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Abstract: This paper derives and analyzes an explicit closed-form formula for the optimal k in k­

out-of-n systems consisting of i.i.d. components. The system can be In one of two possible modes with a 

pre-specified probability. The components are subject to failure in each of the two modes. The costs of 

the two kinds of system failures are generally not identical. Since the formula is explicit, it permits a calcu­

lation of the optimal k directly in terms of the parameters of the system. In addition, it yields many results 

concerning both the bounds of the optimal k and the effects of a change in parameters on the optimal 

k and on the optimized value of the system's expected profit. 
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I. INTRODUCTION 

This paper studies the design of optimal systems using unreliable components. The system under 

consideration consists of n identical and statistically Independent components. The system can be, with 

a pre-specified probability, in one of two possible modes: mode 1, in which the components are command­

ed to close; or mode 2, in which the components are commanded to open. A component is subject to 

failure In each mode: in mode 1 it may fall to close, and in mode 2 it may fail to open. The system is closed 

if k or more components are closed; otherwise it is open. Thus, the two types of potential failures of the 

system are: failure to close (which occurs if fewer than k components close when the system is In 

mode 1), and failure to open (which occurs if k or more components close when the system Is in mode 2). 

These two kinds of system failures can have different costs. Our objective, then, is to study the optimal k , 

referred to as k* , treating other features of the system as parameters. The criterion for choosing k* is 

the maximization of the system's expected profit. 

The contribution of this paper is as follows. We derive and analyze an explicit closed-form formula 

for k* . Using this formula, k* can be calculated directly in terms of the parameters. In addition, this 

formula yields a number of results concerning the properties of k* ; for example, we determine the bounds 

of k* , and the direction and magnitude of change In k* due to a change in parameters. We also present 

some results on the Impact of a change in parameters on the optimized value of the system's expected 

profit. All of these results are exact; they do not require any approximations. 

A brief background to the problem studied in this paper is as follows. In a recent paper, Sah and 

Stiglitz (1988a) presented an implicit characterization of k* for a similar system. (Since this characterization 

Is Implicit, it does not permit a direct calculation of k* In terms of the parameters, as the formula reported 

in the present paper does.) They analyzed k* using this implicit characterization and the following two 

approximations: (i) the derivatives of the binomial probability density are approximated by the derivatives 

of the normal probability density, and (Ii) k , n , and k* are treated as continuous rather than integer 

variables. This approach did not permit them to obtain most of the results (concerning the bounds of k* 

and the effects of a change In parameters on k* ) reported in the present paper, while the results that 

they did obtain were subject to the approximations just noted. Another set of effects studied In the present 

paper (namely, the effects of a change in parameters on the optimized value of the system's expected profit) 

is not examined in Sah and Stiglitz, nor, to our knowledge, has it been elsewhere in the literature. 
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A special case of the problem studied here Is one In which It Is assumed that: (i) the costs of the 

two kinds of system failures are Identical, and (ii) the system is in the two modes with equal probability. In 

this case, the maximization of the system's expected profit is the same as the maximization of the system's 

reliability, where the latter Is defined as the probability of the system's success In mode 1 minus the probabil­

ity of the system's failure In mode 2. This special case has been analyzed by Ben-Dov (1980), and Its 

variants have been examined by Ansell and Bendell (1982), and Phillips (1980). These authors also provide 

earlier citations. 

Systems of the type studied In the preserit paper are of practical Importance In engineering contexts 

such as relay circuits and monitoring safety systems (see Barlow and Proschan (1981), Ben-Dov (1980) and 

references therein). The analysis of such systems is also useful in studying the performance and design of 

human organizations such as committees and hierarchies (see Sah and Stiglltz (1988b)). For example, con­

sider a committee with n members that accepts a project (or an Idea) if k or more members accept It. 

If there are two types of projects (good and bad) and if each member's judgment Is fallible concerning 

both types of projects, then some aspects of this committee's performance can be modeled along the lines 

of the system studied. In this paper. 

The formula for k* is derived in Section II. Section Ill presents the bounds of k* . Section IV 

described the results concerning the effects of a change in parameters on k* . Section V analysis the 

effects of a change In parameters on the optimized value of the system's expected profit. 

II. THE FORMULA FOR THE OPTIMAL k 

Let q1 denote the probability of a component's failure when the system Is in mode 1 ; that Is, failure 

to close. Let q2 denote the probability of a component's failure when the system is In mode 2; that Is, fail­

ure to open. Assume that 1 > qi > O, for I = 1 and 2. Define b0, n, qi)• [1)~(1 - ql--J to be the 

density of a binomial variate with parameters (n, qi) . Define the corresponding cumulative density 

B(k, n, qi)• If=O b0, n, qi) . Recalling the verbal definition of the system, then, the system's probability of 

failure In mode 1 is B(k - 1, n, 1 - q1) • In mode 2, the system's probability of failure is 1 - B(k- 1, n, q2) . 

It might be noted here that if one were to use the terminology employed by the IEEE Transactions on 

Reliability, then our system would be k-out-of-n:G in mode 1, and k-out-of-n:F in mode 2. 
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Let a denote the probability the system will be In mode 1; assume 1 > a > o . Let 11' 1 and 11'2 

respectively denote the gain from the system's success and failure in mode 1. For mode 2, the correspond­

3Ing gains are denoted by 11' and 11'4 
• A negative value of a ,rl signifies a loss. We assume that 11' 1 > 11'2 

and 11'3 > ,r4. 

The expected profit of the system is 

1II• a[w {1 - B(k - 1, n, 1 - q1)} + w
2B(k - 1, n, 1 - q1)] 

+ (1 - a)[w3B(k- 1, n, q2) + w 4{1 - B(k- 1, n, q2)}]. (1) 

Maximizing this expected profit with respect to k Is the same as maximizing 

(2) 

3 1 2where we have defined a summary parameter f:J • (1 - a)(w - ,r 
4

)/a(11' - w ) . From above, f:J > o . The 

2 3 4effects of the parameters {a, 11'1, 11' , w , w } on f:J are easily ascertained: 8f:J/8a < o, 8{:J/811'1 < o, 
8{:J/811'2 > O , ap/aw3 > o, and ap/aw4 < o. The feasible values of k run from o to n . 

A special case of the above formulation Is one in which it is assumed that the gain from the system's 

success in either mode Is zero (i.e., ,r 
1 = w3 = o), the gains from the system's failure Is the same In the , .. 

two m~es (i.e., w
2 = 11'4 

), and the system is In the two modes with equal probability (i.e., a = 1/2) . 

Since f:J = 1 In this special case, the maximization of (2) is the same as maximizing the system's reliability, 

defined as {1 - B(k - 1, n, 1 - q1)} - {1 - B(k - 1, n, q2)} . As was noted earlier, this case has been 

examined in the literature. The results corresponding to this special case can be easily Identified In the more 

general analysis below. 

Unless stated otherwise, we shall assume throughout that 1 - q1 > q2 • (Systems that do not sat­

isfy this condition are discussed at the end of this section.) Using this assumption, it Is shown In the 

Appendix that: 

The optimal value of k is either unique, or there are two neighboring 

values of k that are both optimal. (3) 

If the optimal value of k Is unique, we denote it as k* . If two values of k are optimal, we denote 

them as k* and k* + 1 . Now, consider those cases In which k* Is Interior; that Is, n - 1 .?: k* ~ 1 . 

Given (3), k* must satisfy: 

Y(k*) - Y(k* + 1) ~ 0, and Y(k*) - Y(k* - 1) > 0. (4) 
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For notational brevity, define t • (1 - q1)/q2 and r • q1/(1 - q2) . Also, define 

K • .en B- ntn r. (5)tn(t/r) 

Note that t/r > 1 , because t > 1 and r < 1 . Then, by substituting (2) and the definition of B Into (4), 

the expressions In (4) can be restated as 

k* .!:: K , and K > k* -1 . (6) 

Define [K] + to be the smallest Integer equal to or larger than K . Then, (4) and (6) yield 

THEOREM 1 

k* = [K] + , where K is given by (5). (7) 

This closed-form formula permits a simple calculation of the optimal k directly In terms of the par­

ameters. Also, It Is easily verified from (4), (6), and (7) that: (I) If K Is not an integer, then the optimal 

value of k is unique, and (ii) if K is an integer, then the optimal values of k are k* and k* + 1 , where 

k* = K . Moreover, necessary and sufficient conditions for a comer value of k to be optimal can also be 

derived from (2), the C:,/inition of B , and expressions (A3) and (A4) presented In the Appendix. These con­

ditions are: (i) k = o Is optimal if and only if Y(0) .!:: Y(1) , or equivalently, If and only if f) s r" ; and (ii) 

k = n Is optimal if and only if Y(n) .!:: Y(n - 1) , or equivalently, If and only if f) .!:: rt"-1 . 

The analysis below uses the following inequalities, all of which follow Immediatelyfrom the definitions 

of the terms Involved. 

.en t > o , .en r < 0 , and tn(t/r) > 0 . (8) 

(9) 

For later use, It Is established In the Appendix that 

(10) 

Also for later use, the following Is obtained from (8) and (9): 

.en r 1 1 .en tr > if < (11)tn(t/r) - 2 = - 2 tn(tjr) < O q1 > q2 · 
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Finally, note that the assumption 1 - may appear arbitrary, but it has often been the only q1 > q2 

case treated in the literature, thus neglecting the analysis of systems which do not satisfy this assumption 

(see, for example, Ben-Dov (1980) and Sah and Stiglitz (19888)). A complete analysis Is as follows. First, 

consider the case In which 1 - q1 = q2 . Then from (2), Y(k) = (p - 1)B(k - 1, n, q2) . Since B Is strictly 

Increasing In k , It follows that: 0) k = O Is optimal if fJ < 1 , Oi) k = n Is optimal If fJ > 1 , and (Ill) any 

value of k Is optimal If fJ = 1 . Next, consider the case In which 1 - q1 < q2 • We show In the Appendix 

that: 

If 1 - q1 < q2 , then only the two polar values of k can be optimal. 

k = o Is optima/if fJ < {1 - (1 - q1t}/(1 - q~) . k = n Is optimal otherwise. (12) 

Ill. BOUNDS OF THE OPTIMAL k 

Expressions (5), (6), (8) and (10) yield 

THEOREM 2 

(13) 

(ii) k* < n(1 - q1) + 1 if fJ s 1 . (14) 

This theorem establishes bounds on the value of k* , conditioned solely upon the value of fJ • A 

different set of bounds on k*, conditioned upon the value of fJ as well as on the relative values of q1 

and ls obtained from (5), (6), (6) and (11):q2 

(i) k* > ~ if fJ > 1 and q1 s q2 . (ii) k* < ~ + 1 if fJ < 1 and q1 .!: q2 • 

(iii) k* = n +1 for odd n , and k* = .!!2 or .!!2 + 1 for even n , If fJ = 1 and Q1 = q2 • (15)
2 

IV. THE EFFECTS OF A CHANGE IN PARAMETERS ON THE OPTIMAL k 

The closed-form formula for k* given In (5) and (7) permits a comprehensive assessment of how 

k* changes If the parameters {n, fJ, q1, q2} change. Below, we assess the effects of a change In these 

parameters on K . The corresponding effects on k* are obtained by a simple reinterpretation. For 

Instance, let O denote a parameter and let the function K(O) denote the corresponding value of K . If we 

show that the change in K(O) due to a change in o is positive (negative), then it follows that this change 
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in 8 does not decrease (increase) k* . It Is assumed below that K Is Interior. 

Theorem 3 presents the effects of a change in n on K . Theorem 4 presents the effects of 

changes in q1 and q2 • The proofs of these theorems are given In the Appendix. The effect of a change 

In p on K Is straightforward to assess. From (5) and (8), 8K/ap > O. 

Note that, In Theorem 3, AK(n) • K(n + 1) - K(n) denotes the change In K due to a unit change 

In n, whereas A~~n)) • K~n / 
1
) - K~n) denotes the change In the ratio K/n due to a unit change In

1 

n. 

THEOREM 3 

(I) 1 - q1 > AK(n) > q2 • (16) 

(ii) AK(n) ; ~ , if q1 : q2 • (17) 

(iii) A~~n)) ; 0 , if /J : 1 . (18) 

Expression (16) provides an unconditional bound on the value of AK. Expression (17) shows that 

whether AK Is larger or smaller than one-half depends on whether Is smaller or larger than q2 •q1 

Expression (18) shows that the ratio K/n Is lncreas!; g or decreasing In n depending on whether p Is 

smaller or larger than one. 

THEOREM 4 

(i) aaK < o, if{J:S1. (19)
q1 

(ii) aaK > o, if {J?::.1. (20)
q2 

( ·1·1·1) aK > O if a > 1 h (21)8q < , ~ < , w ere q • q1 = q2 . 

Expressions (19) and (20) show how q1 and affect K , within certain ranges of p . Theseq2 

results do not depend on the values of q1 and q2 . Expression (21) deals with the special case In which 

a component has the same probability of failure in the two modes; that is, q1 = q2 • In this case, a higher 

probability of component failure raises or lowers K depending on whether p Is larger or smaller than one. 

It might be useful to contrast this analysis briefly with that of Sah and Stiglitz (1988a). Their method 

was to treat k , n and k* as continuous variables, and replace (4) by Its continuous counterpart, In which 

k* is characterized by aYJr) = 0 . A perturbation of this equality with respect to a parameter 8 

dk* a 2Y(k 8) a 2Y(k 8)
yields cJo = - aka / ai? , where the right-hand side is evaluated at k*. Their evaluation of

8 
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the preceding expresslonwas carried out by approximating the derivatives (with respect to k and the par­

ameters) of the binomial density b by the corresponding derivatives of a normal density. With this method, 

they derived (15), (17), (21), but not (7), (12), (13), (14), (16), (18), (19), and (20), nor the results presented 

below. 

V. THE EFFECTS OF A CHANGE IN PARAMETERS ON THE OPTIMIZED VALUE 

OF THE SYSTEM'S EXPECTED PROFIT 

The method we employ to evaluate these effects is as follows. If 8 denotes a parameter, then let 

the function k*(8) represent the optimal value of k . For a given 8 , the optimized value of the system's 

expected profit is represented as G(8) • Il(k*(8), 8) , where the function n Is described by the right-hand 

side of (1). Now, suppose that the value of the parameter is changed from 8 to 8'. Then, the definition 

oftheoptimumlmpliesthat G(8')all(k*(8'), 8').!::Il(k*(8), 8'). Recallingthat G(8) • Il(k*(8), 8), itfollows 

that 

G(8') > G(8) if Il(k*(8), 8') > IT(k*(8), 8) , and 

G(8') .!:: G(8) if Il(k*(8), 8') = Il(k*(8), 8) . (22) 

We also employ the following results: 

(23) 

(24) 

A convenient source for these results is Feller (1968, p. 173). (Expressions (23) and (24), respectively, follow 

directly from expressions (10.9) and (10.7) in this book.) 

One would expect G to be higher if either of the probabilijies of a component's failure, q1 or q2 , 

Is lower. To confirm this, note that, from (1) and (23), an/aqi < o for I = 1 and 2. Thus, from (22), G(qi) 

Is higher if qi Is lower. It can similarly be shown that G Is higher if any one of the system gains (repre­

1 2 3 4sented by 1r , 1r , 1r and 1r ) Is higher. 

Next, consider the effect of a change In a (which, it will be recalled, Is the probability that the 

3 1 4 2system will be in mode 1). Assume that 1r = 1r and 1r = 1r ; that is, the gain from system success 

In the two modes Is Identical, and the gain from system failure In the two modes is Identical. Then, (1) 

1 2yields an/aa = (1r - 1r )[1 - B(k - 1, n, 1 - q1) - B(k - 1, n, q2)] . In turn, using 1 - q1 > q2 , 1r 
1 > 1r

2 
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and (23), we obtain: an/aQ > o If 

B(k - 1, n, q2) s 1/2 . (25) 

We can now ascertain the range of k for which (25) Is satisfied. If k"(Q) falls within this range, then, from 

(22), It follows that an increase in Q raises G. Assuming that n ~ 2, It is shown in the Appendix that 

sufficient conditions for (25) are 

(i) ks q2(n + 1) If q2 s 1/2; and 

(II) ks (n + 1)/2 If q2 ~ 1/2. (26) 

Thus, for instance, If q2 ~ 1/2 and k"(Q) s (n + 1)/2, then aG(Q)/aQ > o·. 
Finally, consider a change In n . It is shown In the Appendix that 

Il(k, n - 1) ; Il(k, n) If Y(k + 1) ; Y(k) . (27) 

Now, consider the case in which there are two optimal values of k , denoted by k*(n) and k*(n) + 1 , 

at the current value of n . Then, from (4), Y(k*(n)) = Y(k*(n) + 1) . In turn, (27) yields 

Il(k*(n), n - 1) = Il(k*(n), n) . Therefore, from (22), G(n - 1) ~ G(n) . That Is, G cannot decrease If n 

Is lowered. 
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APPENDIX 

Derivation of Expression (3). Define t/>(k) • {q1/(1 - q2)}"{(1 - q1)(1 - q2)/q1q2}k-
1 . Since 

1 - q1 > q2 , It follows that (1 - q1)(1 - q2)/q1q2 > 1 . Thus, 

t/>(k + 1) > t/>(k) . (A1) 

Next, by substituting the definition of B Into (2), It can be shown that 

Y(k) - Y(k - 1) ~ 0 If and only If p ~ t/>(k) . (A2) 

We now show that: 

Y(k) - Y(k - 1) > 0 If Y(k + 1) - Y(k) ~ 0. (A3) 

Y(k + 1) - Y(k) < 0 If Y(k) - Y(k - 1) s 0 . (A4) 

To prove (A3), note from (A2) that Y(k + 1) - Y(k) ~ o Implies that p ~ t/>(k + 1) . In turn, using (A1), 

p > t/>(k) . Given (A2), this Implies (A3). The proof of (A4) is analogous. 

Let k* denote an optimal value of k. That is, Y(k*) ~ Y(k) for k = o to n . Since Y(k*) 

~ Y(k* - 1) , It follows from (A3) that Y(k*) > Y(k) If k < k* - 1 . Similarly, since Y(k*) ~ Y(k* 1) ,.J_ 

It follows from (A4) that Y(k*) > Y(k) If k > k* + 1 . Thus, a value of k smaller than k* - 1 or larger 

than k* + 1 cannot be optimal. Now, suppose k* + 1 Is also an optimal value of k ; that Is, Y(k*) 

= Y(k* + 1). Then, k* -1 cannot be an optimal value of k because, from (A3), Y(k*) > Y(k* -1). This 

completes the derivation of (3). 

Derivation of Expression (10). From the definitions of the terms involved, 

(AS) 

where c1 • (1 - q1)tn t + q1 tn r, and c2 • q2 tn t + (1 -q2)tn r. Define a random variable z having 

value 1/t with probability (1 - q1) , and value 1/r with probability q1 • If E is the expectation operator, 

then E(z) = 1 , tn E(z) = 0 , and E(tn z) = -c1 . Since tn z is strictly concave in z , Jensen's 

Inequality (see Feller (1966, p. 151)) Implies: tn E(z) > E(tn z). Thus, c1 > 0. This result, along with 

(8) and the first part of (AS), yields the first half of inequality (10). The second half of (10) is proved analog­

ously, by defining a random variable z' having value t with probability q2 , and value r with probability 
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(1 - q2). 

Derivation of Expression (12). Note that (A2) continues to hold In the present case, but since 

1 - q1 < q2 , we have 

,ck> > ,ck + 1> • (A6) 

Instead of (A1). Now, suppose for a moment that an Interior value of k Is optimal. That Is, 

Y(k*) ~ Y(k) for k = o to n , where n - 1 ~ k* ~ 1 . (A7) 

From (A7), Y(k*) ~ Y(k* -1). (A2) thus yields /3 ~ '(k*). In tum, from (A6), /3 > '(k) If k > k*. Thus, 

using (A2) we can show that k = n Is optimal, which contradicts (A7). Analogously, It can be shown that 

(A7) Implies that k = 0 Is optimal, which, In tum, contradicts (A7). Thus, k* = 0 or n . Further, k* = n 

If Y(n) > Y(0) , and k* = 0 otherwise. Now, Y(0) = 0 because, by definition, B(k - 1, n, qi) = 0 If 

ks 0. Thus, (12) follows by substituting the definition of B into Y(n) . 

Proof of Theorem 3. (16) follows from (5) and_ (10). (17) follows from (5) and (11). To obtain (18), 

note from (5) that ti.~~n)) = -.en {3/n(n + 1)tn(tjr) . Then, using (8) and (9), (18) follows. 

Proof of Theorem 4. For notational brevity, define ei = qi(1 - qi)tn(t/r) . Then, (5) yields 

aK - aK 
aq = {K- n(1 - q1)}/e1 and aq = (K - nq2)/e2 . (AS) 

1 2 

Next, note that, from (5) and (10), K < n(1 - q1) if {3 s 1 , and K > nq2 if f3 ~ 1 . Thus, (19) and (20) 

· . aK aK aK
follow from (AS). To obtain (21), note that if q 11: = q2 , then = e2 , and aq = aq + aq . Thus,q1 e1 av 1 2 
from (AS): ;; = (2K- n)/e1 • Further, (5) and (11) imply that K ~ n/2 if {3 ~ 1 . Thus, (21) follows. 

Derivation of Expression (26). For n ~ 2, a result noted in Johnson and Kotz (1969, p. 53) is: 

B(k, n, (k + 1)/(n + 1)) s 1/2, If (n - 1)/2 ~ k ~ 0. Thus, B(k-1, n, k/(n + 1)) s 1/2 If (n + 1)/2 ~ k 

=1:: 1 . Now, from (23), B(k - 1, n, q2) Is decreasing in q2 • Also by definition, B(k - 1, n, q2) = 0 If 

k = 0. Thus, it follows that: B(k- 1, n, q2) s 1/2 if q2 ~ k/(n + 1) and if (n + 1)/2 =1:: k. In tum, (26) 

follows. 

Derivation of Expression (27). Using (1) and (24), II(k, n -1) - II(k, n). = g{/3 - (1 - q1)b(k-1, 

n - 1, 1 - q1)/q2b(k - 1, n - 1, q2)} , where g Is a positive number. This can be reexpressed as 

II(k, n - 1) - II(k, n) = g{/3 - ,Ck + 1)} . From (A2), in tum, (27) follows. 
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