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Learning About a New Technology:
Pineapple in Ghana*

Timothy G. Conley Christopher R. Udry
University of Chicago Yale University
tim.conley@gsb.uchicago.edu udry@yale.edu
May 24, 2004
Abstract

This paper investigates the role of social learning in the diffusion
of a new agricultural technology in Ghana. We use unique data on
farmers’ communication patterns to define each individual’s informa-
tion neighborhood, the set of others from whom he might learn. Our
empirical strategy is to test whether farmers adjust their inputs to
align with those of their information neighbors who were surprisingly
successful in previous periods. We present evidence that farmers adopt

*The authors have benefitted from the advice of Richard Akresh, Federico Bandi, Dirk
Bergemann, Larry Blume, Adeline Delavande, Steven Durlauf, Ana Fernandez, Garth
Frazer, Lars Hansen, Ethan Ligon, Charles Manski, Francesca Molinari, Stephen Morris,
Jeff Russell, Chris Taber, Otto Toivanen, Giorgio Topa, and seminar participants at a num-
ber of seminars. We especially thank Yaw Nyarko, Mark Rosenzweig and three anonymous
referees for their advice. The data used in this paper were collected by Ernest Appiah,
Robert Ernest Afedoe, Patrick Selorm Amihere, Esther Aku Sarquah, Kwabena Moses
Agyapong, Esther Nana Yaa Adofo, Michael Kwame Arhin, Margaret Harriet Yeboah,
Issac Yaw Omane, Peter Ansong-Manu, Ishmaelina Borde-Koufie, Owusu Frank Abora,
and Rita Allotey under the direction of the second author and of Markus Goldstein, who
were visiting scholars at the Institute of Statistical, Social and Economic Research at
the University of Ghana. This research has received financial support from the NSF
(grants SBR-9617694 and SES-9905720), International Food Policy Research Institute,
World Bank Research Committee, Fulbright Program, Social Science Reseach Council
and the Pew Charitable Trust. The authors are of course responsible for any errors in
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surprisingly successful neighbors’ practices, conditional on many po-
tentially confounding factors including common growing conditions,
credit arrangements, clan membership, and religion. The relationship
of these input adjustments to experience further supports their inter-
pretation as resulting from social learning. In addition, we apply our
methods to input choices for another crop with known technology and
they correctly indicate an absence of social learning effects.

1 Introduction

The transformation of technology is fundamental to the development process.
For a new technology to be adopted by an agent, particularly in agriculture,
it must be adapted to the circumstances faced by that agent. Its character-
istics usually will not be transparent to the new user (Evenson and Westphal
(1995)). Consequently, an investment in learning about the new technology
is associated with its adoption. If there are multiple adopters of the new
technology in similar circumstances, as is often the case with an innovation
in agriculture, then the process of learning about the new technology may be
social. New users of the technology may learn its characteristics from each
other.

The role of social learning in promoting growth and technology diffusion
has been featured in the endogenous growth literature (Romer (1986); Lucas
(1988); Aghion and Howitt (1998)). It is also an integral part of current prac-
tice in agricultural research and extension systems in developing countries.
New technologies are introduced either by farmers’ own experimentation or
through formal sector intervention and the process of social learning encour-
ages their diffusion (Bindlish and Evenson (1997); Rogers (1995)). Only
recently, however, have economists made efforts to measure the quantitative
importance of learning from others.!

In this paper we investigate learning about a new agricultural technology
by farmers in the Akwapim South district of Ghana. Over the last decade,
an established system of maize and cassava intercropping for sale to urban
consumers has begun a transformation into intensive production of pineapple

'In contrast, there is a long tradition of empirical studies by economists of the adoption
of new technologies in agriculture. Griliches (1957) is the seminal work. For reviews see
Feder et al (1985) and Evenson and Westphal (1995). This important literature, however,
does not isolate the role of learning processes from other determinants of adoption.



for export to European markets (Obeng (1994)). This transformation of the
region’s farming system involves the adoption of a set of new technologies,
in particular the intensive use of fertilizer and other agricultural chemicals.

Measuring the extent of social learning is difficult for two major reasons.
First, the set of neighbors from whom an individual can learn is difficult to
define. Second, even with a proper definition of this set, distinguishing learn-
ing from other phenomena that may give rise to similar observed outcomes is
problematic. In the absence of learning, individuals may still act like their
neighbors as a result of interdependent preferences, technologies, or because
they are subject to related unobservable shocks.

Direct data on information interconnections is typically unavailable to
economists.? Consequently, economic investigations of the process of social
learning have typically made assumptions that relate observed relationships
between individuals - such as geographic proximity - to unobserved flows of
information. This set of assumptions is critical for the measurement of the
extent of social learning, but can rarely be tested because of data limitations.?
For example, Foster and Rosenzweig (1995) provide tabulations indicating
that ‘friends and neighbors’ are an important source of information about
fertilizer use, but must use village aggregates as the relevant information set
for social learning.

We have unusually rich data that allows us to address the concerns of
neighbor definition more directly. Our approach draws on the classic work
by Coleman et al (1957) which related adoption of new antibiotics to the net-
work of social interconnections between the doctors. We collected detailed

2Exceptions include Woittiez and Kapteyn (1998) and Kapteyn (2000) who use indi-
viduals’ responses to questions about their ‘social environments’ to describe their reference
groups. Romani (2003) uses information on ethnicity and membership in cooperatives in
Cote d’Ivoire to infer the probability of information flows. Another exception is Bandiera
and Rasul (2002), who have information on the number (though not the identities) of
people using a new technology known by particular farmers. Rauch and Casella (2001) is
a very useful collection of papers that use direct information on social interactions more
generally.

3In many investigations of learning in developing country agriculture, the reference
group is taken to be all farmers in the village (Foster and Rosenzweig (1995), Besley
and Case (1994), Yamauchi (2002)). Munshi and Myaux (1998) take exceptional care
in the construction of reference groups for social learning by using external evidence on
communication barriers arising from religion. See Manski (1993) for a concise discussion
of the importance of reference group designations in identification of endogenous social
effects.



information on who individuals know and talk to about farming. Hence we
follow Coleman et al by defining information links between agents using re-
sponses to questions about which other agents they turn to for information.*

Once neighborhoods are defined, the identification of learning is still a
formidable problem. The classic problem of omitted variables prevents us
from inferring that learning effects must be present simply from observations
on, say, the diffusion process of a new technology. The fact that a farmer
is more likely to adopt a new technology soon after his neighbors have done
so might be a consequence of some unobserved variable that is spatially
and serially correlated, rather than learning. We believe that correlated
unobservables are a general problem in the literature on agrarian technology,
and it is apparent that they are important in the sample region (see sections
3.2 and 6.3). We have collected data to mitigate this problem. Our data
contains detailed geographic and soil information as well as information on
credit and family relationships, allowing us to control for many potentially
confounding factors.

Our identification problem can be thought of as a special case of the gen-
eral problem of identification in social interactions models studied by Manski
(1993, 1997), Moffitt (1999), Brock and Durlauf (1999) and others.” This
literature is concerned with the problem of inferring whether an individ-
ual’s behavior is influenced by the behavior of those in his neighborhood or
reference group. Manski (1993) demonstrates that identification of social
effects in a cross section is generally tenuous. With panel data, prospects
for identification improve, subject to the important caveat that the assump-
tions regarding the timing of social interactions must be properly specified.
We are able to make progress because we are examining a specific form of
social interaction: learning from each others’ experiments. Our strategy for
identifying learning effects has two prongs: first, we use data on both the
geographic and the informational relationships between farmers to help dis-
tinguish the effects of learning from those of unobserved spatially-correlated
shocks; and second, we use the time dimension of our data to isolate the

4Rogers (1995) and Birkhaeuser et al (1991) provide valuable surveys of research that
describes and characterizes the set of neighbors from whom agents learn about new in-
novations in a wide variety of settings. Van den Bulte and Lilien (2001) show that the
social contagion effects found by Coleman et al vanish once marketing effort is taken into
account.

®See Brock and Durlauf (1999) for a survey of the literature on social interactions
models.



impact of new observations of the productivity of fertilizer on innovations in
a farmer’s fertilizer use. We investigate whether farmers change their input
decisions to align with those of their information neighbors with similar cir-
cumstances who were previously surprisingly successful, earning higher than
expected profits. The timing of responses to neighbors’ actions arises natu-
rally from the staggered revelation of information from preceding plantings.

We model farmers’ learning about the productivity of inputs. Each har-
vest opportunity gives the farmer an observation on output for a given
amount of input, and thus reveals information about the productivity of
that input level. Our primary method to test for social learning is to esti-
mate how farmers’ input decisions respond to the actions and outcomes of
their neighbors. We know the inputs used and output harvested by each
farmer, and thus can infer aspects of the information conveyed by each ‘ex-
periment’ with the new technology by each respondent. We use our data
on information flow between farmers to trace the impact of the information
revealed by each experiment on the future input decisions of other farmers
who are in the information neighborhood of the cultivator who conducted
the experiment.

We find strong effects of news about fertilizer productivity in the infor-
mation neighborhood of a farmer on his future innovations in fertilizer use.’
Specifically, we find for a given farmer: (1) he is more likely to change his
fertilizer use after his information neighbors who use similar amounts of fer-
tilizer achieve lower than expected profits; (2) he increases (decreases) his
use of fertilizer after his information neighbors achieve unexpectedly high
profits when using more (less) fertilizer than he did; (3) his responsiveness
to news about the productivity of fertilizer in his information neighborhood
is much greater if he has only recently begun cultivating pineapple; and (4)
he responds more to news about the productivity of fertilizer on plots culti-
vated by experienced farmers and farmers with wealth similar to his. These
conclusions hold when conditioning on the fertilizer use of farmers who are
physically nearby and who therefore experience unobserved growing condi-
tions that are highly correlated with his. In addition, they are robust to
a variety of different definitions of information flow between farmers, and
conditional on the fertilizer use of farmers with whom he has financial ties.
Finally, we apply analogous methods to labor input choices to provide ev-

6We use the male pronoun to refer to farmers because the large majority of pineapple
farmers in our data are men.



idence that pineapple farmers also learn about the labor productivity from
their information neighbors, but that there is no evidence of similar learning
in an established maize-cassava technology in these villages.

The remainder of this paper is organized as follows. In Section 2 we
present the simple learning model that motivates our empirical specifications.
Section 3 describes the empirical setting and our data. The implementation
of the empirical model is discussed in Section 4 and Sections 5 and 6 describe
our results.

2 A Learning Model

This section describes a simple model of learning about a new technology
that we use to guide our empirical work. The basic form of this model is
that farmers are trying to learn about the responsiveness of output y;+y; on
plot ¢ to a discrete-valued input z;; which we will call fertilizer:

Vi1 = Wit [ (Tig) + Eipt1 (1)

€it+1 18 an expectation zero productivity shock that is IID across farmers and
time. Farmers do not know the function f; it is the object of learning. The
variable w;; is a positive, exogenous growing conditions variable influencing
the marginal product of ; ; that is correlated across farmers and time. This is
motivated by the fact that agricultural production is often affected by shocks
to the marginal product of inputs that are spatially and serially correlated
(e.g., soil moisture, weeds, or pests).” We assume the w;, are observable to
farmers but not the econometrician. The time indices reflect the revelation
of information: in particular, input decisions might be influenced by the
revelation of the growing conditions. To simplify notation, we suppose that
each farmer 7 has only one plot, also designated 7. The price of the input z;;
is a constant p.®

The essential feature of the farmer’s problem is that the responsiveness
of output to fertilizer use is unknown. However, the farmer has beliefs
about the technology f that evolve over time. We will not be specific about
how the farmer’s beliefs evolve, but simply posit that farmer i’s subjective
expectations, E;:(-), can be defined. We begin by deriving implications of

"w; ¢ could include a forward looking component, e.g. a rain forecast.

81n our study area, fertilizer prices are common across farmers and essentially constant
throughout the sample time span.



social learning for observable actions in a very simple model. This model
abstracts from some important aspects of learning about a new technology,
in particular, from farmers’ experimentation with different levels of fertilizer
use in order to refine their knowledge of the technology and from potential
strategic motivations. It is, however, sufficiently rich to clarify the essential
identification problem that plagues attempts to measure the extent of social
learning about agricultural technologies.

The time t problem faced by a myopic farmer ¢ is to choose the input,
x, to maximize his subjective expectation of time t + 1 profits for this input
choice, m; 41(x, w;r) = (wirf(x) 4+ €;+) — pr. Since inputs are discrete, this
is nothing more than choosing input level z7; so that:

Eiymipr1 (v wie) > Eiymigia(z, wig), (2)

all x € supp(x;y).

Learning influences the farmer’s choices by changing the farmer’s subjective
expectation of f(zy ) which can be interpreted as his expectation of ‘growing-
conditions-adjusted’ output:

Ek,
Eii{f(wpt)|zrs, wer} = Eig {f(xkt) + w:rl Tk t, U)k,t}
#

Yk, _
= B { " v = gulad. ©)

k.t

Examination of equation (2) reveals two main reasons for farmers’ choices
of xj, to be interrelated. First, farmers may face similar realizations of
growing conditions and thus make similar decisions about the optimal amount
of fertilizer use. Therefore spatial or serial correlation in growing conditions
will tend to induce a corresponding correlation in farmers’ fertilizer choices.
Second, farmers with related subjective information sets would have similar
subjective expectations of growing-conditions-adjusted output, g;.(-), leading
to similar input choices when they face similar prices and growing conditions.
Learning will have an impact on fertilizer choices through changes in g;(-)
across farmers. If farmers learn from others, there is social learning and this
will induce a systematic dependence of g¢;;(-) across farmers to the extent
that farmers have common information. This dependence in g;.(-) series
will induce a correlation in innovations in actions for farmers who share
information.



The empirical task we face is to distinguish between these two reasons for
correlations across farmers’ innovations in fertilizer use. Shocks to growing
conditions are a major concern as they are positively spatially and serially
correlated (see e.g. Carter 1997). Even if farmers have perfect knowledge
of the production function (so g;+(z;:) = g(xi¢)), if the w;, are spatially cor-
related then from (2) the changes in fertilizer use (v}, — x}, ;) are also spa-
tially correlated. We are able to distinguish the effects of spatially-correlated
growing conditions from social learning because we collected data on both the
geographic location of plots and the flows of information between farmers.

Local Learning

We do not want to focus attention on a particular model of learning or
updating. Therefore, we do not start with primitive assumptions specifying
a particular learning model. Instead, we consider empirical implications for
a set of models where farmers learn from observations of inputs and outputs
about their production technology locally, in the vicinity of the inputs they
observe.

We choose to model learning as local in order to capture the notion that
the information content of an outcome depends upon the input choice: in
order to learn about a particular part of the production function, farmers (or
their neighbors) must experiment with inputs in that portion of the function.
This corresponds both to sample farmers’ own descriptions of their exper-
imentation with fertilizer inputs and to a substantial descriptive literature
(Richards 1985; Amanor 1994). It is in contrast to some models of learning
in which the same information about the production function can be deduced
regardless of the portion of the production function that is used (Prescott
1972; Jovanovic and Nyarko 1996; Foster and Rosenzweig 1995).

To be more precise, consider a farmer’s reaction to a new observation of
inputs, growing conditions, and output that the farmer will use to update
his subjective expectations from g; ¢(-) to g; ++1(-). We consider learning rules
that are local in the sense that a new observation with input level z will only
affect ¢ 1+1(z) and not ¢, ;11 (%) for T # x. We assume in addition that farmers
are learning in the sense that g; 1y1(x) — ¢;+(x) > 0 when they observe higher
shock-adjusted output than expected (£ > g;,(z)), and likewise reduce their
subjective expectation when they observe lower than expected . This local
learning rule is consistent with multiple kinds of learning, including Bayesian
learning with independent priors over the elements of the support of x.



Implications for Actions

We now outline the implications for actions of a given farmer ¢ in response
to a new piece of information: (xy s, Wk, Ykr+1). To make the argument more
transparent, suppose for the moment that this farmer faces constant growing
conditions. This new piece of information allows him to locally learn about f
at input level x;; and has an impact upon his subjective expectation g; ;(x)
for x = x;,. With constant growing conditions, only the expected profits
associated with input level zy; shift; good news, higher than expected profits,
inducing an upward shift and bad news, lower than expected profits, inducing
a downward shift. Responses to changes in expected profits will be different
for farmers who used the level z;, in their previous planting versus those
who used an alternative input level.

First consider farmers who previously used z;;. Good news, increases in
expected profits, at input level x;, will reinforce these farmers’ beliefs that
T is the optimal choice for their growing conditions and they will continue
to use it. Bad news, with a sufficiently large decrease in expected profits at
input x;, may induce farmers who used this level to switch to an alternative.
However, bad news about zj; provides no information about which among
multiple alternatives the farmer will choose if he changes inputs in response
to it. Farmers will revert to whatever option was second-best before the bad
news arrived. Thus, our model offers no prediction for either the magnitude
or direction of an input change induced by bad news about profits at zj ;.

Now consider farmers who used an alternative to zj,. If such farmers
receive bad news about x; they will not change their action as they already
considered xj; an inferior option. Good news about level z;; may persuade
these farmers to change to zj,, if it induces a sufficiently large increase in
the associated expected profits. The magnitude and direction of a change
in response to a single observation of good news about zj, is also perfectly
forecasted by the difference between xj,; and the farmer’s previously used
input level.

These implications hold for farmers with any model of local learning
where new information {zy¢, Wi, yres1} effects only gi:(z) for © = wp4.
This includes models where more prior information is combined with the
farmer’s sample to update, perhaps in a Bayesian fashion, the means of
each conditional distribution. They will not hold, in general, for models in
which learning is global. For example, if farmers know that the production
function lies in a particular parametric family, then it is possible to con-
struct examples of learning algorithms in which an observation of the event

9



{[% — g@t(:z:k,t)} > 0} induces the farmer to move away from xy ;.

In a more general setting in which growing conditions are random, the
responsiveness of actions to news holds in a probabilistic sense. To see this,
consider the special case in which z can take on two values {H, L} with
H > L. Suppose farmer i chooses z;, = L. He will change his input level
to zip41 = H if wiy1gi001(H) — pH > wig19i041(L) — pL.?  So i chooses
x;1+1 = H for any realization of period ¢ growing conditions such that

p(H—-1L)
gi,t-i-l(H) - gi,t—&-l(L)‘

The threshold wy,, is strictly declining in g;11(H), so the probability that
i will choose z},,; = H conditional on all his past choices of inputs and
growing conditions shocks is increasing in g;;y1(H). Thus, the probability
that ¢ will change inputs to z},,;, = H is higher if he observes a positive

*
Wipp1 = Wipg =

value of [yzj—;tl —gic(H )] . If 7’s neighbor achieves surprisingly high growing-
conditions—adjusted output and profits at some level of fertilizer, he will be
more likely to use that level in the next period.

However, correlated growing conditions shocks can induce a very similar
pattern even in the absence of learning. Consider the two input level example

when the production function is known. Farmer ¢ will choose zj, = H when

p(H — L)
g(H) —g(L)

and this will cause y;,+1 to be high relative to its unconditional expectation.
If w;, is positively spatially and serially correlated, then farmers’ choices of
xj, and hence y; ;1 will be positively correlated across space and time as well.
In particular, if growing conditions at small lags in time are highly positively
correlated for physically proximate plots, then farmer i's choices x7, = H
and associated likely-to-be-high output y;:y1 will tend to be followed by
choices of H and higher outputs of i's physical neighbors, solely due to the
positive dynamic correlations in growing conditions. To the econometrician
who does not observe w; ;, a higher than long-run average realization of yields
and profits by farmer ¢ using the high fertilizer level tends to be followed in
near future by an increased use of that quantity of fertilizer by his physical

Wi >

90f course this requires Git+1(H) > gip+1(L): the farmer must expect H to be more
productive than L if he is ever to use H.

10



neighbors who also tend to achieve a higher than long-run average profit.
Therefore, it will be important in our empirical work to adequately condition
on growing conditions.

This is a central problem in the identification of social learning in agri-
culture. It is difficult to gather sufficiently rich data on local conditions to
be confident that learning effects can be distinguished from spatially- and
serially-correlated shocks. Because growing conditions variables like weather
and weeds are spatially correlated, the use of geography to identify learning
neighborhoods is particularly problematic. Our strategy is to use geography
(and timing) to identify spatially- and serially-correlated growing conditions,
and direct data on information linkages to distinguish the effects of learning
from those of similar growing conditions.

The discussion thus far has focused on myopic agents who learn from their
neighbors’ experience. In Appendix 1 we show that the core implications
of local learning for actions can persist with forward-looking agents who
have an incentive to experiment to learn about the characteristics of the new
production function.

Empirical Strategy and Obstacles

Our empirical approach is to use a set of regressions to examine how
innovations in farmer i’s fertilizer use respond to news about fertilizer pro-
ductivity from his information neighbors’ experiments, which we will refer to
as plantings. First, we estimate a logistic regression where the binary out-
come is an indicator that ¢ changed his level of fertilizer from that used on his
own previous planting. For simplicity, we drop stars and let z;; be the value
of fertilizer used per new plant applied by farmer i for the pineapples planted
in round ¢. Our model implies a farmer who used x;;_; at time ¢ — j and
whose next planting was at time ¢ is more likely to change if he observes (be-
tween t — j and ¢) good news about x # x;,_;, or bad news about = = x;;_;;
and is less likely to change if he observes good news about x = z;,_; or bad
news about z # z;;_;. Our approach to testing these implications is to
construct indices meant to reflect the number of good and bad news exper-
iments observed by farmer 7 at both * = z;,_; and  # z;;_;; and to use
these indices as regressors in a logistic regression predicting changes. The key
variable that we use to control for the alignment of actions due to common
growing conditions, w;; is an average of the absolute deviation of x;;_; from
the inputs used by set of farmers whose plantings are close enough in time
and space to farmer ¢'s time t planting that they had very similar growing

11



conditions. We also include several additional control regressors including
ones for wealth, clan, religion, and experience farming pineapple .

After examining the binary description of input changes, we proceed to
regressions predicting changes themselves: Aw;; = (z;; — z;,—;). This is
motivated by our model’s implications for the magnitude and direction of
changes in response to an observation of good news about an input level. In
the model, if farmer ¢ changes inputs in response single observation of good
news about xy,, Ax;; will equal (v, — z;,—;), he will switch to xy,. Of
course, farmer ¢ may not always choose to switch in response to a good news
observation at xy ., but (xj, — z;;—;) should be positively correlated with
Ax; ;. When farmer ¢ observes good news about more than one input level, he
could of course move to any of the good news levels. Therefore, we construct
an index that is a weighted average of (xj . — x;,—;) across all the relevant
good news experiments observed by farmer i. This index is meant to reflect
whether the predominant good news information is associated with inputs
above, below, or equal to his previous level z;;_; and should be positively
correlated with Az;;. Again, a key variable in this regression is a control for
common growing conditions. To create this regressor we construct another
weighted average of (xy, — z;,—;). As for the logits, this growing conditions
control is a weighted average across a set of farmers whose plantings are
close enough in time and space to farmer i's time ¢ planting that they had
very similar growing conditions. Again, additional control regressors include
wealth, clan, religion, and pineapple experience.

We modify these baseline regressions to explore the role of farmers’ expe-
rience and the source of information in determining their changes in actions.
In any learning model in which agents’ beliefs converge, farmers’ reactions
to new information will, in some sense, be decreasing in their accumulated
information.!’ This motivates an investigation of whether experienced farm-
ers react less than inexperienced ones to new information. It is also easy
to think of scenarios where the source of information influences how much
farmers respond. For example, if we relax the assumption that the € shocks
are identically distributed across farmers then responses to observation of
an experiment, (x,w,y), might depend on the identity of the farmer asso-
ciated with it. Suppose that the conditional mean of £ given = does not
vary across farmers but its conditional variance does. Then farmers may

10Tt is clearly not necessary that farmers’ 95.+(+) converge to the true conditional expec-
tations, only that they do converge.

12



weight observations based on their relative variances under many learning
rules. In particular, we investigate whether actions of experienced or large-
scale farmers, or those within the observers’ soil or wealth category are more
informative than actions of their counterparts.

There are four components of this empirical strategy that need to be op-
erationally defined in order to proceed. (1) We must define an appropriate
set of individuals from whom farmer ¢ can learn, his information neighbors.
(2) We must construct measures of good and bad news. This requires an
measure of whether an information neighbors’ outcome is above or below
farmer ¢'s subjective expectation of productivity given growing conditions
and is complicated by the fact that we do not observe growing conditions.
(3) We need to create indices measuring good/bad news and input levels
associated with good news, because farmers commonly observe multiple ex-
periments between plantings. (4) We must we construct indices to provide
a way to condition on growing conditions to disentangle changes in inputs
that are due to patterns in growing conditions from those predicted by our
measures of good/bad news and good news inputs. Step one is detailed in
Section 3, which describes our available data and the empirical counterparts
to the variables in our stylized model of production above. Steps two, three
and four are detailed in Section 4, which describes our empirical measures
of subjective expectations and our construction of the indices that we use to
measure good /bad news, good news input levels, and to control for growing
conditions. A complete specification of our regressions and presentation of
our results follows in Section 5.

3 Empirical Setting and Data

This section describes the data we use in our empirical work. First, we discuss
the measure of farmers’ communication that we use to define neighborhoods.
Then we describe the economic and agronomic context of the farmers’ learn-
ing problem and the mapping from our data to the variables in the learning
model.

The data are drawn from a two-year survey (1996-98) of approximately
240 households in southern Ghana. A fairly comprehensive set of individual
and agronomic data was collected. As some of the information was quite
sensitive, we limited the size of the sample in order to maintain close oversight
of the interview process. The sample was constructed in two stages. The

13



process began with the purposive selection of four ‘villages’ near the towns
of Nsawam and Aburi.!! This region is the center of the recent growth of
intensive vegetable cultivation in the Eastern Region. The second stage was
a random sample of married individuals: 60 couples (or triples, when there
are two wives) were chosen by a simple random sample in each village. Two
enumerators lived in or near each village and interviewed each respondent in
15 rounds at intervals of approximately six weeks.

In addition to the data on pineapple production, communication, knowl-
edge and social networks described in Sections 3.1 and 3.2, we make use of
data on the characteristics of farmers.'> Wealth is defined as the value of
the non-land assets held by the farmer at the start of the survey period.
The clan indicator variables denote membership in a particular abusua, or
matrilineal clan. The church indicator denotes membership in a particular
charismatic church. Table 1 reports summary statistics.

3.1 Communication and Knowledge Data

One of our main innovations is that we are able to use the survey data
to define information neighborhoods. We base our measure of information
availability on direct data about conversations between individuals.

Each respondent was questioned about a random sample (without re-
placement) of seven other individuals in the same village, and with three
other predetermined individuals who appear to be focal in the village. The
samples of individuals produced responses to the question: “Have you ever
gone to  for advice about your farm?”. In this case, we say an infor-
mation link exists between farmers i and j if either ¢ responded ‘yes’ to this
question about j or if 7 responded ‘yes’ to this question about i. We use
responses to this question as our benchmark definition of information neigh-
bors because during the field research it appeared reliably-answered and it is
transparently related to the learning process under study. The median num-
ber of information neighbors among pineapple farmers is 2, the maximum is
33.

1'We use data from the three of these ‘villages’ where pineapple is farmed. We will
refer to the units as ‘villages’ although, in fact, only two are single villages. The other
two locations are a pair of adjacent villages and a village with a set of outlying hamlets.

12 A detailed description of survey procedures, copies of the survey instruments and the
data archive are available at http://www.econ.yale.edu/~cru2/ghanadata.html.
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To illustrate how these information links vary across individuals, we esti-
mate a logit model of the probability of a link between ¢ and j based on their
underlying joint characteristics. Specifically, we estimate the probability
that the pair (4, 7) is linked as a function of the physical distance between
their farms, the absolute differences in their ages and wealth, and indicator
variables for whether they share a common religion, belong to a common
clan, have a traditional office, have similar soil, and are of the same gender.
The sample consists of all pairs of pineapple farmer respondents within each
village.

Logit estimates of link probabilities are presented in Table 2. There is
evidence of spatial correlation in link patterns as the marginal effect of prox-
imity is to increase link probability, but distance is not the sole determinant
of links. Individuals are more likely to have information links if they are of
the same gender, the same clan, and similar ages. Individuals with different
levels of wealth are more likely to be linked, reflecting the strong vertical
patron-client ties that exist in these villages. There is no evidence that
religion influences information links.

The importance of the statistically significant predictors differs dramat-
ically in terms of absolute changes in probabilities. For the sake of com-
parison, take as a base pair one with the mean values of wealth difference,
age difference, and distance (2.9, 10.9, and 1.25 respectively) with the same
gender and soil but different clans, religions, and where neither party holds
an office. The point estimate of the link probability for this base pair is 22%.
This point estimate would shift to 14% if one of the parties held some office
and up to 31% if instead the only difference from base was that they were
from the same clan. A reduction in estimated probabilities to around 15%
would accompany an approximate doubling of the base pair’s distance or
age difference, individually. Likewise, an approximate doubling of the wealth
difference would result in an increase to 31%. If the pair is not of the same
gender, the predicted probability of one asking the other for advice drops
dramatically to 5%.

In section 6, we check the robustness of our main results to varying defi-
nitions of the information neighborhood by using three alternative measures
of information flow. Two of these measures are based on lists of interactions
between respondents during the course of the survey (buying or selling goods,
hiring labor, exchanging gifts, etc.), and the third is based on predicted links
given the characteristics of pairs of farmers from the logit model described
above. All of these measures are defined in Appendix 2.
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3.2 Pineapple Production in Ghana

We focus on farmers’ decisions about the use of fertilizer. While many as-
pects of the pineapple growing technology are new to these farmers, the most
salient departure from traditional techniques is the use of this new chemical
input. There is agronomic evidence that pineapple yields are very responsive
to fertilizer and that the impact varies with local soil conditions and mois-
ture patterns (Abutiate (1991); Purseglove (1972)). In informal interviews,
individuals in the sample villages expressed conflicting views regarding the
optimal quantities of fertilizer There are official recommendations on fertil-
izer use available from the extension service of the Ministry of Agriculture,
but these far exceed the levels of application in these villages.!3

The specific input decision we consider is the application of fertilizer per
plant during the period from six weeks after planting through six months after
planting. During this period, pineapples are extremely sensitive to nutrient
availability (Bartholomew and Kadzimin (1977); Soler(1992)). Pineapple
is not strongly seasonal because it can be chemically forced to flower and
thus fruit at any time during the year in southern Ghana. Hence we observe
pineapple being planted at each round in our survey data. For each observed
‘planting’, our measure of inputs z;; is the per-plant value of fertilizer applied
during the reference period after planting.

Plot inputs and outputs were recorded at approximately six-week intervals
over the two-year survey period. In terms of these six-week periods, pineapple
cultivation in southern Ghana has the following approximate sequence. A
plot planted at time ¢ receives its crucial fertilizer inputs during periods ¢+ 1
through ¢ +4. Chemically forced flowering occurs approximately at ¢ + 5, at
which point the eventual size of the crop begins to become apparent. The
pineapple harvest is generally complete by ¢ + 9. At this time, an exporter
applies a treatment of chemicals that prompt ripening, harvests the fruits

13The recommendation is 400 Kg. of fertilizer/hectare, which is more than 10 times
the mean fertilizer application observed in our sample. Only 4 of the 208 plantings
we observed exceeded the recommended level of fertilizer application. Farmers argue
that the recommended level is too high because fertilizer is ‘too expensive’, which we
believe reflects an opportunity cost of capital to these farmers that is much higher than
the interest rate used to calculate the recommendation. In our theoretical discussion,
we incorporate the opportunity cost of capital in the price of fertilizer and assume it is
the same across farmers. In the empirical application, we include farmer wealth as a
conditioning variable, because this is likely to strongly associated with any variation in
this opportunity cost across farmers.
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and ships them by air to European markets. Therefore, a plot planted in
period ¢ begins to reveal its eventual profitability by ¢ + 5, and the outcome
is fully known by about t + 9. A plot planted in period ¢ + 1 continues to
receive fertilizer inputs through period ¢ + 5. Hence, fertilizer inputs by a
farmer on the plot planted in ¢t + 1 would be influenced by the experience of
his information neighbor on plots planted in period ¢, though the full impact
of time ¢ plantings would not be realized until ¢ +9. For the remainder of
the paper, our notation will be consistent with these six week periods: x;,
will refer to the fertilizer applied during periods ¢ + 1 through ¢ +4 on a plot
planted at time ¢, w;; refers to the growing conditions for that planting, and
output is designated y; ;+9.

In our empirical work, we focus on profits rather than yields because qual-
ity variation in pineapple output implies there is no natural unit in which
yield can be measured. In addition, the cost of other inputs (most impor-
tantly labor) should be deducted from the value of output. We calculate the
profits earned on these plantings, again on a per-plant basis.!* We calculate
profits by deducting the value of all inputs, including family labor valued at
the relevant gender-specific wage from the value of output.

We expect w;; to be positively correlated across both space and time.
Periods are sufficiently short that there is substantial correlation in soil mois-
ture, weeds, and pest conditions on a given plot over time. Concern about
spatial correlation is motivated by the observation in these villages that grow-
ing conditions vary spatially on the scale of hundreds of meters. Soil types
and topographical features are highly correlated across neighboring plots,
but vary within villages. Therefore, common village-level weather shocks
can have varying impact across the village. Moreover, rainfall realizations
can be different on opposite sides of a single village. Finally, weeds spread
in a broadly continuous manner across space, and soil moisture and pest and
disease environments are often much more similar on nearby plots than on
more distant plots within villages. The nine period growing cycle also re-

4 Actual harvests are observed only for those plantings which occurred early in our
fieldwork. Plantings after round 5 were not fully harvested before the fieldwork ended.
In the last round of the survey, respondents were asked for the price at which they could
sell the crops that were currently standing on their plots. This is a normal transaction
for crops such as cassava, in which plots full of partially grown plants are commonly sold
to traders, who then hire labor to complete cultivation and harvesting of the plots. This
kind of transaction is rare for pineapple, but respondents’ familiarity with such sales of
other crops made it easy for them to place values on their standing crops.
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sults in substantial correlation for physically close plots at different but near
points in time, due to the overlap in much of the environmental conditions
they experience.

We also use information about the plots themselves. We have information
on soil type and (for approximately 80% of plots) measures of soil pH and
organic matter. In addition, all plots were mapped using global positioning
system equipment. This procedure yields much more accurate measures of
plot size and location than are available in most surveys in LDCs and makes
it possible for us to distinguish explicitly between the effects of information
connections and those of geographic proximity. To do so, we define geographic
neighbors of a given plot to be those within 1 kilometer of the geographic cen-
ter of all their pineapple plots.!> The median number of geographic neighbors
is 12, the maximum is 25.

The scope for experimentation within plots is severely limited because the
plots in our sample are close to the minimal viable scale. The median plot
size in our data is approximately .5 hectares. The inexperienced pineapple
farmers who exhibit the most evidence of learning have a median plot size of
.25 hectares; exporters are reluctant to harvest and export crops from plots
this small (only 5 plantings in our data were as small as .125 ha.). Plots have
to be harvested on a single day for efficient export of the fresh fruit by air
to Europe. It is essential, therefore, that the fruits mature simultaneously,
which requires common treatment across plants within the plot.

Our main estimation sample is constructed as follows. We begin with
information on pineapple being grown on 406 plots by 132 farmers. Of these
plots, 288 were planted during our survey. Plot input data is missing on 3
of these plots, leaving 285. 77 of these were planted in round 12 or later, so
they lack complete information on fertilizer use, leaving 208 plantings. We
are missing data for some rounds on 8 of these, leaving 200 plantings. 87 of
these are initial plantings, leaving 113 observed changes in fertilizer use. GIS
information is missing on 6 of these plots, leaving a final estimation sample
of 107 plantings by 47 farmers.

Our main sample is comprised of pineapple farmers. Figure 1 shows the
pattern of adoption of pineapple in our sample villages: from less than 10%
in 1990, pineapple spread very rapidly until more than 46% of farmers were
cultivating pineapple in 1997. For some of the subsequent analysis, we

15Qur results are not very sensitive to the radius chosen here, qualitatively identical
results obtain with a range of bandwidths from 500 to 1500 meters.
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divide pineapple farmers into two groups: experienced farmers who adopted
pineapple before 1994, and inexperienced farmers who adopted more recently.
This divides the sample of pineapple farmers approximately in half.!¢
Those who cultivate pineapple are different from those who do not in
three important respects. First, pineapple farmers are much wealthier, with
an average non-land wealth of 1.1 million cedis, compared to .4 million cedis
for those who do not cultivate pineapple.!” Second, pineapple farmers are
much more likely to be male: 70% of pineapple farmers are male, while only
27% of those who do not cultivate pineapple are male. Third, pineapple
farmers — especially experienced pineapple farmers — are more likely to be
in each others’ information neighborhood. Table 3 provides a summary of
our baseline information link distribution by experience. Over 20% of expe-
rienced pineapple farmers (within each village) have approached each other
for advice about farming, while only 6% of non-pineapple farmers are in each
others’ information neighborhood. A similar pattern is observed using our
other information metrics. It may be the case that these information con-
nections were important determinants of the adoption process; however, we
have too few instances of new adoption during our sample period to address
this question formally. In section 5, we discuss the possibility that farmers
vary in their ability to learn from others, and in particular that the pineapple
farmers who comprise our sample are selected along that dimension.

16We chose not to use a continuous measure of experience because a few farmers have
been cultivating pineapple for more than a decade. However, this early experience is
unlikely to be relevant, because fertilizer was rarely used. Hence, there is little relevant
difference in experience between those who have cultivated pineapple for, say, a decade
and those who have cultivated for four years.

17Cedis are small units. The exchange rate during the sample period ranged from 1700-
2300 cedis/US dollar.
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4 Construction of Indices

This section details our measures of good and bad news, index of input levels
associated with good news, and controls for growing conditions.

Measuring Subjective Expectations, and Good/Bad News

Farmer i increases (decreases) his expectation of the productivity of fer-
tilizer at wy; according to whether yﬁjﬂ — git(wk,) is positive (negative).
Without knowledge of wy,; we obviously can not calculate the magnitude of
this difference. However, it must have the same sign as {7y ¢1o(rs, Wi t) —
Eii[mrvo(xre, wet)]}. High, positive spatial and serial correlation in grow-
ing conditions shocks permits estimation of the ‘rational expectations’ ana-
log of E; i 1+9(Tkt, wie) : the objective expectation of 7y ¢4 9(zk ¢, wy ) for
k within i's information neighborhood for a particular but unknown (to the
econometrician) value of wy,. Suppose that within farmer 7's information
neighborhood there is a set of H farmers using input level z;,, sufficiently re-
cently (say, at ¢t — 1) and sufficiently geographically close to k that they have
common objective growing conditions. For plots % in this set, wy 1 = Wy,
and xp;—1 = x), hence the expectation of 7y 19(Tr+, wit) given farmer 7's
information can be estimated with the sample median of realized profits for
these H farmers, defined as E; [Tkt+0(Tkt, wet)]. Comparison of an individ-
ual’s realization, 7y 19(Tk+, wie) to this median is feasible and allows us
to estimate whether 7, ;yo(xy s, wy,) is higher or lower than expected, even
though we do not know wy ;.

We use a local regression version of this approach. Dividing inputs into
coarse categories of z = 0 and = > 0, we approximate farmer i's expecta-
tion of g ¢19(xk s, wk) With the median of others’ profits for his information
neighbors’ plantings using inputs in the same category as xj; that are ‘close
enough’ to the plot k£ at time ¢. When there is no planting in ¢’s informa-
tion neighborhood that is close enough, we use the median profits from all
plots that are close enough to approximate i's expectation.'® Our operational
definition of ‘close enough’ is plantings on plots within a distance of 1 kilo-
meter and from rounds ¢ — 1 and ¢ — 2. We recycle notation from the above

18 Qualitatively identical result obtain using the median of close enough plots in all
instances.

Another check on the robustness of our results to other methods for imputing subjective
expectations is provided by our results for predicted information links in Section 6.1. E;
for this metric is a weighted average of all ‘close enough’ plantings using the predicted
probabilities of links based on the estimates in Table 2 as weights.
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paragraph and use E [Tkt+9(Tkt, Wit)] to denote this local regression esti-
mate. Our estimate of whether 7 ¢y9(x) 1, Wk ) is above farmer i's subjective
expectation is given by:

digps =1 {ﬂ—k,t+9(l’k,ta Wyt) > E; [Thtr0(Tkss wk,t)]} : (4)

Of course observation of the indicator d;;, = 1 will result in farmer ¢ adjust-
ing g at input level x;; upwards. We classify each observation within farmer
i's information neighborhood as ‘good news’ if d;,; = 1 and ‘bad news’ if
d;rt = 0. We discuss the robustness of our results to the input category
definitions and our definition of ‘close enough’ in Section 6.

Construction of Indices Reflecting Innovations in Information

A given farmer plants pineapple only occasionally, rather than every pe-
riod. Hence we do not always see a farmer’s reactions to individual observa-
tions of (z,w,y). Instead, we often observe the cumulative effect of informa-
tion from several neighbors revealed between input application opportunities
for farmer 7. In addition, information about the success of a planting at
round ¢ is revealed gradually: as we noted in Section 3.2, fertilizer inputs
are applied in a window of ¢ 4+ 1 through ¢t + 1. The plants are forced to
flower at approximately ¢ + 5 and although a good signal about harvest size
is available at ¢t 4+ 5, the harvest is not complete until ¢ + 9.

Our solution to observing only cumulative responses to a set of shocks
that are revealed gradually is to create indices reflecting the predominate
nature of change in the farmer’s stock of information associated with ob-
serving the set of outcomes since his last input decision. These indices can
be roughly interpreted as the number of pineapple plants with higher/lower
than expected profits observed by the farmer since his previous planting,
normalized by a measure of his overall observations. We construct measures
of good and bad news at the farmers previous input choice and at alternative
levels. We also construct an index meant to reflect the disparity between
a farmers previous input choice and the input levels associated with good
news about profits. For the sake of exposition, we describe these indices for
a farmer with two plantings, the first at time ¢ty and the second at time ¢;.

Our index of good news at i’s previous input level is

Gi,tl('r = xi,to)z (5)

1
1 ( = T dz TPl t T ,t ,t .
Total Plants; 4, k%; Te[tOZl ., {Ziz, T i Plantsy, (T o, t1)
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This is an index of the amount of good news that ¢ has received between
his previous planting (at ¢p) and his current planting (at ;) about the level
of fertilizer he previously used. It is a weighted average of the number of
instances of good news (d; s, as defined in (4)) about plantings by farmers
in ¢’s information neighborhood (V;) who used the input level last used by i
(hence the indicator function). The information conveyed by an information
neighbor’s planting depends on the number of plants involved, so we weight
each observation by Plants;,. The change in beliefs associated with a
piece of information depends on the stock of previous experiments that ¢ has
observed, so we normalize by the total number of plants ¢ has observed from
the beginning of our data until ¢;. Finally, ¥ (7,%,t;) is a piecewise linear
weighting function that reflects the gradual revelation of information about
the harvest.!” Some - but not all - information about a neighbor’s planting
that began less than five periods before ¢; would be revealed in time for ¢ to
adjust fertilizer input on his ¢; planting. 1)(.) reflects the idea that 1/5 of
the relevant information about the eventual harvest of a period ¢ planting is
revealed in each of the periods t + 5 through ¢t +9. Obviously this weighting
scheme is ad hoc; we examine the robustness of our results to variations in
the weighting scheme in Section 6. Full details of the construction of the
indices are provided in Appendix 3.

We define a good news index at alternatives to the farmer’s previous in-
put level, G, 4, (z # x;4,), by simply adjusting the indicator function 1{x;, =
Tk,r} to 1{x; 4, # 2, }. Indices of bad news at the farmers past input choice
and at alternatives, B;y, (¢ = x;4,) and B; 4, (v # w,4,) are constructed anal-
ogously substituting the corresponding indicators for input alignment and
(1 —d; ) in expression (5).

When estimating the determinants of the magnitude of fertilizer innova-
tions we have the prediction from our model that, conditional on changing
inputs, a farmer who received one piece of good news information at input
x rwould change his input use to zj .. The difference between the input asso-
ciated with the good news and his previous input level, [z, — z;4,], should
perfectly predict his change in inputs. This implication motivates the fol-
lowing index to describe the fertilizer amounts corresponding to good news
experiments in a farmer’s information neighborhood. Again taking farmer

Yap(75t0,t1) = min(2zT, 1) —max(min(22=", 1), 0).See Appendix 3 for a more complete
discussion.
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's plantings at ¢y and ¢, this index is defined as:
M’i,tl - (6)

to, t1)dipr Plant sy [Thr — Tis) -
TotalPlcmts”1 Z Z (750, t1)di o Plants,r [T, — Tiz]

keN; TG[tO —4 tl)

Each neighbor with higher than expected profits, (d;x, = 1) adds a term
(15 to, t1) Plantsy ; [Tk — %it,] which will be positive if farmer k& used more
fertilizer than farmer ¢ did at time t¢y. This term’s contribution to the in-
dex is negative if k used less fertilizer than i. Normalizing by the inverse of
Total Plants;;, dampens the magnitude of this index for those farmers with
relatively higher numbers of previously observed plants. If all of farmer i’s
good news observations are higher than his previously used level z; s, M;,
is positive; if all of i’s good news observations used less than x;,, it is nega-
tive; and it will be near zero if all good news input levels are near z;;,. Thus
we expect that M;;, should be an good predictor of both the direction and
magnitude of changes in inputs.

Controls for Similar Growing Conditions

Our control for input adjustment in response to similar growing conditions
is formed in a manner analogous to that used for M. We construct a plant-
weighted index of input differentials from z; 4, across a neighborhood, N,
defined strictly based on geographic and temporal proximity rather than
information flows between farmers. This index measures how the farmer’s
previous input level differs from those recently used by his physical neighbors
whose growing conditions are highly related to w; 4, :

Fi,tl = (7)

1
Plantsy. [thr — 710 ],
ZkENiGEO ZTE[tl—é‘:,tl—l] PlantSkﬂ- Z Z an Skv [xk, x%,to]

keNfeo TE[t1—4,61—1]

Plantings within the four rounds preceding ¢; are included in this average
across N7 which is defined as the set of farmers whose plot centers are
within one kilometer from that of farmer 7. Analogous indices are constructed
to measure the absolute difference between geographic neighbors’ inputs and
Zit, as well as to summarize input innovations within financial and gift net-
works - the ‘financial neighborhood.’
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5 Estimation Results

Base Regression Specifications

This section presents our base regression specifications. Alternative spec-
ifications and a discussion of robustness are considered in Section 6. We
present these specifications as though each farmer has a time ¢ and ¢t — 1
planting for simplicity. We let the characteristics of ¢ and his plot that we
use for conditioning be contained in a vector z; ;. These characteristics include
the farmer’s wealth, soil characteristics, and indicators for religion, clan, vil-
lage, round of the planting and an indicator that is one if the farmer has been
farming pineapple for export for less than three years at the start of the sur-
vey. Using the notation Ax;, for the first difference of inputs, (x;¢ — ;-1),
and the notation Pr{Ax;; # 0} to refer to the probability of changing fer-
tilizer use conditional on observable (to the econometrician) information at
time ¢ — 1, we estimate a logistic specification for this conditional probability:

OélGi,t(x = mi,tfl) + 042Gi,t(x 7£ xivt*l)
Pr{Az;; #0} = A +aBiy(¢ = Tip1) + aBig(r # wip1) (®)
o e D jenge [Tie—1 = Tjema + 200

The first four terms reflect the nature of new information to the farmer.
The first term is our index of good news about farmer i’s time ¢ — 1 input
choice x;;—1. The second term is the index of good news about alternatives to
x;¢—1. The third and fourth terms are the indices of bad news at z;;_; and at
alternatives to x;;—;. Local learning implies that o, a4 < 0 and a9, a3 > 0.
The fifth term is the average of absolute deviations of the farmer’s ¢t —1 input
from those of his geographic neighbors, our control for growing-conditions-
induced changes in input levels. We expect unobserved shocks to growing
conditions to be positively spatially and serially correlated and thus a5 > 0.
Our baseline regression predicting changes in fertilizer use is:

Axi,t = BlMi,t + 62Fi,t + Zz{7t/63 + Vit (9)

M, 4, defined in (6), is our index of input levels associated with good news that
should predict the magnitude and direction of changes, and should therefore
have a positive coefficient 3,. The sign and magnitude of changes in response
to bad news are ambiguous since they are determined by the previously
second-best input level. Therefore, we confine our attention to the effect
of good news on innovations. I';; defined in (7) is our crucial control for
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movements in x;; induced by correlated growing conditions. As in (8),. z;;
includes wealth, soil characteristics, and indicators for religion, clan, village,
round of the planting and experience indicator. In addition, it includes a re-
gressor analogous to I';; with the neighborhood definition based on financial
rather than geographic neighborhoods. This is motivated by alternate expla-
nations that would suggest that significant 3, estimates might be caused by
omitted variable bias because information neighbors share common access to
credit arrangements. Finally, the error term v;; is permitted to be condition-
ally heteroskedastic and spatially correlated across plots as a general function
of their physical distance using the spatial GMM approach of Conley (1999).

Farmers certainly learn from their own experience as well as from the ex-
perience of other farmers in their information neighborhood. But our panel’s
short time span prohibits us from including outcomes of lagged experiments
by farmer i in (8),(9) (only 14 farmers have more than 2 fertilizer changes in
the time span of our data). However, we are able to control for some aspects
of learning from own experience directly by including an experience regressor
and indirectly through the denominator of our indices G, B, and M.

The parameters of equations (8) and (9) are not parameters of a structural
model and are best interpreted as those for a prediction of innovations in
behavior. As such, measurement error in definitions of N; is not a major
concern, because this would not lead to an incorrect inference that news
about fertilizer productivity is a useful predictor of innovations in fertilizer
use. Endogeneity of neighborhoods that arises from individuals choosing
neighbors who would be good to learn from is also not a concern. However,
endogeneity of neighborhoods arising from unobservables (like wealth were it
an omitted variable) that influence neighbor choices and profitability as well
as Ax are, of course, an important concern as these unobservable effects could
result in the same correlations as learning from neighbors with higher than
expected profits/growing-conditions-adjusted yields. In section 6 we replicate
our main results using the predicted information neighborhood, which is less
subject to this concern because the predictions are based on variables that
reflect deeper social connections that are plausibly unrelated to unobserved
determinants of innovations in fertilizer use.

Results
Table 4 presents the coefficient and spatial standard error estimates from
equation (8). The dependent variable in the logistic regression is an indi-

20The standard errors in all our specifications use limiting results for cross section esti-
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cator equal to one if the farmer changed input use at time ¢. The metric for
information neighbors in this Table is that derived from the question “Have
you ever gone to  for advice about your farm?”

In column A, we see that the direction of the influence of our informa-
tion and experience variables upon the predicted probability of changing is
as anticipated. Observations of bad news at the farmer’s lagged input level
strongly increase the predicted probability that he will change input levels.
The estimated coefficient is positive, significantly different from zero (p-value
of 0.001) and large. The standard deviation of bad news at the lagged fer-
tilizer use is .12. Thus the estimated impact of a one standard deviation
increase in this index of lower than expected profits at the old level of fertil-
izer used by 7 on the logit index is 1.5. The estimated range from 75th to the
25th percentiles of the distribution of estimated logit indices is 2.8. Observa-
tions of bad news at alternative levels of fertilizer use decrease the predicted
probability of changing. The coefficient is negative and significantly different
from zero at the 12% level. A one standard deviation increase (about .13)
in the index of bad news at alternative fertilizer levels is associated with a
decline in the logit index of approximately .15. The point estimate of the
effect of good news at alternative levels of fertilizer use on the probability of
changing is positive, and that of the effect of good news at the lagged level
of use is negative, as expected, but these coefficients are very small and sta-
tistically indistinguishable from zero. As would be expected in virtually any
model of learning, inexperienced farmers seem to be more likely to change
input levels, but while the size of the coefficient is large, it is not estimated
with precision (it is different from zero at only approximately the 20% level).
The imprecision in this estimate may reflect the difficulty of distinguishing

mation with spatial dependence characterized by physical distance between the centroids
of each farmer’s set of plots. Serial dependence is allowed for only by use of time (round)
dummies. Specifically, spatial standard errors are calculated using the estimator in Con-
ley (1999) with a weighting function that is the product of one kernel in each dimension
(North-South, East-West). In each dimension, the kernel starts at one and decreases lin-
early until it is zero at a distance of 1.5 km and remains at zero for larger distances.
This estimator is analogous to a Bartlett (1950) or Newey-West (1987) time series covari-
ance estimator and allows general correlation patterns up to the cutoff distances. Note
that plantings by the same farmer are allowed to be arbitrarilly correlated as they are all
distance zero from each other.

The inferences reported below are robust to cutoff distances between 1 km and 2 km.
This is largely due to the fact that there is little spatial correlation in our regression errors
because we are conditioning upon indicies involving geographic neighbors’ actions.
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it from our indices of news, which are scaled by T'otal Plants;; to directly
capture an experience effect.

The estimated probability of changing fertilizer levels is strongly increas-
ing in the average absolute deviation of farmer i's lagged inputs from his geo-
graphic neighbors, providing evidence of the importance of positively serially-
and spatially-correlated unobserved shocks to the productivity of fertilizer.
None of the unreported round dummies are statistically different from zero
nor are they jointly different from zero at conventional significance levels.

Column B of Table 4 adds an indicator for whether the respondent has
ever received advice from the local extension agent. We do not know when
any such conversation occurred. Those who have received advice from the
extension agent are less likely to adjust their fertilizer use — this is consistent
with the idea that farmers who have had extension contact are more confident
in their beliefs.

Table 5, column A presents the results of estimating equation (9). The
coefficient on the index of good news in the farmer’s information neighbor-
hood is positive, clearly statistically significant and large. A one standard-
deviation increase in M (about 4) is associated with an increase in fertilizer
use of approximately 4 cedis per plant, which is greater than the median level
of fertilizer use per plant of those farmers who use fertilizer.

There is no aggregate trend in fertilizer use over our sample period. None
of the round indicators is individually significant, nor are they jointly signif-
icantly different from zero. There is no evidence that changes in input use
are significantly related to inputs used by financial neighbors. It is apparent
that the growth of fertilizer use is much slower in village 1 than in the other
villages. We believe that this is a reflection of the fact that pineapple cul-
tivation is much less well-established in village 1 than in the omitted village
3, where (on a per-capita basis) six times more pineapple was cultivated. In
this as in the following columns, changes in fertilizer use are strongly in the
direction of the lagged use of one’s geographic neighbors.

In column B, we examine relationship between experience and a farmer’s
responsiveness to information on the profitability of fertilizer. The coeffi-
cients on M for experienced and inexperienced farmers are statistically dif-
ferent from each other at the 3% level. The definition of experience is the
same as that in Table 4. There is no evidence that experienced pineapple
farmers respond at all to good news about alternative levels of fertilizer use.
For inexperienced farmers, in contrast, a one standard-deviation increase in
M (about 4) is associated with an increase in fertilizer use of approximately

27



4 cedis per plant. We raised the possibility in section 3.2 that farmers might
be heterogeneous in their ability to learn from others, and in particular that
lower ability farmers adopt pineapple more slowly (or not at all) and do
not react to information from their neighbors. If this is the case, then our
use of a sample of current pineapple farmers overstates the responsiveness of
farmers in general to information from neighbors. The results in Column
B provide some evidence on the importance of this kind of selection. If
there is selection such that later adopters of pineapple are less responsive
to news, then this selection is sufficiently weak that recent adopters are still
very responsive to new information.

Columns C-F present the results of an investigation of the influence of
the source of information on farmer i's reactions. In alternate specifica-
tions, we use variants of M defined on partitions of farmer ¢'s information
neighborhoods based on i's information neighbors’ experience, farm size, rel-
ative wealth and relative soil type. Our experience indicator is as described
above. We define large farms as those with plantings of at least 60,000 total
pineapple plants over our sample period (27 % of farmers have large farms).?!
Finally, we define a classification of wealth as rich/poor with rich as those
whose non-land wealth at the start of the survey is greater than the mean
non-land wealth (30% of farmers are rich by this definition).

Column C defines M separately for inexperienced and experienced farm-
ers in i's information neighborhood. The coefficient of the index for experi-
enced farmers’ results is large and significant and for inexperienced farmers it
is not. Column D presents a partition depending on whether i's information
neighbor is in ¢’s wealth category (both rich or both poor). The index is
an important and significant predictor for same category neighbors but not
for different category neighbors. For each of the pairs of M partition coeffi-
cients C-D, their difference is statistically significant with a p—value under
2%. Column E presents analogous estimates with a partition of M depending
upon the size of the farms in ¢’s information neighborhood. Both coefficient
estimates are large, positive, and statistically significant. Point estimates
suggest that the responsiveness of input use to news from large farmers may
be stronger than it is to similar news from small farmers, over and above the
per-plant weighting of the M index itself. However, these estimates are not
statistically different from each other. Finally, Column F presents estimates

2 Median and mean numbers of plants planted by farmers in our sample are 22,000 and
41,000, respectively.
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with M defined using a partition based on whether i’s neighbor has the same
soil type as i (sandy or clay). These estimates provide no significant evidence
in support of that hypothesis. In summary, inexperienced farmers appear to
be the ones reacting to good news and tend to react to information revealed
by neighbors who are experienced and who have similar wealth.??

6 Robustness Checks and Extensions

6.1 Alternative Information Neighborhoods

In Table 6 we examine whether our finding that M predicts innovations in
fertilizer is robust to changes in the definition of an information link. Full
definitions of each of these alternatives are provided in Appendix 2. In
column A, j is considered to be in i’s information neighborhood if j is named
by ¢ when asked a series of open-ended questions about who taught them to
farm and from whom they have received farming advice (or wvice versa). In
column B, we use the broader definition of an information link if either 7 or
j is listed anywhere in the other’s roster of interactions with other sample
members. In column C we define information neighborhoods based on the
predicted probabilities for going to another farmer for advice (corresponding
to the estimates in Table 2).%

Regardless of the precise definition of the information neighborhood, the
coefficient on M is statistically significant and large for inexperienced farmers
(the standard deviation of M is approximately 3.5 for the first two informa-
tion neighborhoods, and about 1 for the “Predicted Advice” neighborhood).
In each case we find that when ¢ is inexperienced, good news experiments in
s information neighborhood tend to be followed by i changing his fertilizer
use in the direction of those experiments, conditional on our growing con-
ditions control I', village and round effects, and i’s wealth, clan and church
membership. In contrast, there is evidence of responsiveness to information
by experienced pineapple farmers only for one metric: predicted ask-for-
advice.

220f course an important caveat to this summary is that our small sample size leads us
to examine these partitions one variable at a time rather than jointly.

23When using the predicted information neighborhoods as described in Section 3.1, M; 4,
is a plant-weighted average of (7;t0,t1)di k + [mk,T — ﬂfi,to] across the entire village with
weights for pair (¢, k) equal to the predicted probability of being linked.
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Our logit result that changes in inputs are predicted by bad news at
previous input choice is also robust to the three alternate metrics in Table 6.24
Indices of bad news at farmers’ previous input levels calculated with these
alternate metrics remain statistically significant predictors of whether Ax;, #
0. Increases in the indices of bad news about previous levels increase the
predicted probability of changing. Our result that bad news about alternate
levels is associated with an statistically significant decrease in the probability
of changing obtains for both roster of contacts measures, but not that based
on predicted neighborhoods.

6.2 Robustness to Assumptions on Specification

In Table 7, we examine some of the assumptions we have made about the
timing of learning, the categories of fertilizer used in constructing our proxy
for subjective expectations, the size of the geographic neighborhood, and
conditioning on soil characteristics. In each case we look at the impact of
the specification change for our regression of Az on M interacted with our
experience indicator.

In columns A and B, we examine the assumptions embedded in 1) regard-
ing the timing of information flows from neighbors’ pineapple plots. Recall
that in our base specifications we assumed that information about the even-
tual size of the harvest of a period ¢ planting began to be revealed after
flowering in period ¢ + 5, with the outcome fully known at harvest in ¢ + 9.
Under this base assumption, information about a time ¢ planting begins to
be available in time to influence fertilizer choice on a period ¢ + 1 planting
(because on the latter planting, fertilizer continues to be applied through
period t + 5). In column A, we assume that no information is available from
a period ¢ planting until period ¢ + 6, but maintain the idea that information
is linearly revealed until harvest at t + 9. Thus, information from a time ¢
planting can influence plantings starting at period ¢ + 2. In column B, we
assume that the flow of information is further restricted, so that no infor-
mation about the eventual harvest of a period ¢ planting is available until
period t + 7; hence can influence plantings starting at period ¢+ 3.2 In both

24Full results for our logistic regressions for these alternate metrics are available upon
request, we omit a full discussion here to conserve space.

2>The definitions of previous planting respect these cutoffs as well, resulting in a re-
duction in sample size when ¢ — 2 plantings are not allowed to be the intial period in
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cases, the coefficient on M is positive and significantly different from zero for
inexperienced farmers, and not for experienced farmers.

In column C, we modify our categorization of fertilizer use. Expectations
about profitability of fertilizer use had been defined over the two coarse
categories of x = 0 and = > 0. For 40% of the plantings in our sample,
there is at least one planting in the farmer’s information neighborhood that
provides information about the profitability of x = 0; for 32% of the plantings
there is at least one planting in the farmer’s information neighborhood that
provides information about x > 0. We now define expectations over three
categories of input intensity: = = 0,0 < x < zp, 2, < x, where x;, = 2.5
(the 80th percentile of fertilizer use is about 2.5). As can be seen in column
C, this change in specification has no qualitative effect on the results. This
conclusion is robust for any x; less than the 85th percentile of fertilizer use.
For larger xj, the precision of the estimates falls enough that the coefficient
on M is not significant at conventional levels. It does not appear to be
feasible to define expectations over more than three meaningful categories
given the size of our dataset.

In column D, we alter the definition of the geographic neighborhood so
that only plots within 500 meters fall within a plot’s geographic neighbor-
hood. Again, we find that inexperienced farmers change their fertilizer use
in the direction of inputs associated with good news experiments by their
information neighbors, but that experienced farmers do not. Very similar
results are obtained when geographic neighborhoods are defined as within
1500 meters.

In column E we include information on soil characteristics in the condi-
tioning set. We lose some observations by doing so, because soil testing was
not completed on all plots, but once again the core result is unchanged: the
coefficient on M is positive, large and statistically significant for inexperi-
enced farmers but not for experienced farmers.

Finally, in column F we examine the possibility that our results are an
artifact of mean reversion in fertilizer use. Lagged own fertilizer use appears
both in the dependent variable and in M;; raising the possibility that mean
reversion in fertilizer use, perhaps due to large measurement error, might lead
us to find a spuriously significant coefficient on M; ;. In the absence of any
learning effects, the average ;1 across good news observations would be an
estimate of the conditional mean of x;, given 7, was above its expectation.

determining changes in x
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So M;; could be interpreted as a noisy, biased estimate of whether x;;_; is
above or below its unconditional expectation which might be positively cor-
related with Az;; solely due to mean reversion. A priori, we think this is
an unlikely source of spurious results as we include I';; in (9) in addition to
M, ;. The sample size within geographic neighborhoods is considerably larger
than that in information neighborhoods. Despite a higher spatial correlation
within geographic neighborhoods, averages within this larger neighborhood
will have a smaller variance than averages within information neighborhoods.
Therefore, if mean reversion were driving correlations, I';; should be a much
less noisy measure of whether z;,_; is above its long run mean. Once I';; is
conditioned upon, M, should offer little or no predictive power for Az;; re-
sulting from mean reversion. 2% However, to be confident our results are not
an artifact of mean reversion, in column F we add the lagged fertilizer level
x;1—1to the regression. The coefficients on M, ; change by a magnitude com-
parable to some of our other alternative specifications and for inexperienced
farmers it remains a significant predictor. The coefficient on I'; ; changes the
most dramatically; this is unsurprising since the lagged input levels are spa-
tially correlated and so provide an alternate control for spatially correlated
growing conditions.

Our logit results for responses to bad news at previous input choice are
robust to analogs of the robustness checks in Table 7.2 Indices of bad news
at farmers’ previous input levels remain statistically significant predictors of

26 A special case of mean-reverting z; ; would result if our data on inputs were dominated
by large amounts of classical measurement error. However we think this case is unlikely
to have occured as the field research was specifically designed to collect accurate data on
farming inputs (including the number of plants planted) and output by sacrificing sample
size in exchange for frequent and thorough visits to respondents.

We also examined the special case of measurement error by performing Monte Carlo
experiments (available upon request) adding artificial measurement error to our fertilizer
data. The mean of per-plant fertilizer use is 4, and its standard deviation is 7; to our
data we added a mean zero normal draws with standard deviation 1 to 7 (truncated so
that measured fertilizer use is never negative). The estimated coefficient on M becomes
insignificant at conventional levels when the standard deviation of the added noise is 4
while I' remains a significant predictor.

2TColumns A through F have analogs for our logistic regressions and results (omited
here to save space) are available upon request. The robustness check in Column G has no
analog as the concern of potentially spurious results due the construction of M does not
apply to our logits.
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whether Az;; # 0; more bad news about previously used levels increases
predicted changes.

6.3 Learning about Optimal Labor Use in Pineapple
and in Established Crops

We have focused on learning about the productivity of fertilizer because this
is the most dramatically new aspect of pineapple production in the study
area. However, it is apparent that a single-input production function is a
considerable simplification. Labor is also an important component of the
cost of pineapple production and there is at least some uncertainty about
its optimal level. In focus group interviews, pineapple farmers reported
uncertainty regarding the optimal amount of labor-intensive weeding; they
were not sure about how important it is to keep weeds clear of the plot. In
this section, we use the methods developed above to examine the hypothesis
that pineapple farmers learn from their neighbors about the productivity of
labor in pineapple production.

For comparison and as an informal specification test we also estimate
labor input regressions with data on an established crop for which there
should be no learning.?® A standard maize-cassava intercrop pattern has
been the foundation of the rural economy in these villages since the local
decline of cocoa cultivation in the 1930s. The characteristics of the maize-
cassava production function are well-known to farmers in these villages and
there should be no uncertainty about the role of labor in the production
of maize-cassava. We estimate a regressions of changes in labor inputs for
pineapple plots and for maize-cassava plots with a specification analogous to
(9): ) )

Aff'@t = 51Mi,t + 52Fi,t + Z,Lt(Sg + Us ¢ - (]_0)

Where = is the labor input per plant for pineapples and per hectare for
maize-cassava. Mi,t and fi,t are constructed exactly as above for this labor
input.?? We expect a positive §; for pineapple plots if pineapple farmers are
learning from their neighbors about the productivity of labor. A nonzero d;

28We cannot undertake a parallel analysis for chemical inputs, because these are not
used for the cultivation of maize-cassava.

29Labor inputs include both the value of hired labor and that provided by the farmer’s
household. The labor input range was divided into two categories (above and below
median) for determining whether profits were unusually high given inputs.
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for maize-cassava cannot be attributed to learning, because this technology
is well-established.

We estimate (10) for the same sample of pineapple plots examined above.
Labor inputs are measured over the crucial period early in the life cycle of
the pineapple during which fertilizer inputs also occur (for a plot planted at
time ¢, this is periods t + 1 through ¢ +4). All farmers change their labor
inputs across plantings, so there is no need to estimate an analog of the
first stage logit (8). M is defined using the benchmark (asked for advice)
information neighborhood. Column A of Table 8 presents the results of
estimating (10). We condition on the average deviation of i's lagged labor
use from the lagged labor used by his geographic neighbors, T, and its analog
for his financial neighbors.

Good news experiments in 7’'s information neighborhood are followed by
1 changing his labor use in the direction of those experiments’ labor, condi-
tional on geographic and financial neighbors’ lagged labor use, plot character-
istics, village and round effects, and i's wealth, clan and church membership.
The coefficient is also large: a one standard deviation increase in M (which
is 396) is associated with an increase in labor use of approximately 376 cedis
per sucker, which is one-fifth of the median labor use per sucker on pineapple
plots (which is 1,845). Pineapple farmers appear to be learning about the
productivity of labor in the cultivation of pineapple from the experiences of
their information neighbors. This conclusion should be treated with cau-
tion, because labor and fertilizer inputs are not likely to be separable in
pineapple production (most obviously, labor is used to apply fertilizer). The
adjustment of labor inputs to news about profitability, therefore, may not
be a result independent of learning about the productivity of fertilizer. In
addition, the results shown in column A are not as robust to changes in
specification as are the results on fertilizer innovations in Tables 4 — 7.

In contrast, in column B, we see that there is no evidence that maize/cassava
farmers adjust labor inputs to information from the cultivation of their infor-
mation neighbors.>® The coefficient of the learning index M is virtually zero
(at the point estimate, a one standard deviation increase in M is associated

30There are two differences in specification between the pineapple and maize-cassava
regressions: first, in contrast to pineapple, the maize-cassava intercrop system is seasonal.
Hence we compare inputs across successive seasons and replace the round indicators in A
with season indictors in B. Second, the maize-cassava mixture is grown in all four of our
survey villages, while pineapple is grown in only three villages, hence there is an additional
village indicator for maize-cassava.
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with an increase in labor use of 11 thousand cedis per hectare, while the
mean change in labor use is 153 thousand cedis, and its standard deviation
is 700 thousand). M has no significant predictive power for innovations in
labor use in maize-cassava production, just as we expect given the familiarity
of this farming system in the study region.

For both pineapple and maize-cassava, we find that there is a strong geo-
graphic correlation in innovations in labor use. There seem to be important
spatially- and serially-correlated shocks to the productivity of inputs. This
underscores the value of direct data on communication for defining informa-
tion neighborhoods. In the more typical case in which we had data only
on geographic proximity, it would be tempting to rely on this to proxy for
information links. The consequences of this are presented in column C. We
construct a new variable, analogous to M but based instead only on geo-
graphic proximity. We see in column C that maize-cassava farmers adjust
labor inputs in the direction of successful ‘experiments’ in their geographic
neighborhood. The coefficient is large (a one standard deviation increase in
the index of experiments in the geographic neighborhood is associated with
an increased labor input of 590,000 cedis/ha., compared to mean labor input
of 650,000 cedis/ha.) and on the conventional boundary of statistical signif-
icance. This result has nothing to do with learning; it is induced entirely
by the strong correlations in growing conditions. However, without our di-
rect data on communication we might incorrectly infer the existence of social
learning about labor productivity in this well-established farming system.

7 Conclusion

This paper presents evidence that social learning is important in the diffusion
of knowledge regarding pineapple cultivation in Ghana. We take advantage
of data that combines agronomic and conventional economic information
with details regarding relationships between farmers to address the challenge
of identifying learning effects in an economy undergoing rapid technological
change. We trace the effect of a farmer’s successful experiment with fertilizer
on the innovations in fertilizer use by other cultivators with whom the ex-
perimenter shares information. Our findings suggest that farmers are more
likely to change input levels upon the receipt of bad news about the prof-
itability of their previous level of fertilizer use, and less likely to change when
they observe bad news about the profitability of alternative levels of fertil-
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izer. Looking at the magnitude of innovations in fertilizer use, we find that
a farmer increases (decreases) his use after someone with whom he shares
information achieves higher than expected profits when using more (less)
fertilizer than he did. These findings hold when controlling for common in-
put usage due to similar unobservable growing conditions via conditioning
on actions of geographic neighbors, for credit arrangements using a notion of
financial neighborhoods, and across several information metrics. Support for
the interpretation of our results as indicating learning effects is provided by
the fact that it is inexperienced farmers who are most responsive to news in
their information neighborhoods. Further support is provided by our find-
ing no evidence of learning when our methodology is applied to a known
maize-cassava technology.

There is evidence that social learning plays a role in the cultivation deci-
sions of these farmers. Information, therefore, has value in these villages, as
do the network connections through which that information flows. This raises
the possibility that farmers consider the consequences for the availability of
information when forming the connections that underlie their information
neighborhoods. If so, measurement of the extent of social learning is not
sufficient for adequate evaluation of policy regarding the diffusion of tech-
nology. It is necessary, in addition, to understand the endogenous process
of information network formation. For example, consider the impact of a
subsidy offered to one farmer in a village that induces him to use an opti-
mal large amount of fertilizer and (with high probability) get high profits.
The speed with which this information spreads, and hence the value of the
subsidy, depends upon the choices of the subsidized farmer and others in
the village to make and maintain information linkages. These choices may
depend upon the value of the information to each farmer and upon the costs
of information links, which may depend upon a rich array of characteristics
of the farmers and the social structure of the village. In some contexts,
differing religions may be an effective barrier to communication. In others,
gender, wealth or family ties may be the most salient determinants of the
shape of the information network.

One of the drawbacks of having data early in the learning process is
that the value of learning cannot be estimated well. Inexperienced farmers
often make mistakes by switching to what is truly a suboptimal input level
after seeing it perform surprisingly well in a small number of experiments.
Farmers’ responses to both signal and noise provide a superb context for
detecting evidence of learning, but is a poor one for determining the long-
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run profits associated with optimal input use. In the short run those that
change inputs include large segments moving both towards and away from
the optimal input levels.®! Therefore we should not expect to, and in fact do
not find increases in realized profits for those who change their input levels.

The next step in this research program is to model the choices of farm-
ers regarding the formation of information links in these villages. A large
literature examines network efficiency, with the goal of characterizing the
network configuration that maximizes a value function (Bolton and Dewa-
tripont (1994); Hendricks, Piccione et al. (1995); Economides (1996)). This
is appropriate for a planner (such as a telecommunications monopoly) but
not for the decentralized process that governs the formation of a social net-
work like those in the sample villages. Accordingly, future work should focus
on the incentives of the individuals who build the links that define the net-
work ((Coleman (1966); Granovetter (1973); Granovetter (1992); Fafchamps
(1999); Fafchamps and Minten (1999)). Bala and Goyal (1999), Jackson
and Wolinsky (1996) and Montgomery (1996) provide alternative theoreti-
cal schema that can underpin an empirical analysis of link formation, but
we know of no empirical work in economics that examines the formation of
decentralized networks.

31Recall that almost all farmers in our sample are using far less fertilizer than recom-
mended by the Ministry of Agriculture. However, approximately the same number of
farmers are reducing their level of fertilizer input in response to good news about low
levels of fertilizer use as are increasing fertilizer use in response to good news about high
levels of use.
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8 Appendix 1: Social Learning in a Dynamic
Context

In order to make progress in the dynamic setting, it is necessary for us to be
more specific about a model of learning behavior, so we assume that farmers
are Bayesian learners. We retain the focus on local learning by adopting a
generalization of the multi-armed bandit setting. We consider a three period
model where farmers choose input levels in period one, generating profits
in period two. They then repeat this choice of input levels in period two,
producing profits in period three. In period two, farmers choose the expected
profit maximizing input level; in this period the model is a special case of
the local learning discussed thus far. In period one, however, in addition to
considering profitability in period two, the farmer considers the option value
of the experiment with respect to final period profits. This option value
may lead the farmer to choose a period one action with less than the highest
expected payoff in period two.

In order to assess farmer’s reactions to observing better than expected
growing-conditions-adjusted output for a particular input level (say Z) in this
dynamic model we consider the following thought experiment. Suppose that
our farmer’s initial beliefs about the productivity of input level  were in
part a result of having observed a neighbor using that input level and the
corresponding output realization. How would our farmer’s beliefs be different
if he had observed a slightly higher output realization from his neighbor and
what consequence will this have for his period one choice?

We show below that the probability that the farmer chooses 7 in period 1
is strictly increasing in the output realization of his neighbor who used input
level T in the previous period. This prediction replicates that of the myopic
model, demonstrating that the myopic model’s predictions can survive the
introduction of forward-looking behavior. If his neighbor achieves particularly
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high growing-conditions-adjusted output at a particular level of fertilizer use
in period ¢, then a farmer’s beliefs about the productivity of that level of
fertilizer shift upward. This increases the relative value to the farmer of
choosing that level of fertilizer use, and thus increases the probability that
that level of fertilizer use will be chosen by the farmer in the following period.
Obviously, it remains the case that in the absence of any learning, an observer
who cannot fully observe serially and spatially correlated growing conditions
could observe a similar pattern: a neighbor’s realization of high profits at
fertilizer level  will be followed in the succeeding period by an increased
probability of a farmer choosing fertilizer level Z.

Details

To simplify notation, we suppress the farmer ¢ subscript and restrict the
support of x; to consist of only two points, * € {H,L}.3> We assume
that farmers know that ;.1 has a standard normal distribution and that
input prices are constant at p. The farmer does not know f(H) and f(L),
but at time ¢ he has independent priors that are distributed N(g;(H), 0%y)
and N(g;(L),0? ) respectively. Consider the farmer’s final choice of .
Expected profits take one of two values, so his value function in the second
period is

Va = max { By (wa f (H) — pH +¢e3) , By (wao f (L) — pL +¢€3)}.

Where the expectation operator E; refers to the subjective expectation with
respect to the farmer’s belief at time ¢t. So the farmer chooses zo = H if
wage(H) — pH > wygo(L) — pL.33

Now consider the choice of fertilizer in the previous period. In this
period, the farmer is concerned not only with immediate expected profits,
but also with the value of any information generated by experimentation in
the period. Defining § € (0,1) as the discount rate, the value of choosing
r1 = H is

Vim = wig1(H) — pH +
—2

2
YoH O1H Wy
0F; max |w +qn(H)——— | — pH, wagi(L) — pL
1 { 2(w1 G% wl,g 91( )J% w12) p 291( ) p

32Chamley (2003) provides a good textbook presentation of Bayesian tools for modeling
social learning.
33Recall that the realization of productivity ws occurs before the choice of x.
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where we have substituted the farmer’s updating rule using the observation
on 24 he will obtain if H is chosen in period one. The input choice in period
2 Wlll be determined by the realization of yspg: there is critical value yopy
(which is a function of ws) such that xo = H if yoy > oy and o = L
otherwise. Vi, and 7, are defined analogously.

This setup is closely related to conventional multi-armed bandit models
(Berry and Fristedt 1985), but differs in that the random shock makes input
levels (arms) more or less attractive. As a consequence, the standard index
theorems (e.g., Gittins 1989, Theorem 2.3) fail to hold. The common growing
conditions shock can induce the farmer to learn about input levels that might
not be experimented with if growing conditions were constant. For example,
a sufficiently bad growing conditions shock will induce the agent to use the
lowest available fertilizer level.

Expected lifetime profits if H is chosen in period 1 are

Vie = wig(H) —pH +
0y max Ey (wo f(H) — pH + €3) , By (wao f (L) — pL + €3)
2
Yor O1m Wy
oF +g(H)———— | — pH ,
1max{w2(w1 01H+w1_2 a1 )0%H+w1_2> P
wag1 (L) — pL].

We define the critical realization of ysp

X o2y +w? p w;?

o = 0y I () + L ) - ) )

such that xo = H if yoy > 0oy and x9 = L otherwise. We define ¢,y(.)
as the normal density with mean w,g;(H) and variance wic?% 5 + 1 and pu(.)
as the distribution of period 2 growing conditions, conditional on period 1
growing conditions (we drop the notation making the conditioning on w;
explicit to save space). Thus the value of choosing x; = H can be more
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explicitly defined as

Vie = wig(H) —pH +
2 —2
Y2H 01 Wy
max |w +qp(H)——— | —pH,
// [Q(wl Ayt T )U%H+w12) !
wag1 (L) — pL] X ¢y (Yo )dy2rrdpn(w2),
= wgi(H) —pH +

2 -2
6// ( (gff UlHaj_le 5 + gl(H)ﬁ) —pH) O1(Yom ) dyapdp(ws)
+5// (wag1(L) — pL) ¢y 5 (Yor ) dyorrdpa(ws).

Equivalently:

Vim = w191<H)_PH

1 alH

+ 5 /w2 Pr(vor > tor) E(You |y > Yo )dp(ws)

wy 02, 4+ w2

S E— /w2 Pr(yorr > fomr)dp(wo)
wy

+ d(—pH) /Pr(yzH > Gomr)dp(ws)

+ dg1(L) /wz Pr(yan < fom)dp(ws)

+ 5(—pL)/Pr(y2H < Yomr)dp(ws)

where probabilities and expectations refer to the agent’s subjective distribu-
tion. The interesting quantity in the first term is Pr(yeny > Uon ) E(you |y >
Uopr ). Standardizing, we have

Pr(yonr > Oom)E(yon|yom > Yon) =
Uoff — H Uo T — H
(H)(D(_yQH wlgl( ))+UH¢(—y2H wlgl( ))
vy Vg

w101
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where vy = (w?0?;; + 1)Y/2. Therefore,

Vg
agl(H)

wh
1 2 UosH — H
—{—6- o1 - /w2{w1(1)(_y2H wlgl( ))

w1 02 + wy v

Yorr — w1g1(H) 1 Oon wy
w191 (H) (- o {_E—am(H) + E]
JoH — H 1 0y
o= B, Gy gy (1) o 2

—2 ~
w —w H

+5/w2 - 1 72(1)(_3/2H 191( ))d,u(wg)

O1g T Wy UH

-2

w
45 [un g

#8 (i) [o(-Lm By | B

Yo —wigi(H) [ 1 O0%a2m wy
i (1) [ wao( LU, | e 2

_QzH—’wlgl(H) [ 1 OYam wy

_Eagl(H) 'UH‘| dpi(wy)

Recalling that o5 is defined so that

o i + (H) w” H (L) — pL
w ————— — =w —
wy 0%y + wy? 2 o2y + wy? b 29 b

W

and combining the remaining terms we have

Vi Yorr — w191 (H)
= 1) O(— d
o B R e LS

= w;+ 5/w2 Pr(yon > Gou )du(ws).
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Now consider the value of choosing L in period 1:

Vie = wigi(L) —pL+0EV;
= wigi(L) —pL +
dEy max Ey (wof (H) — pH + €3) , Es (wa f (L) — pL + €3)
= wigi(L) —pL+
dFy max [wogq(H) — pH |
-2
ws (U—%L 2L %91@)) —le -

2 =)
o1 tw;” w1 oy +wy

Similarly to above, we define a critical realization of 7, : 727, such that
To = L if yor, > 151, and 9 = H otherwise so

Vi = wigi(L) —pL+

o2 wy? N A
oF {wg (%W—L + %QKL)) —pL | yor > yQL:| Pr(yar, > 9ar) +

%L+wf2 wy  ofp +w;
+0E [(wog1(H) — pH) lyor, < Yor]) Pr(yar < 9a1)
= wigi(L) —pL +

5i07i /w2 [wlgl(L)®<_—g2L — wlgl(L)) + UL¢(—3Q2L — wlgl(L))

=3
w1 0%, + w; vy, vy

_9 N I
—i—(fgl(L)% /w2¢(_w)du(w2)
1

011, VL

w50 | (- Sy )

o) [ w0 )
w3 (o) | s L)
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Differentiating,

(9‘/1L _ 5 1 O'%L 2/11)2{

dg1(H) w_laiL_le
G —wigi (L) [ 1 Odar
—|—U)191<L>¢( v [ vy agl(H)

Yor —wig1 (L), . 1 09qr
(= L) oy gy () |52 )

wf2 tor, — w191<L) 1 O9ar
—|—5—0%L +w1_291(L) /w2¢(——vL ) [_5391(1{)] dp(ws)

+6g1(H) / wpe P2 an) [i ajﬁr)] dji(ws)

+5/W2¢<M)du(w2)

+0 (~pH) / ¢(—Q2LL_ Zlgl(L)> [% ajﬁ)] dpi(w)

_ / (= 9Ly g )

(%)

(%

= 5/w2 Pr(yar, < or)dp(ws)

linear in expected sﬁglc,}{)adjusted output. The second term corresponds to
the marginal change in profits, ws, times the subjective probability that H
will be chosen in period two, averaged over prospective shock values wy. A
period one term is of course absent from ai/(lﬁ) as L rather than H has been
chosen and the derivative is again the marginal change in expected output
times the probability that H will be chosen in period two, averaged over the
values of that the growing conditions shock may realize in period 2.

Now consider the relative sizes of Pr(yoy > §op) and Pr(yer < 9or) for

The first term of Wlf simply reflects expected profits in period one being
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any given value of ws:

Prian > o) — @ (L1 DF L L+ o -aw))

O%H wy | Wo
A wiot, +1)"2 1
Pr(yas, < av) =<I>(( 171, + 1) —[ﬁ<L—H>+gl<H>—gl<L>D

w202, +1)1/2
(i tD77 1 o .

There are two main cases, because ™

Casel : Z(L—H)+q(H)—gi(L) <0

e If 63, > 03,, then

1 . N
3 > Pr(yoy > Qo) > Pr(yar < 9ar).

o If 02, < 02,, then

1 . N
3 > Pr(yor, < 92r) > Pr(van > Yon)-

Case2 : Z(L—H)+q(H)—q(L)>0

vl
w2
e If 07, > 07,, then

< Pr(yem > 92m) < Pr(yor < 9or).

N —

o If 02, <07, then

< Pr(yar, < 92r) < Pr(yem > 92m).

N —

Therefore, for any realization of ws, Pr(yey > Uon) > Pr(yer < 92r) — %

: : : oVig ovir .
Now consider the relative sizes of Bgr () and L

Vig  OVi
dg1(H)  0g1(H)

= w + 5/w2 [Pr(yem > Gon) — Pr(yar < 9or)] du(ws)

)
> wy — §/w2du(w2)
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oVig Vi if
’ 9g1(H) 9g1(H)

Therefore
Eqi(ws) < 2wy, V wy, (11)

for any set of priors (g;(H),0%y), (g:(L), 0% ), growing conditions realization
wy and price p. If we do not expect the change in growing conditions from
period 1 to period 2 to be so strong that yields are doubled, we can be
sure that good news regarding the growing conditions of H has a stronger
positive effect on the value of choosing H in period 1 than on the value
of choosing L. If growing conditions over adjacent periods is sufficiently
strongly positively correlated, this condition will hold; similarly, if the range
of growing conditions outcomes is sufficiently restricted, this condition will
hold even if growing conditions were not serially correlated.

If (11) holds and hence 8‘3‘1/%?[) > ai/(lfl)ﬂ then the probability that H is
chosen in period 1 is increasing in the farmer’s value of ¢;(H). It can be
shown as in the myopic model, there is a unique critical value of w; (1)
defined implicitly when Vg (i) equals Vip(iy), such that if w; < ) the

farmer chooses 1 = L, and otherwise x; = H.>*

9 Appendix 2: Alternative Measures of In-
formation Connections

To concisely describe the definitions of our metrics, let ¢ and j be farmers
within a village. Let [;; € {0,1} describe the relationship between any two
farmers in the village. We say that ¢ and j are linked if /;; = 1, and the
neighborhood of ¢ is defined as N; = {j|l;; = 1}.

We generated one set of alternate metrics for each respondent using a
listing of all the individuals named by that respondent in a number of different
contexts. This data includes people named in response to questions designed
to record all ‘significant’ conversations about farming between individuals,
and people who were hired by, borrowed from, lent or sold output to, or

34 As in the myopic model, this requires g1 (H) > g1(L). In addition, we need to assume
that good productivity in period 1 is not too bad news about the likely productivity in
period 2: a sufficient condition is that u(.|a) first-order stochastically dominates u(.|b) for

a > b. With these conditions, %VTlf’ > %VTllL and the statement follows.
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exchanged gifts, transacted land or jointly held assets with the respondent.?’
We construct two metrics from this information, first defining /;; = 1 if either
1 reports learning about farming from j, or vice versa. Because important
information might be transmitted during quite casual conversation, we also
define a broader information neighborhood with /;; = 1 if ¢ appears anywhere
in j’s roster of contacts, or if j appears on i’s roster.

Both our baseline ask for advice metric and these roster of contacts based
measures have potential drawbacks. The ask for advice measure is based on
a random sample of other farmers, and so yields estimates of the information
neighborhood of a farmer that are smaller than his actual information neigh-
borhood. The roster of contacts measures include some pairs who probably
do not discuss farming activities, and depends upon the respondents’ subjec-
tive understanding of ‘significant conversations about farming.” Therefore,
we also construct a predicted information neighborhood based on estimates
reported in Table 2 of the probability of a link (based on the question “Have
you ever gone to ___ for advice about your farm?” ) given pair character-
istics.

10 Appendix 3: Constructing Indices of News

This Appendix details our construction of good/bad news indices. The first
component in our index of good news at previous inputs is meant to reflect
the number of his neighbors’ pineapple plants (with the given fertilizer level)
that turned out to have surprisingly high profits. We start with the hypo-
thetical case where all plantings are of a single plant each. Each neighbor’s
planting from tg up to t; — 1 using a given input level provides the farmer
with some information about that level’s productivity. Suppose all plantings
by the farmer’s neighbors were indexed at times 7 that were in the interval
[to,t1) and at least 5 periods before ¢;. In this case, all information about
these plantings would have been unknown at time ¢y but would be revealed
within the window of opportunity to apply fertilizer to the time ¢; planting.
Fertilizer for a time ¢ planting is the sum of that applied during periods ¢+ 1
to t+4, so a time ¢t —5 planting will be harvested and its outcome revealed by
then end of this span (see Section 3.2). In this case, we could obtain a count

35Significant conversations include, for example, discussions of techniques for using agri-
cultural chemicals, seeds, dealing with agricultural problems, or crop choice.
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of all the good news plantings whose information is relevant for the time
t1 planting by summing the appropriate d, ., over farmer i's INV; neighbors.
However, in our data many of the plantings are less than a full 5 periods
before t; so some information about their outcome is known to farmer ¢ at
t1, but not necessarily all of it. To capture the partial revelation of good
news events, we could define an information aggregate that is a weighted sum
of good news event indicators for farmer 7 as:

i1 (T = Tig) Z Z Uty — 7 i @ity = T} (12)

kEN; TE[to,tl)

G

The first sum is over all V; information neighbors of farmer 7, the second sum
over all times 7 for experiments within his information neighborhood since
his last planting at t;. The weight is specified to be zero for all non-positive
lags, rise to one-fifth at lag 1 (¢(1) = 1/5) and increase linearly until it is one
at lag 5, and then remain constant at one for all further lags. Thus, G* gives
all observations 5 or more periods in the past a weight of one and indicators
of good news that are not a full 5 periods in the past are linearly discounted.

We do not use G* itself for two reasons: some farmers have plantings
7 occurring soon enough before t3 that some of their information should
still be considered as news at time ¢; and our farmers do not all have the
same number of pineapples on each plot nor the same amount of observed
outcomes.

First, we face the question of how to apportion the information for exper-
iments at times 7 that are 1 to 4 periods before t5. Some of the information
they contain should be reflected in the ¢y planting but it would not all be
revealed at ty. Some information in the 7 planting would be revealed after ¢,
and be news from the perspective of time ¢;. To apportion the time 7 good
news information between the t; and t, plantings we modify the weighting
in G* and assign this term the weight

U(rito.th) = (V(t — 1) = ¥(to — 7)) (13)

at time ¢;. Thus we assign zZJ(to — 7) of the good news event to time ¢, and
U(ty — 1) — h(ty — 7) to time t1. Using t)(7;t,11) as our weight function
modifies our measure of good news to:

G:il = Z; to Z Z 7— t07t1 dzk’rl{xz to — xk,’r}-

kEN; Te[to 4t1)
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One main issue remains: our farmers do not all plant the same number
of pineapple plants per plot and they have observed differing amounts of
plants’ outcomes in the past.?> Hence we construct a plant-weighted version
of G** by multiplying the indicators d; ;. in G** by the number of pineapple
plants on the corresponding plot: Plantsy .. Dividing this sum by the total
number of plants in experiments the farmer has observed in his information
neighborhood from the beginning of our data up to time ¢;, Total Plants;,,
gives us a measure of the number of ‘good news plants’ relative to the overall
total the farmer has observed. This is our index, G4, (v = ;4,) as defined
in (5).

36 There is also an occassional complication caused when the application window for a
farmer’s previous planting is still open when a new planting starts. For example, take
a farmer with plantings at periods 3, 7, and 8. There is an issue about how to assign
the “previously used” input amount for the period 8 planting as the amount used on
the period 7 planting has been started but not completed when the round 8 application
window opens. When this type of issue occurs, we construct a weighted average of input
use for the previous plantings with weights proportional to 1", i.e. they increase linearly
to maximum of 1 at lag 5.
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Table 1: Descriptive Statistics

Mean Std. Deviation
Fertilizer Use (cedis per sucker) 1.938 5.620
Change in Fertilizer Use -0.315 10.335
Indicator of Change in Fertilizer # 0 0.496 0.502
Indicies of Successful Experiments:
M Ask advice 0.114 4.312
M Talk frequently -0.041 4.259
M Know each other's plots -0.033 3.308
M Roster of contacts, farm info only -0.174 3.467
M Roster of contacts, full list -0.126 3.469
M Predicted ask for advice -0.020 0.940
Avg. Dev. of Lagged Use From
Geographic Neighbors' Use 0.498 7.790
Avg. Dev. of Lagged Use From )
Financial Neighbors' Use 0.053 0.380
Wealth (million cedis) 2.331 2.835
Clan 1 Indicator 0.327
Clan 2 Indicator 0.451
Church 1 Indicator 0.487 .
pH 5.952 0.738
Soil Organic Matter (%) 2.927 1.110
Loamy Soil Indicator 0.434
Sandy Soil Indicator 0.053
Contact with Extension Agent Indicator 0.327
Inexperienced Farmer Indicator 0.230



Table 2: Logit Predicting Ask For Advice

Coefficient Standard Error
Either Party Holds Traditional Office -0.55 0.26
Same Religion 0.04 0.33
Same Clan 0.43 0.24
Same Gender 1.73 0.78
Same Soil Type -0.23 0.27
Absolute Age Difference (years) -0.04 0.02
Absolute Wealth Difference (million cedis) 0.15 0.03
Distance Between Plot Centers (kilometers) -0.46 0.16
Constant -2.14 0.84

Logit MLE Estimates, Sample Size = 490, Pseudo R-squared =.12.
Dependent variable is one if either party answered yes to the question:
Have you ever gone to for advice about your farm?




Table 3: Information Connections by Cohort of Pineapple Adoption

Proportion of pairs of individuals in each other's information neighborhood

Inexperienced Experienced
Not Farming Pineapple Pineapple

Pineapple Farmer Farmer Neighorhood Metric
Not Farming Pineapple 0.06 0.05 0.07 Response to "Have you
Inexperienced Pineapple Farmer 0.05 0.09 0.13 ever gone to for

Experienced Pineapple Farmer 0.07 0.13 0.21 advice about your farm?"




Table 4: Predicting the Change in Input Use

Dependent Variable: Indicator of a Change in Per Plant Fertilizer Use

A B

Good News at Lagged Fertilizer Use -0.13 0.05
[1.19] [1.16]

Good News at Alternative Fertilizer Use 0.18 0.37
[0.97] [1.02]

Bad News at Lagged Fertilizer Use 12.32 14.41
[3.72] [4.63]

Bad News at Alternative Fertilizer Use -2.98 -4.22
[1.91] [2.07]

Average Absolute Deviation from 0.49 0.49
Geographic Neighbors' Fertilizer Use [0.13] [0.14]
Inexperienced Farmer 1.14 1.28
[0.92] [1.04]

Talks with Extension Agent -1.39
[0.75]

Village 1 -2.34 -1.70
[0.88] [1.06]

Village 2 -1.96 -2.55
[0.99] [0.95]

Wealth (Million Cedis) -0.04 0.04
[0.13] [0.11]

Clan 1 2.05 2.39
[1.07] [1.02]

Clan 2 2.72 2.88
[0.94] [0.84]

Church 1 -0.18 -0.68
[0.91] [0.91]

Logit MLE point estimates, spatial GMM (Conley 1999) standard errors in brackets
allow for heteroskedasticity and correlation as a function of physical distance, see
footnote 20 for details. Sample Size = 107. Pseudo R-squareds .34 and .36, columns
A and B respectively. A full set of round dummies were included but not reported.

Information neighborhoods defined using responses to: Have you ever gone to

farmer for advice about your farm?




Table 5: Predicting Innovations in Input Use, Differential Effects by Source of Information

Dependent Variable: Innovation in Per Plant Fertilizer Use

A B C D E F
Index of Inputs on Successful Experiments (M) 0.99
[.16]
M * Inexperienced Farmer 1.09
[0.22]
M * Experienced Farmer 0.10
[0.32]
Inexperienced Farmer 4.01 4.20 4.22 4.19 412
[2.62] [2.66] [2.65] [2.65] [2.77]
Index of Experiments by Inexperienced Farmers -0.13
[0.37]
Index of Experiments by Experienced Farmers 1.02
[0.17]
Index of Exper. by Farmers with Same Wealth 1.03
[0.18]
Index of Exper. by Farmers with Different Wealth -0.41
[0.32]
Index of Experiments on Big Farms 1.10
[0.14]
Index of Experiments on Small Farms 0.89
[0.18]
Index of Exper. by Farmers with Same Soil 1.04
[0.16]
Index of Exper. by Farmers with Different Soil 0.91
[0.19]
Avg. Dev. of Lagged Use From Geographic Nbrs 0.54 0.55 0.58 0.58 0.58 0.59
[0.06] [0.08] [0.06] [0.06] [0.06] [0.06]
Avg. Dev. of Lagged Use From Financial Nbrs 0.53 0.45 0.40 0.43 0.22 0.24
[0.58] [0.58] [0.59] [0.55] [0.61] [0.60]
Village 1 -7.62 -7.92 -8.09 -8.24 -7.81 -7.88
[1.16] [1.43] [1.36] [1.43] [1.31] [1.31]
Village 2 -0.61 -1.82 -2.15 -2.17 -1.83 -1.78
[1.56] [2.02] [2.03] [2.11] [2.02] [2.07]
Wealth (Million Cedis) 0.13 0.36 0.41 0.45 0.29 0.29
[0.25] [0.17] [0.17] [0.17] [0.20] [0.20]
Clan 1 -2.62 -2.42 -2.68 -2.62 -2.53 -2.55
[1.29] [1.21] [1.12] [1.09] [1.11] [1.15]
Clan 2 -0.40 -0.11 -0.11 -0.15 -0.31 -0.29
[1.44] [1.32] [1.32] [1.32] [1.30] [1.30]
Church 1 0.26 0.67 0.76 -0.60 0.87 0.88
[1.29] [1.12] [1.06] [1.11] [1.12] [1.12]
R-squared 0.70 0.73 0.71 0.71 0.71 0.71

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for heteroskedasticity and correlation as a function of
physical distance, see footnote 20 for details. Sample Size = 107. A full set of round dummies included but not reported. Information
neighborhoods defined using responses to: Have you ever gone to farmer

for advice about your farm?




Table 6: Alternate Definitions of the Information Network

Dependent Variable: Innovation in Per Plant Fertilizer Use

A B C
Roster of Roster of
. . . Contacts: Contacts: Full Predicted
Information Neighborhood Metric Farm Info Set of Advice
Only Contacts
M * Inexperienced Farmer 1.50 1.49 6.34
[0.28] [0.28] [1.14]
M * Experienced Farmer 0.19 0.15 4.52
[0.21] [0.22] [1.80]
Inexperienced Farmer 4.66 4.65 4.01
[2.84] [2.84] [2.77]
Average Deviation of Lagged Use
From Geographic Neighbors' Use 0.49 0.49 0.33
[0.09] [0.09] [0.12]
Average Deviation of Lagged Use
From Financial Neighbors' Use 0.50 0.51 0.59
[0.69] [0.70] [0.82]
Village 1 -7.59 -7.52 -9.25
[1.64] [1.63] [1.75]
Village 2 -2.09 -2.08 -1.86
[2.11] [2.10] [2.07]
Wealth (Million Cedis) 0.35 0.35 0.16
[0.17] [0.17] [0.22]
Clan 1 -2.25 -2.23 -1.66
[1.37] [1.37] [1.28]
Clan 2 -0.02 0.01 0.42
[1.41] [1.40] [1.33]
Church 1 0.62 0.59 0.75
[1.22] [1.23] [1.23]
R-squared 0.72 0.72 0.73

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for
heteroskedasticity and correlation as a function of physical distance, see footnote 20 for details.
Sample Size = 107. A full set of round dummies were included but not reported. Alternative
information neighborhoods are as defined in Section 3.2 and Appendix 2.



Table 7: Robustness to Changes in Specification
Dependent Variable: Innovation in Per Plant Fertilizer Use
A B C D E F

No Information No Information Fertilizer Categories: ~ Geographic

from Plantings from Plantings Zero, Med, High (High Neighborhood Soil Charac-  Lagged

teristics  Fertilizer Use

at t-1 att-1 or t-2 > 80th percentile) within 500m
M * Inexperienced Farmer 0.93 0.39 1.03 1.85 1.1 0.34
[0.19] [0.15] [0.19] [0.20] [0.27] [0.13]
M * Experienced Farmer 0.16 -0.14 -0.41 0.04 -0.24 0.08
[0.23] [0.24] [0.35] [0.23] [0.45] [0.31]
Inexperienced Farmer 4.38 5.83 4.01 2.87 5.94 4.05
[2.73] [3.46] [2.71] [2.71] [2.72] [2.62]
Lagged Own Fertilizer Use -0.84
[0.22]
Avg. Dev. of Lagged Use From 0.51 0.95 0.58 0.10 0.50 0.09
Geographic Neighbors' Use [0.08] [0.09] [0.08] [0.06] [0.12] [0.17]
Avg. Dev. of Lagged Use From 0.36 -0.17 0.51 1.06 0.64 0.59
Financial Neighbors' Use [0.54] [0.40] [0.55] [1.16] [0.70] [0.61]
Village 1 -7.51 -7.96 -8.13 -7.48 -13.46 -3.19
[1.35] [1.58] [1.51] [2.10] [3.03] [1.55]
Village 2 -2.02 -2.83 -1.93 -1.40 -1.68 -2.70
[2.09] [2.71] [2.09] [2.08] [2.37] [2.11]
Wealth (Million Cedis) 0.36 0.50 0.41 0.24 0.73 0.21
[0.18] [0.18] [0.17] [0.20] [0.21] [0.19]
Clan 1 -2.30 -2.58 -2.45 -2.71 -4.04 -1.17
[1.16] [1.35] [1.35] [1.21] [1.87] [1.32]
Clan 2 -0.07 0.16 -0.004 -0.62 0.25 0.71
[1.28] [1.31] [1.35] [1.47] [1.39] [1.29]
Church 1 0.56 1.33 0.62 0.43 1.58 0.36
[1.14] [1.17] [1.13] [1.36] [1.58] [1.16]
Soil Organic Matter 0.14
[0.67]
Soil pH 4.09
[2.31]
Soil Type = Loam 1.40
[1.14]
Soil Type = Sandy -5.78
[2.72]
Sample size 107 93 107 107 89 107
R-squared 0.74 0.72 0.73 0.68 0.80 0.75

OLS point estimates, spatial GMM (Conley 1999) standard. errors in brackets allow for heteroskedasticity and correlation as a function
of physical distance, see footnote 20. Round dummies included but not reported. Alternative specifications are as defined in Section
6.2.




Table 8: Predicting Innovations in Labor for Pineapple and Maize-Cassava Plots

Dependent Variable: First Difference in Labor Inputs for Pineapple and Maize-Cassava

A B C
Pineapple Maize-Cassava Maize-Cassava
Crop (labor cost in cedis (labor cost in 1000 (labor cost in 1000
per plant) cedis per hectare) cedis per hectare)
Index of Experiments: M-tilde 0.95 0.04
[.37] [0.14]
Index of Experiments in the Geographic 0.25
Neighborhood [0.14]
Average Deviation of Lagged Use From 0.48 0.83
Geographic Neighbors' Use [0.22] [0.14]
Ayerage De\{iation of Lagged Use From 027 0.02
Financial Neighbors' Use
[0.23] [0.11]
Village 1 770.96 -195.98 -203.94
[238.43] [100.54] [98.52]
Village 2 567.83 -417.61 -389.13
[316.37] [119.34] [134.16]
Village 3 -126.29 -228.58
[89.21] [132.30]
Wealth (Million Cedis) 47.59 1.09 -14.05
[31.46] [33.42] [37.69]
Clan 1 -802.58 213.44 -794.38
[358.62] [566.83] [450.66]
Clan 2 369.36 -45.33 -3.19
[232.41] [82.65] [78.85]
Church 1 93.85 -37.86 -4.69
[179.96] [77.80] [86.46]
Soil Organic Matter -259.11 -99.26 -72.00
[202.53] [90.41] [40.58]
Soil pH 358.52 15.19 88.98
[141.46] [131.66] [68.55]
Soil Type = Loam -641.90 -97.95 -105.23
[197.89] [45.75] [78.08]
Soil Type = Sandy -909.36 128.06 -76.96
[382.93] [66.14] [126.10]
Sample size 89 346 346
R-squared 0.55 0.42 0.24

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for heteroskedasticity and correlation
as a function of physical distance, see footnote 20 for details. Round/season dummies included but not reported.
Information neighborhood from: Have you ever gone to farmer for advice about your farm?
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