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PERFORATE AND IMPERFORATE CURRENCY BANDS: 

EXCHANGE RATE MANAGEMENT AND THE TERM STRUCTURE 

OF INTEREST RATE DIFFERENTIALS 

Abstract 

This paper provides a simple analytical characterization of an 

exchange rate regime which is consistent with the main stylized facts of 

current currency band institutional schemes, namely the reduction of 

exchange rate volatility, the concentration of the exchange rate around 

its central parity and the coexistence of marginal and intramarginal 

.interventions. For particular policy rules, even an informal (so called 

perforate) target zone which allows the exchange rate to be above (below) 

any upper (lower) limit with non zero probability can make the exchange 

rate less responsive to shocks in fundamentals than a formal band defended 

by interventions at the boundaries. The implications for the dynamic 

behavior of interest rates, including a closed form solution for the term 

structure of interest rate differentials as a function of the current spot 

exchange rate, are derived and analyzed in detail. 
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Since the pathbreaking contribution by Krugman (1988), followed among others by 

Miller and Weller (1988 and 1989), Froot and Obstfeld (1989 a and b), Flood and Garber 

(1989), Bertola and Caballero (1989 and 1990), Svensson (1989 and 1990), Lewis (1990) 

and Buiter and Pesenti (1990), special attention has been devoted in international financial 

theory to the properties of exchange rate dynamics within a target zone. The sensible 

intuition of the standard model is that exchange rates under a target zone regime are less 

responsive to shocks in fundamentals than exchange rates under free float, provided that 

the intervention rules of the Central Bank are common knowledge. The narrower the target 

zone, the lower the degree of sensitivity of exchange rates to fundamental shocks. This 

result holds even if the defense of the target zone is not perfectly credible. Variations on 

this theme have analyzed alternative policy rules for defending the band, the effects of 

expected realignments of the central parity (Bertola-Caballero (1989 and 1990)), the 

relation between exchange rates and the term structure of interest rates (Svensson (1989 

and 1990)), the optimality and the sustainability of these regimes (Avesani (1990), Delgado 

and Dumas (1990)) and the presence of rational speculative bubbles (Buiter and Pesenti 

(1990)). 

However, the standard model seems unable to explain some of the stylized facts that 

characterize exchange rate behavior under the current institutional arrangements, and in 

particular the European Monetary System (EMS). In these regimes the exchange rate is 

more frequently observed in the neighborhood of the central parity rather than in the 

neighborhood of the upper or lower limits of the band as predicted by the standard target 

zone theory. In other words, the empirical distribution of the exchange rate concentrates 

probability mass around the central parity rather than being bimodal at the boundaries, as 

is the case for the asymptotic distribution derived in the target zone model. Moreover, in 

the literature the formalization of the intramarginal mechanism of defense does not seem to 

provide a satisfactory stylization of a realistic policy rule (Flood and Garber (1989)); for 
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instance, intramarginal open market operations and/or foreign market interventions are 

assumed to take place only after the exchange rate has already reached ( and retreated 

from) one of its boundaries. Finally, the model does not analyze the coexistence of marginal 

and intramarginal interventions in an exchange, rate band, a well known characteristic of 

the EMS during the 80's1. 

The model introduced in this paper represents a generalization of the standard 

target zone theory consistent with the stylized facts above. Section 1 describes a model in 

which the exchange rate central parity is defended but the exchange rate can perforate any 

exogenously given ceiling or floor with non zero probability. The probability of this event is 

a function of the policy followed by the Central Bank, so that this scenario characterizes an 

informal target zone. The general model of an imperforate target zone presented in section 

2 provides a theoretical refinement which includes the perforate band model and the 

standard theory as particular cases. Sections 3 and 4 analyze the relation between exchange 

rates and interest rates in a perforate zone and provide empirically testable implications of 

the model, including a closed form solution for the term structure of interest rate 

differentials as a function of the exchange rate. 

1) A perforate target zone model 

I define as perforate a target zone if the (asymptotic) probability for the exchange 

rate being above the upper boundary or below the lower boundary is not zero and depends 

on the parameters of the policy rule followed by the Central Bank. 

A simple model of a perforate target zone can be sketched as follows. Define as s(t) 

1 See for instance Giavazzi-Giovannini (1989), ch.2 and 4. A notable departure from the standard model 
is provided by Lewis (1990) who considers a setup in which the authorities intervene intramarginally by 
temporarily stopping the movement of the fundamentals, with increasing probability the farther 

, fundamentals are from the. target level. , These stochastic rules imply- -a form of mean-reversion to 
fundamentals. 
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the logarithm of the spot exchange rate, expressed as the price of one unit of foreign 

currency in terms of domestic currency. f(t) denotes the fundamental variables relevant 

for determining s(t) according to a given theoretical structural model. The fundamental 

stochastic process is described by 

(1) df = 71dt + o-dw 

where 7/ represents the instantaneous drift, w the standard Wiener process and o- the 

instantaneous standard deviation of the fundamental. 

The Central Bank affects the dynamics of the fundamental, and consequently the 

exchange rate, through the choice of the value of the drift; no other control variable is 

available. The opportunity set of the Central Bank is given by two values of 71: 711 < 0 and 

7/H > 0. For simplicity, it is assumed that 7/ =7/H = -711 . The analysis can be easily 

generalized to the case 7/H :/= -711 . Intuitively, the choice of 711 implies the adoption of a 

contractionary monetary policy and the choice of 7/H implies the adoption of an 

expansionary monetary policy. The infinitesimal 7/ dt measures the instantaneous 

intervention of the Central Bank on the foreign exchange market, and the cumulative value 

t 

of the drift f ~ dr represents the difference between the log of the stock of money supply 
0 

at time t and the log of the stock of money at time 0. 

The policy rule followed by the Central Bank can be characterized as a two-valued 

bang-bang control of brownian drift2. The positive drift 7/H = 7/ is chosen when the 

fundamental f is less or equal to a predetermined threshold oand the negative drift 

711 = -TJ is chosen when f > o. Without loss of generality we normalize the threshold value 

choosing o= 0. The heuristic interpretation of this rule is that the Central Bank pushes 

the economy as hard as possible to the right when the process f finds itself to the left of 0, 

2 See Shreve (1981). 
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and vice versa for f to the right of 0. It can be shown that this is the optimal policy rule 

followed by the Central Bank when the objective function is given by J(f,77) defined as 

CD 

(2) J(f,;) = Er f e-'}'1; [f(r)]2dr 

0 

where the discounting factor I is positive and the control variable 77(£)_ can be chosen 

within a bounded range [771 ,77H]3 (Benes-Shepp-Witsenhausen (1980), Karatzas-Shreve 

(1988), ch.6)4. 

The exchange rate process is given in equation (3) or (3a) 

(3) 

(3 a) Et ds/dt = a:(s - f) 

3 An alternative but qualitatively analogous intervention policy could be specified as follows: the positive 
drift is chosen when f ~ <\, the negative drift is chosen when f > 6 and a zero drift is chosen when2 
6 < f ~ 6

2
, where 6 and 6 are predetermined thresholds. It can be shown that this policy is1 1 2 

optimal if the objective function in equation (2) takes into account the 11 running costs" on the control 
CD 

2equal to I771, that is if J(f,~) = Ef f e-,t[f(r) + I~I] dr (Benes-Karatzas (1981)).Again, 

0 
qualitatively analogous is the case in which the absolute value of the drift is an increasing function of the 
distance between f and the constant 6 (this specification could be analyzed by modeling the regulated 
fundamental as an Ornstein-Uhlenbeck process). 

4 The general solution of this stochastic optimal control problem when (J = 1 is 

1 1 
where 6=-------- -------- , so that O= 0 if 77H =-771 . 

) 77~ + 21 + 77H ✓ 77~ + 2'Y - 771 
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where Et is the mathematical expectation operator conditional on the information 

available at time t to the private sector and the controller, and a a constant positive 

parameter. Both s(t) and f(t) are assumed to be observable at time t; the assumption 

of observability of f can be relaxed, as we discuss below. The structure of the model 

(including the policy rule) is common knowledge. The law of motion (3) implies that the 

current exchange rate is a loglinear function of the current value of the fundamental and 

the expected rate of depreciation. This typical forward looking equation can be easily 

derived from the family of monetary models, with the parameter a-l representing the 

semielasticity of money demand to the interest rate. More complex structural models based 

on the presence of feedback from the exchange rate to the fundamental can be modeled 

following Miller-Weller (1988 and 1989). 

The forward saddlepoint solution to eq. (3) expresses the exchange rate as a 

function of current and expected discounted future values of the fundamental, namely 

CD 

(4) s(t) = a f e-a(r-t)Ei(r)dr 

t 

It is useful to express equation (4) in state space rather than time series 

representation. Consider the solution to eq. (3) within the class of functions s which 

depend on the current value of the fundamental only, or 

(5) s(t) = g(f(t)). 

where g is a continuous twice differentiable function in f. If the drift of the fundamental 

process were 7/H = 7J for any value off, the trajectory (5) in the space f - s would look 
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like a 45 degree line with intercept rJ/ a as in figure 1. In fact, by eq. (1) with 'f/ = 'f/ we 

obtain 

(6) Et f( r) = f(t) + TJ( r-t) for 7 ~ t. 

Substituting (6) into (4) yields the solution described above. Analogously, if the drift of the 

fundamental process were 'f/L = -TJ for any value of f, the trajectory would look like a 45 

degree line with intercept -TJ/ a. 

The "combination" of these two trajectories is not the solution to equation (4) when 

f is regulated· as described above. If this were the case, at the point f = 0 the exchange 

rate would discretely jump from the value TJ/ a to the value -TJ/ a in response to an 

anticipated intervention (the change in drift). This would imply the presence of a 

foreseeable arbitrage opportunity and a fortiori the absence of equilibrium in the foreign 

exchange market. 

The correct solution is found as follows. First, apply Ito's Lemma to eq. (5). This 

yields 

2(7) ds = g'(f) df + g"(f)/2 df = g'(f)[~ dt + r7 dw] + g"(f)/2 (7 
2 dt. 

An implication of eq. (7) is that the standard deviation of the instantaneous rate of change 

of the exchange rate is a function of f, namely r7g' (f). Taking the conditional expectation 

of eq. (7) and comparing this expression with the law of motion (3) we obtain 

(8) Et ds = g' Et'f/ 
~ 

dt + g" /2 r7 
2 

dt = a(s-f) dt. 

The second order differential equation (8) can be easily solved by recalling that for f > 0 it 
A 

is Et 'ff = -rJ, and for f ~ 0 it is Et 'f/ 
~ 

= 'f/. The general closed form solution is given by 
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(9) 

where >.1,2 = u-2 [-171 :1.: j 11£ + 2au2], >.a,4 = u-2 [-17H:1.: j 17~ + 2au2]. Note that 

>.1 = ->.4 is positive, while >.2 = ->.a is negative. 

The boundary conditions that define the constants A1-A4 are chosen as follows. 

First, as discussed above no expected discrete jump of the exchange rate can take place at 

f =0. This value matching (no arbitrage) condition implies 

(10 a) g(O+) = g(O) 

where g(O+) =lim g(f). In terms of eq. (9), we obtain 
f--t O, f>O 

(10 b) 

Second, the log of the exchange rate is assumed to be O when the fundamental is 0 

as well. In other words 

(11 a) g(O) = 0 

(11 b) -i +Al+ A2 = 0 

Conditions (11) simply identify the origin in the space f-s without loss of generality. 

It is always possible to obtain conditions (11) by defining appropriately the units of 

measurement. 
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Finally, the trajectory must asymptotically reach the two 45 degree lines -rJ/ a+ f 

and rJ/ a+ f for f-i+co and f-+-ro respectively. The intuition for this is that the difference 

between the free fl.oat trajectory and the equilibrium trajectory reflects the anticipation of 

the policy change. If the economy is far away from the origin, the event of the change in 

drift is perceived as very remote in time, and its effects on the expectation bias are small 5• 

These considerations lead to the conditions (15 - 16) below: 

(15) lim g(f) -(-rJ/a + f) = A1e,\ 1f + A2e,\l = 0 
f-1co 

(16) lim g(f) - ( rJ/ a + f) = A e,\ 3f + A e,\ 4f = O3 4f-+--co 

Since ,\ 1 > 0 and ,\ 2 < 0, any value of different from zero would be incompatibleA1 
with condition (15) ; analogously, since ,\ 3 > 0 and ,\4 < 0 any value of differentA4 
from O would not satisfy condition (16). 

To summarize, the appropriate boundary conditions imply 0 andA1 = A4 = 
A2 = -A3 = i, so that the final solution (9) under conditions (10-11-15-16) is given by 

for f > 0 

(17) 

for f ~ 0. 

The graph of s defined by eq. (17) is shown in figure 1. It is convex for f positive 

and concave for f negative6. It is easy to check that the first derivative g' is always 

5 This condition is equivalent to the assumption that no intrinsic bubbles can arise. See Froot-Obstfeld 
(1989 c) and Buiter-Pesenti (1990). 

6 It can be easily verified that at the origin a discontinuity of the second derivative occurs. The derivation 
of the equilibrium trajectory provided in eq. (7) is not affected by this result, since even in the presence 

· of discontinuities in g" the. basic Ito's formula is equivalent to the Tanaka's formula. See Harrison 
(1985), p. 70. 
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continuous, positive and less than 1. In the negative range off we have t = 1 -i Aa e.\af_ 

For f -1 - w, the first derivative is 1. At f=0, the first derivative is 1 - i A3 < 1. 

, ds I aer2 + 'T/2 - 'T/j 'T/2 + 2aer 
Substituting the expression for Aa we obtain ill' f=0 = 2 a er 
and it is straightforward to verify that the numerator is positive. Given the concavity of s 

for negative f, it must be the case that 0 < ds/df ~ 1 when f ~ 0. Analogous reasoning 

shows that 0 < ds/df ~ 1 even for f > 0. 

Note that in the absence of bang-bang control of the drift the equilibrium trajectory 

would look like a 45 degree line with t = 1. This latter case corresponds to a free float 

regime for the exchange rate. Since g' (f) measures the elasticity of the exchange rate to 

the fundamental, it has been shown that the exchange rate within a perforate target zone is 

less responsive to fundamental shocks than the freely floating exchange rate 7. Analogously, 

the (instantaneous) volatility of the exchange rate within a perforate zone, measured by 

erg'(f) is always less than the (instantaneous) volatility of the freely floating exchange rate 

given by er. 

It is important to note that the monotonicity of s with respect to f implies that 

the Central Bank does not need to observe the fundamental shocks directly. The contingent 

choice of rJ can be simply based on the current observed value of the exchange rate. 

The asymptotic (steady state) distribution8 for the fundamental has density 

function 1r(f) defined as 

7 Bertola-Caballero (1989) consider a setup based on the presence of stochastic realignments of the 
central parity. For particular values of the parameters the model is able to generate a backward 
S-shaped trajectory as in the perforate target zone, but for these values the elasticity of the exchange 
rate with respect to the fundamental is greater than 1. 

8 See for instance Malliaris-Brock (1982), pp.106-108. 
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~f 
(18) 

rJ2 { 'f/rJ-2exp[2'f/rJ-2]f for f ~ o}
1r(f) = ~ e = -2 -2 

rJ 'f/rJ exp[-2'f/rJ fj for f > 0 

The distribution (18) is the combination of two (positive and negative) exponential 

functions truncated at 0 and normalized to have J1r(f) df = 1. Since the exchange rate is 
-m 

a monotonic increasing function in f, the asymptotic density function of s, defined as 

1rs ( s), is proportional to 1r/ g' or 

(19) 

The density function 1rs(s) is convex, unimodal with mean and median equal to 0. It is 

shown in figure 2 for different values of 'T/, with 'T/l < 'f/2 < 'T/a• 

We want now to show that the solution above characterizes a perforate target zone 

as defined at the beginning of the section. In other words, we want to show that for any 

given upper and lower exchange rate target sH and sL' with sL < 0 < sH' the 

asymptotic probability for the exchange rate being outside the range is a 

decreasing function of the strength of the policy rule measured by 'TJ. Given sH and sL 

we can find the values of the fundamental fH =g-1(sH) > 0 and fL =g-\sL) < 0 at 

which the exchange rate reaches the target values, for 'T/ given. Moreover, it can be shown 

dfH I dfL Ithat s=sH > 0 and U1J s=sL < 0. We can evaluate now the probability P077 
defined as 

(20) P =Pr{s > sH, s < sL} = Pr{f > fH, f < fL} = 

= 1 + IT(fL) - IT(fH) 
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where II(f) is the cumulative distribution function with density function 7r(f). Simple 

algebra shows that 

(20 a) 

(20 b) 

(20 c) 

(20 d) 

(20 e) 

Eq. (20 a-e) imply that the larger the policy parameter 'T/ and the larger the size of 

the informal target zone, the smaller the probability for the exchange rate being outside 

the band. When 'T/ goes to infinite, this probability goes to zero. 

2) An imperforate target zone model 

I define as imperforate a two-sided target zone if the (asymptotic) probability for 

the exchange rate being above some upper boundary and below some finite lower boundary 

is zero. Consider a target zone with central parity 0, upper boundary sH and lower 

boundary sL, with sL < 0 < sH' The boundaries are defended by infinitesimal reflecting 

interventions as in Krugman (1988), so that the fundamental stochastic process is now 

(1') 

where the regulators IR and IL are two right continuous increasing functions in f. The 

upper regulator IR increases only when s(f(t)) reaches sH' and IL increases only when 

s(f(t)) reaches sL. The interpretation of eq. (1') is that the Central Bank controls the 
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fundamental drift (that is, intervenes intramarginally) in order to reduce the probability 

for the exchange rate being at the boundaries. If and when the exchange rate hits the upper 

or lower limit, a marginal intervention occurs maintaining the exchange rate within the 

band. 

Define as fH the value of the fundamental at which s = sH and f1 the value of f 

at which s = s1 . Obviously, in an imperforate target zone reflecting interventions keep 

the fundamental within the range [f1 , fH]. Since and fH are endogenouslyf1 
determined, we need now six rather than four boundary conditions as before. The solution 

to eq. (3) is still eq. (9) with boundary conditions (10) and (11), but conditions (15) and 

(16) are replaced now by the following four equations : 

(15') 

(16') 

(20) 

(21) 

Equations (15') and (16') guarantee that the exchange rate reaches its zenith when 

the fundamental reaches fH and s reaches its nadir when f = f1 . Equations (20) and 

(21) (usually and improperly called smooth pasting conditions) imply that at the 

boundaries the first derivative g' is zero. The economic intuition for these latter 

requirements is that at the upper (lower) boundary of a credible band the exchange rate is 

known to appreciate (depreciate) without uncertainty. Since the conditional standard 

deviation of the rate of depreciation is o-g', it must be the case that at the boundaries 
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g' (fH) = g' (f1) = 0. 

The trajectory (9) under conditions (10-11-15'-16'-20-21) is shown in figure 3. It 

can be thought of as two S-shaped curves joining at the origin . For rt = 0 we recover the 

same results of the standard theory and the trajectory looks like a S-shaped curve; this 

implies that the asymptotic distribution of the exchange rate concentrates probability mass 

on the edges of the band9. For s1 -1 -ro and sH-1 oo we recover the results of the perforate 

zone presented in the previous section. 

Obviously, for T/ :/= 0 an imperforate target zone as described above is always more 

stabilizing than a standard target zone defended by marginal interventions only or a 

perforate informal target zone defended by intramarginal interventions ( changes in drift) 

only. It is interesting to note that for relatively large values of rt, even a perforate target 

zone can be more stabilizing than a currency band defended by marginal interventions 10. In 

other words, an informal target zone can in some cases be more effective than a formal one 

if the latter is defended only at the boundaries. At any rate, an informal zone is always less 

effective than an imperforate band when both marginal and intramarginal interventions are 

adopted. 

The asymptotic density function of the fundamental in the presence of an 

imperforate target zone 1r(f) is now defined as 

~f2 {µ(J-2exp[2TJ(l-2f] for f1 ~ f O}~ 
(18') 1r(f) = ~ e(J = -2 -2 

(J µ(J exp[-2rt(J fj for O < f ~ fH 

where µ =2rt/[2 - exp(2T]f1/ (J 
2) - exp(-2T]fH/ (J 

2). As before, this is the combination of 

9 See Svensson (1989). 

10 Analytically, this result is obtained by comparing g' (f) in eq. (17) with g' (f) obtained by solving the 
system (9-10-ll-15'-161-20-21) when 'f/ = 0, keeping constant the values of (J, a, sH and s

1
. 
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two truncated exponentials. Obviously, in the imperforate case the support [fL'fH] is 

bounded. 

By eq. (19), the asymptotic distribution of the exchange rate is now trimodal at the 

central parity and at the edges (see figure 4). For 'f/ = 0 the density function is U-shaped 

as in the standard theory. For 'f/ --1 +w the probability mass is concentrated on the central 

parity and the distribution degenerates. In the intermediate cases more probability mass is 

distributed around the origin than in the U-shaped distribution of the standard theory. 

3) Interest rate differential and exchange rate in a perforate band 

If uncovered interest parity occurs and agents are risk neutral, the instantaneous 

interest rate differential is equal to the expected rate of depreciation by no arbitrage. In 

* other words, defining as i the instantaneous domestic interest rate, i the instantaneous 

* foreign interest rate and e=i - i the instantaneous interest rate differential, it is 

(22) 

where >. =>.a= ->.2. Note that the perforate band for the exchange rate induces an 

imperforate band for the interest rate differential such that -rJ < e< 'f/. The relation 

between e and f is shown in figure 5. It is negatively sloped, concave for f<0 and convex 

for f>0. 

We can now consider the stochastic process for e, Since 
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A 

(23) de= o{ds - df) = a[(e-1]) dt + I(g'-1) IO" dw] 

we can express the instantaneous variation of the interest rate differential as a function of 

. the interest rate differential itself rather than as a function of the fundamental. In fact, 

equation (23) leads to 

(24a) de= a(e+7l) dt + AO"(e+1/) dw if -7] < e < 0 

(24b) de = a( e-1/) dt - AO"( e-1/) dw if O ~ e < rJ 

The equations above implies that the a perforate zone for the exchange rate stabilizes the 

interest rate differential around its "parity", that is O in the symmetric case 7/L = -7]H we 

are considering. In other words, when the domestic interest rate is higher than or equal to 

the foreign one, the interest rate differential is instantaneously expected to decrease, and 

when the foreign interest rate is higher than the domestic one the interest rate differential 

is expected to increase. Intuitively, intramarginal interventions are expected to affect both 

fundamental and exchange rate in the same direction, but the exchange rate is less 

responsive to interventions than the fundamental. Since the interest rate differential is 

proportional to the difference between exchange rate and fundamental, expected 

depreciation ( equal to interest rate differential) and exchange rate ( or fundamental) move 

in opposite directions. 

It is very convenient now to define the exchange rate in terms of the (potentially 

observable) interest rate differential rather than in terms of the (likely unobservable) 

fundamental. From equation (22) it is e= a(s-f), or s = ¾+ f. For positive values of the 

fundamental we have e= 1/(e->.f -1) or, inverting, f = -½log(~+ 1). For negative 

values of the fundamental we have e= 7/(1-e),f) or f =} log (1 - ~), so that 

(25a) s = S.-tlog(i + 1) fore< 0a I\ 1/ 
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(25b) for e~ 0 

The relation between exchange rate and interest rate differential is represented in figure 6. 

It is negatively sloped, convex for negative eand concave for positive e, In the standard 

target zone model the analogous relation between s and e is negatively sloped as well, 

but the pattern of concavity is reversed. 

As in the standard target zone model, there always exist a trade off between the 

instantaneous volatility of the interest rate differential and the exchange rate. Expressing 

all variables as a function of the interest rate differential ( and considering only positive 

values of e for simplicity), the instantaneous volatilities are a-s = (1 - ¾( e+rJ))a- and 

a-e = .X( e+77)0-, so that a-8 + ; a-e = a-. Since a- is constant, a negative relation between a-8 
and a-e occurs. The volatility of the exchange rate reaches its peak and the volatility of 

the interest rate differential is zero only asymptotically when Is I -+ +co and IeI = 'TJ. The 

volatility of the exchange rate is minimized (but is not zero) and the volatility of the 

interest rate differential reaches its maximum when the exchange rate reaches its central 

parity: at s = e = 0 in fact a-s = (1 -f!l)a- and a-e = .X770-. 

4) The term structure of interest rate differentials in a perforate band 

In the previous sections we have analyzed the instantaneous and asymptotic 

properties of exchange rates. The complete characterization of the stylized perforate zone 

regime requires now the analysis of the "intermediate" cases defined in relation to a finite 

time period. In particular, we want to analyze the term structure of interest rate 

differentials induced by the presence of a mean reverting exchange rate in a perforate band. 

We define as T the maturity of a zero coupon (pure discount) bond and as 

r =T - t the time to maturity. The interest rate differential for a given time to maturity 

r is assumed to be function only of r and the current exchange rate. For simplicity of 
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notation we pose t = 0, so that the current level of the exchange rate is denoted by s0• 

The assumption of unbiased expectation hypothesis leads to the following relation 

Es s(r) - s0 
(26) t( r,so) = 0 

7 

Equation (26) is the finite time equivalent of equation (22). For r-+ 0 we recover the 

familiar instantaneous uncovered interest parity analyzed in section 3 above, with 

t(0,so) = a(so - g-1(so)) where g-\so) = fo and fo denotes the current level of the 

fundamental. 

In order to determine the interest rate differential t( r,s 0) we need to evaluate the 

expectation of the exchange rate at time T - t conditional on the current level of s. In 

general the computation of Es s( r) is not straightforward. Svensson (1990) considers the 
0 

strategies of solution (analytical and numerical) for the standard target zone case with 

infinitesimal reflecting interventions at the boundaries. In the lucky case of a perforate 

band, it is possible to provide a relatively simple analytical characterization in closed form. 

The starting point is given by the computation of the transition density function for 

the fundamental in the presence of bang-bang control of brownian drift, defined as 11 [f, fo]r 

such that 

(27) 1r [f,fo] df = Ef [F(r) E dfjr o 

where F(r) is the stochastic variable with Ito differential as in eq. (1). In other words, 

1r [f,fo] denotes the probability for the fundamental being equal to the value f at time r 

contingent on the current fundamental being equal to £0• Starting from the results by 

Shreve (1981) and Karatzas-Shreve (1988, p.441), after straightforward algebra and 

rescaling it can be shown that 

7 
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7
{28a) ,r,.(f,fo] = "~ \O[fo"~ --17 ] + 7e~~oc-'f [1 - q; [fO 

: ~-~Tl] 
if f 0 ~ 0, f > 0 

(28c) 1r
T[f,fo, 11] = 1r

T[-f, -fo, -11] 

2 X 2 
where cp(x) =-1- e-(x / 2) and <I>(x) =-1- Je-(y / 2) dy respectively denote the 

/Fi /Fi 
--rn 

density function and the cumulative function of a standard normal random variable (in 

Appendix A it is shown that eq. (28) defines a density function). Given the symmetry of 

Brownian motion, we can assume fo ~ 0 without loss of generality: for f0 < 0 it is 

possible to compute 1r [f,f0] according to (28c). Note that for 7, oo we recover the
7 

asymptotic distribution (independent of the current value of the fundamental) analyzed in 

section 1 ( eq. 18). 

Since f0 = g-1(s 0), the expected value of the exchange rate at time T given its 

current value s0 is given by 

(D (D 

(29) 

7D 7D 
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Algebraic details of the computation of eq. (29) are provided in Appendix B. 

The expected value of the exchange rate as a function of time to maturity is 

represented in Figure 7 for alternative (positive) values of so. If the exchange rate "starts 

off" positive, it is expected to decrease monotonically in the term and rapidly approach its 

steady state mean 0. If the current level of s is 0, the exchange rate is not expected to 

change. The higher the current value of the exchange rate, the higher the expected value of 

s at any future time 7. Figure 8 shows the term structure of interest rate differentials 

according to eq.(26). A positive current level of the (log of) exchange rate (and 

fundamental) implies a negative current level of the instantaneous interest rate differential 

denoted by e(o,s 0) in Figure 8. The interest rate differential increases monotonically in the 

term and reaches asymptotically its steady state mean 0. These results are qualitatively 

similar to the findings by Svensson (1990) for the standard target zone model defended only 

by marginal interventions. In Figure 8 three term structures are plotted, corresponding to 

alternative values of the policy parameter 'f/, with 'f/l < 'f/2 < 'f/
3 . The higher the value of 

the drift, the faster e(7,so) approaches its steady state mean. 

Figure 9 shows the interest rate differential as a function of the fundamental ( only 

positive values of f are considered) for given values of 7. For a very short term 7 the1 
graph of e( 7,f) is identical to Figure 5. For longer terms and 7 t~e graph becomes72 3 
flatter and concave in the neighborhood of the origin but steeper and convex for relatively 

large values of the fundamental. As a net result, the graph of e( 73,f) for instance is 

relatively linear despite of the change in concavity while the graph of e(7pf) is highly non 
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linear. Figure 10 shows the ( empirically testable) relation between the term structure of 

interest rate differentials on the x-axis and the log of the exchange rate ( again, only 

positive values of s are considered) on the y-axis. As in Figure 9, we find that for short 

terms the relation is highly non linear (r1 in Figure 10) and the graph is identical to Figure 

6. For longer terms r2 and r the graphs become closer and closer to the vertical axis3 
(partially 11 losing11 non-linearity, as shown for instance by the graph for r ). At any rate,3 

for relatively high values of s the interest rate differential, independent of time to 

maturity, tends to reach its lower boundary -'TJ. 

These results are intuitive given the setup of the perforate zone regime. The long 

term interest rate differential is relatively close to the steady state mean O independent of 

the current value of the fundamental and exchange rate, since intramarginal interventions 

are asymptotically expected to stabilize fundamental and exchange rate around their 

parities. At the same time, if the current value of the exchange rate (and fundamental) 

happens to be relatively large, the behavior of the exchange rate in a perforate zone regime 

is similar to the behavior in free float, so that the interest rate differential is close to its 

lower (free float) limit -'TJ independent of the term to maturity. 

5) Conclusions 

The model presented in this paper has provided a simple analytical characterization 

of an exchange rate regime which is consistent with the main stylized facts of the EMS and 

other currency band schemes, namely the reduction of exchange rate volatility, the 

concentration of the exchange rate around its central parity and the coexistence of 

marginal and intramarginal interventions. In general, the model of a perforate currency 

band as described above seems to provide an extremely promising setup for analyzing the 

properties of international asset prices and returns, in the presence of institutional schemes 

of exchange rate management equidistant from the textbook cases of free float and fixed 
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exchange rate regimes. This paper has analyzed the relation between exchange rates and 

interest rates in a perforate zone and provided empirically testable implications of the 

model, including a closed form solution for the term structure of interest rate differentials 

as a function of the spot exchange rate. 

The setup here introduced can be considered as an intermediate step toward a 

theoretical explanation of the stylized facts themselves. Starting from the realistic a priori 

that the Central Bank is concerned with reducing the volatility of the exchange rate (an 

objective function implicit in the entire literature on target zones), an imperforate target 

zone as defined above is always more effective than a target zone defended by marginal 

interventions only. Moreover, in some cases even an informal (perforate) target zone which 

allows for the exchange rate being above (below) any upper (lower) target level with non 

zero probability can make the exchange rate less responsive to shocks in fundamentals than 

a formal zone defended by interventions at the boundaries. 

A complementary interpretation can be sketched as follows. The stabilizing 

properties of a target zone defended by marginal interventions derive from the expectations 

induced by the announcement of such interventions. Before the exchange rate hits one of 

its boundaries, private agents do not observe any signal of the willingness of the Central 

Bank to defend the zone, so that the reduction in exchange rate volatility exclusively relies 

on the degree of credibility of the policy rule. In the framework analyzed in this paper, 

instead, intramarginal interventions give unequivocal observable signs of the intentions of 

the Central Bank at any moment in time, strengthening the credibility of the intervention 

rule and its effectiveness. If common beliefs of private agents do not exclude 

St. Thomas-like skepticism regarding the future actions of the Central Bank, the 

tangibility of continuous intramarginal interventions may become a necessary condition for 

guaranteeing the success of any scheme of exchange rate management. 
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APPENDIX A: Equation (28) as a density function 

w 

We want to show that f 1r [f, fo] df = 1 choosing f0 > 0 without loss of
1 

-w 

generality. This integral can be thought of as the sum of the following four components: 

w 

(Al) J _1_ cp [f o - f - 'T/TJ df = <I> [f o - T/TJ 
0 (JVT (JVT (JVT 

(A2) 

w 
2 

(A3) f + e-2rw- f [l _ <I> [fo + f - TJ,J] df = 
0 (J (JVT 

2 = ½[l _ <I> [fo - TJ,J _ e2rw- fo (l _ <I> [fo +_TJ,J )]
(JVT (J✓ , 

0 
2 

(A4) f + e2rw- f [l _ <I> [fo - f - TJ,]] df = 
(J (JVT

-w 

The computation of (Al) and (A2) is trivial. Moreover it is easy to show that 

equations (A3) and (A4) are identical simply by transforming the variable of integration: 

0 
2

After posing f =-q expression ( A4) becomes - f +-2TJ(J- q[l - <I> [fo + q - TJ,J] dq
(J (JVT

w 

which is equal to eq. (A3). 

The right hand side of eq. (A3) can be derived by integrating by parts as follows: 
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f
CD 

➔ e -2rw-
2
f [l _ cp [fo + f - 17r]] df = 

0 u u,fi-
CD CD2 2f + e-2rw- f df _ f ➔ e-2rw- f cp [fo + f - 'f/TJ] df = 

0 u O u u,fi-

_.k-2rw-2f ICD -[-k-2rw-2f cp [fo + f - 'TJTJ ICD + 
2 0 2 u,fi- 0 

2 
+ j ½e-2rw- f _1_ cp [fo + f - 17r] df] = 

0 CJ,fi- u,fi-

= ½-½ cp [fo - 'f/TJ -½ f
CD 

l exp [-(fo+f+rJr) 
2
+ 4fo'TJTJ df = 

u,fi- CJ✓21rr 2u2r0 
2½-½ cp [fo - 'f/TJ -½ e2'f/CJ- fo cp [fo + f + 'f/TJ ICD Q.E.D. 

u,fi- u,fi- 0 

Finally, it can be easily checked that the sum of the right hand sides of (Al) to (A4) 

is equal to 1. 
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APPENDIX B: Computation of Et s( r) 

Equation (29) can be thought of as the sum of the following twelve expressions: 

(Bl) -~ f
OJ 

_l_ 1./J[fo - f - 'f/7] df 
0 0-,ji- 0-,ji-

0 
2 

(B2) !l f e2rw- fo _1_ 1./J[fo - f + 'f/7] df 
a u ,ji- u ,ji-
-w 

(B3) 

0 
2 

(B4) ~ f + e2rw- f [l _ <I> [fo - f - 'T/TJ] df 
u u,ji-

-w 

(B5) if
OJ 

e-).f __!_ 1./J[fo - f - ryrlj df 
0 0-,ji- 0-,ji-

0 
2 

(B6) _!J_ f e2rw- fo e>.f _1_ 1./J[fo - f + 'f/7] df 
a u,ji- u,ji-
-w 

OJ 

(B7) if+ e->.f e-2rw-2f [1- <I>[fo + f - 'T/TJ] df 
0 u u,ji-

0 
2 

(BS) _~ f + e>.f e2rw- f [l _ <I> [fo - f - 'f/7]] df 
u u,/i-

-w 
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ro 

(B9) Jf _1_ <p[fo - f - 'f/TJ df 
0 (J,fi- (J,fi-

0 2 
(BlO) f f e2rw- fo _1_ <p[fo - f + 'f/TJ df 

(J,fi- (J,fi-
-00 

ro 
2f f + e-2rw- f [l _ <I> [fo + f - 'T/TJ] df 

0 (J (J,fi-

0 2 
(B12) f f + e2rw- f [l _ <I> [fo - f - 'f/TJ] df 

(J (J,fi-
-00 

The computation of (Bl - B4) is immediate given the results of Appendix A. The 

sum of (Bl) to (B4) gives 

Notice now that the sum of expressions (B7) and (BS) is 0, and analogously the sum 

of expressions (Bll) and (B12) is 0. These results can be easily checked by posing f =-q, 

so that expression (BS) becomes 

0 

+¾f 7 •-Aq .-2n,,-'q [1- 4> rro +"~- W]J dq 
ro 

and expression (B12) becomes 
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In order to compute expression (B5), first rewrite (B5) as 

w 2 w 2 

'T/ f exp [->J _(fo - f - 'f/T)] df = 'f/ f e-(af + 2bf + c) df 
ua,./FiFF 2u2r ua.J21rr 0O 

1 2A7where a= - -, b ~ 'T/7 - fo + u and c = (fo - 'l/7 )2_ 
2u2r 2u 2r 20"2r 

By properties of the error function erf(x) (see for instance Abramowitz M. 
10

Stegun I. (eds.) (1964, 1972 ) - Handbook of Mathematical Functions, National Bureau of 

Standards, eq. 7.4.32 p. 303), it is 

where erf(x) = 2<I>(xJ2) - 1 for x ~ 0 (Handbook, cit., eq. 26.2.29 p.934). 

In our case expression (B5) becomes 

and after substituting for the values of a, b and c expression (B5) is equal to 

!l exp[A((T2AT+ 7/T- fo)] (1 - <I> [nr-fo+cr2Ar] ). 
a 2 er ✓-T 
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Following the previous scheme, it is possible to compute expression (B6) as 

- !J_ exp[27J;o + ,\(0"2,\7 + 'f/7 + fo)] (1 - 4> [7J7+fO+ o-2,\ 7]).
a a- 2 r

O"y 7 

In order to evaluate expression (B9), consider the following equation: 

2 
d [ r;;:. [fo - f - 1J7]] _ d o-[i- e [-(fo-f-rz7)] _ (f f ) 1 [fo - f - 'f/7]ill' O"y7 cp - ill'-- Xp - o- -'fj7 - cp . 

~ ~ 2~7 ~ ~ 

Integrating the equation above and rearranging, expression (B9) becomes equal to 

(fo _ 'T/ 7) <I> [fo - 1J7] + o-[i- cp[fo - 'f/7]. 
o-[i- o-[i-

Analogously, it can be checked that expression (BlO) becomes 

Finally, note that the expression 

is equal to zero. The sum of expressions (Bl) to (B12) gives the right hand side of eq. (29). 
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