based on a fixed flame structured
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[53]. The thickened flame model aims to thick the flame front, making it possible to solve

it within the mesh size and increasing accuracy. However, it still requires fine parameter

tuning to compensate the loss of flame wrinkling. The CMC is of the same category

of probability density function methods and it aims to solve statistical properties of a

conditional scalar, which can be a limiting factor.

On the other hand, source terms and convective terms can be treated exactly and

without the need of specific ad hoc models by using probability density function (PDF)

methods or, in the context of LES, the filtered density function (FDF). This allows the

most important features of the flow to be directly calculated and it is presented on the

section 2.4.

2.3.4 Thermodynamic properties

There are several equations of state that can be used to determine the thermodynamic

pressure, such as the ideal gas equation or more robust real equation of state models

[54, 55, 56]. Although in supersonic combustion conditions the density may not behave

as an ideal gas due to the high pressure conditions, it is still the most used equation

because of its simplicity and easy coupling with other conservation equations. The ideal

gas model for a multicomponent mixture is defined as:

p = ρRu

(
Ns∑

α=1

Yα
Mα

)
T (2.37)

where Ru is the universal gas constant. After applying the filtering operation in Eq.

(2.37), it is possible to write:

p = ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃ +


ρRu

︷ ︸(
Ns∑

α=1

Yα
Mα

)
T −ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃


 (2.38)

The filtered thermodynamic pressure is therefore not exactly closed even if cast in ideal

gas law model. An usual approximation is to calculate the pressure from the filtered

values at the node cell, i.e.: f̃(x) ≈ f(x̃), neglecting the subgrid mass-fraction and
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subgrid temperature correlations:

p = ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃ (2.39)

This approximation has been revisited by Ribert et al. [57] and the authors found that

the error can be large in high-pressure CH4-O2 flames, although for CH4-air the approx-

imation is well suited. This is because the inert specie N2 is the major component of the

reactive mixture. Equation (2.39) is used in this work when needed.

The diffusion coefficients considered here do not have subgrid scale fluctuations, which

means that they are obtained from the node values as well. The individual component

viscosity is calculated from the Hirschfelder et al. [58] model and the mixture model of

Wilke [59] when it is used a multicomponent mixture. It is not investigated here the effects

of differential diffusion, which can play a significant role in non-premixed combustion [60,

61], especially with hydrogen. The mass diffusion and thermal conductivity coefficients

are not evaluated but obtained from the molecular Prandtl and Schmidt number, which

both are assumed to be equal to unity.

2.3.5 Closed filtered transport equations

The final system of equations, represented by Equations (2.16), (2.26), (2.33) and (2.35)

together with Eq. (2.39) and a transport model for viscosity are mostly closed:

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (2.16)

∂ρũi
∂t

+
∂ρũjũi
∂xj

=− ∂p

∂xi
+

∂

∂xj

[
ρ (ν + νsgs)

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)]

+
∂

∂xj

(
2

3
ρksgsδij

)
+ ρgi

(2.26)

∂ρẽt
∂t

+
∂ρũiẽt
∂xi

=
∂

∂xi

[
ρ

(
ν

Pr
+

νsgs
Prsgs

)
∂h̃

∂xi

]
− ∂pũi

∂xi
+
∂τ̃ijũj
∂xi

+ ρgiũi

+
∂

∂xi

[
ρ
νsgs

Prsgs

(
ũj
∂ũj
∂xi

+
∂ksgs
∂xi

)] (2.33)
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∂ρỸα
∂t

+
∂ρũiỸα
∂xi

=
∂

∂xi

[
ρ

(
ν

Sc
+

νsgs
Scsgs

)
∂Ỹα
∂xi

]
+ ρ

︷ ︸
Sα (p, Yα, T ) (2.35)

p = ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃ (2.39)

The source term in the filtered mass fraction conservation equation still requires closure,

which is addressed in the next section.
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2.4 PDF methods

Probability density function (PDF) methods have been used in a wide range of appli-

cations related to combustion or not: to model the droplet distribution in a spray [62],

soot formation in a combustion system [63], and others [64]. They were introduced in the

context of turbulent flows by Lundgren [65] in 1967 and revisited in 1969 [66].

It is presented in this section the two main approaches to deal with PDF methods:

one based on the ensemble average of Dirac delta functions called Averaged Probability

Density Function, usually employed within RANS framework. The other PDF approach

is based on the filtering operation of Dirac delta function called Filtered Density Function

method and it is used within LES framework. These two methods are reviewed here along

with critical mathematical derivations exposed to establish the theoretical underpinning

of the developed models in the next chapter.

2.4.1 Averaged Probability Density Function - RANS-PDF

Lundgren [65] defined a one-point PDF f(v1;x1, t) for the velocity v1 given by:

f(v1;x1, t) = 〈δ (u (x1, t)− v1)〉 (2.40)

where the operator 〈·〉 denotes an ensemble average and δ (u (x1, t)− v1) is the Dirac

delta function. The Dirac delta function is also called “fine-grained” PDF. The notation

used here is the original from Lundgren [65], in which the subscript “1” indicates the

one-point sample at the coordinate x1. The semicolon notation indicates the sample

variables included in the PDF1.

The average operation for a variable Q(u(x1, t)) with random samples Q(v1) is defined

as:

〈Q(u(x1, t))〉 =

∫ +∞

−∞
Q(v1)f (v1;x1, t) dv1 (2.41)

The property shown in Eq.(2.40) can be proved considering u (x1, t) = v′1 and using the

1This notation would just be introduced later [67], however, to keep the notation consistent it is used
in all PDF mentioned in this work.
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sifting property of the Dirac delta function [68]:

〈δ (u (x1, t)− v1)〉 =

∫ +∞

−∞
δ (v′1 − v1) f(v′1;x1, t) dv′1 = f(v1;x1, t) (2.42)

In this way f(v1;x1, t) dv1 represents the probability that the velocity at the position x1

at time t is within the element dv1. The Dirac delta can be thought as an ensemble mem-

ber of the velocity distribution [65]. It is also possible to define a two point distribution

function:

f2(v2,v1;x2,x1, t) = 〈δ (u (x1, t)− v1) δ (u (x2, t)− v2)〉 (2.43)

and multipoint distribution functions can also be defined similarly. However, multipoint

functions are usually not employed because of closures issues that are far more complex

than for one-point PDFs.

A one point joint distribution can also be defined using Dirac delta functions:

f(v1,ψ1;x1, t) = 〈δ (u (x1, t)− v1) δ (φ (x1, t)−ψ1)〉 (2.44)

The definition of conditional probability is defined for a one point distribution:

f(ψ1|v1;x1, t) =
f(v1,ψ1;x1, t)

f(v1;x1, t)
(2.45)

Another important definition is the result of 〈Q (x1, t) δ (u (x1, t)− v1)〉, which is exten-

sively used in PDF methods. For a variable Q (x1, t) with a sample space variable ψ1,

this result is presented as follows [68]:

〈Q (x1, t) δ (u (x1, t)− v1)〉 =

∫ ∫
ψ1δ (v′1 − v1) f(v′1, ψ1;x1, t) dv′1 dψ1

=

∫
ψ1f(v1, ψ1;x1, t) dψ1

=

∫
ψ1f(ψ1|v1;x1, t)f(v1;x1, t) dψ1

= f(v1;x1, t)

∫
ψ1f(ψ1|v1;x1, t) dψ1

= f(v1;x1, t) 〈Q (x1, t) |u (x1, t) = v1〉

(2.46)
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where the term 〈Q (x1, t) |u (x1, t) = v1〉 is the conditional expectation of Q (x1, t) given

that u (x1, t) = v1. It is interesting to note that if a function Q (x1, t) is independent of

u (x1, t), the conditional expectation is the average value:

〈Q (x1, t) |u (x1, t) = v1〉 = 〈Q (x1, t)〉 (2.47)

and if a function Q (x1, t) can be completely defined by u (x1, t), such as Q (u (x1, t)),

then its value is directly [68]:

〈Q (u (x1, t)) |u (x1, t) = v1〉 = Q (v1) (2.48)

The consequences of Eq. (2.48) are heavily used in PDF modelling since it allows averaged

quantities to be solved exactly. In density variable flows, it is also useful to define a

density-weighted (Favre) PDF:

〈f(v1;x1, t)〉ρ =
〈ρ(x1, t)δ (u (x1, t)− v1)〉

〈ρ(x1, t)〉
(2.49)

For a joint velocity-scalar PDF, the following relations arises if the density can be com-

pletely defined from the sample space variables ψ1, such as density, enthalpy and pressure:

〈f(v1,ψ1;x1, t)〉ρ =
ρ(ψ)

〈ρ(x1, t)〉
f(v1,ψ1;x1, t) (2.50)

Having defined the PDF most important properties, a review of some of the most

influential works is presented in the following. The transport equations for the PDF and

its solution methods proposed are also shown.

Lundgren (1967) [65]:

Lundgren derived a transport equation for f(v1;x1, t) using the incompressible form

of the momentum equation. He used the continuity equation to express the pressure as

an exact solution of a Poisson equation using Green’s Theorem:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂

∂xi

(
1

4π

∫
1

|xi − x′i|
∂

∂x′i

(
uj(x

′
i, t)

∂ui(x
′
i, t)

∂x′j

)
dx′i

)
+ ν

∂2ui
∂x2

j

(2.51)
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Equation (2.51) respects continuity using the incompressible assumption and depends

only on velocity itself. In order to derive a transport equation for f(v1;x1, t) it is possible

to start with the temporal derivative of it:

∂f

∂t
=

〈
∂

∂t
δ (u1 − v1)

〉

=

〈
−∂u1

∂t

∂

∂v1

δ (u1 − v1)

〉 (2.52)

where the derivative property of the Dirac delta function is used [41]. It is now possible

to use Eq.(2.51) to express the temporal derivative of velocity (implicitly changing the

Einstein summation notation back to vectorial notation):

∂f

∂t
+

〈
−u1

∂u1

∂x1

∂

∂v1

δ (u1 − v1)

〉

+

〈
− ∂

∂x1

(
1

4π

∫
1

|x1 − x2|
∂

∂x2

(
u2
∂u2

∂x2

)
dx2

)
∂

∂v1

δ (u1 − v1)

〉

+

〈
ν
∂2u1

∂x2
1

∂

∂v1

δ (u1 − v1)

〉
= 0

(2.53)

The main advantage of PDF methods is its ability to treat exactly important unclosed

terms, such as the source term S̃α and the convective terms by using the important result

shown in Eq. (2.48). The convective term closure is exposed here for Equation (2.53)

applying the sifting property of Dirac delta function and using Equation (2.46):

〈
−u1

∂u1

∂x1

∂

∂v1

δ (u1 − v1)

〉
=

〈
u1

∂

∂x1

δ (u1 − v1)

〉

=
∂

∂x1

〈u1δ (u1 − v1)〉

=
∂

∂x1

(
f(v1;x1, t) 〈u1|u1 = v1〉

)

=
∂

∂x1

(
f(v1;x1, t)v1

)

= v1
∂

∂x1

(
f(v1;x1, t)

)

(2.54)

where the incompressible continuity equation is used on the second and fifth line of

Equation (2.54). The critical property of the conditional mean of a function completely
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defined by the variables included into the PDF is used.

The pressure term in Equation (2.53) cannot be explicitly solved using a one point

distribution. Lundgren used a two point distribution to close it, inserting the integral
∫
δ(u2 − v2) dv2 into the pressure term:

〈
− ∂

∂x1

(
1

4π

∫
1

|x1 − x2|
∂

∂x2

(
u2
∂u2

∂x2

)
dx2

)
∂

∂v1

δ (u1 − v1)

〉
=

∂

∂v1

〈
− ∂

∂x1

(
1

4π

∫
1

|x1 − x2|
∂

∂x2

(
u2
∂u2

∂x2

)
dx2

)
δ (u1 − v1)

〉
=

∂

∂v1

(
− 1

4π

∂

∂x1

∫ ∫
1

|x1 − x2|
v2

2

∂2f(v2,v1;x2,x1, t)

∂x2
2

dx2 dv2

)
(2.55)

The remaining viscous term is also reduced with the two-point PDF:

〈
ν
∂2u1

∂x2
1

∂

∂v1

δ (u1 − v1)

〉
=

∂

∂v1

〈
ν
∂2u1

∂x2
1

δ (u1 − v1)

〉

=
∂

∂v1

lim
x2→x1

ν
∂2

∂x2
2

〈u2δ (u1 − v1)〉

=
∂

∂v1

lim
x2→x1

ν
∂2

∂x2
2

∫
v2f(v2,v1;x2,x1, t) dv2

(2.56)

The equation for the one-point PDF is therefore reduced to:

∂f

∂t
+ v1

∂

∂x1

(
f(v1;x1, t)

)

+
∂

∂v1

(
− 1

4π

∂

∂x1

∫ ∫
1

|x1 − x2|
v2

2

∂2f(v2,v1;x2,x1, t)

∂x2
2

dx2 dv2

)

+
∂

∂v1

lim
x2→x1

ν
∂2

∂x2
2

∫
v2f(v2,v1;x2,x1, t) dv2 = 0

(2.57)

Equation (2.57) is exact and represents the transport of the one-point PDF, requiring the

knowledge of a two-point PDF though. It also possible to derive a transport equation for

the two-point PDF, however, it would be required a three-point PDF and so on. This

issue is the same as the turbulence closure, where each equation introduces a higher-

order variable resulting always in more unknown and than known variables. A closure

for the one-point PDF equation is later proposed in Lundgren [66], which solved the

PDF equation in many simplified test cases. As the two-point PDF introduces great

complexity to the problem, the research groups mainly focused their modelling effort into
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closing the one-point PDF equation.

Dopazo (1975) [67]:

An Eulerian one-point PDF equation was also investigated by Dopazo in the 70’s

[69, 67, 70]. In the work of Dopazo [67] an one-point probability density function for the

temperature f(T1;x1, t) is considered for modelling an axisymmetric jet of air discharging

into still air. The semicolon notation indicates that f(T1;x1, t) represents the PDF of T1

that varies in the space x1 and time t. It satisfies the following transport equation:

∂f(T1;x1, t)

∂t
+

∂

∂xi

[
〈v|T1〉 f(T1;x1, t)

]
=

− ∂

∂T1

lim
x2→x1

α
∂2

∂x2
i

∫
f(T1, T2;x1,x2, t)T2 dT2

(2.58)

where f(T1, T2;x1,x2, t) is the Eulerian two-point PDF of temperature and α is the

thermal diffusivity. Dopazo [67] suggested to model the term on the right-hand side of

Eq.(2.58) as a difference between a sample temperature and the average temperature,

scaled by the Taylor microscale of the velocity field:

− ∂

∂T1

lim
x2→x1

α
∂2

∂x2
i

∫
f(T1, T2;x1,x2, t)T2 dT2 ≈

3ν

λ2
t

∂

∂T1

[(T1 − 〈T1〉) f(T1;x1, t)] (2.59)

where λt is the Taylor microscale. This model is very similar to the one developed

by Villermaux and Devillon [71] and it is called Interaction by Exchange with the Mean

(IEM) micromixing model or Linear Mean-Square Estimation (LMSE) micromixing model

[69].

The convective term, in contrast with the model suggested by Lundgren [65], requires

modelling and it was closed by assuming it is conditionally Gaussian. The results pre-

sented reasonable agreement with experiments, however, they have still shown that the

model has several constrains regarding its generalisation.

Pope (1976) [72]:

The work of Pope [72] addressed the issue to model turbulent reacting flows using

both a single scalar PDF and a joint scalar PDF. This work has also been evaluated in

Pope’s subsequent work [73, 74, 75]. The Eulerian one-point joint scalar PDF used by
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Pope [72] was defined as the average of a productory of Dirac delta functions:

f(ψ;x, t) =

〈
Ns∏

α=1

δ (ψα − φα(x, t))

〉
(2.60)

Using similar techniques of Lundgren [65] and assuming low Mach number it can be

obtained a transported equation for the joint scalar PDF:

ρ(ψ)
Df

Dt
=

∂

∂xi

[
Γ
∂f

∂xi
− ρ(ψ)f 〈ui|ψ〉

]

−
Ns∑

α=1

∂

∂ψα

[
fSα(ψ) +

Ns∑

β=1

∂

∂ψβ

(〈
Γ
φα
∂xi

φβ
∂xi

∣∣∣∣ψ
〉
f

)] (2.61)

where Γ is the species diffusion coefficient. The source term is now properly closed Sα(ψ)

using similar reasoning presented in Eq.(2.54). Although Pope [72] proposed closures

for the single scalar PDF equation, the transport Equation (2.61) for the joint scalar

PDF modelling issues had not been addressed yet. The convective term could have been

modelled using similar turbulent convection approaches available, however, the molecular

mixing term required a more comprehensive approach which was not investigated in his

work. This mixing term is known as micromixing and it has been object of extensive

research. A micromixing investigation is not the objective of this work, though, and a

review on this subject can be found in Fox [76] or Haworth [64].

Pope (1985) [68]:

The seminal paper of Pope [68] highly influenced subsequent proposed models after

presenting the Lagrangian-particle formulation to solve a joint scalar PDF or a joint

scalar-velocity PDF. The particle formulation was first presented in Pope [77]where two

evolution equations were derived, one for the joint scalar PDF and another for the par-

ticles. These equations, for the particle and for the PDF, were then coupled to result

in only one evolution equation. This equation therefore evolves accordingly to the joint

scalar PDF, i.e.: they share the same moments if use the same initial and boundary

conditions.

The work in [68] shows a different way to correlate the Lagrangian-particle formulation
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and the one-point joint scalar PDF. It presents the PDF transport equation as a Fokker-

Planck or forward Kolmogorov equation [78]. Equivalent stochastic differential equations

can be therefore used instead of directly solving the PDF transport equation. Pope

[68] introduces the Monte-Carlo method to calculate the average values for the variables

included in the PDF, firstly proposed by Pope [79] in 1980. The finite difference method

had been used in previous works to solve the PDF and it was the most general solution

method presented so far [80]. However, because of the high-dimensionality of the PDF

the finite difference method becomes unfeasible. The Monte Carlo method, however, does

not suffer from this drawback but it has a slower convergence rate. Assuming a random

variable φ and conducting N experiments with the same initial and boundary conditions

to obtain sample values for φ, it is possible to calculate the ensemble average of φ [68]:

〈φ〉N =
1

N

N∑

n=1

φn (2.62)

where the operator 〈·〉N depicts the ensemble average obtained from N samples. The

convergence rate is proportional to the number of samples. Considering a normalised

error err:

err =
(〈φ〉N − 〈φ〉)

errN
(2.63)

where the errN is the standard error, the Central Limit theorem shows that the standard

error converges following the relation:

errN = σ/
√
N (2.64)

where σ here represents the standard deviation of φ. The relation presented in Eq.(2.64)

indicates the main drawback of the Monte Carlo method. The error decreases only with

rate N−0.5 and a large number of samples may be required to achieve a certain error

threshold.

In Pope [68] it was evaluated a Eulerian fine-grained one-point joint velocity-scalar
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PDF:

f ′(vi, φα;x, t) =
3∏

i=1

δ (ui(x, t)− vi)
Ns∏

α=1

δ (φα(x, t)− ψα) (2.65)

and using Eq.(2.42) the Eulerian one-point joint velocity-scalar PDF can be obtained:

f(vi, φα;x, t) = 〈f ′(vi, φα;x, t)〉 (2.66)

Using the same techniques presented before, it is also possible to obtain a transported

PDF equation for variable density flows, also applying the low Mach number assumption.

The derivation for this equation is not presented here however it is thoroughly explained in

[68] and [64]. The unclosed transport equation for the one-point joint velocity-scalar PDF

is obtained after deriving a transport equation for the fine-grained joint velocity-scalar

PDF, using the transport equations for the velocity and chemical species and applying

an ensemble average into it, obtaining:

ρ(φ)
∂f

∂t
+ ρ(φ)vj

∂f

∂xj
+

(
ρ(φ)gj −

∂ 〈p〉
∂xj

)
∂f

∂vj
+

∂

∂φα

(
ρ(φ)Sαf

)
=

∂

∂vj

[〈
−∂τij
∂xi

+
∂p′

∂xj

∣∣∣∣v,ψ
〉
f

]
+

∂

∂ψα

[〈
∂Jαi
∂xi

∣∣∣∣v,ψ
〉
f

] (2.67)

Equation (2.67) presents the closed terms on the left hand side and the unclosed terms on

the right hand side. The pressure has been decomposed in its average and its fluctuation

part: p = 〈p〉 + p′. It can be finally seen the convective and source term exactly closed,

and they do not require any extra modelling effort. Nonetheless, the RHS needs to be

modelled but their influence in a reactive and highly convective flow are supposed to be

smaller in comparison to the reactive and convective term, showing the motivation to

solve this transport equation.

The idea presented in [68] is to model the unclosed velocity terms by using a Langevin

equation, which was originally developed for Brownian motion modelling [81]. The un-

closed terms on the scalar part could be modelled using the deterministic Interaction by

Exchange with the Mean (IEM) micromixing model [71, 67]. In this way, Eq.(2.67) is
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therefore closed using the following assumptions:

∂

∂vj

[〈
−∂τij
∂xi

+
∂p′

∂xj

∣∣∣∣v,ψ
〉
f

]
≈ ∂

∂vj

[
〈ρ〉Gij (vi − 〈uj〉) f

]
+

∂2

∂v2
j

[
1

2
C0ε 〈ρ〉 f

]
(2.68)

∂

∂ψα

[〈
∂Jαi
∂xi

∣∣∣∣v,ψ
〉
f

]
≈ ∂

∂ψα

[
−1

2
〈ρ〉Cφ (ψα − 〈φα〉) f

]
(2.69)

where C0 is the Langevin constant equal to 2.1, Cφ is the micromixing constant equal to

2.0 and ε is the rate of dissipation of the turbulent kinetic energy in RANS context. The

tensor Gij is defined as isotropic for the simplified Langevin model:

Gij = − ε
k

(
1

2
+

3

4
C0

)
δij (2.70)

or anisotropic if the Generalised Langevin model is used [82]:

Gij =
ε

k

(
α1δij + α2bij + α3b

2
ij

)
+Hijkl

∂ 〈uk〉
∂xl

(2.71)

where Hijkl is a fourth-order tensor and bij can account for the normalised anisotropy of

the Reynolds-stress tensor. The turbulent kinetic energy can be directly solved since it

can be obtained from variables included in the PDF sample space:

k =
1

2
〈uiui〉 =

∫ +∞

−∞

∫ +∞

−∞

1

2
(vi − 〈ui〉) (vi − 〈ui〉) f dv dψ (2.72)

However, a model for the turbulent kinetic energy rate of dissipation, ε, is still necessary.

A model such as Jones and Launder [83], Launder and Spalding [84] is sufficient to

calculate it. The full closed equation is therefore:

ρ(ψ)
∂f

∂t
+ ρ(ψ)vj

∂f

∂xj
+

(
ρ(ψ)gj −

∂ 〈p〉
∂xj

)
∂f

∂vj
+

∂

∂ψα

(
ρ(ψ)Sαf

)
=

∂

∂vj

[
ρ(ψ)Gij (vi − 〈uj〉) f

]
+

∂2

∂v2
j

[
1

2
C0ερ(ψ)f

]

+
∂

∂ψα

[
−1

2
ρ(ψ)Cφ (ψα − 〈φα〉) f

]
(2.73)
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Equation (2.75) is a variable-density transport equation for the PDF. In this kind of flows

a new variable is defined, the mass density function (MDF):

F (v,ψ,x; t) = ρ (ψ) f (v,ψ;x, t) (2.74)

The MDF represents the expected mass density in v − ψ − x space and has to respect

several properties presented2 in [68]. For instance, its integral in the whole sample space

must result in the averaged density, whereas when multiplied by a function Q and inte-

grated it results in 〈ρQ〉. If the MDF is multiplied by ρ−1 and integrated, it yields unity.

It is critical to notice that the mass density function includes the position in the space x

in its sample space, as noticed by the semicolon notation. A new transport equation is

finally derived:

∂F

∂t
+
∂vjF

∂xj
+

∂

∂vj

(
gjF −

1

ρ(φ)

∂ 〈p〉
∂xj

F

)
+

∂

∂ψα

(
SαF

)
=

∂

∂vj

[
Gij (vi − 〈uj〉) F

]
+

∂2

∂v2
j

[
1

2
C0εF

]
+

∂

∂ψα

[
−1

2
Cφ (ψα − 〈φα〉) F

] (2.75)

Equation(2.75) is a Fokker-Planck equation after using the mass density function concept.

A general Fokker-Planck equation is used to describe a diffusion process governed by

f (ψi; t) and it is given by:

∂f

∂t
= − ∂

∂ψi
(Aif) +

1

2

∂2

∂ψi∂ψj
(BikBjkf) (2.76)

where Ai is the drift coefficient and Bij is the diffusion tensor. The equivalent stochastic

differential equation using Ito interpretation is represented by [78]:

dφi = Ai dt+Bij dWj (2.77)

where dWj is a Wiener process. A Wiener process is a class of Markovian process and

it is continuous in space and time, however, only differentiable in space. The isotropic

2In section 3.3 of [68].
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Wiener process, used in this work, have the two following properties:

〈dWi〉 = 0; dWi dWj = δij dt (2.78)

Stochastic differential equations can then be obtained for the variables included in the

mass density function F . The n-set of Lagrangian-particle equations is therefore:

dX+
i = U+

i dt (2.79)

dU+
i =

(
− 1

ρ(φ)

∂ 〈p〉
∂xj

+ gj −Gij

(
U+
i − 〈uj〉

))
dt+

√
C0ε dWt (2.80)

dφ+
α =

(
1

2
Cφ
(
φ+
α − 〈φα〉

)
+ Sα

)
dt (2.81)

This set of Lagrangian equations are equivalent to a discrete MDF Fokker-Planck equa-

tion. As proved in [68], this discrete MDF transport equation (not shown here) is equiv-

alent to the original transport Equation (2.75) for the MDF.

This modelling has been investigated in low Mach number [85, 86] and even high Mach

number applications [14]. The turbulent kinetic energy k and ε are closed using RANS

approach, usually in a hybrid Lagrangian/Eulerian approach. If one integrates it in the

velocity space it is possible to obtain an one-point joint scalar PDF, however, a closure

for the convective term is required [87, 63]. A large compilation of the applications

of transported PDF within the Lagrangian framework can be visited in Chapter 9 of

Haworth [64].

Kollmann (1992) [88]:

In the context of compressible reacting flows, the pioneer work by Kollmann [88] and

Eifler and Kollmann [89] proposed a PDF transport equation aiming the simulation of

supersonic hydrogen flames. In order to avoid the low Mach number assumption, one

extra thermodynamic variable is included within the Eulerian one-point joint velocity-
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scalar PDF:

f(v, d, e, ζ, η;x, t) = 〈f ′(v, d, e, ζ, η;x, t)〉 =

〈δ(v − u(x, t))δ(d− ρ(x, t))δ(e− U(x, t))δ(ζ −D(x, t))δ(η − ξ(x, t))〉
(2.82)

where d, e, ζ and η are the sample space variables of density ρ(x, t), internal energy

U(x, t), velocity divergence D(x, t) = ∂ui/∂xi and mixture fraction ξ(x, t), respectively.

The unclosed transported equation for the PDF in non-dimensional form is therefore:

∂f

∂t
+ vj

∂f

∂xj
=

∂

∂d

(
d2ζf

)
− ∂

∂vi

(
−
〈
∂p

∂xi
f ′
〉

+
1

Re

〈
∂τij
∂xj

f ′
〉

+Bd 〈fif ′〉
)

− ∂

∂e

(
−γ − 1

cv
edζf + γ (γ − 1)

Ma2

Re
〈Ψf ′〉 − γ

Pe

〈
∂qi
∂xi

f ′
〉)

− ∂

∂ζ

(
− 1

Re

〈
∂

∂xi

(
1

ρ

∂τij
∂xi

)
f ′
〉
−
〈
∂ui
∂xj

∂uj
∂xi

f ′
〉

+B

〈
∂fi
∂xi

f ′
〉

−
〈
∂

∂xi

(
1

ρ

∂p

∂xi

)
f ′
〉)
− ∂

∂η

(〈
∂

∂xi

(
ρΓ

∂ζ

∂xi

)
f ′
〉)

(2.83)

where B is a dimensionless number associated with the external force fi, Pe is the Peclet

number and Ma is the Mach number. Equation (2.83) was not closed in [89], but it

was integrated in the velocity space and closed with mixing models for compressible

turbulence. The simulations were validated with experimental data and the authors

concluded that compressible reactive PDFs are feasible, although with very complex

numerical modelling. The inclusion of the velocity divergence into the PDF sample space

results in a sophisticated transport equation for the PDF, which requires extra terms to

closure without direct link to physical quantities. This was performed to perfectly close

the continuity equation, since the density had also been included into the PDF.

The inclusion of density as a stochastic variable represents a big challenge from the

modelling point of view, since it is very difficult to ensure mass conservation. This kind of

PDF model would only be revisited by Bakosi and Ristorcelli [90] in 2010 with following

works [91, 92]. However, the need to model a stochastic equation for the density still

makes this kind of approach an arduous task.

A compressible approach for non-reacting flow was also developed by Welton and Pope
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[93] and Welton and Pope [94], which used only an one-point velocity PDF. The focus

of these works was to show the coupling the Lagrangian algorithm with a compressible

Eulerian one to obtain the average thermodynamic pressure. The extension of this model

to consider compressible and reactive flows would be only considered again by Delarue

and Pope [20].

Dreeben and Pope (1997) [95]:

The work of Dreeben and Pope [95] proposed a new formulation aimed for high ac-

curacy in near wall regions, and it was also shown in [68]. The idea is to consider part

of the viscous effects into the Lagrangian equations instead of fully modelling them, in

this way increasing the accuracy in regions of the flow where viscous effects are dominant

such as near-wall regions. The Lagrangian equations proposed are:

dX+
i = U+

i dt+
√

2ν dWi (2.84)

dU+
i =− 1

ρ

∂ 〈p〉
∂xi

dt+ 2ν
∂2
〈
U+
i

〉

∂xj∂xj
dt+

√
2ν
∂
〈
U+
i

〉

∂xj
dWj

+Gij

(
U+
j −

〈
U+
j

〉)
dt+

√
C0ε+ dW ′

i

(2.85)

The Lagrangian equations are then equivalent to the following Fokker-Planck equation:

∂fL
∂t

+ vi
∂fL
∂xi

=ν
∂2fL
∂xi∂xi

+
∂fL
∂vi

(
1

ρ

∂ 〈p〉
∂xi

)
− ∂

∂vi
[Gij (vj − 〈Uj〉) fL]

+ 2ν
∂ 〈Uj〉
∂xi

∂2fL
∂xi∂vj

+ ν
∂ 〈Ui〉
∂xk

∂ 〈Uj〉
∂xk

∂2fL
∂vi∂vj

+
1

2
C0ε

∂2fL
∂vi∂vi

(2.86)

where fL(v;x, t) is the Lagrangian one-point PDF. It is also possible to prove that this

Fokker-Planck equation is equivalent to the Eulerian counterpart, which is obtained from

similar techniques as [68]. The second spatial derivative of the PDF represents the

stochastic term in the Lagrangian position X+ equation. This model therefore accounts

for molecular viscosity, which is important in near-wall regions. This kind of modelling

has influenced other large eddy simulation works because of the inclusion of molecular
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effects and it is revisited by most LES/PDF Lagrangian approaches.

Delarue and Pope (1997) [20]:

Delarue and Pope [20, 96] investigated compressible Lagrangian PDF models includ-

ing pressure and internal energy as sample variables, along with the velocity, species

composition and turbulence frequency in a RANS framework. The developed Eulerian

one-point joint velocity-scalar mass density function is:

F (û, ω̂, ê, p̂;x, t) = ρ(ê, p̂) 〈δ(û− u(x, t))

δ(ω̂ − ω(x, t))δ(ê− e(x, t))δ(p̂− p(x, t))〉
(2.87)

The turbulent frequency has been added in order to provide a better closure for the

turbulence time-scale, not requiring a priori the solution of transport equations for k and

ε any more. The Lagrangian equations used in this model are:

dX+
i = U+

i dt (2.88)

dU+
i = − 1

〈ρ〉
∂ 〈p〉
∂xi

dt+
1

2k

(
Πd

〈ρ〉 − ε
(

1 +
3

2
C0

))(
U+
i − 〈Ui〉

)
dt+

√
C0ε dWi (2.89)

de+ = ε dt− p+ dv+ (2.90)

dp+ = p+ (A dt+B dWt) (2.91)

dω+ = −
(
ω+ − 〈ω〉

)
C3Ω dt− 〈ω〉ω+Sω dt+

√
2σ2 〈ω〉ω+C3Ω dW (2.92)

where v+ is the specific volume of the stochastic particle related as p+v+ = (γ − 1)e+

and Πd is the pressure dilatation correction, modelled with the Zeman’s model [97]. The

turbulence frequency equation, along with a model to obtain the quantity Ω, evolves
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according to Jayesh and Pope [98]. The normalised variance σ2 is defined in Jayesh

and Pope [98]. The pressure equation is fully modelled, where A and B are model

coefficients. Delarue and Pope [20] did not provide in their work the transport equation

for the PDF, however, the equation can be straightforwardly derived using the relation

between Eqs.(2.76) and (2.77).

The inclusion of pressure allows the Lagrangian solver to be independent from coupling

with a finite volume or finite difference solver in order to obtain the average pressure,

a common issue in Lagrangian/particle formulation. The authors therefore could de-

velop a full Lagrangian independent solver, however, the results were only satisfactory

in the low-Mach number range. More complex closures would be required, which were

computationally prohibited at the time.

Valiño (1998) [19]:

The Eulerian stochastic fields method was developed in 1998. Valiño [19] developed a

method to solve the transport equation for the Eulerian PDF using an Eulerian framework

technique. In this way, there is no need to develop a new Lagrangian solver within

established CFD codes, which increases the popularity of the PDF approach. Also,

the Eulerian stochastic differential equations are equivalent to a Eulerian PDF Fokker-

Planck transport equation. There is no need a priori to prove the equivalence between a

Lagrangian PDF and a Eulerian PDF, one fundamental issue in Lagrangian methods.

The original derivation of Valiño considered a Eulerian one-point scalar PDF f(ψ;x, t) =

〈δ(ψ − φ(x, t))〉 that evolves according to the following transport equation:

∂f

∂t
+ 〈ui〉

∂f

∂xi
=

∂

∂xi

(
(Γ + Γt)

∂f

∂xi

)
+

∂

∂ψ

[ω
2

(ψ − 〈φ〉) f
]
− ∂

∂ψ
[S(ψ)f ] (2.93)

where Γ and Γt are the molecular and turbulent transport coefficients, respectively, ω is

the turbulence frequency and sample and real variables are ψ and φ(x, t), respectively.

The method proposed by Valiño to solve Eq.(2.93) is to represent the PDF f(ψ;x, t) with
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an ensemble of Nf twice differentiable in space Eulerian stochastic fields τn (x, t):

fτ (ψ;x, t) =
1

Nf

Nf∑

n=1

δ [ψ − τn (x, t)] ≡ 〈δ [ψ − τ (x, t)]〉 (2.94)

where the transport equations for f(ψ;x, t) and fτ (ψ;x, t) are the same and have the

same moments as well. However, the equation for fτ (ψ;x, t) can be manipulated to trans-

form Eq.(2.93) into a Fokker-Planck equation in which it is possible to derive Eulerian

stochastic equations. For instance, by substituting Eq.(2.94) into Eq.(2.93):

∂ 〈δ [ψ − τ (x, t)]〉
∂t

+ 〈ui〉
∂ 〈δ [ψ − τ (x, t)]〉

∂xi
=

∂

∂xi

(
(Γ + Γt)

∂ 〈δ [ψ − τ (x, t)]〉
∂xi

)

+
∂

∂ψ

[ω
2

(ψ − 〈c〉) 〈δ [ψ − τ (x, t)]〉
]
− ∂

∂ψ
[S(ψ) 〈δ [ψ − τ (x, t)]〉]

(2.95)

In Eq.(2.95) there are spatial derivatives, which prevent it from being a Fokker-Planck

equation if the position x is not into the sample space of the PDF. The convective term

can be rewritten as:

〈ui〉
∂ 〈δ〉
∂xi

= 〈ui〉
〈
∂δ

∂xi

〉
= 〈ui〉

〈
− ∂τ
∂xi

∂δ

∂ψ

〉

= − ∂

∂ψ

(
〈ui〉

〈
∂τ

∂xi
δ

〉)
= − ∂

∂ψ

(
〈ui〉

〈
∂τ

∂xi

∣∣∣∣ψ
〉
fτ

) (2.96)

and the diffusive term can be transformed similarly:

∂

∂xi

(
(Γ + Γt)

∂ 〈δ〉
∂xi

)
= − ∂

∂xi

(
(Γ + Γt)

〈
∂τ

∂xi

∂δ

∂ψ

〉)

= − ∂

∂ψ

[〈
∂

∂xi

(
(Γ + Γt)

∂τ

∂xi

)
δ

〉

−
〈(

(Γ + Γt)
∂τ

∂xi

)
∂δ

∂ψ

∂τ

∂xi

〉]

= − ∂

∂ψ

[〈
∂

∂xi

(
(Γ + Γt)

∂τ

∂xi

)∣∣∣∣ψ
〉
fτ

]

+
∂2

∂ψ2

[〈
(Γ + Γt)

∂τ

∂xi

∂τ

∂xi

∣∣∣∣ψ
〉
fτ

]

(2.97)
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The conditional averages that arise on the convective and diffusive terms are regarded

as known terms. This fact derives from the key assumption that the stochastic fields are

considered smooth and twice-differentiable in space at the grid level. It should be pointed

out that the real scalar field is only differentiable at the Kolmogorov scale. However, the

Eulerian stochastic field method is a mathematical representation and does not necessarily

have a physical meaning, although it must respect physical properties. The assumption

of smoothness only implies that the fields themselves do not include extra subgrid effects

that are not already modelled in the PDF transport Equation (2.93). The Fokker-Planck

equation can be therefore finally obtained:

∂fτ
∂t

=− ∂

∂ψ

(
−〈ui〉

〈
∂τ

∂xi

∣∣∣∣ψ
〉
fτ +

〈
∂

∂xi

(
(Γ + Γt)

∂τ

∂xi

)∣∣∣∣ψ
〉
fτ

)

− ∂

∂ψ

(
−ω

2
(ψ − 〈c〉) fτ + S(ψ)fτ

)
+

∂2

∂ψ2

(〈
(Γ + Γt)

∂τ

∂xi

∂τ

∂xi

∣∣∣∣ψ
〉
fτ

) (2.98)

The Eulerian stochastic differential equation statistically equivalent to Eq.(2.98) is there-

fore, taking into consideration that the conditional averages are known:

dτn =− 〈ui〉
∂τn

∂xi
dt+

∂

∂xi

(
(Γ + Γt)

∂τn

∂xi

)
dt+

√
2 (Γ + Γt)

∂τn

∂xi
dW n

i

− ω

2
(τn − 〈c〉) dt+ S(τn) dt

(2.99)

Equation (2.99) represents the evolution of the nth Eulerian stochastic field. This model

was originally developed for a single reactive scalar. The work of Hauke and Valiño [99]

presents the extension to a multicomponent flow, showing the stochastic fields formulation

to solve the one-point joint scalar PDF. However, this method has only become popular

after it being extended to the LES framework, which was performed by Mustata et al.

[100] in 2006. The LES formulation of the stochastic fields is the main subject of this

work and it is revised in the next section.

Sabel’nikov and Soulard (2005) [101]:

The work of [101] is regarded as a more rigorous approach to develop Eq. (2.99).

It is proved that the smoothness condition is not a necessary condition to obtain the

Eulerian stochastic fields. A Favre one-point scalar PDF f(ψ;x, t) was considered and
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the following transport equation derived:

∂ 〈ρ〉 〈f〉ρ
∂t

+
∂ 〈ρ〉 〈uj〉 〈f〉ρ

∂xj
=

∂

∂xj

(
〈ρ〉Γt

∂ 〈f〉ρ
∂xj

)

− ∂

∂ψ

(
〈ρ〉M 〈f〉ρ

)
− ∂

∂ψ

(
〈ρ〉S(ψ) 〈f〉ρ

) (2.100)

where M represents here the chosen micromixing model. The idea in this work was to

model a Eulerian stochastic partial differential equation (SPDE) equivalent to Eq.(2.100).

The proposed SPDE for the evolution of the stochastic field must have the following

format:

∂τ

∂t
+ Uj

∂τ

∂xj
= F (τ ;x, t) (2.101)

where τ here is used to represent the stochastic field variable, F (τ ;x, t) = −〈uj〉 ∂τ/∂xj+

M (τ ;x, t) +S(τ ;x, t) represents the known fluxes and Uj is the stochastic velocity. The

proposed stochastic velocity should preserve the physical meaning of advection and it

is not completely random. In fact, the stochastic velocity can be decomposed into two

components:

Uj = U d
j + U g

j (2.102)

where U d
j is the deterministic drift component and U g

j is the Gaussian random compo-

nent of velocity. In order to preserve its physical meaning, one must use the Stratonovich

interpretation of the stochastic integral, as the Stratonovich approach use the same rules

as ordinary calculus [78]. The equation for the Eulerian stochastic field is therefore:

∂τ

∂t
+ U d

j

∂τ

∂xj
+ U g

j ◦
∂τ

∂xj
= F (τ ;x, t) (2.103)

where the symbol ◦ means the Stratonovich interpretation of the stochastic term. It is

necessary to choose the drift and the Gaussian component of the velocity that makes

Eq.(2.103) equivalent to the PDF transport equation. In the original work of Sabel’nikov

and Soulard [101], the authors used a characteristic function to derive these components,

defined as:

ψτ (λ, x, t) = eiλτ(x,t) (2.104)
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The characteristic function has the convenient property that its average is the Fourier

transform of the PDF [41]:

Ψτ (λ, x, t) =

∫ +∞

−∞
eiλτf(τ ;x, t) dτ (2.105)

and the PDF can be obtained from the inverse Fourier transform of Ψτ , making it a

Fourier-transform pair:

f(τ ;x, t) =
1

2π

∫ +∞

−∞
e−iλτΨτ (λ, x, t) dλ (2.106)

It is important at this step to indicate the material derivative of the characteristic func-

tion:

dψτ =
∂ψτ
∂t

dt+ dvj ◦
∂ψτ
∂xj

; dvj = 〈uj〉 dt+ U d
j dt+ U g

j dt (2.107)

where dvj represents all the advection effects of the characteristic function. The material

derivative can also be expanded using Taylor series regarding the derivatives in τ :

dψτ =
∂ψτ
∂τ

dτ +
1

2

∂2ψτ
∂τ 2

dτ 2 + ... (2.108)

where dτ is the source term of the stochastic field equation, defined as:

dτ = M (τ ;x, t) dt+ S(τ ;x, t) dt = A (τ ;x, t) dt (2.109)

The original work presented the source term using a possible stochastic model for the

micromixing. It is considered here a deterministic model for the sake of brevity, although

the expansion to a stochastic model can be readily done by considering higher order

derivatives on Eq.(2.108). By equating Eqs.(2.107) and (2.108) and using Eq.(2.109), it

is possible to derive a transport equation for the characteristic function:

∂ψτ
∂t

dt+ dvj ◦
∂ψτ
∂xj

=
∂ψτ
∂τ

A (τ ;x, t) dt = iλψτA dt (2.110)
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and by taking the Fourier transform:

∂Ψτ

∂t
dt+

〈
dvj ◦

∂ψτ
∂xj

〉
= iλ 〈ψτA 〉 dt (2.111)

The average advection term needs to be defined. It should be highlighted that, in contrast

to the Ito interpretation, the convective term does not have the no-correlation property.

In order to obtain an expression for it, it is necessary to convert it to the Ito interpretation.

The portability between the Ito and Stratonovich interpretations can be performed using

the simple relation [78]:

X ◦ dW = X dW +
1

2
dX dW (2.112)

By applying this relation, the convective term can be rewritten as:

dvj ◦
∂ψτ
∂xj

= dvj
∂ψτ
∂xj

+
1

2
d

(
∂ψτ
∂xj

)
dvj

= dvj
∂ψτ
∂xj

+
1

2

∂

∂xj
(dψτ dvj)−

1

2
dψτ

∂ dvj
∂xj

(2.113)

The derivative dψτ is different than the previous one, since it is not the material derivative

of ψτ . It is, however, a derivative obtained recasting Equation (2.110) into stochastic

differential form [101]:

dψτ = − dvk
∂ψτ
∂xk

+ iλψτA dt (2.114)

Abusing the notation, since the Ito interpretation is being casted on the right hand side of

Eq.(2.113), dψτ is written here using the Ito interpretation. Equation (2.113) is therefore

recast as:

dvj ◦
∂ψτ
∂xj

= dvj
∂ψτ
∂xj
− 1

2

∂

∂xj

(
dvk

∂ψτ
∂xk

dvj

)
+

1

2
dvk

∂ψτ
∂xk

∂ dvj
∂xj

(2.115)

where high order terms like dt dvj can be neglected. The average of the convective term
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can be therefore obtained and the transport equation for Ψα is written as:

∂Ψτ

∂t
dt+

(
〈dvj〉+

1

2

〈
dvj

∂ dvk
∂xk

〉)
∂Ψτ

∂xj
=

∂

∂xj

(
1

2
〈dvj dvk〉

∂Ψτ

∂xk

)
+ iλ 〈ψτA 〉 dt

(2.116)

and by taking the inverse Fourier transform, one can finally obtain:

∂f

∂t
+

(〈dvj〉
dt

+
1

2 dt

〈
dvj

∂ dvk
∂xk

〉)
∂f

∂xj
=

∂

∂xj

(
1

2

〈dvj dvk〉
dt

∂f

∂xk

)
− ∂

∂τ
(A f) (2.117)

At last, for Equation (2.117) to be equal to Eq.(2.100), the following equalities must be

respected:

1

2
〈dvj dvk〉 = Γtδjk dt (2.118)

〈dvj〉+
1

2

〈
dvj

∂ dvk
∂xk

〉
= 〈ui〉 dt−

1

〈ρ〉
∂ 〈ρ〉
∂xj

Γt dt (2.119)

which gives the constrains to the drift and Gaussian component of the velocity:

1

2

〈
U g
i U g

j

〉
dt = Γtδij (2.120)

U d
j = −1

2

〈
∂U g

i

∂xi
U g
j

〉
dt− 1

〈ρ〉
∂ 〈ρ〉
∂xj

Γt (2.121)

These constrains can be derived by substituting dvj = 〈uj〉 dt + U d
j dt + U g

j dt into the

equalities and using the fact that only the Gaussian component is random and therefore

U g
i U g

j ∼ dt. Sabel’nikov and Soulard [101] demonstrated that a possible solution, but

not the only one, for the velocity components of Eq. (2.103) is:

U d
i = −1

2

∂Γt
∂xi
− 1

〈ρ〉
∂ 〈ρ〉
∂xi

Γt (2.122)

U g
i = −

√
2Γt ◦

dWi

dt
(2.123)
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A minus signal has been introduced on Eq.(2.123) here for clarity, which is different than

the original solution of Sabel’nikov and Soulard [101]. This does not change the Wiener

term behaviour and it is still a possible solution that preserves the constrains. Finally,

the equation for the Eulerian stochastic field can be obtained:

∂τ

∂t
+

(
〈uj〉 −

1

2

∂Γt
∂xi
− 1

〈ρ〉
∂ 〈ρ〉
∂xi

Γt

)
∂τ

∂xj
=

√
2Γt

∂τ

∂xj
◦ dWi

dt
+ M (τ ;x, t) + S(τ ;x, t)

(2.124)

Equation (2.124) was derived using no assumption regarding the smoothness of the

stochastic field. However, it is still written in Stratonovich interpretation, which may

be numerically inconvenient to be used in an explicit solver as it requires the information

in the middle of the time-step, not only at the beginning, as in the Ito integral. In order

to use the Ito interpretation, the relation shown in Equation (2.112) can be applied:

∂τ

∂t
+ 〈uj〉

∂τ

∂xj
− 1

2

∂Γt
∂xi

∂τ

∂xj
− 1

〈ρ〉
∂

∂xi

(
〈ρ〉Γt

∂τ

∂xj

)
+

∂

∂xj

(
Γt
∂τ

∂xj

)
=

√
2Γt

∂τ

∂xj

dWi

dt
+

1

2

√
2Γt

∂τ

∂xj

∂

∂τ

(√
2Γt

∂τ

∂xj

)
+ M (τ ;x, t) + S(τ ;x, t)

(2.125)

and by using the relation ∂τ/∂xj∂/∂τ = ∂/∂xj [101] it is possible to obtain the Eulerian

stochastic field equation:

∂τ

∂t
+ 〈uj〉

∂τ

∂xj
=

1

〈ρ〉
∂

∂xi

(
〈ρ〉Γt

∂τ

∂xj

)
+
√

2Γt
∂τ

∂xj

dWi

dt

+ M (τ ;x, t) + S(τ ;x, t)

(2.126)

which is the essentially the same as Equation (2.99), although in partial differential

equation form. Both equations are equivalent to the one-point scalar PDF, however, the

later is derived with less restrictives assumptions. Equation (2.126) can also be derived

from the Lagrangian equations, such as those shown in Pope [68], by considering them

the characteristic equations of the SPDE shown in Eq. (2.126), also proved in [101].

If molecular viscosity has to be taken into account, such as close to wall and in LES

context, the stochastic equations obtained in [101] cannot be interpreted as advection-
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reaction equations any more according to Valiño et al. [102]. The resultant equations

must have advection, diffusion and reactive terms, behaving as a parabolic system, not

as a hyperbolic one as claimed by Sabel’nikov and Soulard [101]. However, as explained in

[101], the diffusion term is misleading in Eq.(2.126) because the Ito interpretation of the

Wiener term does not have the same interpretation as in classical calculus. It is the sum

of the diffusion-like term and the stochastic term that results in in the advection Wiener

term, as shown in Equation (2.124). Only by using the Stratonovich interpretation that

it is possible to obtain the same physical meaning as in ordinary calculus. The equations

derived in [102] therefore rely on the assumption of the smoothness of the Eulerian fields.

Soulard and Sabel’nikov (2006) [103]:

The characteristic interpretation of the Lagrangian equations is the starting point of

the model developed by Soulard and Sabel’nikov [103], which was the first attempt to

solve a joint velocity-scalar PDF using Eulerian stochastic equations. The following in-

compressible transport equation for the one point velocity PDF f(v;x, t) was considered:

∂f

∂t
+ vj

∂f

∂xj
= − ∂

∂vj

[(
−1

ρ

∂ 〈p〉
∂xj

+Gij (vj − 〈uj〉)
)
f

]
+

1

2
C0ε

∂2f

∂vj∂vj
(2.127)

where the simplified Langevin model is used to model the tensor Gij and ε is the turbulent

energy dissipation. The Lagrangian stochastic equations equivalent to the PDF Fokker-

Planck equation are [68]:

dX+
j = U+

j dt (2.128)

dU+
j =

(
−1

ρ

∂ 〈p〉
∂xj

+Gij

(
U+
j − 〈uj〉

))
dt+

√
C0ε dWj (2.129)

It is also useful to define a stochastic density to ensure mass conservation of the Eulerian

equations. This stochastic density is r+ is different than the physical density ρ, which

is assumed constant, but is related to it through 〈r+〉 = ρ. Therefore, the following

equation has been proposed:

dr+ = −r+
∂U+

j

∂xj
dt (2.130)
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And by considering the Lagrangian equations the characteristics of a system of stochastic

partial differential equations, it possible to recast the Lagrangian equations into Eulerian

framework:

∂r

∂t
+ Uj

∂r

∂xj
= −r∂Uj

∂xj
(2.131)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂ 〈p〉
∂xj

+Gij (Uj − 〈uj〉) +
√
C0ε

dWj

dt
(2.132)

which can be recast in the conservative form:

∂r

∂t
+
∂rUj
∂xj

= 0 (2.133)

∂rUi
∂t

+
∂rUjUi
∂xj

= −r
ρ

∂ 〈p〉
∂xj

+ rGij (Uj − 〈uj〉) + r
√
C0ε

dWj

dt
(2.134)

In this derivation the Ito interpretation has been used for the Wiener term of the Langevin

model. Soulard and Sabel’nikov [103] provides further elements of proof for the relation

〈r+〉 = ρ and the equivalence of the Equations (2.133) and (2.134) to the transport PDF

equation. On this formulation there is no need to include a model for the turbulent vis-

cosity, as the convective terms are already closed. This model has been further validated

in Soulard and Sabel’nikov [104], where a set of validation tests has been performed.

However, the set of Eulerian stochastic field equations developed presented a major

issue, which was pointed out in the work of Petrova [105]. The momentum equation

is a non-linear hyperbolic equation (Burgers’ equation), which is multi-valued and can

produce shocks. The shocks can be physical but the numerical solutions can lead to

numerical and artificial shocks, which can be prevented by using a specific discretisation

scheme based on the parametrised graph solution of Eqs.(2.133) and (2.134) [105, 106].

Azarnykh et al. (2016) [107]:

The work of Azarnykh et al. [107] presented an approach to solve the stochastic

partial differential equation for the velocity using a weakly compressible Langevin model.

The authors also investigated several different discretisation schemes that can be used to
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solve the stochastic equations with accuracy and stability. In their work, the momentum

equation does not behave like a Burgers’ equation, as the pressure can be completely

defined from the density because of the weakly compressible approach. The following

equations are obtained considering an one-dimensional configuration:

∂ρ(x, t)

∂t
+
∂ρ(x, t)u(x, t)

∂x
= 0 (2.135)

∂ρ(x, t)u(x, t)

∂t
+
∂ρ(x, t)u(x, t)u(x, t)

∂x
= −∂p(x, t)

∂x

−γaρ(x, t) (u(x, t)− u0(x, t)) +
√
ρ(x, t)Dγaζ(x, t)

(2.136)

p(x, t) = ρ(x, t)c2
s (2.137)

where ζ(x, t) is a Gaussian white noise, cs is the isothermal speed of sound and D and

γa correspond to fluctuation and dissipation coefficients, respectively, of the notional

particles of the flow. The pressure p(x, t) on the momentum equation is not the average

pressure as in Eq.(2.134). Therefore the equation does not behave as a Burgers’ equation

and, in this way, the numerical shocks are avoided. In fact, the solution presented by

Azarnykh et al. [107] is the precursor of the Eulerian stochastic equations developed in

this work to solve the transport equation for a Eulerian one-point one-time joint velocity-

scalar PDF.

Table 2.1 summarises some of the most influential works using the PDF method,

stating its closures and solution method proposed.
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Reference PDF model Closures Solution
Lundgren [65] (1967) Velocity Two point PDF -
Lundgren [66] (1969) Velocity Pressure relaxation Analytical
Dopazo [67] (1975) Scalar IEM Analytical
Pope [72] (1976) Scalar Mixing length Analytical

Janicka et al. [80] (1978) Scalar Integral model Finite diff.
Pope [77] (1979) Scalar Conditionally Gaussian Lagrangian eq.
Pope [79] (1981) Scalar Curl’s model Lagrangian MC
Pope [68](1985) Velocity-Scalar IEM/Langevin model Lagrangian MC

Kollmann [88] (1992) Compressible VS Integral model Lagrangian MC
Delarue and Pope [20] (1997) Compressible VS IEM/Langevin model Lagrangian MC
Dreeben and Pope [95] (1997) VPDF Near-wall Langevin model Lagrangian MC

Valiño [19] (1998) Scalar IEM Eulerian MC
Hauke and Valiño [99] (2004) Scalar IEM Eulerian MC

Sabel’nikov and Soulard [101] (2005) Scalar IEM Eulerian MC
Soulard and Sabel’nikov [103] (2006) Velocity Langevin Eulerian MC

Petrova [105] (2015) Velocity Langevin Eulerian MC
Valiño et al. [102] (2016) SPDF Near-wall IEM Eulerian MC

Azarnykh et al. [107] (2016) Velocity Langevin Eulerian MC

Table 2.1: Influential PDF works, where MC stands for Monte-Carlo method.



2.4. PDF methods 69

2.4.2 Filtered Density Function (FDF) - LES-PDF

The averaged transport equations for the PDF have been visited in the last section.

However, because of the increasing popularity and the large computational power now

available, the large eddy simulation has been chosen as the standard method for combus-

tion studies. The modelling of a filtered PDF equation in a LES framework is therefore

of critical importance to extend its advantages to a more accurate environment.

The application of a PDF method in large eddy simulation was first suggested by Givi

[108]. Pope [109] presented the concept of a filtered density function (FDF) to be used in

a LES framework, while Gao and O’Brien [17] developed a transport equation for it. The

one-point one-time fine-grained Eulerian joint scalar filtered density function is defined

as:

f ′(ψ;x, t) =
Ns∏

α=1

δ(φα(x, t)− ψα) (2.138)

The filtered density function or spatially filtered fine-grained PDF is defined by applying

the filtering operation to the fine-grained FDF:

f(ψ;x, t) =

∫ +∞

−∞
G(x− x′,∆)

Ns∏

α=1

δ(φα(x′, t)− ψα) dx′ (2.139)

The filtered density function is very similar to the originally developed PDF. However,

it is derived from a different concept. While the PDF f(ψ;x, t) is derived from the

ensemble average of the fine-grained PDF, the FDF f(ψ;x, t) is obtained from the filtering

operation. It can be thought that the filter function G(x−x′,∆) is the PDF of the Dirac

delta function within the subgrid scale element dx′. In fact, their relationship is defined

as [109]:

f(ψ;x, t) = lim
∆→0

〈
f(ψ;x, t)

〉
(2.140)

As concluded by Wang [110], the FDF represents samples taken surrounding the element

dx′ centred at x′ and time t. In contrast, the PDF represents several samples taken the

same time and position in different experiments. This concept is very useful in Lagrangian

approaches because the FDF is constructed from the particles surrounding an Eulerian
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volume [64]. Nonetheless, the portability between Lagrangian FDF to Eulerian FDF is

not trivial and still subject to discussion [110, 51, 64]. In this work, the filtered PDF/LES-

PDF nomenclature is used when the Eulerian stochastic fields method is used and FDF

if the Lagrangian approach is chosen.

The FDF/LES-PDF also respects the following property:

∫ +∞

−∞
f(ψ;x, t) dψ =

∫ +∞

−∞

∫ +∞

−∞
G(x− x′,∆)

Ns∏

α=1

δ(φα(x′, t)− ψα) dx′ dψ

=

∫ +∞

−∞
G(x− x′,∆)

∫ +∞

−∞

Ns∏

α=1

δ(φα(x′, t)− ψα) dψ dx′

=

∫ +∞

−∞
G(x− x′,∆) dx′ = 1

(2.141)

where from the second line to the third line of the previous equation the integral property

of the Dirac delta function has been used. The filtered variables are obtained by taking

the average operation using the FDF. For instance, for a variable φ(x, t):

∫ +∞

−∞
ψf(ψ;x, t) dψ =

∫ +∞

−∞
ψ

∫ +∞

−∞
G(x− x′,∆)

Ns∏

α=1

δ(φα(x′, t)− ψα) dx′ dψ

=

∫ +∞

−∞
G(x− x′,∆)

∫ +∞

−∞
ψ

Ns∏

α=1

δ(φα(x′, t)− ψα) dψ dx′

=

∫ +∞

−∞
G(x− x′,∆)φ(x′, t) dx′ = φ(x, t)

(2.142)

The Favre-filtered PDF is defined similarly:

f̃(ψ;x, t) =

∫ +∞

−∞
ρ (x′, t)G(x− x′,∆)

Ns∏

α=1

δ(φα(x′, t)− ψα) dx′

∫ +∞

−∞
ρ (x′, t)G(x− x′,∆) dx′

(2.143)

and it is also important to define the conditional Favre-filtering operation of a function
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Q(x, t):

︷ ︸
Q(x, t)|ψ =

∫ +∞

−∞
ρ (x′, t)Q(x′, t)f ′(ψ;x′, t)G(x− x′,∆) dx′

∫ +∞

−∞
ρ (x′, t) f ′(ψ;x′, t)G(x− x′,∆) dx′

=

︷ ︸
Qf

f̃
(2.144)

The conditional filtering operation can be defined likewise. The unclosed conditional

filtered term
︷ ︸
Q(x, t)|ψ also shares the critical property of the conditional average coun-

terpart. It is closed if the function Q(x, t) can be completely defined by the variables

included into the PDF sample space. This can be demonstrated by considering a function

Q(φ (x, t)), applying the filtering operation and using the sifting property of the Dirac

delta function [41]:

∫ +∞

−∞
ρ (x′, t)Q(φ (x′, t))f ′(ψ;x′, t)G(x− x′,∆) dx′ =

∫ +∞

−∞
ρ (x′, t)Q(ψ)f ′(ψ;x′, t)G(x− x′,∆) dx′ =

Q(ψ)

∫ +∞

−∞
ρ (x′, t) f ′(ψ;x′, t)G(x− x′,∆) dx′ = Q(ψ)ρf̃

(2.145)

Therefore the filtered source term can also be exactly closed if the sample space includes

variables such as the chemical mass fractions, enthalpy and pressure. Likewise, the con-

vective term is closed if the sample space includes the velocity components.

Colucci et al. (1998) [13]:

Colucci et al. [13] were the first to perform reactive LES simulations using the La-

grangian method to solve a FDF equation. They considered a one-point one-time Eu-

lerian joint scalar FDF. The transport equation derivation is shown here for this model

and similar reasoning can be applied for the several other Lagrangian FDF approaches.

A starting point for the transport equation for the FDF is to take the temporal derivative

of the fine-grained scalar FDF f ′(ψ;x, t) and apply the filtering operation:

∂f ′

∂t
= −∂φα

∂t

∂f ′

∂ψα

∂f

∂t
= − ∂

∂ψα

(
∂φα
∂t

f ′
) (2.146)
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the temporal derivative for φα can be obtained from its transport equation, resulting in:

∂f

∂t
= − ∂

∂ψα

((
−uj

∂φα
∂xj

+
∂Jαi
∂xi

+ S(φ)

)
f ′

)

= − ∂

∂ψα

(
−uj

∂φα
∂xj

∣∣∣∣ψf +
∂Jαi
∂xi

∣∣∣∣ψf + S(ψ)f

)

= −∂uj|ψ f

∂xj
− ∂

∂ψα

(
∂Jαi
∂xi

∣∣∣∣ψf + S(ψ)f

)
(2.147)

Equation (2.147) is unclosed and the conditional filtered term require modelling. It is

common in LES modelling to simply add a large scale (known) term and subtract it along

with the unclosed subgrid term. This difference is at the small scales level and therefore

subject to a smaller error. The unclosed diffusion term can also be rewritten using similar

reasoning as in Eq.(2.97). For instance, Eq.(2.147) can be recast as:

∂f

∂t
=− ∂ujf

∂xj
+

(
∂ujf

∂xj
− ∂uj|ψ f

∂xj

)

+
∂

∂xj

(
Γ
∂f

∂xj

)
− ∂

∂ψα

(
S(ψ)f

)
− ∂2

∂ψα∂ψβ

(
Γ
∂φα
∂xj

∂φβ
∂xj

∣∣∣∣ψf
) (2.148)

where Γ is the molecular diffusion coefficient. The convective unclosed term can be

modelled with a traditional LES approach, as demonstrated in Section 2.3:

∂ujf

∂xj
− ∂uj|ψ f

∂xj
=

∂

∂xj

(
Γsgs

∂f

∂xj

)
(2.149)

where Γsgs is the subgrid viscosity and requires modelling. The second derivative on

Eq.(2.148) can be closed using a micromixing model as in RANS framework. The IEM

micromixing model is chosen [71]:

− ∂2

∂ψα∂ψβ

(
Γ
∂φα
∂xj

∂φβ
∂xj

∣∣∣∣ψf
)
≈ ∂

∂ψα

(
ωsgs

(
ψα − φα

)
f
)

(2.150)

where ωsgs is the subgrid turbulence frequency. The closed FDF transport equation is
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therefore:

∂f

∂t
+
∂ujf

∂xj
=

∂

∂xj

(
(Γ + Γsgs)

∂f

∂xj

)
− ∂

∂ψα

(
−ωsgs

(
ψα − φα

)
f + S(ψ)f

)
(2.151)

To solve the FDF equation, Colucci et al. [13] proposed Lagrangian stochastic equations:

dX+
i =

[
ui +

∂ (Γ + Γsgs)

∂xi

]
dt+

√
2 (Γ + Γsgs) dWi (2.152)

dφ+
α = −ωsgs

(
φ+
α − φα

)
dt+ Sα dt (2.153)

The Lagrangian stochastic equations are equivalent to a Lagrangian Fokker-Planck equa-

tion, but can be proved to be equivalent to the Eulerian transport Equation (2.151). The

work of Colucci et al. [13] concluded that the FDF approach, although more computa-

tionally expensive than the pure LES approach, it is more accurate and comparable to

the DNS results, which demands much higher computational power. They concluded that

the subgrid fluctuations of the source term have considerable influence and neglecting it

may result in overprediction of the reaction rate.

The work of Jaberi et al. [111] introduced the Eulerian filtered mass density function

(FMDF), similar to the MDF developed in RANS framework to deal with variable density

flows:

︷ ︸
F (ψ;x, t) =

∫ +∞

−∞
ρ (x′, t)

Ns∏

α=1

δ(φα(x′, t)− ψα)G (x− x′,∆) dx′ (2.154)

The transport equation for F (ψ;x, t) is very similar to Eq.(2.151) and can be obtained

using the same techniques, but also including the Favre-filtering and conditional Favre-

filtering:

∂F̃

∂t
+
∂ũiF̃

∂xi
=

∂

∂xi

[
(Γ + Γsgs)

∂(F̃/ρ)

∂xi

]

+
∂

∂ψα

(
ωsgs

(
ψα − φ̃α

)
F̃
)
− ∂

∂ψα

(
SαF̃

) (2.155)
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Lagrangian stochastic equations similar to those developed in Colucci et al. [13] were

proposed in order to solve Eq. (2.155). The feasibility of the FMDF method is also

proved by investigating spatial and temporally mixing layer and a planar jet.

The modelling of Lagrangian stochastic equations to solve a one-point one-time joint

scalar MFDF has intensively been used to simulate low Mach number turbulent reactive

flows [112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. The accuracy of the LES to solve

the filtered momentum equations combined with the exact solution of the source term

for the reactive scalars represents a very powerful approach.

Gicquel et al. (2002) [122]:

A filtered velocity PDF is also an object of interest for large eddy simulation of highly

convective flows. It can potentially eliminate the main source of numerical error, since

the convective term is treated exactly. The work of Gicquel et al. [122] was the first

to develop a velocity FDF, still considering an incompressible approach though. Two

transport equations of the evolution of the velocity FDF f(v;x, t) were derived, each one

with a particular advantage:

∂f

∂t
+ vk

∂f

∂xk
=− ∂

∂xk

[
(vk − uk) f

]
+
∂p

∂xi

∂f

∂vi
+ ν

∂2f

∂xk∂xk
+ ν

∂ui
∂xk

∂uj
∂xk

∂2f

∂vi∂vj

+ 2ν
∂ui
∂xk

∂2f

∂xk∂vi
− ∂

∂vi

[
Gij (vj − uj) f

]
+

1

2
C0εsgs

∂2f

∂vi∂vi

(2.156)

∂f

∂t
+ vk

∂f

∂xk
=− ∂

∂xk

[
(vk − uk) f

]
+
∂p

∂xi

∂f

∂vi
− ∂τ ik
∂xk

∂f

∂vi

− ∂

∂vi

[
Gij (vj − uj) f

]
+

1

2
C0εsgs

∂2f

∂vi∂vi

(2.157)

where the Langevin model has been used to jointly model all unclosed terms. The

Langevin equations in a LES framework are modelled using similar equations to those in

RANS:

Gij = −ωsgs
(

1

2
+

3

4
C0

)
δij; εsgs = Cεk

3/2
sgs/∆; ωsgs = εsgs/ksgs (2.158)
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In the LES context, ksgs and εsgs are the subgrid kinetic energy and the dissipation of

the subgrid kinetic energy, respectively. It is interesting to note that the subgrid kinetic

energy can also be exactly obtained with the velocity-scalar PDF, such as in Eq.(2.72)

for RANS models:

ksgs =
1

2
uiui − uiui =

1

2

∫ +∞

−∞
(vi − ui) (vi − ui) f dv (2.159)

The model for εsgs is a classical approach for LES modelling [42] and it does not require

an extra transport equation. It assumes that the production is equal to the dissipation

of ksgs, in an equilibrium approach.

The first equation has extra viscous terms because it is possible to expand the viscous

tensor, τ ik, to generate extra terms, such as the second spatial derivative, the second

derivative with respect to vi and the cross derivative of the FDF. The presence of these

extra terms results in higher accuracy in regions of the flow dominated by viscous ef-

fects, since the molecular dissipation of the FDF is taken into account. The Lagrangian

equations equivalent to the first transport equation are:

dX+
i = U+

i dt+
√

2ν dW x
i (2.160)

dU+
i =

[
− ∂p

∂xi
+ 2ν

∂2ui
∂xk∂xk

+Gij

(
U+
j − uj

)]
dt+

√
C0εsgs dW u

i +
√

2ν
∂ui
∂xj

dW x
j (2.161)

where the Lagrangian stochastic equation for velocity presents two Wiener terms, one

that arises from the dX+
i equation and the other derived from the Langevin model.

These equations are very similar to those derived by Dreeben and Pope [95] in a RANS

framework. The Lagrangian equations equivalent to the second transport equation for

the velocity FDF are:

dX+
i = U+

i dt (2.162)
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dU+
i =

[
− ∂p

∂xi
+
∂τ ik
∂xk

+Gij

(
U+
j − uj

)]
dt+

√
C0εsgs dW u

i (2.163)

It should be notice the absence of the Wiener term weighted by the molecular viscosity

in the dX+
i equation. The viscous effects are entirely modelled at the large eddy scale

and only resolved viscous effects are being taken into account. This is the drawback of

Eq.(2.156) in comparison to Eq. (2.157). Gicquel et al. [122] investigated both equations

using also a mixing layer and a planar jet and concluded that the velocity FDF model

can also generate accurate results in comparison to DNS data.

Sheikhi et al. (2003) [123]:

The joint velocity-scalar can be straightforwardly derived by combining the scalar and

the velocity FDFs. This model is able to treat both convective and reactive terms in a

large eddy simulation environment, although still using the low Mach number assumption.

This was firstly performed in [123] considering a constant density approach, in which a

Eulerian fine-grained one-point one-time joint velocity-scalar FDF is defined:

f ′ (v,ψ;x, t) =
3∏

i=1

δ (vi − ui (x, t))
Ns∏

α=1

δ (ψα − φα (x, t)) (2.164)

and the respective FDF is obtained after applying the filtering operation:

f (v,ψ;x, t) =

∫ +∞

−∞
G(x−x′,∆)

3∏

i=1

δ (vi − ui (x′, t))
Ns∏

α=1

δ (ψα − φα (x′, t)) dx′ (2.165)

The mathematical derivation of the transport equation of the FDF followed a different

route than usual in this work. Instead of first obtaining a Fokker-Planck equation and

then model the unclosed terms, Sheikhi et al. [123] proceeded to derive the unclosed

transport equation and then generate closed Lagrangian equations. They derived the

Fokker-Planck equation equivalent to the closed Lagrangian stochastic equations. They

proceeded finally by comparing the two Fokker-Planck equations and writing the assump-

tions required to close the original transport equations and obtain the desired Lagrangian

stochastic equations. The assumptions are similar to those of Pope [68], whereas the un-
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closed terms of the Fokker-Planck equation, derived from the viscous and pressure parts,

must be jointly modelled by the Langevin and a micromixing model.

The unclosed equation can be obtained using very similar techniques as present in the

predecessor works [13, 122]:

∂f

∂t
+

∂f

∂xk
=ν

∂2f

∂xk∂xk
+

∂p

∂xk

∂f

∂xk
− ∂

∂ψα

[
Sα (ψ) f

]

+
∂

∂vk

[(
∂p

∂xk

∣∣∣∣v,ψ −
∂p

∂xk

)
f

]
− ∂2

∂vi∂vj

[
ν
∂ui
∂xk

∂uj
∂xk

∣∣∣∣v,ψf
]

− 2
∂2

∂vi∂ψα

[
ν
∂ui
∂xk

∂φα
∂xk

∣∣∣∣v,ψf
]
− ∂2

∂ψα∂ψβ

[
ν
∂φα
∂xk

∂φβ
∂xk

∣∣∣∣v,ψf
]

(2.166)

The desired Lagrangian equations must present several properties, such as the realisabil-

ity of the scalar field and must yield a Fokker-Planck equation that possess the same

moments as the original unclosed equations. The proposed Lagrangian equations, using

the Langevin model and the IEM micromixing model are:

dX+
i = U+

i dt+
√

2ν dW x
i (2.167)

dU+
i =

[
− ∂p

∂xi
+ 2ν

∂2ui
∂xk∂xk

+Gij

(
U+
j − uj

)]
dt+

√
C0εsgs dW u

i +
√

2ν
∂ui
∂xj

dW x
j (2.168)

dφ+
α =

[
−Cφω

(
φ+
α − φα

)
+ Sα

]
dt (2.169)

and the Fokker-Planck equation obtained through the Lagrangian equations are:

∂f

∂t
+

∂

∂xk

(
vkf
)

=
∂p

∂xi

∂f

∂vi
− ∂

∂vi

[
Gij (vj − uj) f

]
+

∂

∂ψα

[
Cφω

(
ψα − φα

)
f
]

− ∂

∂ψα

[
Sα (ψ) f

]
+ ν

∂2f

∂xk∂xk
+ 2ν

∂uj
∂xi

∂2f

∂xi∂vj

+ ν
∂ui
∂xk

∂uj
∂xk

∂2f

∂vi∂vj
+

1

2
C0εsgs

∂2f

∂vk∂vk

(2.170)
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This is already a closed equation, where all unclosed terms originally presented in Eq.

(2.166) are jointly modelled using the Langevin model and the IEM micromixing.

The authors used the same approaches for the models’ constants and to specified εsgs

as in [13, 122]. The simulation of incompressible non-reacting mixing layers were then

performed to assess the developed model and the Lagrangian Monte-Carlo algorithm.

This algorithm was coupled with a finite difference LES solver to obtain the filtered pres-

sure field, a common approach when solving the velocity field using stochastic particles.

The results of the work were very promising, achieving good agreement with DNS data.

The extension of the joint velocity-scalar FDF model to variable density flows was

carried on the work of Sheikhi et al. [124]. The transport equation for the Eulerian one-

point one-time joint velocity-scalar FMDF is directly derived using the same techniques

presented for the scalar FMDF in Jaberi et al. [111]. The velocity-scalar FMDF is defined

as:

︷ ︸
F (v,ψ;x, t) =

∫ +∞

−∞
ρ (x′, t)

3∏

i=1

δ (vi − ui (x′, t))
Ns∏

α=1

δ(ψα − φα(x′, t))

×G (x− x′,∆) dx′

(2.171)

The Lagrangian stochastic equations are very similar to those of [123], however accounting

for extra density terms:

dX+
i = U+

i dt+

√
2µ

ρ
dW x

i (2.172)

dU+
i =

[
−1

ρ

∂p

∂xi
+

2

ρ

∂

∂xj

(
µ
∂ũi
∂xj

)
+

1

ρ

∂

∂xj

(
µ
∂ũj
∂xi

)
− 2

3

1

ρ

∂

∂xi

(
µ
∂ũj
∂xj

)

+Gij

(
U+
j − ũj

)]
dt+

√
C0εsgs dW u

i +

√
2µ

ρ

∂ũi
∂xj

dW x
j

(2.173)

dφ+
α =

[
−Cφωsgs

(
φ+
α − φ̃α

)
+ Sα

]
dt (2.174)
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where the same modelling used in Gicquel et al. [122] can be applied:

Gij = −ω
(

1

2
+

3

4
C0

)
δij; εsgs = Cεk

3/2
sgs/∆; ωsgs = εsgs/ksgs (2.175)

The fully closed FMDF transport equation is therefore obtained:

∂F̃

∂t
+
∂viF̃

∂xi
=

1

ρ

∂p

∂xi

∂F̃

∂vi
− 2

ρ

∂

∂xj

(
µ
∂ũi
∂xj

)
∂F̃

∂vi
− 1

ρ

∂

∂xj

(
µ
∂ũj
∂xi

)
∂F̃

∂vi

+
2

3

1

ρ

∂

∂xi

(
µ
∂ũj
∂xj

)
∂F̃

∂vi
− ∂

∂vi

(
Gij (vj − ũj) F̃

)

+
∂

∂xj


µ

∂
(
F̃/ρ

)

∂xj


+

∂

∂xj

(
2µ

ρ

∂ũj
∂xj

∂F̃

∂vi

)

+
µ

ρ

∂ũi
∂xk

∂ũj
∂xk

∂2F̃

∂vi∂vj
+

1

2
C0εsgs

∂2F̃

∂vi∂vi

+
∂

∂ψα

(
Cφωsgs

(
ψα − φ̃α

)
F̃
)
− ∂

∂ψα

(
Sα (ψ) F̃

)

(2.176)

The authors used temporally and spatially developing mixing layers to validate this ap-

proach, also comparing their results to DNS data. The results presented good agreement

and the computational expense was about 100 times cheaper than DNS, although 15

times heavier than pure LES simulation using the same mesh size. The results using the

velocity-scalar FMDF were more accurate, though.

Despite its elegant formulation, the Lagrangian solver for velocity and the scalars still

needs to be coupled with a Eulerian one to calculate the filtered pressure, which makes

it a very complex numerical approach. This numerical approach is difficult to implement

and prone to interpolation error. Because of this the Lagrangian velocity-scalar FMDF

has not been so popular as the scalar FMDF, although it was used by Nik et al. [125] to

validate it using a Sandia D flame.

Mustata et al. (2006) [100]:

The Eulerian stochastic fields formulation developed by Valiño [19] was extended to

the large eddy simulation framework in the work of Mustata et al. [100]. The Eulerian
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one-point one-time joint scalar Favre-filtered PDF is:

f̃(ψ;x, t) =

∫ +∞

−∞
ρ (x′, t)G(x− x′,∆)

Ns∏

α=1

δ(φα(x′, t)− ψα) dx′

∫ +∞

−∞
ρ (x′, t)G(x− x′,∆) dx′

(2.143)

The transport equation can be obtained using the same techniques as in RANS framework.

The filtered transport equation for the PDF is:

ρ
∂f̃

∂t
+ ρũj

∂f̃

∂xj
− ∂

∂ψα

(
ρSα(ψ)f̃

)
=

∂

∂xi

(
ρ
ν

Sc

∂f̃

∂xi

)
− ∂

∂xi

[(
ρ
︷ ︸
ui|ψ −ρũi

)
f̃

]

− ∂2

∂ψα∂ψβ


ρ
︷ ︸
ν

Sc

∂φα
∂xi

∂φβ
∂xi

∣∣∣∣ψ f̃




(2.177)

where the unclosed terms on the right-hand side of the transport equation requires mod-

elling. The Smagorinsky model was used to close the convective term and the IEM mi-

cromixing model is also used to close the molecular diffusion term. The closed equation

is therefore:

ρ
∂f̃

∂t
+ ρũj

∂f̃

∂xj
− ∂

∂ψα

(
ρSα(ψ)f̃

)
=

∂

∂xi

(
ρ

(
ν

Sc
+

νsgs
Scsgs

)
∂f̃

∂xi

)

− ∂

∂ψα

(
− ρ

2τsgs

(
ψα − φ̃α

)
f̃

) (2.178)

where τsgs is the subgrid timescale and requires modelling. In order to solve the closed

filtered transport equation, the idea of Mustata et al. [100] were very similar to Valiño

[19], but using LES framework. The Favre-filtered PDF can be represented by smooth

Eulerian stochastic fields ξnα (x, t):

f̃ (ψ;x, t) =
1

Nf

Nf∑

n=1

Ns∏

α=1

δ (ψα − ξnα (x, t)) (2.179)

It is interesting to point out that it is the average operation of samples on the same

position x and time t that constructs the Eulerian PDF. On the Lagrangian formulation,

these samples are taken into the same Eulerian volume, however, not at the same point x
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and the portability to the Eulerian PDF is not trivial. On the Eulerian stochastic fields

methods, the filtered PDF is directly obtained. Using similar mathematical reasoning as

in [19], it is possible to obtain the following nth stochastic field equation:

ρ dξnα =− ρũi
∂ξnα
∂xi

dt+
∂

∂xi

(
ρ

(
ν

Sc
+

νsgs
Scsgs

)
∂ξnα
∂xi

)
dt+ ρSnα dt

+ ρ

√
2

(
ν

Sc
+

νsgs
Scsgs

)
∂ξnα
∂xi

dW n
i −

ρ

2τsgs

(
ξnα − φ̃α

)
dt

(2.180)

A possible choice for the subgrid timescale is:

1

τsgs
= Cφ

(ν + νsgs)

∆2
(2.181)

where the constant Cφ is equal to 2. Mustata et al. [100] validated this approach by

simulating a low Mach number Sandia D flame. Also, they compared the results of 8 and

16 fields simulations and due to the small difference concluded that 8 fields were enough

to obtain convergence of the first moments.

The Eulerian stochastic fields method to solve a filtered transport equation for the

PDF has become since a very popular strategy. This is mainly due to its simplicity

to be coupled with traditional CFD codes and good compromised between accuracy

and computational cost. This method has been widely used in combustion applications,

although the majority of them are based in low Mach number solvers [62, 126, 127, 128,

129, 130, 131, 132, 133, 134, 29, 135, 136].

The use of Eulerian stochastic fields to solve a joint scalar PDF using a compress-

ible formulation was firstly proposed by Gong et al. [29]. In their work, they added

a energy correction in the enthalpy equation to account for part of the compressible ef-

fects, although without explicitly adding the total derivative of pressure into the enthalpy

equation. This approach also has a drawback pointed by Gerlinger [137]. As the sample

space do not include an extra thermodynamic variable, such as density or pressure, the

compressible effects on the source term are also neglected. Nevertheless the authors vali-

dated their method by simulating the DLR scramjet and obtaining good agreement with
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experiments.
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Nik (2012) [16]:

The work of Nik [16] was largely based on Delarue and Pope [20], although using LES

techniques. Their work was also published in [21] and revisited in Nouri et al. [138]. It

presents a filtered mass density function Lagrangian formulation aiming reactive and high-

Mach number flows, again independent from a external solver. The FMDF includes the

velocity components, species composition, internal energy and pressure (EPVS-FMDF):

︷ ︸
F (v,ψ, θ, η;x, t) =

∫ +∞

−∞
ρ (x′, t)

3∏

i=1

δ (vi − ui (x′, t))
Ns∏

α=1

δ(ψα − φα(x′, t))

× δ (θ − e(x′, t))) δ (η − p(x′, t))G (x− x′,∆) dx′

(2.182)

A transport equation for the F̃ can be obtained using very similar techniques to Sheikhi

et al. [124]. The Lagrangian equations are therefore obtained employing similar closure

to Delarue and Pope [20]:

dX+
i = U+

i dt+

√
2µ

ρ
dWi (2.183)

dU+
i =

[
−1

ρ
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∂xi
+

2

ρ

∂

∂xj

(
µ
∂ũi
∂xj

)
+

1

ρ

∂

∂xj

(
µ
∂ũj
∂xi

)
− 2

3

1

ρ

∂

∂xi

(
µ
∂ũj
∂xj

)

+Gij

(
U+
j − ũj

)]
dt+

√
C0εsgs dW u

i +

√
2µ

ρ

∂ũi
∂xj

dW x
j

(2.184)

dφ+
α = −Cφωsgs

(
φ+
α − φ̃α

)
dt (2.185)

dE+ =

(
−Ceωsgs

γ

(
E+ − ẽ

)
+

1

γ

(
εsgs
ρ+

+
τ̃ij
ρ+

∂ũi
∂xj

)
+
γ − 1

γ
E+

(
A− B2

γ

))
dt

+
γ − 1

γ
E+B dW p

(2.186)

dP+ = P+ (A dt+B dW p) (2.187)
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where the required proposed closures are:

Gij =
Πd

2ksgsρ
− ωsgs

(
1

2
+

3

4
C0

)
δij (2.188)

ksgs =
1

2

〈(
U+
i − ũi

) (
U+
i − ũi

)〉
lf

(2.189)

εsgs = ρCe
k

3/2
sgs

∆
(2.190)

ωsgs =
1

ρ

εsgs
ksgs

(2.191)

Πd = CΠ

(〈
p
∂ũi
∂xi

〉

l

− 〈p〉l
∂ 〈ũi〉lf
∂xi

)
(2.192)

A =− Ceωsgs
E+

(
E+ − ẽ

)
+

1

E+

(
εsgs
ρ+

+
1

ρ+
τ̃ij
∂ũi
∂xj

)
− γ Πd (P+ − p)
〈(P+ − p) (P+ − p)〉l

− γ ∂ũi
∂xi
− γ

γ − 1

1

ρ+E+

(
∂q̃i
∂xi

+
∂

∂xi

(
µ
∂ẽ

∂xi

)) (2.193)

B = 0 (2.194)

where the operations 〈·〉l and 〈·〉lf represent the average and Favre-average, respectively,

using the Lagrangian particles, which is used to exactly obtain filtered values.

This formulation exactly closes the source term without using the low Mach number

assumption. However, the excessive complexity of the stochastic system still prevents its

use in more challenging simulations. Nik [16] presented results for a three-dimensional

non-reactive mixing layer using the EPVS-FMDF model. However, it still lacks validation

on a supersonic combustion system.

There have been some effort though to bring other Lagrangian attempts to compress-

ible environment using a joint scalar FMDF. It is worth mention the works of [15, 139]
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that expanded the FMDF into compressible flows by correcting the enthalpy equation

and accounting for the total derivative of pressure. Irannejad et al. [140] has presented

a formulation applicable to high-speed two-phases flows. The work of Gerlinger [137]

also solves a scalar FMDF in a compressible environment and it highlights the fact that

it is necessary one more thermodynamic variable to completely obtain the source term.

Nonetheless, Gerlinger propose to use the Lagrangian particles to obtain the pressure

and feed it into the Eulerian solver. In this way, depending on the equation of state,

the pressure can be exactly obtained and there is no need to model subgrid pressure

terms, an idea that it is also employed in this work. Zhang et al. [141] developed a

energy-consistency-preserving approach for the joint scalar FMDF, also fixing the com-

pressible source term on the enthalpy equation and validating it using a shock-tube and

a temporally developing mixing layer.

Table 2.2 summarises some of the works mentioned using the LES-PDF/FDF method.

The proposed solution methods have been mostly the Lagrangian or the Eulerian Monte-

Carlo approaches, however there are other PDF-based methods such as the already men-

tioned Conditional Moment Closure (CMC) [49] and quadrature-based moment method

[9, 37]. Nonetheless, the Monte-Carlo approach is the one with less restrictive assump-

tions.

Reference FDF model Closures Solution
Gao and O’Brien [17] (1993) ρ = cte, Scalar IEM -

Colucci et al. [13] (1998) ρ = cte, Scalar IEM Lagrangian MC
Jaberi et al. [111] (1999) ρ(ψ), Scalar IEM Lagrangian MC

Gicquel et al. [122] (2002) ρ = cte, Velocity Langevin Lagrangian MC
Sheikhi et al. [123] (2003) ρ = cte, Velocity-Scalar IEM/Langevin Lagrangian MC
Mustata et al. [100] (2006) ρ(ψ), Scalar IEM Eulerian MC
Sheikhi et al. [124] (2007) ρ(ψ), Velocity-Scalar IEM/Langevin Lagrangian MC

Jones et al. [62] (2011) ρ(ψ), Spray, Scalar IEM Eulerian MC
Banaeizadeh et al. [15] (2011) ρ(ψ), Comp. Scalar IEM Lagrangian MC

Jones et al. [128] (2012) ρ(ψ), Scalar IEM Eulerian MC
Nik [16] (2012) ρ(ψ), Energy-Pressure VS IEM/Langevin Lagrangian MC

Gong et al. [29] (2017) ρ(ψ), Comp. Scalar IEM Eulerian MC
Gerlinger [137] (2017) ρ(ψ), Comp. Scalar IEM Lagrangian MC

Zhang et al. [141] (2018) ρ(ψ), Comp. Scalar IEM Lagrangian MC

Table 2.2: Influential LES-PDF/FDF works, where MC stands for Monte-Carlo method.
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2.5 Summary

The probability density function methods presented in this chapter form the groundwork

of this thesis. The supersonic combustion phenomena is challenging to numerically repro-

duce using the current mathematical tools available and a specific new combustion model

is necessary. The usage of PDF methods applied to supersonic combustion has been re-

cently investigated, although not fully explored and developed. A PDF method dedicated

to simulate high-speed and reacting flows can reduce the number of uncertainties from

the traditional modelling by closing exactly the velocity and/or reactive terms.

The solution method for the PDF transport equation has been mainly the stochastic

Lagrangian and the Eulerian approaches. Whereas the Lagrangian formulation domi-

nates the PDF solution methods, the Eulerian methods have become popular amongst

researchers because of its simple portability to well-established CFD codes. The Eulerian

stochastic fields method was first introduced by Valiño [19], where instead of a sample

of stochastic particles, a sample of stochastic fields is used to represent the PDF. It is

important to highlight that the fields do not represent a particular realisation of the flow.

However, the stochastic fields and the real flow evolve with the same PDF and share the

same moments.

The Eulerian stochastic fields method therefore constitutes a convenient approach

to solve the PDF equation with reasonable computational effort. In the next chapter

two new formulations aiming the solution of supersonic combustion are presented. These

formulations have been developed under the scope of this work. Its limitations along with

its advantages are also described. Numerical implementation techniques are exposed to

provide an accurate algorithm to solve the LES-PDF transport equation in a compressible

solver.



Chapter 3

LES-PDF modelling for supersonic

reacting flows

3.1 Introduction

Two PDF models are proposed here to be applied to supersonic combustion. This chap-

ter has been partially published in Almeida and Navarro-Martinez [142]. The models

are designed to operate within the large eddy simulation framework. The joint scalar

LES-PDF is presented first and a new joint velocity-scalar is shown afterwards. The

Eulerian stochastic fields method is employed to solve both LES-PDF transport equa-

tion, and equations are derived using the same method as Valiño [19] and Sabel’nikov and

Soulard [101]. The new models are implemented in CompReal, an in-house Fortran-based

compressible code developed to solve complex flows, described in Section 3.4.

87



88 Chapter 3. LES-PDF modelling for supersonic reacting flows

3.2 Joint scalar PDF (SPDF)

The joint scalar fine-grained Eulerian probability density function (PDF) is defined as:

f ′(η,Z;x, t) = δ(h(x, t)− η)×
Ns∏

α=1

δ(Yα(x, t)− Zα) (3.1)

where η, Zα are the sample enthalpy and mass fractions, h(x, t) and Yα(x, t) are the real

enthalpy and mass fractions, respectively. The LES-PDF is defined by applying a spatial

filter to Eq.(3.1):

f =

∫ +∞

−∞
f ′(ψ;x′, t)G(x− x′,∆) dx′ (3.2)

where ψ = [η, Zα]. The LES-PDF must also respect the following property:

∫ +∞

−∞
f(ψ;x, t) dψ = 1 (3.3)

which limits the choice of the filter. For the purpose of this application, the filter has to

be always positive and the box or top-hat filter can be used:

G(x− x′,∆) =





1

∆3
, if |x− x′| ≤ ∆

2

0, otherwise

(3.4)

where ∆ is the cut-off scale in space, taken by the cubic root of the volume of the cell

in the mesh, ∆ = (∆x1∆x2∆x3)1/3. As previously mentioned, this filter satisfies the

normalisation condition and it is also considered that the filtering operation commutes

with spatial differentiation.

The respective Favre filtered density function is:

ρf̃ =

∫ +∞

−∞
ρf ′(ψ;x′, t)G(x− x′,∆) dx′ (3.5)

For completeness, a conditional filtering operation of a function Q(x, t) is also presented
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here:

︷ ︸
Q | ψ =

∫ +∞

−∞
ρ (x′, t)Q(x′, t)f ′(ψ;x′, t)G(x− x′,∆) dx′

∫ +∞

−∞
ρ (x′, t) f ′(ψ;x′, t)G(x− x′,∆) dx′

=
ρ
︷ ︸
Qf

ρf̃
(3.6)

The LES-PDF equation therefore can be obtained by deriving a transport equation for

f ′ and applying a spatial filter [64].

The non-closed equation obtained is:

∂ρf̃

∂t
+
∂ρũif̃

∂xi
=

∂

∂xi

(
Γ
∂f̃

∂xi

)

− ∂

∂Zα

(
ρ
︷ ︸
Sα | ψ f̃

)
+

∂

∂xi

(
ρũif̃ − ρ

︷ ︸
ui | ψ f̃

)

− ∂

∂η


ρ
︷ ︸
1

ρ

Dp

Dt

∣∣∣∣ψ f̃ + ρ

︷ ︸
τij
ρ

∂ui
∂xj
| ψ f̃




+
∂

∂xi


ρ
︷ ︸
Γ
∂f ′

∂xi
−ρΓ

∂f̃

∂xi




− ∂2

∂ψα∂ψβ


ρ
︷ ︸
Γ
∂φα
∂xi

∂φβ
∂xi
| ψ f̃




(3.7)

where Γ = µ/Sc is the molecular transport coefficient, which is assumed the same for all

species and enthalpy, as required in a joint-scalar PDF model shown in Chapter 2. The

Smagorinsky model is chosen to close the convective terms. More sophisticate models

can be used such as the Germano dynamic model [43, 44] and in theory the same LES

models described in the previous chapter can be used. However, the Smagorinsky model,

which assumes isotropy at the subgrid scales, is retained here because of its simplicity

and adequate accuracy:

∂

∂xi

(
ρũif̃ − ρ

︷ ︸
ui | ψ f̃

)
≈ ∂

∂xi

(
µsgs
Scsgs

∂f̃

∂xi

)
(3.8)

It is important to highlight that the source term in this model is not completely closed.

The proposed LES-PDF equation relies on the assumption that the reactive source term

is a function of the sample variables and the filtered pressure. The source term is therefore
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partially modelled as S̃α ≈ Sα (p,ψ).

This assumption has been applied by several authors [14, 15, 29, 137] in order to

avoid the inclusion of one more thermodynamic variable into the LES-PDF equation. It

differs from the traditional low-Mach number assumption because the pressure is not a

reference pressure, but the same pressure that is used along with the compressible flow

solver. However, as pointed out by Gerlinger [137], no investigation have been performed

yet to evaluate the magnitude of possible errors resulting from this assumption.

In this work the (IEM) micromixing model [71] is employed to close remaining terms:

− ∂

∂η


ρ
︷ ︸
1

ρ

Dp

Dt

∣∣∣∣ψ f̃ + ρ

︷ ︸
τij
ρ

∂ui
∂xj
| ψ f̃


+

∂

∂xi


ρ
︷ ︸
Γ
∂f ′

∂xi
−ρΓ

∂f̃

∂xi




− ∂2

∂ψα∂ψβ


ρ
︷ ︸
Γ
∂φα
∂xi

∂φβ
∂xi
| ψ f̃


 ≈ − ∂

∂η

(
Dp

Dt
f̃ + τ̃ij

∂ũi
∂xj

f̃

)

− ∂

∂Zα

(
−1

2

CYα
τsgs

ρ
(
Zα − Ỹα

)
f̃

)
− ∂

∂η

(
−1

2

Ch
τsgs

ρ
(
η − h̃

)
f̃

)

(3.9)

where the subgrid timescale, τsgs, is defined using the model of Jones et al. [128]:

τsgs =

(
µ+ µsgs
ρ∆2

)−1 (
1− exp(−R2)

)
(3.10)

where R is a subgrid scale turbulence Reynolds number defined as µsgs/µ. It should be

noticed that the correction term τsgs should tend to zero in a DNS simulation, as ∆→ 0

in this case. The term (1− exp(−R2)) corrects the micromixing timescale by imposing

the limiting behaviour τsgs → 0 as µsgs → 0. The closed LES-PDF equation is therefore:

∂ρf̃

∂t
+
∂ρũif̃

∂xi
=

∂

∂xi

(
Γ ′
∂f̃

∂xi

)

− ∂

∂Zα

(
ρSα (p,ψ) f̃ − 1

2

CYα
τsgs

ρ
(
Zα − Ỹα

)
f̃

)

− ∂

∂η

(
Dp

Dt
f̃ + τ̃ij

∂ũi
∂xj

f̃ − 1

2

Ch
τsgs

ρ
(
η − h̃

)
f̃

)
(3.11)
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where Γ ′ = µ/Sc + µsgs/Scsgs is the total diffusion coefficient. The Schmidt number Sc

and its subgrid equivalent Scsgs are equal to unity, like the Prandtl numbers (see Chapter

2). The constants CYα and Ch are equal to 2, same value used in previous works [62, 128].

In Equation (3.11), differential diffusion is also neglected. The Smagorinsky model is

used to obtain the subgrid dynamic viscosity1:

µsgs = ρ (Cµ∆)2 ||S̃ij||; S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.12)

where the constant Cµ is equal to 0.15, unless stated otherwise. A value between 0.1

and 0.2 is usually set, and here the value of 0.15 is chosen following other supersonic

combustion LES simulations [18].

In order to solve Eq. (3.11), Eulerian stochastic differential equations are derived

for the mass fractions and enthalpy. These equations are then obtained using the same

method as Sabel’nikov and Soulard [101], employing a different function for M (ψ;x, t)

in Eq.(2.100) to make it equivalent to Eq. (3.11).

The equations for the nth-set of Eulerian stochastic fields are therefore:

∂ρY n
α

∂t
+
∂ρũiY n

α

∂xi
=

∂

∂xi

(
Γ ′
∂Y n

α

∂xi

)
+ ρSnα (p,ψ)

− 1

2

CYα
τsgs

ρ
(
Y n
α − Ỹα

)
+ (2ρΓ ′)

1/2 ∂Y
n
α

∂xi

dW n
i

dt

(3.13)

∂ρH n

∂t
+
∂ρũiH n

∂xi
=

∂

∂xi

(
Γ ′
∂H n

∂xi

)
+
Dp

Dt
+ τ̃ij

∂ũi
∂xj

− 1

2

CH
τsgs

ρ
(
H n − h̃

)
+ (2ρΓ ′)

1/2 ∂H
n

∂xi

dW n
i

dt

(3.14)

where Y n
α (x, t) and H n(x, t) are the stochastic fields for mass fractions and enthalpy,

respectively. Favre-filtered quantities are calculated from the average of the stochastic

fields as:

Q̃ = 〈Q〉 =
1

Nf

Nf∑

n=1

Qn (3.15)

1This is also described in Chapter 2.
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It is useful to point out that in conventional LES the filtered pressure field has a

subgrid part. For the ideal gas equation of state, the filtered pressure can be recasted

into a resolved and subgrid part, as in the following:

p = ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃ +


ρRu

︷ ︸(
Ns∑

α=1

Yα
Mα

)
T −ρRu

(
Ns∑

α=1

Ỹα
Mα

)
T̃


 (3.16)

where the term on the right hand side is usually neglected. In the present work, the

filtered pressure field is solved exactly when applying the ideal gas law:

p = ρR̃T ≈ ρRu

[
1

NF

NF∑

n=1

(
Ns∑

α=1

Y n
α

MWα

)
T n

]
(3.17)

where Ru is the gas universal constant and MWα is the molecular weight of the chemical

specie α. In this manner, no subgrid contribution is neglected and the stochastic fields

will affect the momentum equations.

Finally, the Eulerian stochastic fields equations are coupled with a LES compressible

solver to calculate the remaining variables such as density, velocity and total energy. It

is also useful to define a total resolved enthalpy variable to solve the enthalpy equation

within the compressible framework:

H n
t = H n + K̃ (3.18)

where K̃ = 1
2
ũiũi is the resolved kinetic energy. The transport equation for the resolved

kinetic energy is:

∂ρK̃

∂t
+
∂ρũiK̃

∂xi
=

∂

∂xi

(
Γ ′
∂K̃

∂xi

)
− ũi

∂p

∂xi
+ ũj

∂τ̃ij
∂xj

(3.19)

and the total enthalpy equation can be obtained by adding Eq. (3.19) to Eq. (3.14):

∂ρH n
t

∂t
+
∂ρũiH n

t

∂xi
=

∂

∂xi

(
Γ ′
∂H n

t

∂xi

)
+
∂p

∂t
+
∂τ̃ijũi
∂xj

− 1

2

CH
τsgs

ρ
(
H n − h̃

)
+ (2ρΓ ′)

1/2 ∂H
n

∂xi

dW n
i

dt

(3.20)
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The total enthalpy formulation has the advantage of not requiring the calculation of

spatial gradients of pressure, as previous demanded if the total derivative of pressure was

to be obtained. This reduces potential numerical error from the spatial discretisation of

pressure, which can be large in sharp gradient regions.
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3.3 Joint velocity-scalar PDF (VSPDF)

The joint velocity-scalar fine-grained Eulerian probability density function (PDF) is de-

fined as:

f ′(d,v, ζ,Z;x, t) =δ(ρ(x, t)− d)
3∏

i=1

δ(ui(x, t)− vi)×

δ(et(x, t)− ζ)
Ns∏

α=1

δ(Yα(x, t)− Zα)

(3.21)

where d, vi, ζ and Zα are the sample density, velocity, total energy and mass fraction,

while ρ(x, t), ui(x, t), et(x and Yα(x, t) are the respective real fields. The Favre-filtered

joint velocity-scalar PDF is defined likewise:

ρf̃ =

∫ +∞

−∞
ρf ′(Ψ;x′, t)G(x− x′,∆) dx′ (3.22)

where Ψ = [d,v, ζ,Z]. It is possible to obtain a LES-PDF equation using the same

method for the joint scalar PDF, by deriving a transport equation for f ′ and applying

the spatial filtering operation. This derivation is presented here because it is not so

common as the joint scalar counterpart. The temporal derivative of f ′ is:

ρ
∂f ′

∂t
= − ∂

∂d

(
ρf ′

∂ρ

∂t

)
− ∂

∂vi

(
ρf ′

∂ui
∂t

)
− ∂

∂ζ

(
ρf ′

∂et
∂t

)
− ∂

∂Zα

(
ρf ′

∂Yα
∂t

)
(3.23)

and considering the following the unfiltered equations, neglecting the momentum body

forces:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (3.24)

ρ
∂ρ

∂t
= −ρui

∂ρ

∂xi
− ρ2∂ui

∂xi
(3.25)

ρ
∂ui
∂t

= −ρuj
∂ui
∂xj
− ∂p

∂xi
+
∂τij
∂xj

(3.26)
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ρ
∂et
∂t

= −ρui
∂et
∂xi

+
∂qi
∂xi
− ∂pui

∂xi
+
∂τijuj
∂xi

(3.27)

ρ
∂Yα
∂t

= −ρui
∂Yα
∂xi

+
∂Jα,i
∂xi

+ ρSα (3.28)

The transport equation for f ′ can be obtained by using the previous equations and in-

serting them into Equation (3.23):

∂ρf ′

∂t
+
∂ρuif

′

∂xi
=− ∂

∂d

(
−ρ2∂ui

∂xi
f ′
)

− ∂

∂Zα

(
∂Jα,i
∂xi

f ′ + ρSαf
′
)

− ∂

∂vi

(
− ∂p

∂xi
f ′ +

∂τij
∂xj

f ′
)

− ∂

∂ζ

(
∂qi
∂xi

f ′ − ∂pui
∂xi

f ′ +
∂τijuj
∂xi

f ′
)

(3.29)

By filtering Equation (3.29), it is possible to obtain the unclosed filtered equation for the

joint velocity-scalar PDF:

∂ρf̃

∂t
+
∂ρvif̃

∂xi
= − ∂

∂d

(
−ρ2∂ũi

∂xi
f̃

)
− ∂

∂Zα

(
∂J̃α,i
∂xi

f̃ + ρSα (Ψ) f̃

)

− ∂

∂vi

(
− ∂p

∂xi
f̃ +

∂τ̃ij
∂xi

f̃

)
− ∂

∂ζ

(
∂q̃i
∂xi

f̃ − ∂pũi
∂xi

f̃ +
∂τ̃ijũj
∂xi

f̃

)

− ∂

∂vi


−ρ

︷ ︸
1

ρ

∂p

∂xi

∣∣∣∣Ψ f̃ +
∂p

∂xi
f̃ + ρ

︷ ︸
1

ρ

∂τij
∂xi

∣∣∣∣Ψ f̃ − ∂τ̃ij
∂xi

f̃




− ∂

∂ζ


ρ
︷ ︸
1

ρ

∂qi
∂xi

∣∣∣∣Ψ f̃ − ∂q̃i
∂xi

f̃ − ρ
︷ ︸
1

ρ

∂pui
∂xi

∣∣∣∣Ψ f̃ +
∂pũi
∂xi

f̃

+ρ

︷ ︸
1

ρ

∂τijuj
∂xi

∣∣∣∣Ψ f̃ − ∂τ̃ijũj
∂xi

f̃




− ∂

∂d


−ρ

︷ ︸
ρ
∂ui
∂xi

∣∣∣∣Ψ f̃ + ρ2∂ũi
∂xi

f̃


− ∂

∂Zα


ρ
︷ ︸
1

ρ

∂Jα,i
∂xi

∣∣∣∣Ψ f̃ − ∂J̃α,i
∂xi

f̃




(3.30)

It should be highlighted that the source term here is exactly closed together with the

convective term. No approximation is performed for these closures, as the PDF sample
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space variables allow to determine the entire source and convective terms. The unclosed

conditional terms still require modelling though. The simplified Langevin model [68] is

used to close the unknown terms for the velocity and density part:

− ∂

∂vi


−ρ

︷ ︸
1

ρ

∂p

∂xi

∣∣∣∣Ψ f̃ +
∂p

∂xi
f̃ + ρ

︷ ︸
1

ρ

∂τij
∂xi

∣∣∣∣Ψ f̃ − ∂τ̃ij
∂xi

f̃




− ∂

∂d


−ρ

︷ ︸
ρ
∂ui
∂xi

∣∣∣∣Ψ f̃ + ρ2∂ũi
∂xi

f̃


 ≈

− ∂

∂vi

(
ρGij (vj − ũj) f̃

)
+

∂2

∂vi∂vi

(
1

2
C0εsgsf̃

)

(3.31)

The Langevin model of Delarue and Pope [20] could be used to improve the accuracy

and account for extra effects of compressibility, such as in the density part. However,

the simplified Langevin model has been chosen because of its simple implementation and

widespread use within combustion. The tensor Gij is then defined as:

Gij = − εsgs
ksgs

(
1

2
+

3

4
C0

)
δij (3.32)

where ksgs and εsgs are the subgrid kinetic energy and the dissipation of the subgrid

kinetic energy, respectively. The IEM micromixing model [71] is selected to close the

remaining unknown terms on the total energy and mass fractions part:

− ∂

∂ζ


ρ
︷ ︸
1

ρ

∂qi
∂xi

∣∣∣∣Ψ f̃ − ∂q̃i
∂xi

f̃ − ρ
︷ ︸
1

ρ

∂pui
∂xi

∣∣∣∣Ψ f̃ +
∂pũi
∂xi

f̃

+ρ

︷ ︸
1

ρ

∂τijuj
∂xi

∣∣∣∣Ψ f̃ − ∂τ̃ijũj
∂xi

f̃


− ∂

∂Zα


ρ
︷ ︸
1

ρ

∂Jα,i
∂xi

∣∣∣∣Ψ f̃ − ∂J̃α,i
∂xi

f̃


 ≈

− ∂

∂ζ

(
−1

2
Cet

εsgs
ksgs

ρ (ζ − ẽt) f̃
)
− ∂

∂Zα

(
−1

2
CYα

εsgs
ksgs

ρ
(
Zα − Ỹα

)
f̃

)

(3.33)
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and the closed LES-PDF transport equation is therefore:

∂ρf̃

∂t
+
∂ρvif̃

∂xi
= − ∂

∂d

(
−ρ2∂ũi

∂xi
f̃

)

− ∂

∂Zα

(
∂J̃α,i
∂xi

f̃ + ρSα (Φ) f̃ − 1

2
CYα

ε

k
ρ
(
Zα − Ỹα

)
f̃

)

− ∂

∂vi

(
− ∂p

∂xi
f̃ +

∂τ̃ij
∂xi

f̃ + ρGij (vj − ũj) f̃
)

+
∂2

∂vi∂vi

(
1

2
C0εsgsf̃

)

− ∂

∂ζ

(
∂q̃i
∂xi

f̃ − ∂pũi
∂xi

f̃ +
∂τ̃ijũj
∂xi

f̃ − 1

2
Cet

εsgs
ksgs

ρ (ζ − ẽt) f̃
)

(3.34)

The chosen solution method is also the Eulerian stochastic fields. The equations are

derived using the characteristics method for the Lagrangian formulation, as in Soulard

and Sabel’nikov [103]. Equation (3.34) is recast using the filtered mass density function

definition F̃ (d,v, ζ,Z,x; t) = ρ(x, t)f̃(d,v, ζ,Z;x, t) [111]:

∂F̃

∂t
+
∂viF̃

∂xi
= − ∂

∂d

(
−ρ∂ũi

∂xi
F̃

)

− ∂

∂Zα

(
1

ρ

∂J̃α,i
∂xi

F̃ + Sα (Φ) F̃ − 1

2
CYα

εsgs
ksgs

(
Zα − Ỹα

)
F̃

)

− ∂

∂vi

(
−1

ρ

∂p

∂xi
F̃ +

1

ρ

∂τ̃ij
∂xi

F̃ +Gij (vj − ũj) F̃

)
+

∂2

∂vi∂vi

(
1

2

C0εsgs
ρ

F̃

)

− ∂

∂ζ

(
1

ρ

∂q̃i
∂xi

F̃ − 1

ρ

∂pũi
∂xi

F̃ +
1

ρ

∂τ̃ijũj
∂xi

F̃ − 1

2
Cet

εsgs
ksgs

(ζ − ẽt) F̃

)

(3.35)

The Lagrangian stochastic equations equivalent to the Fokker-Planck Equation (3.35) are

directly obtained:

dX+ = U+
i dt (3.36)

dρ+ = −ρ∂ũi
∂xi

dt (3.37)

dU+
i = −1

ρ

∂p

∂xi
dt+

1

ρ

∂τ̃ij
∂xi

dt+Gij

(
U+
j − ũj

)
dt+

√
C0
εsgs
ρ

dWi (3.38)

dY +
α =

1

ρ

∂J̃α,i
∂xi

dt+ Sα (Ψ) dt− 1

2
CYα

εsgs
ksgs

(
Y +
α − Ỹα

)
dt (3.39)
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de+
t =

1

ρ

∂q̃i
∂xi

dt− 1

ρ

∂pũi
∂xi

dt+
1

ρ

∂τ̃ijũj
∂xi

dt− 1

2
Cet

εsgs
ksgs

(
e+
t − ẽt

)
dt (3.40)

The previous equations results in the following Fokker-Planck equation for the Lagrangian

FMDF F ∗(d,v, ζ,Z,x; t):

∂F ∗

∂t
+
∂viF ∗

∂xi
= − ∂

∂d

(
−ρ∂ũi

∂xi
F ∗
)

− ∂

∂Zα

(
1

ρ

∂J̃α,i
∂xi

F ∗ + Sα (Ψ) F ∗ − 1

2
CYα

εsgs
ksgs

(
Zα − Ỹα

)
F ∗

)

− ∂

∂vi

(
−1

ρ

∂p

∂xi
F ∗ +

1

ρ

∂τ̃ij
∂xi

F ∗ +Gij (vj − ũj) F ∗
)

+
∂2

∂vi∂vi

(
1

2
C0
εsgs
ρ

F ∗
)

− ∂

∂ζ

(
1

ρ

∂q̃i
∂xi

F ∗ − 1

ρ

∂pũi
∂xi

F ∗ +
1

ρ

∂τ̃ijũj
∂xi

F ∗ − 1

2
Cet

εsgs
ksgs

(ζ − ẽt) F ∗
)

(3.41)

where the FMDF can be recovered throught the average of F ∗:

F̃ (r, vi, ζ, Zα,x; t) = 〈F ∗(r, vi, ζ, Zα,x; t)〉 (3.42)

In order to solve using Eulerian stochastic equations, the Lagrangian equations can be

seen as the stochastic characteristics of the Eulerian stochastic partial differential equa-

tions (SPDEs) [103]. The nth-set of Eulerian stochastic fields is:

∂%n

∂t
+ U n

i

∂%n

∂xi
= −ρ∂ũi

∂xi
(3.43)

∂U n
i

∂t
+ U n

j

∂U n
i

∂xj
= −1

ρ

∂p

∂xi
+

1

ρ

∂τ̃ij
∂xi

+Gij

(
U n
j − ũj

)
+

√
C0
εsgs
ρ

dW n
i

dt
(3.44)

∂Y n
α

∂t
+ U n

i

∂Y n
α

∂xi
=

1

ρ

∂J̃α,i
∂xi

+ Sα (Ψ)− 1

2
CYα

εsgs
ksgs

(
Y n
α − Ỹα

)
(3.45)

∂E n
t

∂t
+ U n

i

∂E n
t

∂xi
=

1

ρ

∂q̃i
∂xi
− 1

ρ

∂pũi
∂xi

+
1

ρ

∂τ̃ijũj
∂xi

− 1

2
Cet

εsgs
ksgs

(E n
t − ẽt) (3.46)



3.3. Joint velocity-scalar PDF (VSPDF) 99

where %n(x, t), U n
i (x, t), Y n

α (x, t) and E n
t (x, t) are the stochastic density, velocity, mass

fraction and total energy of the nth set of Eulerian stochastic fields. However, these

set of equations does not ensure that each realisation respects continuity. In addition, as

depicted in Petrova [105], the characteristics of these equations may cross, which results in

numerical shocks if a conventional numerical scheme is used. Two further approximations

are proposed in this work. The first is to substitute the pressure terms by the stochastic

pressure field, P(x, t), instead of the filtered pressure, p, neglecting subgrid pressure

fluctuations. This results in a different momentum equation from the Burgers’ equation,

preventing the occurrence of numerical shocks. The stochastic pressure can be directly

obtained from stochastic variables P ≡P(%,Ui,Et,Yα) and present the same properties

of the real pressure field.

The other approximation used is to neglect the stochastic difference on the right hand

side of the continuity equation if written on conservative form, so it can ensure mass

conservation for all set of stochastic fields. This approximation does not affect the first-

moments and is exact if the density is constant. Although this approximation can be

avoided in a Lagrangian framework, the stochastic PDEs are aimed to be coupled with a

Eulerian solver. This numerical approximation can be understood as an additional force

to prevent the fields from severe separation by “adding” or “removing” stochastic density.

The proposed set of Eulerian stochastic PDEs is:

∂%n

∂t
+ U n

i

∂%n

∂xi
= −%n∂U

n
i

∂xi
(3.47)

∂U n
i

∂t
+ U n

j

∂U n
i

∂xj
= − 1

%n
∂Pn

∂xi
+

1

ρ

∂τ̃ij
∂xi

+Gij

(
U n
j − ũj

)
+

√
C0
εsgs
ρ

dW n
i

dt
(3.48)

∂Y n
α

∂t
+ U n

i

∂Y n
α

∂xi
=

1

ρ

∂J̃α,i
∂xi

+ Sα (Ψ)− 1

2
CYα

εsgs
ksgs

(
Y n
α − Ỹα

)
(3.49)

∂E n
t

∂t
+ U n

i

∂E n
t

∂xi
=

1

ρ

∂q̃i
∂xi
− 1

ρ

∂pũi
∂xi

+
1

ρ

∂τ̃ijũj
∂xi

− 1

2
Cet

εsgs
ksgs

(E n
t − ẽt) (3.50)
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The stochastic PDEs can be recast in a conservative formulation:

d%n

dt
+
∂%nU n

i

∂xi
= 0 (3.51)

d%nU n
i

dt
+
∂%nU n

j U n
i

∂xj
= −∂P

n

∂xi
+
%n

ρ

∂τ̃ij
∂xi

+ %nGij

(
U n
j − ũj

)
+ %n

√
C0
εsgs
ρ

dW n
i

dt
(3.52)

d%nY n
α

dt
+
∂%nU n

i Y n
α

∂xi
=
%n

ρ

∂J̃α,i
∂xi

+ %nSα (Ψ)− 1

2
CYα

εsgs
ksgs

%n
(
Y n
α − Ỹα

)
(3.53)

d%nE n
t

dt
+
∂%nU n

i E n
t

∂xi
=
%n

ρ

∂q̃i
∂xi
− %n

ρ

∂pũi
∂xi

+
%n

ρ

∂τ̃ijũj
∂xi

− 1

2
Cet

εsgs
ksgs

%n (E n
t − ẽt) (3.54)

The employed closure relation for the dissipation of the subgrid kinetic energy, εsgs, is

the following2:

εsgs = Cεk
3/2
sgs/∆; (3.55)

where the constant Cε is equal to 1.05. The micromixing constants CYα and Cet are equal

to 2 and the Langevin constant is set to 2.1. The subgrid kinetic energy, ksgs, can be

directly obtained from the stochastic fields information:

ksgs =
1

2


 1

Nf

Nf∑

n=1

(U n
i − ũi)2


 (3.56)

Depending on the initial condition, all velocity fields may share the same initial value,

and the subgrid kinetic energy would be zero and the dissipation as well. The Yoshizawa

model, Eq.(2.29) can be used to obtain a modelled ksgs at t = 0 and trigger turbulence.

Alternatively, the fields may possess variance as a initial condition, therefore imposing

different values for each field. The energy spectra can also be imposed for a determined

2See in Chapter 2.
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flow field with initial subgrid reproduced by the stochastic fields.

At last, the filtered variables can be obtained from the average of the Eulerian stochas-

tic fields. For a variable Q(x, t), it is possible to recover the filtered and the Favre-filtered

values:

Q =
1

Nf

Nf∑

n=1

Qn; Q̃ =

∑Nf
n=1 %

nQn

∑Nf
n=1 %

n
(3.57)

The developed Eulerian stochastic differential equations are equivalent to Eq.(3.34) with

mild assumptions. The continuity and momentum equations resemble those of Azarnykh

et al. [107]. This set of equations also does not generate the numerical shocks predicted

in Petrova [105] if a conventional discretisation scheme is employed. Most important, the

convective and source terms are closed and do not require any modelling, improving the

numerical accuracy of supersonic combustion and other high-speed reacting flows.



102 Chapter 3. LES-PDF modelling for supersonic reacting flows

3.4 CompReal solver

The proposed equations have been implemented in CompReal, an in-house Fortran-based

DNS finite-difference compressible code. In the development of this work, the code has

been extended to large eddy simulation and reactive flows environment. The stochastic

equations have been implemented within CompReal solution algorithm and are sum-

marised in the following sections.

3.4.1 Discretisation schemes

Accurate discretisation schemes are of considerable importance in compressible solvers.

The spatial discretisation schemes employed in CompReal are derived from two fami-

lies of schemes. One is the dispersion-relation-preserving (DRP) scheme [143], which in

CompReal is set to fourth order of accuracy while using a 13-point stencil (unless stated

otherwise). The DRP scheme is a high-order, low dispersive and low dissipative explicit

scheme [144]. The classical finite difference uses the following approximation on the node

l, considering M values of f to the right and N values to the left:

(
∂f

∂x

)

l

≈ 1

∆x

M∑

j=−N

ajfl+j (3.58)

The coefficients aj are usually determined by expanding the derivative in Taylor series.

The main idea of the DRP discretisation is to minimise the error between the Fourier

transforms of the analytical derivative and the numerical one by optimising the finite-

difference coefficients. By taking the Fourier transform of Eq.(3.58):

∫ +∞

−∞

(
∂f

∂x

)

l

e−iλx dx ≈
∫ +∞

−∞

1

∆x

M∑

j=−N

ajfl+je
−iλx dx

iλf(λ) ≈
(

1

∆x

M∑

j=−N

aje
−iλj∆x

)
f(λ) = iκf(λ)

(3.59)
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where the quantity κ is equal to:

κ =
−i
∆x

M∑

j=−N

aje
−ijλ∆x (3.60)

and must be set as close as the real λ as possible. The integrated error therefore must

be minimised:

E =

∫ π/2

−π/2
|λ∆x− κ∆x|2 d(λ∆x) (3.61)

and appropriate coefficients aj arise to minimise the function E . The coefficients depend

on the chosen discretisation order and a few examples can be found on [143] and [144].

The scheme therefore preserves the low dissipation of the centred difference schemes. It

is also low dispersive, since the wave speeds of the numerical discretisation are preserved

the most in comparison to the wave speed of the analytical partial derivative.

The DRP scheme is used to discretise the convective derivatives. The modelling of

acoustics is not the main focus of this work although it is useful to employ a spatial

discretisation scheme that reduces the spurious numerical oscillations that may be intro-

duced by the high-order DRP scheme.

The Harten-Lax-van Leer-Contact total variation diminishing (HLLC-TVD) solver of

Toro et al. [145] is also employed in CompReal for the convective terms in regions of sharp

gradients to reduce the instability and increase the robustness of the code. The HLLC

solver recasts the differential equations into convective form. For instance, considering

the Euler equations for an one-dimensional and single component flow:

∂U

∂t
+
∂F (U)

∂x
= 0 (3.62)

where U represent the conserved variables and F (U) the respective fluxes:

U = [ρ, ρu, ρet]
T ; F (U) =

[
ρu, ρu2, ρu(et + p)

]T
(3.63)
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The integral form is: ∮
(U dx− F (U) dt) = 0 (3.64)

By considering a time-marching procedure in a control volume of dimensions ∆x and ∆t,

the integral over this volume centred in the point i is:

Un+1
i = Un

i −
∆t

∆x

(
Fi+1/2 − Fi−1/2

)
(3.65)

and it is necessary to define the fluxes Fi+1/2 and Fi−1/2. These fluxes are determined

from the Harten-Lax-van Leer contact solver, which is a improvement to the HLL solver

by considering the contact surface into the wave pattern [145]. The second order total

variation diminishing (TVD) limiter scheme is used to calculate the values at i+ 1/2 and

i− 1/2 necessary to obtain the fluxes.

The convective terms are therefore discretised through a hybrid DRP/HLLC-TVD

scheme. The coupling is perfomed using a sensor similar to the one of Ferrer [26]. Con-

sidering a function Q ∈ [0,∞) centred at a node i on x-direction, the sensor S returns

two possible values:

S =





1, if |Qi+1 −Qi−1| > CHyQi

0, otherwise

(3.66)

where CHy is a coefficient that needs to be specified, usually taken as 0.15. This condition

is searched in density, pressure and mass fractions. If the condition is met for any of these

properties, then the sensor is activated. If S = 1, then a sharp gradient is detected and

the HLLC-TVD discretisation is employed. Otherwise, the DRP discretisation is used:

(
∂f

∂x

)

i

≈ S
1

∆x

(
f(Q)i+1/2 − f(Q)i−1/2

)
+ (1−S )

1

∆x

M∑

j=−N

ajfi+j (3.67)

This scheme is therefore second order accurate in sharp gradient regions and at least

fourth order accurate in regions without shocks.

The remaining spatial derivatives are discretised with a fourth order classical central

differences, as in Eq.(3.58). This discretisation is employed mostly in viscous terms,
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where it is expected to introduce stability and not to play a major role in supersonic

combustion at high Reynolds number.

The temporal integration is performed using a third order accurate explicit determin-

istic Runge-Kutta multistep. This low-storage scheme requires only two storage locations

and uses three inner steps to advance to the next time step. For each inner step, the

following algorithm is executed [146]:

(U)n2 = (U)n1

(U )n+1
1 = (U)n1 + Cn

2 ∆tR (U)n1

(U )n+1
2 = (U)n2 + Cn

1 ∆tR (U)n1

(3.68)

where the subindex 1 and 2 mean the different storage positions and R (U) is the vector

representing all the terms on the right-hand side of the Eulerian stochastic equations.

The constants Cn
1 and Cn

2 are chosen to be 2/3 and 1/4 for the first inner step, 5/12 and

3/20 for the second and 3/5 and 3/5 for the third, respectively.

The use of a third-order deterministic Runge-Kutta time scheme does not ensure the

same accuracy when applied to stochastic differential partial equations. In fact, there

are extra derivatives that must be considered because of the Wiener term, which are not

considered here. The scheme is therefore as accurate as a weak first order scheme and

strong 0.5 order for the stochastic equations, but keeps the third-order accuracy for the

deterministic equations. For this approach to be consistent, the Wiener term dWi/ dt

remains constant within the inner steps of the Runge-Kutta integrator, i.e.: the random

numbers are only generated at the beginning of the time step.

The Euler-Maruyama scheme is an explicit stochastic first order temporal integrator

that has been usually employed with the stochastic fields approach in low Mach number

solvers [62, 128]. However, this discretisation is unconditional unstable if applied to

all equation terms and must be coupled with other stable integrator at least for the

deterministic terms to prevent spurious oscillations. The chosen explicit Runge-Kutta

method is conditionally stable and if applied to the stochastic term it reverts to the

Euler-Maruyama scheme in terms of accuracy.
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In order to remove grid-to-grid oscillations, a selective explicit filter is also applied

[144]. The explicit filter is applied only in regions where the DRP discretisation is used,

to prevent over-dissipation when the HLLC-TVD is employed. The filtering scheme

implemented in CompReal uses a 13-point stencil and it is eighth order accurate.

3.4.2 Reaction term

The chemical mechanism is a very stiff system and requires implicit integration to be

solved even using small time steps to retain stability. The Newton-Raphson method is

used to obtain the reaction terms S(p,ψ) and S(Ψ) for the joint scalar PDF and velocity-

scalar PDF, respectively. By definition, the source term is a temporal derivative of the

chemical species and it can be rewritten in vectorial format to include all species:

∂Y

∂t
= S; Y = [Y1,Y2, ...,YNs ]

T (3.69)

and to solve this equation using an implicit approach, it is possible to use:

Y n+1 = Y n + S∆t (3.70)

where n is the index for the inner time step and S = S (Y n+1,H n, pn) for the scalar

PDF and S = S (Y n+1,H n,Pn) for the velocity scalar PDF, where the enthalpy is

obtained from the total energy and velocity. Since the variables to be integrated are the

chemical species mass fractions, they are the only ones that need to be advanced in time.

The enthalpy and pressure therefore are taken constant within Eq.(3.70).

Therefore, the evaluation of the source term requires the calculation of Y n+1. The

Newton-Raphson method is used to to figure out the composition Y in the inner time

step n+ 1 by defining the following function f : Y 7→ Y :

f
(
Y n+1

)
= S

(
Y n+1, ...

)
−
(
Y n+1 − Y n

∆t

)
= 0 (3.71)

The idea of the Newton-Raphson method is to find which Y n+1 gives the root of f (Y n+1).
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The search through the values of Y n+1 is performed using the Taylor approximation on

the function f :

f
(
Y n+1 + δY n+1

)
= f

(
Y n+1

)
+
∂f (Y n+1)

∂Y n+1
δY n+1 (3.72)

where δY n+1 is the differential increment in Y n+1 space and ∂f (Y n+1) /∂Y n+1 is the

Jacobian matrix:

J =
∂f (Y n+1)

∂Y n+1
=
∂S (Y n+1, ...)

∂Y n+1
− 1

∆t
I (3.73)

Knowing that δY n+1 = Y n+1
j+1 −Y n+1

j , where the index j represents the Newton-Raphson

step, it is possible to obtain the next value j + 1 by setting Eq. (3.72) equals to zero:

Y n+1
j+1 = Y n+1

j − J−1
j f

(
Y n+1
j

)
(3.74)

The Jacobian matrix requires inversion which is done using linear algebra algorithms.

Once Y n+1 is found, Equation 3.70 is used to obtain the reactive term on all the stochastic

equations. The temporal integration is therefore partially explicit, since the reactive term

is obtained implicitly. This does not affect, however, the accuracy of the Runge-Kutta

solver, as it is still a deterministic term.

3.4.3 LES-PDF algorithm

The discretisation procedures described previously are coupled with the stochastic equa-

tions. For all Wiener processes, the derivative dW n
i is approximated by dt1/2γ, where

γ = {−1, 1} is a dichotomic vector [19], ensuring that 〈dWi〉 = 0. The dichotomic vector

could be Gaussian, although it would require a large number of fields to guarantee that

〈dWi〉 = 0 and 〈dWi dWj〉 = δij dt.

The joint scalar PDF algorithm procedure is presented in Figure 3.1. It describes how

the multi-step Runge-Kutta integration is performed. This algorithm is then executed

three times, one for each inner Runge-Kutta step, to advance to the next time step. It

should be highlighted the role of the LES solver, that solves Eqs.(2.16), (2.26), (2.33),
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Compressible LES solver

Start of step n

Estimate pn+1

Stochastic PDF solver

Obtain closed p = ρR̃T

Progress to next inner step n+ 1

pn+1

ρn, ũnj , Ỹ n
α , h̃n

Ỹ n+1
α , h̃n+1

∂pn

∂t

ρn+1, ũn+1
j , ẽn+1

t , Ỹ n+1
α

ρn, ũnj , ẽnt , Ỹ n
α , h̃n, pn

ρn+1, ũn+1
j , ẽn+1

t

Figure 3.1: Algorithm proposed to couple the stochastic fields equations of the joint scalar
PDF model with the compressible LES solver.

(2.35) and (2.39). This part generates a first estimate of the filtered pressure pn+1 ne-

glecting the subgrid terms, which is crucial to obtain the temporal derivative of pressure

required in the stochastic total enthalpy equation. The LES solver also generates the

filtered density and velocity fields, used as input for the stochastic equations. The total

energy equation, although redundant, is therefore solved here.

The stochastic PDF solver is responsible to advance the Runge-Kutta inner step for

all stochastic equations. In this case, the stochastic PDEs for mass fractions, Eq. (3.13),

and total enthalpy, Eq.(3.20). It also generates the filtered values Ỹα and h̃ by taking the

average of the stochastic fields. The filtered pressure p is recalculated afterwards without

neglecting the subgrid part this time through p = ρR̃T .

The algorithm to solve the stochastic equations for the joint velocity-scalar PDF is

simpler than for the joint scalar PDF. This is because of the Equations (3.51), (3.52),

(3.53) and (3.54) do not require coupling from an external LES solver. Figure 3.2 presents

this algorithm, where the stochastic PDF solver is responsible for integrating the stochas-
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Stochastic PDF solver

Start of step n

Progress to next inner step n+ 1

ρn+1, ũn+1
j , ẽn+1

t , Ỹ n+1
α , pn+1

ρn, ũnj , ẽnt , Ỹ n
α , pn

Figure 3.2: Algorithm proposed to solve the stochastic fields equations of the joint
velocity-scalar PDF model.

tic equations and obtain the filtered and Favre-filtered variables at the end of each step.

3.4.4 Boundary conditions

For supersonic inlets, the boundary conditions can be completely specified. For zero-

gradient configurations, the halo cells (auxiliary cells that extend the original domain

beyond the boundary to ensure the conditions) are set equal to the first point on the

mesh. The Navier-Stokes Characteristics Boundary Conditions (NSCBC) method, devel-

oped by Poinsot and Lele [147], has been the first choice for compressible reactive flows

recently [26, 18] and is also implemented in CompReal. The NSCBC are very important

for acoustics analysis and present an useful capability of damping unwanted pressure

reflections for far-field boundary conditions.

However, the modelling of acoustics is not evaluated in this work. The first order

boundary conditions are more robust and present higher stability than the NSCBC. They

do not have a specific treatment to deal with pressure reflections, though. In CompReal

the HLLC-TVD is specified to regions close to the boundaries, i.e.: the first and last 5%

of the domain size in the direction of interest. In this way, spurious numerical oscillations

and reflections are damped through the dissipative nature of the HLLC-TVD scheme.

For adiabatic wall boundaries, the velocity is specified and the remaining variables

are set to zero gradients. Close to the wall the HLLC-TVD is used for the convective



110 Chapter 3. LES-PDF modelling for supersonic reacting flows

terms, as it is a near-boundary region. The remaining derivatives, which are discretised

with fourth order central differences, decrease their order as approaching to the wall,

remaining centred. At the last node, first-order one-sided derivatives are employed.

3.4.5 Mesh generation and complex geometries

At the current state of the code, the mesh generation algorithm in CompReal allows

structured meshes only. The meshes can be non-uniform though, using different functions

to distribute the grid points accordingly. For instance, a exponential function ca be used

to describe the x-coordinate points distribution, increasing the mesh density close to walls

or to the center of the domain, or a combination of both, as shown in Figure 3.3.

The simulation of complex geometries, such as a scramjet, can be performed using the

Immersed Boundary Condition (IBC) method [148]. In this method an arbitrary geome-

try is immersed into a structured mesh and the points close to boundary requires special

Figure 3.3: Example of mesh used in burners configurations. The centre of x-coordinate
concentrate more points as well as the base of the geometry, y-coordinate, and near the
burner.
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Figure 3.4: Immersed Boundary conditions method - Figure extracted from CompReal
User & Developer manual [149].

treatment to reproduce the geometry surface. Figure 3.4 presents a surface immersed into

an uniform grid. The method consists in the projection of the ghost points (GP) into the

fluid region. The projected IP point requires interpolation from the resolved neighbor

points to generate a value, and then calculate the boundary points (BI). The interpolated

values are calculated using also a a second order TVD reconstruction scheme with the

Van Leer limiter.

At last, the complex geometries are read in CompReal using the GNU Triangulated

Surface (GTS) Library. This library transforms CAD/STL geometries into GTS files.

These GTS files are used in CompReal to define the surfaces employed by the immersed

boundary method. Therefore, complex geometries can be simulated using structured and

Cartesian coordinates.
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3.5 Summary

This chapter presents the derivation and formulation of the two set of Eulerian stochas-

tic equations able to solve the joint scalar and joint velocity-scalar LES-PDF transport

equation. The joint scalar approach has been developed in the recent literature for com-

pressible flows using the approximation S (ψ, p). The developed formulation calculates

the exact filtered pressure, which for this kind of PDF models had been only performed in

Lagrangian framework. This potentially increases the accuracy of the joint scalar model,

which may compensate the approximation on the source term. An algorithm has been

developed to couple the Eulerian stochastic equations into a compressible LES solver.

The developed joint velocity-scalar PDF model is a new formulation, including the

density and the total energy as sample variables, along with the velocity and mass frac-

tions. The LES-PDF transport equation is solved using the Eulerian stochastic fields

method, where the equations have been derived using the Lagrangian approach and the

method of characteristics. Mild assumptions are considered for the stochastic characteris-

tics not to cross and generate numerical shocks. A stochastic pressure, that has the same

properties as the real pressure field, is proposed and used in the momentum equation,

instead of the filtered pressure. The stochastic continuity equation also neglects possible

stochastic mass source terms, which are purely numerical. This approximation can be

interpreted as the inclusion of a non-specified additional model to compensate this source

terms and ensure mass conservation.

The in-house finite-difference compressible code CompReal has also been presented,

with its main capabilities described. The temporal integrator is the third order Runge-

Kutta that reverts to a strong 0.5-order and weak first order because the high-order

Wiener terms are not included. The conditionally stability of the Runge-Kutta schemes

are preserved, though. The convective fluxes discretisation is performed using a hybrid

fourth/second order DRP/HLLC-TVD scheme and remaining spatial derivatives are dis-

cretised using a fourth order centred differences model. An explicit filter employing a

13-point stencil and eighth order accurate is used in the DRP regions. The methods

presented in this chapter are verified and validated in the next chapter.



Chapter 4

Numerical verification and validation

4.1 Introduction

The numerical verification performed aims the investigation of the discretisation schemes

employed in CompReal and the implemented LES-PDF models. In this chapter the

classical test case of homogeneous isotropic turbulence (HIT) is evaluated, in which kinetic

energy spectra are calculated along with other turbulent variables such as enstrophy. The

HIT configuration is inspired in the setup of Garnier et al. [150]. This test case has been

proposed to assess the numerical behaviour of the code and the LES coupling.

The proposed LES-PDF models are further investigated by using the reactive shock

tube of Fedkiw et al. [151]. This one-dimensional test case allows the investigation of the

LES-PDF accuracy in comparison to DNS and the convergence of the stochastic partial

differential equations. Because of its simple geometry, a large number of stochastic fields

can be employed and their statistical behaviour, such as the moments, are evaluated.

The simulation of reactive mixing layers, both two and three-dimensional, is performed

within the same configuration of Ferrer [26]. The results are then compared with DNS

data [26] and an analysis of its performance and accuracy is exposed.

At last, the simulation of supersonic burners are performed to conduct the validation

of the code. The experimental data of the burners of Evans et al. [152] and Cheng et al. [7]

are classical benchmarks for reacting and compressible codes and have previously inves-

113
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tigated in the literature. Therefore, these two three-dimensional test cases are simulated

here to evaluate CompReal performance under harsh and real burners configuration.
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4.2 Homogeneous isotropic turbulence

The freely decaying homogeneous isotropic turbulence (HIT) test case is a classical bench-

mark for compressible code performance evaluation. Although being challenging to re-

produce it experimentally, the HIT is simple to set numerically and its results have major

theoretical importance. It has been used extensively in the literature for numerical dis-

cretisation and large-eddy simulation evaluation [153, 150, 154].

The HIT chosen configuration is the same as used by Garnier et al. [150]. The single

component non-reactive inviscid (infinite Reynolds number) equations are solved in non-

dimensional form. The initial density is uniform and equals to unity in the whole domain.

The initial random divergence-free velocity field is calculated using a Gaussian PDF noise

and imposing the spectra of E(k) ∼ k4e−2(k2/k20) with k0 = 2. The initial pressure field

is therefore calculated by solving a Poisson equation providing a divergence-free velocity

field. The temperature is then evaluated using the relation:

p

ρ
=

T

γMa2
rms

(4.1)

where γ is set constant and equal to 1.4. The initial rms Mach number, Marms, is chosen

equal to 0.2 or 1.0, depending on the case. The domain size is 2π and it is discretised

using 643 nodes. The boundary conditions are periodic. All simulations are performed

up to t = 10 non-dimensional units, which allows 10/π initial eddy-turnover times [150].

4.2.1 Discretisation performance

In this section the DRP discretisation scheme is evaluated together with the HLLC-TVD

and the hybrid scheme described previously for the convective term. Each scheme is also

investigated when used in conjunction with the Smagorinsky model. The boundaries are

periodic, so the discretisations schemes are freely applied without being specified to be

the HLLC-TVD scheme.

The kinetic energy spectrum is a valuable tool to check if the schemes can reproduce

the Kolmogorov 4/5 law [155], which means that the energy spectrum presents a -5/3
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slope in the inertial range in low-Mach number conditions. The energy spectra is defined

as:

E(k) =
1

2
(u(k) · u∗(k)) (4.2)

where k = |k| =
√
k2

1 + k2
2 + k2

3 and u(k) is the velocity u(x) in the Fourier space

obtained through the three-dimensional Fourier transform:

u1(k) =
1

(2π)3

∫ +∞

−∞
e−ik3x3

∫ +∞

−∞
e−ik2x2

∫ +∞

−∞
e−ik1x1u1(x) dx1 dx2 dx3 (4.3)

u2(k) =
1

(2π)3

∫ +∞

−∞
e−ik3x3

∫ +∞

−∞
e−ik2x2

∫ +∞

−∞
e−ik1x1u2(x) dx1 dx2 dx3 (4.4)

u3(k) =
1

(2π)3

∫ +∞

−∞
e−ik3x3

∫ +∞

−∞
e−ik2x2

∫ +∞

−∞
e−ik1x1u3(x) dx1 dx2 dx3 (4.5)

The energy spectra for the different simulations with Marms = 0.2 is shown in Fig-

ure 4.1 at the last time step. It can be seen that the hybrid scheme generates at the final

time step a spectra which is very similar to those generated by the DRP simulations.

This result is expected, since the sensor in the hybrid scheme would be mostly off in an

incompressible simulation without shocks. It should be pointed out the better spectra

achieved by using the Smagorinsky model for the DRP/hybrid models, which reproduce

the -5/3 slope in the inertial range between k = 5 and k = 16. The HLLC-TVD, in

contrast, is very dissipative and both results, with and without the Smagorinsky model,

do not reproduce accurately the Kolmogorov law. At high-wave numbers, all schemes

seem to achieve same level of numerical dissipation because of the explicit filter influence.

The spectra for all discretisation schemes using Marms = 1.0 is reproduced in Fig-

ure 4.2. It is possible now to notice the influence of the hybrid scheme into the DRP

scheme. The results are slightly more dissipative and energy is lost faster with the hy-

brid, mainly because of the shocks generated. Although the initial condition presents

supersonic speeds, at the last time step the flow is predominantly at low Mach num-

ber condition because of the dissipation effects, so the -5/3 slope has to be reproduced.



4.2. Homogeneous isotropic turbulence 117

1 2 3 5 7 10 15 20 25 32
k

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
(k

)

-5/3

DRP

DRP+Smag

Hybrid

Hybrid+Smag

TVD

TVD+Smag

Figure 4.1: Spectrum of kinetic energy - Marms = 0.2 case at t = 10.

Again, the DRP and the hybrid schemes with the aid of the Smagorinsky model better

reproduce this behaviour. The HLLC-TVD scheme is the most stable, however, it intro-

duces considerable numerical dissipation, which reduces the accuracy of the compressible

LES simulation, especially if used alone.
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Figure 4.2: Spectrum of kinetic energy - Marms = 1.0 case at t = 10.
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Figure 4.3 shows the flow development for the hybrid discretisation with and without

the Smagorinsky model for the Marms = 1.0 case. It can be noticed the shocks and

sharp gradients present at t = 2 but in t = 6 and t = 10 they are dissipated. The

usage of the Smagorinsky model increased the dissipation and provides a smoother flow

development. This is an expected behaviour and also reproduced in the literature [150].

The shock-capturing ability of the hybrid scheme is essential for stable simulations of

complex physics as supersonic flows.

Figure 4.4 and 4.5 present the temporal evolution of the spatial averaged enstrophy

for the Marms = 0.2 and Marms = 1.0 cases, respectively. The figures depict how more

dissipative schemes prevent the growth of enstrophy by damping small turbulence struc-

tures [150]. As exposed in the kinetic energy spectrum, the hybrid and DRP schemes

show the same result for the incompressible case whereas in the compressible case the

hybrid scheme introduces higher numerical dissipation. In all schemes evaluated, the

Smagorinsky subgrid model increases the numerical damping even further. Nevertheless,

the LES model preserves the self-similarity of the results within the same discretisation

scheme.

Another interesting result is the temporal evolution of the spatial averaged kinetic

energy shown in Figure 4.6 and Figure 4.7. The kinetic energy begins to be dissipated

very early in the simulation, which happens before the enstrophy decay for all schemes.

Figure 4.6 depicts the incompressible case in which the kinetic energy is preserved for

longer mainly for the DRP discretisation. However, the compressible case exposed in

Figure 4.7 indicates a sharp dissipation in the beginning of the simulation which is due

to the presence of the strong shocks, as shown in Figure 4.3.

Another important tool to evaluate the flow development is the analysis of the max-

imum and minimum density ratio within the domain, also performed by Garnier et al.

[150]. Figure 4.8 exposes this result and shows how the shocks quickly develop for all

discretisation schemes, with peak around t ∼ [1, 1.5] for the Marms = 1.0 case. The

results for the incompressible case are not shown as the ratio keeps close to unity in all

cases. It can be seen in Figure 4.8 that the Smagorinsky model and the HLLC-TVD
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(a) t=2. (b) t=2.

(c) t=6. (d) t=6.

(e) t=10. (f) t=10.

Figure 4.3: Mach number contour plot for the Marms = 1.0 case. On the left, hybrid
discretisation without LES modelling. On the right, hybrid with LES modelling.
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Figure 4.4: Enstrophy temporal evolution - Marms = 0.2 case.

heavily damp the shocks, preventing another peak occurrence which happens in t = 4

and t = 5 for the DRP and hybrid schemes, respectively.

The results shown in this section describe the numerical discretisation behaviour and

accuracy. Although the DRP schemes seem to be the most accurate, their instability in
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Figure 4.5: Enstrophy temporal evolution - Marms = 1.0 case.
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Figure 4.6: Kinetic energy temporal evolution - Ma = 0.2 case.

more challenging simulations might prevent their full usage unless in conjunction with

a large explicit filtering technique. On the other hand, the HLLC-TVD heavily damps

turbulence and small structures. The implemented CompReal hybrid scheme is good

compromise between accuracy and stability, acting also as a shock-capturing scheme and
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Figure 4.7: Kinetic energy temporal evolution - Ma = 1.0 case.
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Figure 4.8: Maximum and minimum density in the whole domain ratio temporal evolution
- Marms = 1.0 case.

preserving the accuracy of the DRP scheme to an extent.

Because of the stochastic nature of the differential equations used to solve the de-

veloped LES-PDF equations, numerical stability is one the major issues associated with

their solution. A robust scheme such as the hybrid one presented here introduces numer-

ical diffusion only locally in sharp gradient regions and preserve accuracy in other regions

of the flow. Its usage is a good compromise for simulations of stochastic differential

equations.
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4.2.2 LES-PDF analysis

This section investigates the joint scalar PDF and joint velocity-scalar PDF models still

using the HIT canonical configuration. It is considered a reactive scalar with initial value

of y = 0.5 in the whole domain, employing the same initial conditions used in the test

case with Marms = 1.0. The one-step reaction mechanism is described by the following

reaction:

S =





A [2 (Ys − 0.5)− (2 (Ys − 0.5))3] , if Ys > 0.5

0, otherwise

(4.6)

where 1/A is the chemical time scale. The above mechanism means that the reactive

scalar concentration remains at 0.5 throughout the simulation, as S(0.5) = 0. However,

if there are subgrid scale fluctuations, Ys → 1 as t→∞.

The use of the Eulerian stochastic fields or the Lagrangian particles, however, allows

the description of the same initial value of 0.5 but with stochastic variance. The variance

value of 0.01 was chosen and two fields are employed in this simulation, as in an initial

bi-modal PDF. One field therefore starts with 0.4 and the other with 0.6 scalar concen-

tration, uniform in the whole domain. The SPDF model is used here but the results

can be reproduced using the VSPDF as well. The IEM micromixing model results in

an attraction force towards the mean, so the field with 0.4 concentration will increase to

0.5 just by micromixing effect. The field 2 with concentration 0.6 will react and increase

until 1.0, also pushing the average value close to 0.7.

Here it is introduced the Damköhler number definition of Da = π/(1/A), in which π

is the time scale of the HIT. The hybrid discretisation is employed and 6 test cases are

performed following the configuration presented on Table 4.1. The results are shown in

Figure 4.9.

For the case 1, the average mass fraction immediately jumps to 0.7 and steadily

increases to 0.75 until the t = 2. This occurs because one stochastic field with initial

value of 0.6 reacts and the average concentration quickly goes to 1.0. The other field with

initial value of 0.4 does not react, however, the micromixing model acts as a source term

driving the concentration towards the mean value of 0.7. When this field reaches a value
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Case Da Model
1 π/0.001 SPDF
2 π/0.1 SPDF
3 π/1 SPDF
4 π/10 SPDF
5 π/100 SPDF
6 π/1 No Model (NM)

Table 4.1: Test cases for the joint scalar LES-PDF. Cases 1-3 and 6, Da > 1; cases 4-5,
Da < 1.

greater than 0.5, what happens at t = 2, it reacts as well and its concentration increases

to 1.0.

As the Damköhler number reduces by increasing the chemical time scale, the average

concentration takes more time to increase to 1.0, and for the cases 4 (Da = π/10) and 5

(Da = π/100) it does not reach 1.0 after 10 time units. Case 6, which does not include

the SPDF model, in contrast, even with Da = π/1, does not change the concentration

and conserves the constant value of 0.5.

Figure 4.10 demonstrates the behaviour for case 3, also showing the particular Eulerian

stochastic fields evolution. The first field starts with 0.6 and reacts until 1.0 concentration.

The second field with starting 0.4 concentration changes by micromixing effects and at
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Figure 4.9: Temporal evolution of spatial average reactive scalar.
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Figure 4.10: Temporal evolution of spatial average reactive scalar including the stochastic
fields for the case 3.

t = 4 begins to react.

This effect can only be captured by probabilistic models, such as the LES-PDF, and

models that do not rely only on large scale gradients. The stochastic solution approach

like the Eulerian fields or the Lagrangian particles are suitable to capture this effect

[68, 112, 141, 137, 14]. Other probabilistic modelling techniques such as the CMC can

also reproduce it [156, 157], however, models that do not rely on a LES-PDF equation

may not capture it.

The developed joint velocity-scalar LES-PDF model is evaluated by assessing the

enstrophy and kinetic energy. This is performed using the Marms = 1.0 test case and

with the hybrid discretisation. All VSPDF simulations are performed with 8 fields and

all fields share the same initial condition. Figure 4.11 presents the kinetic energy spectra

for the VSPDF, Smagorinsky and no turbulent model. All simulations present similar

spectra at the final step, where supersonic effects have vanished and the spectra should

follow the -5/3 slope in the inertial range. The VSPDF slightly dissipates more energy

than the Smagorinsky model. This happens because of its stochastic random noise that

adds or subtracts momentum in gradient regions. In the case of adding momentum, the
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Figure 4.11: Kinetic energy spectra at t = 10 - Ma = 1.0 case.
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Figure 4.12: Temporal spatial average enstrophy evolution - Ma = 1.0 case.

hybrid scheme acts and more energy is dissipated. In contrast, the Smagorinsky model

dissipates energy for including extra viscosity.

The enstrophy evolution is shown in Figure 4.12. The hybrid with no model and

the VSPDF evolve very similarly until t = 5. In this moment the rate of destruction of

enstrophy for the VSPDF is higher. The Smagorinsky model dissipates more than both
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Figure 4.13: Temporal spatial average kinetic energy evolution - Ma = 1.0 case.

simulations but preserves the self-similarity with the no model approach. The VSPDF

do not preserve the statistical self-similarity, though. The growth of small scales to large,

which occurs until t = 4, is the same as with employing no model, however, it destroys

the large turbulent structures faster than the Smagorinsky model.

The kinetic energy temporal evolution is presented in Figure 4.13. The initial kinetic

energy is only dissipated within the domain, and the VSPDF and the hybrid no model

simulation present very similar evolution until t = 6. The same issue presented in Fig-

ure 4.12 is also shown here. From t = 6 to t = 10 the VSPDF dissipates more energy in

a faster rate than the Smagorinsky model. This can be possibly caused by the stronger

separation of the stochastic fields or an incomplete modelling able to preserve the large

structures.

As shown in Figure 4.14, from t = 6 the simulation is dominated by subsonic ef-

fects. Therefore the VSPDF faster rate of enstrophy and kinetic energy destruction is

not related to the presence of shocks. It occurs when the stochastic Eulerian fields are

more distance apart, which increases the stochastic term within the Langevin model. A

possible approach to fix this issue would be a better calibration for the Langevin model

constant. As originally proposed by Pope [68], the Langevin model does not model pos-
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Figure 4.14: Temporal spatial average density ratio evolution - Ma = 1.0 case.

sible stochastic pressure fluctuations, but only mean/filtered pressure quantities. This

new calibration, however, is not performed in this work.
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4.3 Reactive shock tube

The reactive shock tube is an one-dimensional test case to assess the performance of the

code and the LES-PDF models using a real chemistry mechanism. The use of this test

case is also performed by Ferrer [26] to verify the accuracy of the code. The test case,

originally proposed by Fedkiw et al. [151], is a one-dimensional reactive shock tube with

initial mole fraction ratio of 2/1/7 for H2/O2/Ar in the whole domain. The hydrogen

combustion mechanism of [158], with 9 species and 18 reactions is employed. The shock

tube has length lx = 0.12 m and the following initial configuration:

(ρ, ux, p) =





0.072 kg/m3, 0.00 m/s, 7173 Pa, if x ≤ lx/2

0.18075 kg/m3,−487.34 m/s, 35594 Pa, otherwise

(4.7)

The initial Mach number is 0.89 at x > lx/2. The left boundary is a wall and

zero gradient is applied to the boundary condition at the right. The hybrid spatial

discretisation is employed in all test cases for the convective term. Remaining spatial

derivatives are discretised using fourth order finite differences. Temporal integration

is performed using an explicit third order Runge-Kutta scheme. The shock wave will

travel to the left, hit the wall, increase pressure and temperature and the flame ignites,

generating a reaction wave towards the right. It is a weak deflagration wave, where a

pressure wave is moving and it is not a low Mach number regime.

The first test performed aims to verify if the Smagorinsky model, the LES-PDF and

DNS simulations have similar behaviour after achieving mesh convergence. As in all LES

simulations, as the mesh size tends to Kolmogorov scales, the simulation should reproduce

DNS results. The LES models are being evaluated in an one-dimensional test, which may

pose some limitations in accuracy. On this test, all models should therefore converge to

the same DNS solution when mesh convergence is achieved. Simulations using from 50

to 6400 elements on x-direction have been performed. For the mesh convergence test,

8 fields are used on both SPDF and VSPDF models. A stochastic convergence test is

also performed using 400 elements and employing from 2 to 8192 stochastic fields for the
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SPDF and VSPDF.

4.3.1 Model accuracy investigation

Figure 4.15 shows instantaneous results for the Nx = 6400 simulation, when mesh con-

vergence is achieved. As expected, all results converge to the same 1D-DNS solution.

It is also possible to see from Figure 4.15 that the premixed flame behaves as a weak

detonation instead of a constant pressure flame. At t = 160µs, the flame has already

ignited and the reaction wave is traveling from the left to the right at the position of

x = 0.025m and the shock is positioned at x = 0.04m, approximately. At t = 230µs the

reaction wave has already overtaken the shock wave. It is possible to see, from left to the

right, a rarefaction wave, a contact discontinuity and a detonation wave [151]. This test

case ensures that the models have consistent behaviour as the mesh size increases.

Figure 4.16 presents results using 400 elements, keeping the 6400 elements result

for the 1D-DNS though. The SPDF model evaluated in this test case do not present

the subgrid time scale correction for low Reynolds and premixed flames approach of

Jones et al. [128]. The SPDF without subgrid correction generates excessive viscous

effects, which overly accelerates the premixed flame. The Smagorinsky and the 1D-DNS

simulations present similar results, which infer that the Smagorinsky model does not play

a critical role using this mesh size.

The VSPDF flame presents results very similar to the 6400 elements simulation. The

solution do not change dramatically by increasing the number of stochastic fields beyond

8, confirming that the solution also presents stochastic convergence. This shows the

ability of the VSPDF model to capture the correct solution using fewer elements than the

Smagorinsky, SPDF and even coarse mesh 1D-DNS. It is also interesting to highlight that

the same numerical scheme has been employed in all cases. The VSPDF therefore presents

the same discretisation limitations as the Smagorinsky and the 1D-DNS simulations.

However, the usage of the Eulerian stochastic fields including velocity in the sample

space results in a more accurate representation of the flame.

After the inclusion of the subgrid scale correction mentioned in Eq. (3.10), the SPDF
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ũ
x
(m
/s

)

(c) t = 160µs

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x(m)

−400

−200

0

200

400

ũ
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Figure 4.15: Results for reactive shock tube using 6400 elements.
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Figure 4.16: Results for reactive shock tube using 400 elements. SPDF without subgrid
correction. 1D-DNS simulation has 6400 elements.
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model is able to return a solution similar to the Smagorinsky and 1D-DNS simulations,

as shown in Figure 4.17. It can be seen that the correction is of critical importance to the

accurate modelling of the joint scalar PDF. Without the correction, this model captures

wrong flame speed unless using a very fine mesh. By using the correction, the SPDF

model yields results as accurate as the Smagorinsky model, as expected since the SPDF

still also uses the Smagorinsky model to close the convective terms. Valiño et al. [102]

presents a different correction to ensure consistent behaviour at low Reynolds number.

The main idea is to ensure that the stochastic term vanishes and the stochastic field

equation returns to the deterministic conservation equation Eq. (2.10). This has not

been investigated here since the correction seems to be already accurate enough.

Another important aspect of the stochastic Eulerian fields modeling is the ability

to capture several different composition spaces. Figure 4.18 shows several stochastic

chemical species using a 4096 fields SPDF simulation and 400 elements. There are several

different flame fronts that contribute to the average value. Picciani et al. [135] investigated

a premixed flame with several stochastic fields and took into account the many different

flame positions to model a thickened stochastic fields approach, which is potentially more

accurate than the traditional SPDF for low Mach number formulation. This method,

however, has not been implemented in this work.

Figure 4.19 presents four scatter plots for the simulation of 4096 fields and SPDF

using 400 elements. They show instantaneous results at the flame front and t = 230µs

for pressure, temperature, hydrogen and OH as function of H2O. It can be seen the strong

correlation presented for the H2O production and increase of temperature and pressure.

It can also be noticed the correlation between production of H2O and consumption of H2

and OH. The stochastic pressure is not defined for the SPDF model and it is not used in

the resolution algorithm. However, it can be easily defined as a function of the stochastic

mass fraction and temperature:

pn = ρRnT n (4.8)

for a nth stochastic field.

The VSPDF scatter plots are shown in Figure 4.20. The number of 4096 stochastic
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ũ
x
(m
/s

)

(c) t = 160µs

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x(m)

−400

−200

0

200

400

ũ
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Figure 4.17: Results for reactive shock tube using 400 elements. SPDF with subgrid
correction. 1D-DNS simulation has 6400 elements.
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Figure 4.18: Stochastic fields at the flame front for the SPDF model at t = 230µs.

fields is also used. Although the scatter plots are also shown at the same flame front
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Figure 4.19: Instantaneous scatter plots at the flame front position for the SPDF model
at t = 230µs.
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Figure 4.20: Instantaneous scatter plots at the flame front position for the VSPDF model
at t = 230µs.

position, the VSPDF has a smaller variance than the SPDF model. The temperature

varies from 1960K to 2060K in the VSPDF, while using the SPDF it varies from 1600K

to 2500K. The fields are kept closer in the VSPDF, which may pose an issue in more

complex simulations where access to different combustion composition space is critical to

accuracy. The velocity scatter plot is also shown and a weak correlation can be noticed

between the production of H2O and the increasing in momentum.

4.3.2 Stochastic convergence

Simulations using 400 elements and ranging from 2 to 8192 stochastic fields are employed

in order to evaluate the stochastic convergence. It is therefore important to first define

the moments used. The first moment is defined as:

µ1 (x, t) =

∫ +∞

−∞
Ψf̃ (Ψ;x, t) dΨ (4.9)
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where µ1 =
[
Ỹ1, Ỹ2, ..., ỸNs , h̃

]T
for the SPDF and µ1 =

[
ρ, p, ũ1, Ỹ1, Ỹ2, ..., ỸNs , ẽt

]T
for

the VSPDF. It is approximated as:

µ
Nf
1 (x, t) =

1

Nf

Nf∑

n=1

ξn (x, t) =
Nf→∞

µ1 (x, t) (4.10)

where ξn (x, t) represents the stochastic field variable and µ
Nf
1 (x, t) is the approximated

moment obtained through Nf fields. The centred moment is used to investigate the

remaining moments. It is defined as:

µi (x, t) =

∫ +∞

−∞
(Ψ− µ1 (x, t))i f̃ (Ψ;x, t) dΨ (4.11)

where i indicates the ith-centred moment. It is also approximated as:

µ
Nf
i (x, t) =

1

Nf

Nf∑

n=1

(
ξn (x, t)− µNf1 (x, t)

)i
=

Nf→∞
µi (x, t) (4.12)

With the exception of the first moment, all the other moments investigated are centred

moments. Two different kinds of numerical error are therefore evaluated, a local relative

error and a spatially averaged relative error. The spatial average of the ith-moment is

defined as:

Iµi (t) =

∫ L

0

µi (x, t) dx

∫ L

0

dx

(4.13)

The numerical error of the Monte-Carlo method should decrease with slope N−0.5
f . In

order to evaluate the slope of the several moments, the solution obtained with 8192 is

considered the reference value. The local relative error in comparison to 8192 fields for

the ith-moment is then defined as:

ε
Nf
i (x, t) = abs

(
µ
Nf
i (x, t)− µ8192

i (x, t)

µ8192
i (x, t)

)
(4.14)

where the error is evaluated at x = 0.10m and t = 230µs. The spatially averaged relative
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error is therefore:

Iε
Nf
i (t) = abs

(
Iµ

Nf
i (t)− Iµ8192

i (t)

Iµ8192
i (t)

)
(4.15)

where it is also evaluated at the time of t = 230µs. The spatially averaged relative error

generates more reliable solutions as it takes into account samples from the whole domain.

Figure 4.21 presents the local relative error for the SPDF model, while Figure 4.22

shows the spatially averaged relative error. For the SPDF it is presented the convergence

rate for the 1st − 6th-moment of the species H2, O2 and H2O. Overall, the convergence

rate for the local error is slightly slower than the predicted N−0.5
f theoretical slope. For

the first moment and second moment the local error presents a uniform behaviour. As

the centred moments increase the deviation increases as well. This presents the challenge

for capturing high moments with a small number of stochastic fields, as it is required at

least 200 fields for the 3rd − 6th-moment to converge.

The spatially averaged relative error has smaller variance since it has 400×Nf more

samples. The moments also converge with slightly smaller rate than the theoretical one.

The fifth moment of H2O presents a very slow convergence rate, although the sixth

moment converges with rate close to the theoretical one for all species.

By checking the first moment convergence in Figures 4.21 and 4.22 it is possible to

infer that 8 fields is already enough to achieve statistical error less than 1% for the SPDF

model. Although this test represents a premixed flame, a non-premixed flame would

also present strong gradients in the same position, at the flame front. The statistically

convergence is therefore likely to be the same, since it is the gradients that increase the

stochastic term in Eq. (3.13). The number of 8 fields is also widely used in the literature

[100, 126, 62, 128]. Henceforth, the number of 8 fields for the SPDF is used unless stated

otherwise.

Figure 4.23 shows the local relative error convergence for the VSPDF model. The

radicals H2O, H2 and the velocity convergence rate are presented. The first moment

convergence rate has double the rate of the theoretical value. Overall, the convergence

rate is close to N−1.0
f . The convergence rate for the chemical species do not present a

clear figure from the second moment to the sixth one. It is, on average, for both H2O
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Figure 4.21: Convergence rate for local moments at x = 0.10m and t = 230µs for the
SPDF model. Slope for the trend lines indicated for each stochastic variable along with
the theoretical −0.5 slope. Unfilled markers indicate the actual values.

and H2 around N
−1/4
f and also present high variance. The relative error can be large at

this position, in contrast to the SPDF.

The calculated first moment obtained using 8192 fields for H2O is 1.214 × 10−4, for

the H2 is 1.277× 10−2 and for the velocity is 477.75 m/s. The number of 1000 fields can
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Figure 4.22: Convergence rate for spatially averaged moments at x = 0.10m and t =
230µs for the SPDF model. Slope for the trend lines indicated for each stochastic variable
along with the theoretical −0.5 slope. Unfilled markers indicate the actual values.

be necessary to statistically achieve relative error less than 1%. The selected position,

however, can potentially have large variance and the spatially averaged error presents a

well-behaved trend.

The results for the spatially averaged relative error is shown in Figure 4.24. The
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Figure 4.23: Convergence rate for local moments at x = 0.10m and t = 230µs for the
VSPDF model. Slope for the trend lines indicated for each stochastic variable along with
the theoretical −0.5 slope. Unfilled markers indicate the actual values.

convergence rate is closer to N−0.5
f , being higher for the first and second moment and

smaller for the others moments. The relative error is still large is comparison to the

SPDF, presented in Figure 4.22. The velocity first moment is statistically smaller then

5% when used 8 fields and it requires 150 fields to achieve 1% error. The remaining
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Figure 4.24: Convergence rate for spatially averaged moments at x = 0.10m and t =
230µs for the VSPDF model. Slope for the trend lines indicated for each stochastic
variable along with the theoretical −0.5 slope. Unfilled markers indicate the actual
values.

chemical species show relative error smaller than 1% for 8 fields as well. Therefore, the

number of 8 fields will be used, although the momentum error can be up to 5% in flows

with strong gradients like the detonation wave presented in the reactive shock tube.
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The last convergence test result is the construction of the probability density function

from the Eulerian stochastic fields simulation. The PDFs using 512, 1024, 2048 and

4096 fields simulations for the scalar PDF model are shown in Figure 4.25 along with

Gaussian approximations for the 4096 fields simulation. The PDFs for H2, O2, H and

H2O are exposed. The stochastic model captures different PDF shapes for the SPDF,

unlike presumed PDF approaches. The converged solution of the 4096 fields simulation

does resemble a traditional Gaussian PDF for the VSPDF, though.

Figure 4.26 presents the obtained PDFs using the VSPDF model. The converged

4096 fields simulation this time presents a very similar behaviour to the Gaussian ap-

proximation. The PDFs for H2, O2, H2O and ux are shown. The low variance for the

chemical species of the VSPDF model in comparison to the SPDF model, which is firstly

shown in Figure 4.20, is also noted in Figure 4.26 mainly in the PDFs for O2 and H2O.

The PDFs have also higher values, which results from sharp transition and fewer spaces
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Figure 4.25: Instantaneous PDFs constructed from stochastic fields from the SPDF sim-
ulation.
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Figure 4.26: Instantaneous PDFs constructed from stochastic fields from the VSPDF
simulation.

being accessed. The velocity, however, has expected higher variance and ranges from 300

to 450m/s. This reflects from the absence of Wiener terms in the stochastic conservation

equation for the chemical species.

The reactive shock tube of Fedkiw et al. [151] has been throughly investigated using

the SPDF and the VSPDF models. The VSPDF converges faster to the accurate solution,

although it may require a much higher number of fields than in comparison to the SPDF

on average. However, by investigating the scatter plots and the PDF behaviour of the

generated data, the SPDF model represents more meaningful results than the VSPDF.

The velocity-scalar PDF model generates narrow and Gaussian-like PDFs and scatter

plots with low variance. This could be consequence of the absence of a pressure correction

term, which is not included in this work.
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4.4 Reactive mixing layer

The investigated reactive mixing layer is the one proposed by Ferrer [26] and later pub-

lished in [159, 160]. It is a supersonic reactive mixing layer, in which two streams of

cold fuel and hot air mix, described in Figure 4.27. The results in this section have been

submitted to publication in the Flow, Turbulence and Combustion journal.

The composition of the streams at the inlet is shown in Table 4.2. The hot air stream

has inlet velocity of U1 = 1151.6 m/s (Ma = 1.5) and temperature of 1475 K while the

cold fuel has inlet velocity of U2 = 669.1 m/s (Ma=1.1) and temperature of 545 K. The

thermodynamic pressure on both streams is 94232.25 Pa.

Two cases have been evaluated, a two-dimensional and three-dimensional with the

same inlet configuration. The obtained results are then compared with the DNS solution

of Ferrer [26]. The convective Mach number is defined as:

Mc =
∆U

c1 + c2

(4.16)

Table 4.2: Mass fractions at the inlet [26].

Specie Fuel Oxidizer
YH2 0.05 0
YO2 0 0.278
YH2O 0 0.17
YH 0 5.60× 10−7

YO 0 1.55× 10−4

YOH 0 1.83× 10−3

YHO2 0 5.10× 10−6

YH2O2 0 2.50× 10−7

YN2 0.95 0.55

Figure 4.27: Investigated supersonic reactive mixing layer of Ferrer [26].
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where ∆U = U1−U2 and c1 and c2 represent the speed of sound of the hot air and the cold

fuel stream, respectively. The convective Mach number of the test cases is 0.35, which

indicates presence of weak compressible effects. It is also useful to define the vorticity

thickness growth:

δw =
U1 − U2

|∂ũ1/∂x2|max,2
(4.17)

where |·|max,2 indicates the maximum of the function at the crosswise coordinate y. The

streamwise velocity profile is initialised using a hyperbolic tangent function [26]:

u1 =
U1 + U2

2
+
U1 − U2

2
tanh

(
2x2

δw,0

)
(4.18)

where δw,0 is the initial vorticity thickness. At last, a perturbation is introduced at the

crosswise component of velocity, in similar fashion as Ferrer [26], for the two-dimensional

case:

u2,p = ε1αUc exp

(
−(x1 − x1,0)2 + (x2 − x2,0)2

δ2
w,0

)
(4.19)

and for the three-dimensional case:

u2,p = ε1αUc exp

(
−(x1 − x1,0)2 + (x2 − x2,0)2

δ2
w,0

)
cos

(
2π(x3 − x3,0)Np

L3

+ ε2π

)
(4.20)

where ε1 and ε2 are random numbers between −1 and +1, α is the amplitude of the

perturbation. The lengths of the domain L1, L2 and L3 are defined accordingly for each

test case. The reference initial coordinates (x1,0, x2,0, x3,0) are equal to (0, L2/2, 0). In

order to allow at least three complete periods for the perturbation at the spanwise x3-

direction an appropriate value for Np is chosen. The definition of a convective velocity

for the large structures of the flow, Uc, is proposed by Papamoschou and Roshko [161]

and also used by Ferrer [26]:

Uc =
c1U1 + c2U2

c1 + c2

(4.21)

Simulations with the VSPDF, SPDF and Smagorinsky models are therefore performed

and compared with the DNS results of Ferrer [26], which used 641691 cells (1739× 369)

for the two-dimensional case and around 88 millions cells (1517 × 325 × 179) for the
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three-dimensional case.

4.4.1 Two-dimensional case

This test case has been performed using 8 stochastic fields for both VSPDF and SPDF.

The number of 8 fields is justified from the reactive shock tube test case. The domain

length used is Lx = 350δw,0 and L2 = 80δw,0. A mesh size of 36 thousand cells (360×108)

is employed, using a stretching grid that increases the mesh elements density towards the

centre line. An initial vorticity thickness value of δw,0 = 1.98 × 10−4 m is used. The

amplitude of the perturbation is set to α = 1.0× 10−1.

The hybrid discretisation is used in all models, employing a 13-point stencil and 8th

order accuracy for the DRP and using the second order HLLC-TVD scheme for the sharp

gradient regions. Remaining spatial derivatives are also discretised with a fourth order

finite difference method. The model constants are set to Cs = 0.15, Cy = 0.0066 and

Prsgs = Scsgs = 1.0, which are the same as before. A time step of 5.0 × 10−9 s is

employed to ensure that the acoustic Courant number does not increase above 0.2. The

combustion mechanism used is the one of Yetter et al. [162], using 9 chemical species and

19 reactions. The simulations are run for 1.5 ms that equals to 25 residence times to

ensure time convergence. First order zero-gradient boundary conditions are used at the

outlets, with a specified boundary at the inlet.

Figure 4.28 shows a contour plot of mass fraction of the radical OH for the SPDF

simulation. In this figure it is possible to notice the growth of the vortical structure of

the mixing layer, along with the combustion and generation of OH. The results show

the slow growth of the edges and big structures using the Smagorinsky model, which

is possibly due to a heavy turbulence damp. The SPDF model, in contrast, generates

proper mixing levels. The pressure exactly solution on Eq. (3.17) increases the growth of

vorticity thickness and the level of combustion.

The VSPDF, however, seems to overly generates turbulence in this test case. The

vortices in the VSPDF model seem more disturbed than the SPDF and the generation

of OH is not high. The excessive turbulence levels presented in the VSPDF simulation
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(a) Smagorinsky.

(b) SPDF.

(c) VSPDF.

Figure 4.28: ỸOH radical at t = 250µs.

does not allow enough time for combustion to occur.

The normalised vorticity thickness growth results are shown in Figure 4.29, where

η = (U1−U2)/(U1 +U2). The mixing layer vorticity thickness growth present asymptotic

linear behaviour, as predicted by theory [163]. However, the models present different

growth rate, with the SPDF being the closest to the DNS values. The Smagorinsky
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Figure 4.29: Vorticity thickness growth.

model and the SPDF present a very similar growth rate until x1/δw,0 = 125 when the

combustion starts to play a major role. From this point on, the SPDF growth rate shifts

to the same value as the DNS one, while the Smagorinsky damps it and prevent the

expansion of it. It should be highlighted that the vorticity thickness is a flow property and

the SPDF captures it, even if the subgrid model employed for the momentum equations

is the Smagorinsky model. The VSPDF, which has no convective subgrid modelling,

presents similar growth as the DNS until x1/δw,0 = 60. Downstream this position the

early stages of combustion are sufficient and the mixing layer starts to detach, setting

the growth rate to a higher value than the DNS one.

Figure 4.30 shows the normalised averaged axial velocity at several positions. It is

possible to see the dominant self-similarity of the velocity profiles, although the VSPDF

model presents slightly higher lost of momentum. The momentum for the VSPDF model

steadily changes from the streamwise to the crosswise direction at a faster rate than its

counterparts. Momentum lost also occurs because of the reaction, but as it can be seen in

Figure 4.28, the combustion is not as strong in the VSPDF simulation as in comparison

to the SPDF model.
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Figure 4.30: Normalised temporal averaged axial velocity.

The SPDF model is also the closest one to the DNS results. The accurate combustion

description without adding extra stochastic noise on the momentum equation allows an

accurate description of the flow using a smaller mesh size. At the positions of x1/δw,0 =

250 and x1/δw,0 = 300 the SPDF has a non-negligible difference to the DNS results close

to x2/δw = 0.5, where the SPDF presents smaller axial velocity. It is useful to highlight

that this position is the flame front. The reactive mechanism employed by Ferrer [26] is

the O’Conaire et al. [164] one, while here it is used the Yetter et al. [162] mechanism,

which may have influenced this small difference. The O’Conaire et al. [164] mechanism

also uses 9 species, however, employs 21 reactions instead of 19 reactions of the Yetter

et al. [162] mechanism.

The Smagorinsky model, as also shown in Figure 4.29, presents very small momen-
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tum changes and remains mostly undisturbed throughout the domain. The traditional

Smagorinsky model which models the convective part by adding subgrid viscosity is not

enough to simulate accurately the two-dimensional mixing layer unless more points are

used to trigger turbulence.

Figure 4.31 presents the normalised root mean square of the axial velocity fluctuation

u
′′
1 . It is obtained through:

〈
u

′′

i u
′′

j

〉
= 〈ũiũj〉 − 〈ũi〉 〈ũj〉 ; ũi = 〈ũi〉+ u

′′

i (4.22)

where the superscript ′′ means temporal fluctuation. The Smagorinsky model, as ex-

pected, yields non-accurate results. This arises from the fact that the entire subgrid

convective part is modelled and the individual components of the subgrid Reynolds ten-

sor are modelled as a whole. The fluctuations levels are therefore expectedly low.

The SPDF and the VSPDF present very good qualitative agreement with the DNS

data with both models showing reasonable levels of self-similarity. The VSPDF does not

present perfect agreement with temporal averaged velocity data, however, the fluctuations

levels are in good agreement and are slightly below the DNS results. The SPDF shows

smaller velocity fluctuation but still closer to DNS and better than the Smagorinsky

model.

Figure 4.32 presents the crosswise velocity fluctuation root mean square. Self-similar

results are also obtained. For the crosswise velocity the VSPDF presented a better

agreement with DNS data than the SPDF model, which in general shows a smaller

fluctuation level than the other models. The Smagorinsky model presents very small

turbulence levels also in the crosswise direction.

Figure 4.33 shows the averaged cross-correlation of the velocity components. The

PDF models present good agreement with DNS data. The VSPDF generates slightly

better results in comparison to the SPDF. The VSPDF model, which solves exactly the

convective term, represents better the velocity fluctuations overall. The Smagorinsky

model requires a finer resolution and a combustion model to reproduce the DNS with

accuracy.
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Figure 4.34 presents the chemical species temporal average profiles for the Smagorin-

sky, SPDF and VSPDF models. The DNS results are not included here because they are

not shown in Ferrer [26] for the two-dimensional case. It is interesting to notice that both

models provide a good mixing level and the profiles are more spread than the Smagorin-

sky model. The H2 and O2 profiles of the SPDF and the VSPDF models are similar,

noting that the hydrogen has been more consumed in the SPDF model. The H2O pro-

file is interesting because shows that the combustion on the Smagorinsky model occurs,

however, it remains constrained to the centreline since there is a very small turbulent

behaviour. The SPDF and VSPDF models generate moderated levels of H2O, with the

SPDF generating more.

The N2 profiles also represent the mixing level of each case, being very similar for
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Figure 4.31: Normalised temporal averaged axial velocity fluctuation rms.
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the SPDF and VSPDF. These profiles are also more spread than the Smagorinsky one,

like the H2 and O2 profiles. The OH and HO2 also present interesting results. Such as

the H2O profile, the Smagorinsky model generates higher concentration of combustion

intermediate radicals, which is mostly due to the reaction being concentrated at the flame

front and not expanding to the surroundings. The SPDF have smaller mass fraction of

intermediates in comparison to the VSPDF, however, the final productH2O concentration

is higher.

The two-dimensional reactive mixing layer summarises interesting results. It shows

the ability of the stochastic models to simulate supersonic flows in a challenging environ-

ment and using a complex chemical mechanism for the hydrogen combustion. The SPDF

improves the combustion levels while also increases turbulence for this test case. The
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Figure 4.32: Normalised temporal averaged crosswise velocity fluctuation rms.
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Figure 4.33: Normalised temporal averaged cross-correlation velocity fluctuation rms.

VSPDF can reproduce adequate levels of momentum fluctuation but the combustion is

not fast enough, which is possibly a numerical consequence of the absence of stochastic

terms in the chemical species equation, or a too strong micromixing effect. The Smagorin-

sky model could not generate good results, probably due to the lacking of enough mesh

resolution or the inadequacy of this model in a challenging but non three-dimensional

environment.

4.4.2 Three-dimensional case

The three-dimensional simulations have similar configuration to the two-dimensional case,

presented in Figure 4.27. Eight stochastic fields have been used for the VSPDF and SPDF.

The three-dimensional domain size is Lx = 350δw,0, L2 = 80δw,0 and L3 = 40δw,0. The
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N

2
〉−

Y
N

2
,1

)/
∆
Y
N

2

(d)

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0

2

4

6

8

10

(〈Ỹ
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Figure 4.34: Normalised averaged chemical species concentration at x1/δw,0 = 300.

mesh size for all simulation is of 2.5 millions (360× 108× 64), also applying a stretching

grid with more elements at the centreline. The vorticity thickness value used here is

the same as in the two-dimensional case, δw,0 = 1.98 × 10−4m. The amplitude of the
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perturbation is α = 1.0, a higher value than the one used by Ferrer [26] to compensate

for the smaller mesh size.

The same numerical methods that have been employed in the two-dimensional simu-

lation have been used in this case. The simulations ran for 0.6ms, equivalent to approxi-

mately 10 residence times to ensure statistical convergence. The LES parameters are the

same used before and the Yetter et al. [162] chemical mechanism is used to model the

hydrogen combustion. First order zero-gradient boundary conditions are also used here

similarly to the two-dimensional case.

Figure 4.35 shows isocontours of the instantaneous mass fraction of OH radical. As

in the two-dimensional case, the SPDF presents a slightly larger and well defined vortical

growth in comparison to the Smagorinsky model. However, the Smagorinsky model, now

in a three-dimensional environment, presents better results than the two-dimensional

counterpart. The VSPDF model presents a more turbulent behaviour, mostly due to the

stochastic term present in the momentum equation and the absence of turbulent viscosity

to model the convective terms.

The vorticity thickness growth is shown in Figure 4.36. The DNS results of Ferrer [26],

which used 88 millions cells, presented a regular growth rate from x1/δw,0 = 100 onwards.

The SPDF and the Smagorinsky models presents similar growth rate until x1/δw,0 = 150,

when combustion occurs more intensively and the results differ. The SPDF presents a

slower rate than the Smagorinsky one, although closer to the DNS. The VSPDF presents

a growth rate well above the DNS value from x1/δw,0 = 125 onwards. This excessive

growth is already present in the two-dimensional case to a lesser extent. In the three-

dimensional case, however, it is higher and indicates that the VSPDF requires further

modelling on the Langevin model or micromixing part.

The averaged axial velocity are shown in Figure 4.37 for the position of x1/δw,0 =

300. This figure also shows experimental data for non-reacting cases. The reacting

cases present momentum losses, which is caused by the combustion. The Smagorinsky

model in this case presents higher velocity at the end of the domain, mostly because the

combustion is delayed. The SPDF and the VSPDF presents results similar to the DNS. It
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(a) Smagorinsky model.

(b) SPDF model.

(c) VSPDF model.

Figure 4.35: Isocontours of instantaneous ỸOH . Coordinates are normalised by δw,0.
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Figure 4.36: Vorticity thickness growth.

should also be highlighted that the SPDF model, although presenting the same sub-grid

closure for the convective term as the Smagorinsky model, is still able to capture better

momentum statistics. This occurs because of the filtered pressure coupling and better

subgrid combustion capturing.
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Figure 4.37: Normalised averaged axial velocity at x1/δw,0 = 300. Experimental data for
non-reacting mixing layer of Bell and Mehta [163] (M) and Spencer and Jones [165] (O).



4.4. Reactive mixing layer 159

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0.00

0.05

0.10

0.15

0.20

√
〈u
′′ 1
u
′′ 1
〉/

∆
U

Smag

VSPDF

SPDF

DNS

(a)

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

√
〈u
′′ 2
u
′′ 2
〉/

∆
U

(b)

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

√
〈u
′′ 3
u
′′ 3
〉/

∆
U

(c)

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0.00

0.02

0.04

0.06

0.08

0.10

0.12

√
〈u
′′ 1
u
′′ 2
〉/

∆
U

(d)

Figure 4.38: Normalised averaged velocity rms at x1/δw,0 = 300. Experimental data for
non-reacting mixing layer of Bell and Mehta [163] (M) and Spencer and Jones [165] (O).

Figure 4.38 shows the normalised averaged velocity rms, also at x1/δw,0 = 300. Re-

sults for the Smagorinsky model are better than in comparison to its two-dimensional

counterpart. All models in this simulation show reasonable qualitative and quantitative

agreement with the DNS data. The VSPDF generates higher fluctuation levels and the

SPDF shows wider profiles. The results are also close to the experimental non-reacting

data, showing that for this case the combustion and the fluctuations levels do not present

strong correlation [26].

The last results are the average mass fractions, shown in Figure 4.39 and their respec-

tive fluctuations, presented in Figure 4.40. The comparison in this case can be difficult,

since the DNS data was generated using the O’Conaire et al. [164] mechanism. Over-

all, the SPDF presents more diffusive profiles, with less H2 and O2 and more H2O in
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comparison to the VSPDF and Smagorinsky simulations.

The mass fraction of N2 also indicates a higher mixing for the SPDF. The VSPDF

and Smagorinsky showed a somewhat similar behaviour, with the VSPDF closer to the

DNS data for this radical. The OH profiles show that the SPDF and VSPDF models

generate a thicker flame than the DNS results. The HO2 radical DNS profile could not

be reproduced by any model, which can be related to the different chemical mechanism

used here.

The mass fractions fluctuation profiles presents some interesting profiles. As expected,

the SPDF shows more diffusive behaviour overall, also shown in the averaged mass frac-

tion results. The fluctuations levels for H2, O2, H2O and N2 for all models are slightly

higher than the DNS values, however, with good qualitative agreement.

The SPDF N2 fluctuation profile, though, presents two peaks, possibly because of

the higher mixing level on both streams. The OH and HO2 fluctuations are somewhat

different from the DNS results, which is also expected because of the different combustion

model. The results, however, are of the same order of magnitude and also comparable to

the DNS data.

Overall, the SPDF and VSPDF results are capable of reproducing DNS data with

some limitations. The three-dimensional simulations are challenging and includes many

physical phenomena that are difficult to simulate. The Smagorinsky model and the

implicit/quasi-laminar approach to deal with the combustion performs better in a three-

dimensional domain.

The developed stochastic models to solve the SPDF and the VSPDF also show rea-

sonable results. They are able to reproduce average and fluctuation DNS levels to an

extent. The SPDF through the pressure coupling improves momentum and other flow

variables. It is a very consistent model and generates good results using one-dimension

to three-dimensional domains.

The VSPDF, however, misses extra closures related to the approximations to deal with

numerical shocks, such as the inclusion of a stochastic pressure for each field. Although

its results are reasonable, the excessive momentum growth rate, also presented in the two-
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Figure 4.39: Normalised chemical species mass fractions at x1/δw,0 = 300.

dimensional simulation, shows that the Langevin model must be improved. The inclusion

of an extra micromixing term or another constant optimisation can be performed to deal

with this matter. Further investigation is therefore required to be used in highly complex
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〈Ỹ
′′2 N

2
〉

(d)

−1.0 −0.5 0.0 0.5 1.0
x2/δw

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

〈Ỹ
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Figure 4.40: Averaged chemical species mass fractions fluctuations at x1/δw,0 = 300.

simulations.
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4.5 Supersonic burners

The numerical verification has been performed through the HIT test case, the one-

dimensional reactive shock tube and the two and three-dimensional mixing layers. These

simulations have been conducted to assess the reliability of the models and the developed

code. After this step, a numerical validation against experimental data is still necessary

to assess the accuracy of the models in real cases.

Two supersonic burners with canonical configuration have been chosen to evaluate

the code. The supersonic burner of Cheng et al. [7] offers plenty of data for mole frac-

tion of species and velocity. It has therefore been consistently used in the literature for

investigation of supersonic phenomena and model evaluation [14, 166, 32, 18]. It is a

lifted supersonic hydrogen flame with a co-flow of vitiated air, presenting a daunting task

under the numerical modelling point of view.

The other supersonic burner used is the one of Evans et al. [152], which is similar to

the configuration of the Cheng’s burner. However, its data set is older and more limited,

presenting only the pitot-pressure data instead of the velocity field and few chemical

species mass fractions. Nevertheless, it has also been used in several numerical studies

[167, 14, 9] for code assessment and validation.

The two burners have been simulated with coarse and fine mesh. Part of the Cheng’s

burner assessment has been published in Almeida and Navarro-Martinez [142]. The

VSPDF model evaluation performed by [142] corroborates what has been verified in the

numerical studies. The VSPDF needs further closures and reliability before being used

in a heavy simulation. Therefore, because of the higher computational power demanded

only the Smagorinsky and the SPDF models are evaluated henceforth.

4.5.1 Cheng’s burner

The Cheng’s burner configuration is presented on Table 4.3. It consists of a pure injection

of hydrogen at Ma = 1, resulting in a transonic and very unstable flow. The co-flow of

vitiated air is injected at Ma = 2 and high temperature, resulting in a self-ignited flame.
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Table 4.3: Supersonic burner configuration of Cheng et al. [7].

Dimensions
Nozzle exit inner diameter 17.78 mm
Fuel injector inner diameter 2.36 mm
Fuel injector outer diameter 3.81 mm

Vitiated air exit conditions
Pressure 107 kPa
Temperature 1250 K
Mach number 2.0
Velocity 1420 m/s
O2 mole fraction 0.201
N2 mole fraction 0.544
H2O mole fraction 0.255

Fuel exit conditions
Pressure 112 kPa
Temperature 540 K
Mach number 1.0
Velocity 1780 m/s
H2 mole fraction 1.0

A domain size of 70D×60D×60D is used, where D is the injector inner diameter equals

to 2.36 mm.

Two meshes have been employed, also using a stretching grid formulation allowing

more points towards the centre and close to the burner injection, as presented in Figure

3.3. A mesh of 168 × 168 × 168 - 4.7 millions - points (MESH1) is used to perform

Smagorinsky and SPDF simulations, the latter including eight stochastic fields. A second

mesh with 336 × 336 × 336 - 37.9 millions - points (MESH2) is also used to perform a

Smagorinsky simulation. In this way, the Smagorinsky model with the quasi-laminar

approach should present results as accurate as the SPDF with 8 fields. Simulations with

the fine mesh have been performed using ARCHER, the UK National Supercomputing

Service under the UK Turbulent Reacting Flows Consortium (UKCTRF).

The discretisation parameters are the same as used in the previous section. A time-

step of 1.0× 10−8 s is used for the coarse mesh and 5.0× 10−9 s for the finer one, keeping

the CFL number < 0.2. Ten resident times are simulated on the coarse mesh case and

five on the finer mesh, with both cases achieving statistical convergence.

The LES parameters are the same as used in the three-dimensional reactive mixing
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layer described in the previous section. Prescribed boundary conditions are employed at

both injector inlets, while a constant inflow of air at 20m/s is specified at the remaining

bottom boundary. Synthetic turbulence is included using a digital filter [168] in the fuel

and co-flow injector, with 18% and 22% of the axial velocity value, as in Bouheraoua et al.

[18]. Zero-gradient is set in the remaining boundaries. The simulations are performed

also using the Yetter et al. [162] hydrogen mechanism of 9 species and 19 reactions.

Figure 4.41 shows contour plots of the instantaneous temperature for the MESH1

case. The flame seems better connected on the SPDF case, although the general flame

shape is very similar. Overall, both flames present poor combustion when compared to

other numerical studies [166, 18]. The diffusion levels presented are not enough to mix

the reactants fast enough, which can be an issue of the Yetter et al. [162] mechanism for

this test case.

The contour plots for instantaneous pressure and temperature for the MESH2 case

are shown in Figure 4.42. It is possible to see in the pressure contour the shock waves

present close to the burner inlet, in regions of fast transition of high and low pressure. It

(a) Smagorinsky. (b) SPDF.

Figure 4.41: T̃ (K) at an instantaneous time for the MESH1 case.
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(a) p(Pa). (b) T̃ (K).

Figure 4.42: Smagorinsky simulation instantaneous contour plots for the MESH2 case
(Smag2).

should be noticed on the temperature contour plot that the flame is not well connected

either, despite the high resolution of the test case. The vitiated air co-flow jet mixes

more with the ambient air in comparison to the one of Bouheraoua et al. [18], although

the turbulence levels at the inlet are set the same.

The radial profile results are obtained through the azimuthal average of the temporal

mean values. In this way a faster convergence is achieved. The results for the axial

velocity are presented in Figure 4.43. For the position closer to the burner, x/D = 0.85,

the velocity profile of the vitiated air co-flow does not seem to fit the experimental inlet

conditions. In fact, Cheng et al. [7] state that the velocity of the co-flow can be 10-20%

lower than the values specified on Table 4.3. The specified boundary condition, however,

has been used in the literature for numerical simulations [166, 18] and it is kept here for

the purposes of comparison. All models presented somewhat a higher diffusion level than

the experimental one and there are no remarkable differences between them. Only at the

farther downstream position of x/D = 43.1 that the results of Smagorinsky and MESH2

(Smag2) present a better fit to the experimental data than the SPDF and Smagorinsky
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〈ũ
x
〉

×103

(c)

−15 −10 −5 0 5 10 15
r/D, x/D = 32.3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈ũ
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Figure 4.43: Averaged axial velocity (m/s) results. Experimental data of Cheng et al. [7]
(◦) and numerical SPDF data of Almeida and Navarro-Martinez [142] (M).

models.

The results of Almeida and Navarro-Martinez [142] are included for the positions of

x/D = 21.5 and x/D = 43.1 and presents better agreement. These results are obtained
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a coarse mesh of 0.2 millions points, which highly increases the viscosity and amplified

the SPDF model. This indicates that a better constant adjustment to the micromixing

model may be necessary, allowing extra stochastic effects.

Figure 4.44 and Figure 4.45 present the averaged mole fractions and temperature, and

their rms counterparts, respectively, at the position x/D = 0.85. It is interesting to note

that the boundary conditions are mostly well reproduced by all simulations, including

the rms levels of temperature. As expected, all simulations could accurate reproduce the

data close to the burner. The OH radical is present on the experimental data because it

is formed on the vitiated air, which is not specified in these simulations.

Figure 4.46 and Figure 4.47 show the results at x/D = 10.8. At this position the

results are still fairly similar, although the SPDF simulation presents slightly higher

temperature and production of OH radical. The rms of OH, shown in Figure 4.47,

presents a better agreement to the experimental data. The averaged experimental data

indicate a poor mixing, in which the O2 and N2 are not completely mixed with the fuel

jet. In the numerical simulations, both O2 and N2 radicals are in higher concentrations

for all models than the experiment. The rms data, overall, seems more sparse and also

more diffusive.

The results at x/D = 21.5 are presented in Figures 4.48 and 4.49, where the differences

between the models start to become more evident. The SPDF model with MESH1 shows

better agreement with experimental values. Nevertheless, the Smagorinsky model shows

similar qualitative behaviour. Both meshes used for the Smagorinsky model generate

quite similar results, which has also been the case for Bouheraoua et al. [18]. Figure 4.48

includes the SPDF results of [142], with a mesh of 0.2 millions. The simulation presented

similar levels of air entrainment in comparison to the experimental data. The rms profiles

are similar overall, with the SPDF simulation presenting higher agreement for the O2 and

OH mole fractions.

Figures 4.50 and 4.51 shown the results at x/D = 32.3. The presence of the radical

OH indicates that for all cases, on average, the flame has already ignited. The SPDF

model, although with a coarser mesh, is able to better reproduce the experimental data.



4.5. Supersonic burners 169

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0.0

0.2

0.4

0.6

0.8

1.0
〈X̃

H
2
〉

Smag

SPDF

Smag2

(a)

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0.0

0.5

1.0

1.5

2.0

〈X̃
O

2
〉

×10−1

(b)

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0.0

0.5

1.0

1.5

2.0

2.5

3.0

〈X̃
H

2
O
〉

×10−1

(c)

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0

1

2

3

4

5

6

7

8

〈X̃
N

2
〉

×10−1

(d)

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0.0

0.2

0.4

0.6

0.8

1.0

〈X̃
O
H
〉

×10−3

(e)

−6 −4 −2 0 2 4 6
r/D, x/D = 0.85

0.2

0.4

0.6

0.8

1.0

1.2

〈T̃
〉

×103

(f)

Figure 4.44: Averaged results for mole fractions and temperature. Experimental data of
Cheng et al. [7] (◦).
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Figure 4.45: Averaged mole fractions and temperature rms results. Experimental data
of Cheng et al. [7] (◦).
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Figure 4.46: Averaged results for mole fractions and temperature. Experimental data of
Cheng et al. [7] (◦).
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Figure 4.47: Averaged mole fractions and temperature rms results. Experimental data
of Cheng et al. [7] (◦).
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Figure 4.48: Averaged results for mole fractions and temperature. Experimental data of
Cheng et al. [7] (◦) and numerical SPDF data of Almeida and Navarro-Martinez [142]
(M).
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Figure 4.49: Averaged mole fractions and temperature rms results. Experimental data
of Cheng et al. [7] (◦).
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Only for the hydrogen that the Smagorinsky with MESH2 presents a slightly better

agreement. The temperature is around 10% higher in the SPDF case in comparison to

both Smagorinsky simulations. The rms results for the SPDF, shown in Figure 4.51,

possess in general higher values, again closer to the experiments. The rms profiles are

also wider than the experiments, a consequence of the flame being larger in the numerical

simulations.

The last radial comparison is shown in Figures 4.52 and 4.53. The results in Fig-

ure 4.52 are presented along with the radial profiles of Bouheraoua et al. [18], that used

268 millions points and the same levels of velocity rms at the inlet of the jets, and of

Almeida and Navarro-Martinez [142]. At this position, the simulated results are fairly

similar. Other numerical studies obtained similar quantitative results, although the re-

sults presented here demonstrate a wider flame. The rms results, exposed in Figure 4.53,

also presents quantitative and qualitative similar profiles and overall reasonable to the

experiments.

The averaged temperature and OH radical centreline profiles are evaluated and pre-

sented in Figure 4.54. The profiles presented similar qualitative behaviour. The flame

base is well-defined through the OH concentration, although the experimental values are

greater. The temperature profile is somewhat smaller than the experimental values. The

work in [142] used a coarser mesh and obtained closer results. The coarse mesh yields

greater values for the turbulent viscosity, which highly trigger the stochastic model.

The lift-off height for each model, obtained through the maximum spatial gradient

of OH, is shown on Table 4.4. The results are again fairly similar and the SPDF is

slightly better. The experimental lift-off height is approximately x/D = 25. The results

are, overall, in accord with other values in the obtained through different numerical

investigations.

Despite the wider flame generated in all cases, the flame base height is captured

and the radial profiles present reasonable agreement with the experimental data. It

is worth mentioning that this supersonic burner is highly unstable at the inlet, with

large fluctuation values and transonic fuel injection. In general, the SPDF outperforms
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Figure 4.50: Averaged results for mole fractions and temperature. Experimental data of
Cheng et al. [7] (◦).
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Figure 4.51: Averaged mole fractions and temperature rms results. Experimental data
of Cheng et al. [7] (◦).



178 Chapter 4. Numerical verification and validation

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

0.0

0.5

1.0

1.5

2.0
〈X̃

H
2
〉

×10−1

Smag

SPDF

Smag2

(a)

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

0.50

0.75

1.00

1.25

1.50

1.75

2.00

〈X̃
O

2
〉

×10−1

(b)

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

〈X̃
H

2
O
〉

×10−1

(c)

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

4

5

6

7

8

〈X̃
N

2
〉

×10−1

(d)

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

0.0

0.5

1.0

1.5

2.0

2.5

〈X̃
O
H
〉

×10−2

(e)

−15 −10 −5 0 5 10 15
r/D, x/D = 43.1

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

〈T̃
〉

×103

(f)

Figure 4.52: Averaged results for mole fractions and temperature. Experimental data of
Cheng et al. [7] (◦). Numerical SPDF data of Almeida and Navarro-Martinez [142] (M)
and numerical Smagorinsky data of Bouheraoua et al. [18] (x).
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Figure 4.53: Averaged mole fractions and temperature rms results. Experimental data
of Cheng et al. [7] (◦) and numerical Smagorinsky data of Bouheraoua et al. [18] (x).
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Figure 4.54: Averaged results for OH mole fraction and temperature at the centreline.
Experimental data of Cheng et al. [7] (◦) and numerical SPDF data of Almeida and
Navarro-Martinez [142] (M).

the simulations with Smagorinsky and quasi-laminar approximation for both meshes.

Nevertheless, the model can be improved and by reducing the micromixing influence

or increasing somehow the influence of the stochastic term. The SPDF model is also

computationally cheaper in comparison to the fine mesh simulation.

4.5.2 Evans’ burner

The Evans’ burner setup is presented on Table 4.5. It is also a supersonic hydrogen flame

with a co-flow of vitiated air. The injection of the fuel, however, occurs at Ma = 2.0,

a purely supersonic inflow instead of the transonic regime of the Cheng’s burner. The

co-flow of air is also injected at supersonic speed Ma = 1.9 at hot temperatures. The

Case x/D
Cheng et al. [7] 25
Boivin et al. [166] 26.12
Bouheraoua et al. [18] 30.00
Almeida and Navarro-Martinez [142] 26.25
Smagorinsky - MESH1 31.15
SPDF - MESH1 30.90
Smagorinsky - MESH2 33.13

Table 4.4: Flame base position for several cases. Numerical lift-off height here calculated
based on the position of the maximum gradient of OH radical.
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domain size used is of 35D × 30D × 30D, where D is the fuel injector inner diameter

equals to 9.525mm.

In this test case two meshes are also employed, employing the same methodology as

in the Cheng’s burner. The first mesh has 168×168×168 - 4.7 millions - points (MESH1)

while the second mesh (MESH2) uses 252×252×252 - 16.0 millions - points. The SPDF

and the Smagorinsky with the quasi-laminar approach are evaluated in MESH1, while

only the latter model is used in the finer mesh. The simulations with the MESH2 are

also performed using ARCHER, under the UK Turbulent Reacting Flows Consortium

(UKCTRF).

The discretisation schemes are exactly the same as in the Cheng’s burner simulation,

so as the LES parameters. A time-step of 4.0 × 10−8s for MESH1 and 2.5 × 10−8s for

MESH2 is used to ensure a CFL number smaller than 0.4. The simulations are ran

for 29 and 18 time steps, for the MESH1 and MESH2 cases, respectively, to ensure

statistical convergence. The boundary conditions are zero-gradient except at the inlet

of fuel, air and the surface of the surrounding air, where an inlet of 20m/s is imposed.

Table 4.5: Supersonic burner configuration of Evans et al. [152].

Dimensions
Nozzle exit inner diameter 65.30 mm
Fuel injector inner diameter 9.525 mm
Fuel injector outer diameter 12.525 mm

Vitiated air exit conditions
Pressure 100 kPa
Temperature 1495 K
Mach number 1.9
Velocity 1510 m/s
O2 mass fraction 0.241
N2 mass fraction 0.478
H2O mass fraction 0.281
Reynolds number 5.72× 105

Fuel exit conditions
Pressure 100 kPa
Temperature 251 K
Mach number 2.0
Velocity 2432 m/s
H2 mass fraction 1.0
Reynolds number 9.94× 105
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Velocity fluctuations are included through synthetic turbulence using a digital filter. The

fluctuation values are set to 3% of the jets values, which seems appropriate to reproduce

the non-reported experimental levels. The Yetter et al. [162] hydrogen mechanism is also

employed in this test case.

Figure 4.55 shows the contour plots for instantaneous temperature for the MESH1

and MESH2. The flame is longer than the ones of the Cheng’s burner. Both simulations

also presents many small turbulent structures, indicating the highly convective behaviour

of this case. The discretisation schemes also appear to generate less diffusion than in the

previous case. Figure 4.56 presents contour plots for H2O radical, where it is possible to

see the formation of H2O much closer to the burner than in the Cheng’s burner case. In

both cases, the flame height is reasonably the same, although the for the coarse mesh the

mixing is much more diffusive than convective.

The instantaneous pressure contour plots are shown in Figure 4.57. It is possible to

identify shock diamonds structures close to the injectors in both meshes. The pressure

waves follow a similar and expected pattern for this burner. In general, both models and

meshes are able to reproduce this test case at least qualitatively.

(a) Smagorinsky - MESH2. (b) SPDF - MESH1.

Figure 4.55: Instantaneous T̃ (K) contour plot.
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(a) Smagorinsky - MESH2. (b) SPDF - MESH1.

Figure 4.56: Instantaneous ỸH2O contour plot.

The first quantitative results are shown in Figure 4.58, which presents the averaged

Pitot pressure, or stagnation pressure. The stagnation pressure must be calculated bear-

ing in mind that the flow is supersonic and the Pitot tube will generate a bow shock in

(a) Smagorinsky - MESH2. (b) SPDF - MESH1.

Figure 4.57: Instantaneous p(Pa) contour plot.
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the flow. As a consequence, the pressure perceived by the Pitot tube is not the same as

the pressure in the flow, and they are correlated by isentropic shock relations.

The Pitot pressure in supersonic regions therefore follows the Rayleigh Pitot tube

formula [169] to relate the pressure on the Pitot tube, ppitot with the thermodynamic

pressure in flow, p:

ppitot
p

=

(
(γ + 1)2 Ma2

4γMa2 − 2 (γ − 1)

)γ/(γ−1)
1− γ + 2γMa2

γ + 1
(4.23)
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Figure 4.58: Time averaged normalised Pitot pressure results. Experimental data of
Evans et al. [152] (◦).
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and for subsonic regions:

ppitot
p

=

(
1 +

γ − 1

2
Ma2

)γ/(γ−1)

(4.24)

After establishing the previous formulas, Figure 4.58 is generated. The Pitot pressure

at x/D = 0.33, representing the boundary condition at the fuel and air injectors, is

accurately captured. As expected, there is small to no difference between the models and

mesh size used. At x/D = 6.56 and further downstream positions the models present

different outcomes. The Smagorinsky model with MESH2 profiles are wider than the

other simulations, with a more diffusive behaviour. The higher resolution allowed a

higher mixing level. The SPDF also generates higher mixing, but the difference to the

Smagorinsky model with MESH1 is small. Agreement with experimental data is sound

for all the simulations.

Figure 4.59 presents the average mass fractions for H2, O2, H2O and N2 chemical

species at x/D = 8.26. Overall experimental agreement is reasonable. The MESH1

simulations with Smagorinsky and SPDF models present similar behaviour with little

distinction between the profiles. The heavy simulation with MESH2 shows flatter profiles

for all species, in agreement with the Pitot pressure results.

The profiles at the position x/D = 15.5 are shown in Figure 4.60. On this position

the differences between the coarse mesh and a finer mesh is more evident. The SPDF

alone is not able to provide the combustion levels of MESH2. The fine mesh simulation

presents higher production of H2O and fewer O2 mass fraction. Although the SPDF has

higher concentration of H2O in comparison to the Smagorinsky profile, the difference is

marginal. It should be highlighted the N2 profiles, as it is a non-reacting specie indicates

the mixing level of the flame. Again, the MESH2 results are more diffusive but has a

higher mixing level than the experimental data.

At last, the mass fraction results at x/D = 21.7 are shown in Figure 4.61. The flames

of the Smagorinsky and SPDF simulations with the MESH1 are well defined now, as the

H2O levels are reasonably higher at the fuel jet region r/D ≤ 0.5. The profiles for all

models are close, without showing much quantitative and qualitative difference. Overall,
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Figure 4.59: Averaged mass fraction results at x/D = 8.26. Experimental data of Evans
et al. [152] (◦).

the flames are wider than the actual experimental data, a trend identified in all positions

evaluated.

The Evans’ burner has higher speed than the Cheng’s case, and it is therefore more

sensitive a priori to compressibility modelling. However, the approximation performed

in the SPDF to not include an extra thermodynamic variable to close the source term

may be insufficient in this test case. The more sparse profiles generated indicate a higher

mixing level than the experimental data. A drawback of simulating the Evans’ burner is

the absence of rms data, in which a proper fluctuation level capturing at the inlet would

improve the overall agreement.
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Figure 4.60: Averaged mass fraction results at x/D = 15.5. Experimental data of Evans
et al. [152] (◦).
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Figure 4.61: Averaged mass fraction results at x/D = 21.7. Experimental data of Evans
et al. [152] (◦).
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4.6 Summary

This chapter presented the numerical assessment, verification and validation of the devel-

oped stochastic models into CompReal. The code evaluation has been performed through

a series of canonical test cases, including a homogeneous isotropic turbulence configura-

tion, an one-dimensional reactive shock tube, a two and three-dimensional mixing layers

and two supersonic burners.

The homogeneous isotropic turbulence case is throughly evaluated in order to study

the discretisation performance of the code. A series of kinetic energy spectra have been

obtained to assess the discretisation schemes diffusion and accuracy levels. In compress-

ible flows, the accuracy of the discretisation plays a major role into the proper repro-

duction of real configurations. The hybrid DRP/HLLC-TVD scheme has shown a good

compromise to achieve accuracy with stability to solve the convective terms. The SPDF

and VSPDF are also further investigated, demonstrating their ability to access larger

composition spaces, which is very useful to describe combustion phenomena with higher

accuracy. This case also sheds a light into the VSPDF requirement of a better closure or

constant calibration.

The reactive shock tube case is used to demonstrate the ability of the SPDF and

VSPDF model to represent DNS data in a simplified configuration. In this test case

the importance of the micromixing IEM model becomes evident in premixed flames.

The stochastic convergence is evaluated through local and integral moments convergence

rates. The SPDF presents a rate of convergence slightly smaller than the theoretical value

of N−0.5
f . The VSPDF, however, presents high convergence rate of N−1.0

f for the first

moment, but low and around N
−1/4
f for the remaining moments. It is also established

here, by simulating up to 8192 stochastic fields that 8 fields are sufficient to achieve

reasonable statistical convergence for the first moment.

The reactive and compressible mixing layer simulations provided valuable data to

evaluate the performance of the models in a more challenging environment. Although

both SPDF and VSPDF models are able to reproduce DNS data with good accuracy

for the two-dimensional simulation, the three-dimensional mixing layer indicates that the
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VSPDF closures may need further investigation. The SPDF reproduces the vorticity

thickness growth, a flow variable, through the pressure coupling of the flow solver with

the stochastic fields represented in Eq. (3.17).

The VSPDF model, in contrast, has smaller level of dissipation and the instabilities

generated by the stochastic term in the momentum equation overshoots the mixing layer

growth. Although the VSPDF holds more potential, the model does not accuratelly

reproduce the vorticity growth and therefore the SPDF is used from here onwards. The

VSPDF may also require challenging velocity field initialisation with some level of subgrid

fluctuation between the stochastic fields, which has not been tested here. In the test cases,

all fields share the same initial condition, which creates low dissipation.

Two supersonic burners are also evaluated to validate the numerical model in a real

configuration. The Cheng’s burner and the Evans’ burner present different numerical

challenges suitable to fully assess the SPDF model and compare it with the Smagorinsky

model coupled with the quasi-laminar approach. Both burners have been successfully

reproduced, although with higher diffusion levels than the experimental data. Overall,

the SPDF presents better agreement than the Smagorinsky model in the Cheng’s burner

simulation, however the Evans’ burner results show very small differences between these

two approaches.

The SPDF and the VSPDF have been therefore widely evaluated in several simula-

tions, using a wide range of scales, complexity and different environments. The SPDF

is a more consistent model regarding statistical convergence and accuracy in complex

simulations. Although the VSPDF is a promising formulation, it has closure issues that

needs to be addressed before its usage in highly computational demanding cases, such as

supersonic burners and scramjets.



Chapter 5

Scramjet simulation

5.1 Introduction

This chapter summarises the challenges of the scramjet simulation to be carried out, as

it includes all the numerical techniques presented so far. It is a wall-bounded supersonic

flow including shock/turbulence, shock/boundary-layer and strong turbulence/chemistry

interactions. There have been several experimental investigations of such engines in

the literature. The flight experiments of the HIFiRE (Hypersonic International Flight

Research Experimentation) programme [1] and the HyShot programme [2] are regarded

as the most investigated scramjet flight experiments [22].

There have also been attempts to reproduce the in-flight conditions using ground-

based facilities. In this way, the scramjet experimental investigation reduces in com-

plexity and cost. It should be highlighted two projects: the German Aerospace Center

(DLR) scramjet facility [170] and the University of Virginia (UVa) scramjet [8, 171, 12].

These experimental configurations have been used for code assessment, validation and

supersonic combustion numerical investigation, including, but not limited to, the works

of [27, 172, 29] for the DLR and [173, 8, 12, 33] for the UVa scramjet.

The objective of this chapter is to perform a scramjet simulation and present the

feasibility of the new developed SPDF model and the implemented solver to reproduce a

complex configuration. The Smagorinsky model along with the quasi-laminar approach

191
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to close the reactive terms is also used for comparison purposes. Simulations of the UVa

scramjet configuration A [33] are therefore performed to evaluate the models. In the next

sections, the UVa scramjet is described, along with the numerical tools used to simulate

it and the obtained results.
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5.2 University of Virginia (UVa) Scramjet

The UVa scramjet has several geometrical configurations, from A to D [174]. On these

configurations, hydrogen is injected through a wall-mounted compression-ramp injector.

Rockwell et al. [175] investigated a Configuration E, where ethylene is used as fuel and

a cavity is employed to establish the flame. The configuration A, nonetheless, offers a

higher amount of experimental data and it is chosen to be simulated in this work. The

Coherent Anti-Stokes Raman Spectroscopic (CARS) [171] and hydroxyl radical planar

laser-induced fluorescence (OH-PLIF) [174] measurements have been performed on the

UVa configuration A whereas Rockwell et al. [8] measured the top-wall pressure.

5.2.1 UVa design - Configuration A

The full description of the experimental supersonic combustion facility is available in the

literature [12, 171, 174, 8]. The geometry employed to represent the configuration A is

shown in Figure 5.1 and it is the same as in Chan and Ihme [33]. It consists of three

parts, the isolator, the combustor and the extender. The hydrogen is provided through

a injector with 2.54 mm diameter at the compression-ramp of the combustor, that has

height H = 0.25 in (6.35 mm). The nozzle responsible for generating the air-intake

conditions is not represented in this work, following other numerical studies [33]. The

geometry has been drawn using the open-source computer-aided design FreeCAD and it

can also be visualised in Figure 5.1.

The fuel is injected at 1804.25 m/s (Ma = 1.7) normal to the injector surface and

it consists of pure hydrogen. The temperature and pressure are 94 kPa and 190 K,

respectively. The air-intake has the same configuration as in [33] to reproduce the nozzle

output conditions. The inflow of air has velocity of 1025.44 m/s, Ma = 2.0, and ambient

air composition, while the temperature is set to 667 K and the pressure is 38 kPa.
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(a) Geometrical parameters (not in scale).

(b) CAD design.

Figure 5.1: UVa geometry - Configuration A.

5.2.2 Numerical modelling

The CAD geometry, presented in Figure 5.1, is converted into a GNU Triangulated

Surface (GTS) file that can be read by CompReal, as described in Section 3.4. The

GTS geometry determines the surfaces to be read within the IBC method, as shown in

Figure 3.4.

A uniform mesh has been employed in this case, since the resolution close to the wall

is also important. However, wall functions are not yet available in CompReal, which

can a source of inaccuracy if the mesh is not fine enough close the walls. The mesh has
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336×108×108 - 3.9 millions - points and it is used for the simulation of both Smagorinsky

and SPDF models. The y+ values range from 70 to 85. The SPDF simulations have also

been performed using eight stochastic fields. The mesh is relatively coarse than other

numerical studies that used on average 40 millions points [12, 33]. It is therefore a good

test to verify if the SPDF is able to reproduce highly resolved simulations using less

points.

The temporal and spatial discretisation schemes employed here are the same as in the

Cheng’s and Evans’ burners and it is mentioned here for completeness. The convective

terms are discretised using the hybrid scheme between the DRP, 13-point stencil and

fourth order accurate, and HLLC-TVD scheme, second order accurate and applied to

strong gradient regions. Remaining spatial derivatives are also discretised with fourth

order central difference scheme. The third order Runge-Kutta is used as temporal in-

tegrator, being weak first order accurate for the stochastic equations. The time step of

5 × 10−8 s is used and the CFL number is kept below the threshold value of 0.2. The

simulations are ran for 16 residence times in order to obtain temporal averaged data.

The LES parameters are also similar to the ones used for the supersonic burners cases.

The boundary conditions for the air and fuel inlets are as described previously. Synthetic

turbulence with fluctuation level of 5% is inserted at the air intake through a digital filter.

A fluctuation of 5% is also included into the fuel inlet (ũrms), however, using a random

sine perturbation with 8 modes (Nmod):

ũ′j (y, z) =

Nmod∑

n=1

ũrms
√

2/n sin [fnt+ n (γ (y, z) + r (y, z) /lref ) + 2πε1] (5.1)

where ε1 ∈ [0, 1] is a random number, lref is the injector radius, and fn = 2π/tn is

the frequency of the fluctuation, where tn is characteristic time of the nth-mode tn =

lref/(nũrms). The variable t represents the time, γ (y, z) is the angle at the position (y, z)

and r (y, z) is the radius at the position γ (y, z).

Zero-gradient and wall boundary conditions are set for remaining boundaries. In the

z-direction a slip wall condition for the axial velocity is used to prevent early shocks in
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the flow cross-direction.

The hydrogen combustion mechanism used here is the Yetter et al. [162], which in-

cludes 9 species and 19 reactions. This model has not yet been assessed for the UVa

scramjet. Chan and Ihme [33] employed the Burke et al. [176] mechanism whereas Ful-

ton et al. [12] evaluated the performance of both Jachimowski [177] and Burke et al. [176]

hydrogen combustion mechanisms. Edwards et al. [173] investigated the mechanism of

Jachimowski [177] and O’Conaire et al. [164]. The usage of a different model can provide

new insights into the scramjet behaviour, such as adequate flame position and radicals

positions.

5.2.3 Results

Several contour plots describing the flow behaviour are shown in Figure 5.2. The instan-

taneous temperature for the SPDF model can be seen in Figure 5.2(a). The positions

of x/H = 6, x/H = 12 and x/H = 18 in the combustor are highlighted as they are the

locations of the CARS measurements. It can be seem in the temperature profile that the

flame quickly attaches to the top-wall in both models.

The fuel jet in both models appears too laminar, although a turbulent boundary

condition has been used. Nevertheless, the SPDF flame is longer and the closer to the

fuel injector.

The topwall averaged pressure on its centreline has been calculated and shown in

Figure 5.3. The topwall pressure is an interesting variable as it can be related to the thrust

of the scramjet engine [33]. The results are also exposed along with the experimental

measurements of Cutler et al. [171] and numerical results from Chan and Ihme [33] and

Fulton et al. [12]. The pressure at the end of the extender is recovered in both simulations

and the agreement with experimental data is good in this region.

However, the expected increase of pressure occurs at further downstream positions

on the combustor region. On the simulations performed, the pressure on the topwall

increases in two stages, the first between x/H = 0 and x/H = 5 and the second from

x/H = 12 until x/H = 20. The first pressure rise is a consequence of the combustion
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(a) Instantaneous T̃ (K) contour plots for the SPDF model.

(b) Instantaneous ỸH2O contour plot for the Smagorinsky model at z/H = 0.

(c) Instantaneous ỸH2O contour plot for the SPDF model at z/H = 0.

Figure 5.2: Contour plots for the UVa scramjet - Configuration A simulation.

process. It should be noticed that the on the experiments, the pressure firstly increases

because of the compression ramp located between x/H = −6 and x/D = 0, which

generates a shock wave. On both simulations, this effect presents minor influence as the

pressure remains barely the same, increasing to p/pref = 1.2 and returning to p/pref = 1.0

shortly afterwards. This indicates the lack of mesh resolution in the non-reactive region.

The experimental data also shows a rapid increase of pressure immediately downstream

the injector position until x/H = 8, where it rises with constant rate until the end of the
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Figure 5.3: Topwall pressure at the centreline, where pref = 37(kPA). Experimental data
from Cutler et al. [171] (◦). Simulations from Chan and Ihme [33] using the FPV (1) and
the quasi-laminar model (2), employing the Burke et al. [176] mechanism. Simulations
from Fulton et al. [12] using the quasi-laminar approach employing the Jachimowski [177]
(1) and the Burke et al. [176] (2) chemical mechanism.

extender.

The numerical studies of Chan and Ihme [33] investigated the quasi-laminar and the

flamelet/progress variable (FPV) approaches, employing the Burke et al. [176] combus-

tion mechanism and approximately 40 millions cells. The FPV model underpredicts the

pressure output, while the quasi-laminar shows opposite behaviour. Their agreement

in the injector region is better, which could be related to the higher mixing achieved

through the better mesh resolution. The investigation of Fulton et al. [12] also employed

an approximately 40 millions cells mesh and used the quasi-laminar approach to deal

with the reactive term. Both simulations show a faster pressure rise without any source

term modelling. The higher mixing level have been achieved through a better resolution

close to the burner.
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Although the SPDF model improves the topwall pressure experimental agreement,

the limitations of the Smagorinsky model to close the convective terms when applied

to a coarse mesh possibly drove the reaction further downstream. The mixing level is

increased through the usage of the new SPDF formulation, which relates the pressure

with the stochastic variables. The Smagorinsky model coupled with the quasi-laminar

model is able to provide reasonable results, but a finer mesh is very important in the

quasi-linear approach.

The top-wall pressure indicates that the mixing level is fundamental to simulate this

scramjet configuration. The mesh resolution and proper mixing close to the injector region

seems to be the key factor to trigger combustion at the correct position and reproduce

the top-wall pressure. The mesh resolution close to the wall is not fine in the simulations,

however, the pressure at the beginning and a the end of the domain are correctly captured,

which suggests that the resolution close to the injector is more relevant in this case.

Figure 5.4 presents the averaged temperature contour plots at the positions x/H = 6,

x/H = 12 and x/H = 18. These positions are also highlighted at Figure 5.2(a). The plots

presents overall good agreement to the CARS measurements. The topwall temperature

distribution in regions from z/H = [−3,−2] and z/H = [2, 3], close to the corners,

presents greater values than the experiments.

The temperature profiles seems also more sparse close to the top wall, which is a

consequence of the poor near-wall mesh resolution. Fulton et al. [12] used a y+ ≈ 1,

employing a mesh spacing of 0.005 mm to the wall. The mesh spacing employed here

results in distances up to y+ ≈ 85. A wall-function approach is therefore required to

improve the accuracy of the simulations.

The SPDF model, nonetheless, predicts results with temperature profiles closer to the

CARS measurement, achieving higher values than the Smagorinsky model at x/H = 18.

The higher values are derived from the faster combustion rate, a consequence from the

better mixing and turbulence-chemistry modelling.

The averaged hydrogen mole fraction results are shown in Figure 5.5. The experimen-

tal agreement is good for both models. At the position of x/H = 6, the hydrogen profile
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Figure 5.4: Averaged temperature contour plots. CARS measurements performed by
Cutler et al. [171] and reproduced here with permission from the copyright owner, Prof.
Andrew D. Cutler.

is less round than the CARS measurement and more concentrated. At the downstream

positions x/H = 12 and x/H = 18, the results are closer qualitatively and quantitatively

to the experimental data.

Figure 5.6 shows the mole fraction of N2. The simulations with both models present

reasonable agreement with the experimental data from Cutler et al. [171]. At the position

closer to the injector, x/H = 6, the profiles are again less sparse at the center. At

downstream positions, the mixing level increases and at x/H = 18 the experimental

agreement is good.



5.2. University of Virginia (UVa) Scramjet 201
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Figure 5.5: Averaged mole fraction of H2 contour plots. CARS measurements performed
by Cutler et al. [171] and reproduced here with permission from the copyright owner,
Prof. Andrew D. Cutler.

The top wall region presents different behaviour for both models than the experimental

data. This unexpected behaviour is slightly more intense for the quasi-laminar approach.

At the walls the diffusion effects are bigger than expected, which is a consequence of a

coarse resolution in this region. The turbulence/combustion interactions are better solved

in the SPDF model, which contributes to a better overall solution.

At last, the results for the averaged mole fraction of O2 are presented in Figure 5.7.

Overall the contour plots present reasonable agreement with the CARS measurements.

The shape of the contour plots for the O2 are not too different than the N2 profiles, shown
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Figure 5.6: Averaged mole fraction of N2 contour plots. CARS measurements performed
by Cutler et al. [171] and reproduced here with permission from the copyright owner,
Prof. Andrew D. Cutler.

in Figure 5.6. However, the O2 mole fraction of the SPDF model at the positions x/H = 6

and x/H = 12 are in better agreement with the experimental data. The concentration

of O2 is smaller in the regions of the fuel jet, indicating its higher reaction rate than in

comparison to the Smagorinsky/quasi-laminar approach.

The topwall O2 concentration profiles present the same issue as the other chemical

species. It is overly diffused in the boundary layer, where the turbulent subgrid viscosity

is too high because of lack of resolution. On the SPDF model, nonetheless, this behaviour

is diminished.



5.2. University of Virginia (UVa) Scramjet 203

(a) Exp, x/H = 6 (b) Exp, x/H = 12 (c) Exp, x/H = 18

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

y
/H

(d) SPDF, x/H = 6

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

(e) SPDF, x/H = 12

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

0.0000

0.0275

0.0550

0.0825

0.1100

0.1375

0.1650

0.1925

0.2200

〈X̃
O

2
〉

(f) SPDF, x/H = 18

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

y
/H

(g) Smag, x/H = 6

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

(h) Smag, x/H = 12

−3 −2 −1 0 1 2 3

z/H

−2

−1

0

1

2

3

0.0000

0.0275

0.0550

0.0825

0.1100

0.1375

0.1650

0.1925

0.2200

〈X̃
O

2
〉

(i) Smag, x/H = 18

Figure 5.7: Averaged mole fraction of O2 contour plots. CARS measurements performed
by Cutler et al. [171] and reproduced here with permission from the copyright owner,
Prof. Andrew D. Cutler.

In general, reasonable experimental agreement has been achieved for the mole fractions

and temperature, despite the limitations presented in both simulations. The SPDF shows

an expected superior performance than the quasi-linear approach, improving the topwall

pressure results and generating a flame plume with better qualitatively agreement to the

CARS measurements of Cutler et al. [171].
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5.3 Summary

This chapter presented the ability of the SPDF model to simulate a scramjet. The su-

personic combustion ground-based facility of the University of Virginia presents a fairly

simple geometry in comparison to other combustion engines, however, its numerical sim-

ulation is still a daunting task. The simulation presents a wall-bounded flow with super-

sonic inlets and hydrogen combustion, and several other complex physical features.

In this chapter all the numerical tools presented so far have been used. The geometry

has been designed with an open-source CAD tool and converted to a GTS file, which

could be read into the IBC method to simulate a non regular geometry within a uniform

mesh.

The simulations have been performed using these techniques along with the Eulerian

stochastic equations to solve the SPDF model. The SPDF model employs the Smagorin-

sky model to close the convective terms too, which makes it still dependent on high mesh

resolution on complex simulations. The quasi-laminar approach has also been evaluated

and it seems too sensitive to the mesh resolution on this test case. This approach shows

limitations to generate good quality data, unless it is used in conjunction with a fine

mesh [12, 33].

The topwall pressure has been evaluated and both models are able to generate rea-

sonable experimental agreement. The pressure at the extender region is recovered. The

shock wave at the compression-ramp leading edge, however, is weak in comparison to

other results in the literature. The pressure rise at the combustor region takes more

time to occur, although the SPDF is able to reduce this delay. The lack of enough mesh

resolution seems to be the main reason for this issue.

The average temperature and mole fractions have also been assessed for both models

and compared to the CARS measurements of [171]. The results are overall reasonable,

with the SPDF generating a flame plume closer to the experimental data. In both simu-

lations there are deficiencies with the accuracy close to the corners of the scramjet, which

is due to the absence of a wall function and higher mesh resolution.

The Yetter et al. [162] mechanism has been employed for the first time to simulate this
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scramjet configuration. A possible future investigation must evaluate other combustion

mechanisms with the current numerical model. The models of Jachimowski [177] and

Burke et al. [176] are specially designed to operate at high speed, which could provide

new insights when used with the SPDF model.

Overall, the developed SPDF model has been proven to offer a reliable option to

simulate supersonic combustion, capable of increasing mixing levels and simulating tur-

bulence/chemistry interactions with better accuracy than the quasi-linear approach.
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Conclusion

6.1 Summary of Thesis Achievements

This work has developed and investigated two models to be used in supersonic combus-

tion context and Large Eddy Simulation (LES) environment. The Probability Density

Function (PDF) method has the ability to exactly close one-point statistics if the neces-

sary information required is contained within the PDF sample space. Two PDFs have

been investigated, a conservative formulation including enthalpy and mass fractions into

the PDF sample space (SPDF); and a more complete model, including density, mass

fractions, velocity and total energy in the PDF sample space (VSPDF). These formula-

tions considerably reduce the unknowns in classical LES equations of compressible flows,

however, they require sophisticated solution method to be computationally feasible.

The SPDF formulation has a more well-established research ground, with several ap-

plications to low Mach number combustion. Its application in high-speed combustion can

be performed by implementing the Eulerian stochastic equations into a compressible code

and account for compressible effects. However, the source term is not exactly closed, as

it is necessary one extra thermodynamic variable, such as pressure or density, to solve it.

The SPDF model also require the convective subgrid terms to be closed, which is per-

formed here with the Smagorinsky model. The new formulation employs the information

from the Eulerian stochastic fields to exactly solve the pressure field, an approach only

206
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used in Lagrangian formulation before. In this way, the SPDF model also improves the

flow field.

The VSPDF formulation is a more complete approach and exactly closes the convec-

tive and reactive terms within the LES framework. The Eulerian stochastic field method

is used to solve the VSPDF transport equation. The stochastic equations require mild

assumptions in order to preserve mass and prevent numerical shocks. This new formula-

tion greatly reduces the number of unknowns, mainly those derived from the convective

terms. The model requires the use of the micromixing and the Langevin models for clo-

sure. Because of its new formulation and assumptions, these closures may require new

calibration or additional closures.

The new developed stochastic equations have been implemented into the in-house

fortran-based compressible multicomponent code CompReal. High order spatial and

temporal discretisation, which is important in compressible fluid dynamics, are available.

The discretisation performance has been evaluated through the homogeneous isotropic

turbulence test case, where variables such as enstrophy and energy spectra have been in-

vestigated. The hybrid discretisation method is regarded as the best compromise between

accuracy and numerical stability within the present context.

The PDF models have also been evaluated through a series of numerical tests to

assess their performance and accuracy. The one-dimensional reactive shock tube has been

investigated and the scatter plots show that the SPDF presents higher mixing level than

the VSPDF for the chemical species. This may occur because of the Wiener term in the

mass fraction equations in the SPDF model, which increases the dispersion. The VSPDF,

although theoretically more complete, presents scatter plots more condensed in some

regions, which limits the advantage of the PDF model in accessing several composition

spaces. This suggests that the VSPDF model requires further closures in the stochastic

equations.

The reactive shock tube has also been used to verify the Monte Carlo convergence

rate, simulating between 2 and 8192 fields. It is shown that the number of eight stochastic

fields is enough for the SPDF model to achieve, on average, less than 1% error for the first
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moment. For the VSPDF, the number of eight stochastic fields has also demonstrated

sufficient to achieve first moment convergence with 1% error for chemical species and at

most 5% error for the velocity.

Two and three-dimensional reactive and high-speed mixing layers have been inves-

tigated, using the configuration of Ferrer [26]. These test cases reveals the ability of

both SPDF and VSPDF models to capture flow variables and reproduce DNS data with

good agreement. The VSPDF, though, seems to overestimate the turbulence levels. The

rate of growth of the vorticity thickness in the SPDF simulations is in better agreement

with DNS data. The velocity fluctuations of the VSPDF are closer to the DNS data,

however, still larger in general. The present VSPDF formulation seems to consistently

provide higher turbulence levels and overestimates growth of shear layers. This suggests

that additional modelling is required for the Langevin model in high-speed LES or addi-

tional effort have to be put to initialise the sub-grid velocity field. The SPDF provide

closer agreement and has shown higher numerical consistency and convergence rate.

Two supersonic burners have been investigated in order to ensure the numerical vali-

dation of the SPDF model. The SPDF and the Smagorinsky model employing the quasi-

laminar approach have been used to simulate the supersonic burners of Cheng et al. [7]

and Evans et al. [152]. These simulations are complex and include a wide range of physi-

cal features. The SPDF model shows good agreement and improvement compared to the

quasi-laminar approach. The SPDF results for a a coarse mesh are closer to the experi-

mental data than the results of a fine mesh simulation for the Cheng et al. [7] burner with

the quasi-laminar approach. For the Evans et al. [152], however, the experimental agree-

ment is not as good as the fine mesh. Both models with coarse mesh seem to overpredict

turbulence/diffusion levels.

Finally, the scramjet UVa configuration A [171] has been simulated. The results show

the ability of the SPDF model to reproduce at a certain extent the topwall averaged

pressure, an important property for the scramjet thrust measurement. The SPDF model

presents better experimental agreement than the Smagorinsky model coupled with the

quasi-laminar approach. The mole fractions and temperature results also show that the
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SPDF reproduces better the experimental flame plume. The present simulations are

limited, however, and require the implementation of wall-functions to better agree with

data value.

Overall, the SPDF model along with the Eulerian stochastic field method presents

good results. Improvements can be made in the micromixing model to allow better

mixing in high-speed cases such as in the supersonic burners. The VSPDF is a more

complete approach, however, the current formulation requires further examination. The

Langevin model constant may be need to be calibrated to also capture higher moments

and deal with pressure fluctuations that were not included in this formulation.

The SPDF and VSPDF formulations developed in this work shed light into PDF

methods applied to LES and supersonic combustion. Their limitations and advantages

have been concisely exposed through simulating different test cases and experimental

configurations. This work shows that both models are promising formulations, as they

present many desirable features to simulate supersonic combustion with high accuracy

and feasible computational power.

6.2 Future Work

There are several topics presented here that can be further investigated. The following

suggestions can be implemented to improve the models robustness, accuracy and gener-

ality:

• The SPDF may benefit from a better or more specific micromixing model. The

correction included to deal with low Reynolds number improved the results for the

reactive shock tube. However, the IEM micromixing constants CYα and CH have

values extracted from the low Mach number combustion literature. The values

could be calibrated for supersonic combustion in order to allow a reasonable level

of stochastic fluctuations. The use of a more complex micromixing model can also

be evaluated, although it may require a larger number of stochastic fields to achieve

statistical convergence.
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• The VSPDF may benefit from improved closures instead of the ones used in this

work. The Langevin model of Delarue and Pope [20] should also be evaluated, as

it includes correction to include compressible effects. The inclusion of a stochastic

pressure to prevent the numerical shocks may have imposed a strong assumption and

requires additional examination. The IEM micromixing part can also be improved

through a better constant choice, as pointed out in the previous item.

• Most part of this work has been conducted using the Yetter et al. [162] mecha-

nism. One major advantage of the PDF models is their ability to capture detailed

chemistry, since the reaction term does not need closure within the large eddy sim-

ulation environment. The hydrogen combustion mechanisms of Jachimowski [177]

and Burke et al. [176] can be used in the test cases presented, as they are optimised

to work in high speed/high pressure flames. A different chemical mechanism could

offer better understanding on the limitations presented in the supersonic burners

and in the scramjet cases.

• The Navier-Stokes Characteristics Boundary Conditions [147] can be used in all

test cases presented here. They are potentially more accurate than the first order

boundary conditions used in this work, since they are specially designed to operate

with compressible solver and help with pressure reflections from the boundaries. As

the focus of this work has not been on the acoustics of the flames, these boundary

conditions have not been further explored. However, the characteristics may be

complex to implement into the VSPDF method, since each field can possess a

different boundary condition for velocity.

• The use of wall functions are of paramount importance when the flow is not well

resolved in near-wall regions. The absence of enough mesh resolution to capture

the viscous sublayer have interfered in the quality of the results close to corners on

the scramjet. In such cases, the use of a wall function is vital. The simulation of

near-wall regions in a large eddy simulation framework is an extensive topic and

must be explored in scramjet simulations.
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• Adaptive mesh refinement has been implemented into the in-house code CompReal

to deal with sharp gradients. This capability could be extended to the PDF models

in order to refine the mesh in critical regions of the flow like shocks or flame front.

The adaptive refinement can be applied only to the mean flow and not necessarily

to each individual stochastic field. The AMR can be used in the experimental

supersonic burners to solve the mixing layer between fuel jet/air co-flow and air-

flow/surrounding air. On the scramjet simulations, it can be applied not only to

the sharp gradients regions but close to walls on the very first time step, obtaining

a highly resolved mesh in all important regions of the flow.
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Appendix A

Copyright permission

The following is the copyright permission provided by Prof. Andrew Cutler on 11/12/2018

to reproduce the CARS measurements from Cutler et al. [171] for comparison purposes.

Figure A.1: Copyright permission by Prof. Andrew Cutler from [171] to reproduce figures.
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