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1. Introduction

This paper presents an estimable dynamic stochastic model of the fer-
tility-child mortality behavioral interaction. The household is assumed to

golve a discrete-time finite-horizon decision problem for a discrete fer-

tility outcome subject to uncertain child survival. The model yields compara-

tive dynamic and static implications about the timing and spacing of

children in a world of imperfect foresight. A_tractable estimation
method is developed, which is intimately tied to the theoretical formula-
tion, and is applied to data. Even thouéh the behavioral model is ex-
tremely simple, its solution cannot be analytically represented. Estima-
tion requires numerical solution of the dynamic programming model that
forms the basis of the theory, and is based upon the integration of that
algorithm into a maximum likelihood procedure. It is the computation-

al burden of the dynamic programming algorithm that limits the complex-
ity of the model. The estimation mefhod, however, is general to any finite-
horizon dynamic stochastic model that can be numerically solved. The
overall approach is highly structured and in this sense follows the
tradition of Sargent (for example, 1978) in macro time-series analysis

or of Heckman and !laCurdy (1980) in the analysis of life-cycle labor supply.

Economic models of fertility have generally been restricted to static
lifetime formulations (e.g., Willis 1973). Life cycle considerations of

timing and spacing have essentially been ignored, with only a few excep-

tions (e.g., Heckman and Willis (1975), Hotz (1980), Moffitt (1981)).

Estimation approaches have either not been structural, i.e., recovering

parameters of the structural taste or technology relationships, or have

made extensive accommodations in moving from the theory to the application.




Several of the mor:z imnorvaat features of the fertility process are incor-
porated into the model developed here, and by necessity many are ignored. I
assume two life-cycle stages: a stage of finite length in which a woman
is fecund followed by a stage (finite or infinite in length) of sterility.
During the first stage, contraception is perfect so éhat child spacing
is completely volitional. A woman is constrained to have at most one
child per period during her fertile stage.1 The choice is of a dis-
crete nature, i.e., have a child or not, in a discrete time framework.2
Child deaths occur randomly as an exogenous Bernoulli process which may
be non-stationary. There is an exogenous fixed cost of a child birth,
which may or may not vary over the mother's life cycle, and an exogenous
child maintenance cost which, for tractability, is assumed to arise
only in the first period of the life of each child.3 Parents are assumed
to obtain cénsumption value from the number of surviving children in
each period, independent of their ages, and from a single composite
good. There is no lending or borrowing and income is exogenous, but
possibly imperfectly foreseen.
apital markets is crucial to the existence of birth spacing
that does not result solely from random soutces.a Given a time-independent
fixed cost of a birth, and prefereaces independent of the age distribution
of children, birth spacing is induced in this model by the shape of the family
income profile. Even a smoothly changing (rising) life cycle income pattern
can generate spacing as a resolution of the tension between the desire to
have children early (given discounting and a finite fertile stage) and the

economic incentive to have them when income is high.5




An aaditional feature of the model is that the fertility choice is
assumed to be made in an environment in which there is significant child
mortality. Microeconomic theories of fertility and child mortality are
at the root of many explanations of the demograpﬁic transition. Most pre-
vious work concerning the relationship between child mortality
and fertility has focused on the issue of replacement,
primarily at an empirical level (Ben-Porath (1976), Olsen (1980), Schultz
(1976)). The existence of a replacement effect rests upon the intuitive
notion that a new child is a better substitute for a child that has died
than is any other commodity. Put diffefently, the death of a child is
a real income loss associated with a single commodity, children, and that
loss will be spread out, if possible, among other consumption goods (Ben-
Porath and Welch (1977)). The model presented here explicitly demonsteates
the connection between the household income profile, the survival pro-
bability profile, the finite horizon, and the cosg of bearing and main-
taining children in determining replacement propensities at different
stages in the life-cycle . tistical methods developed to assess the im=-
pact of child mortality on fertility have been uninformed by theory,
and, thus do not identify any particu;ar structural parameter of interest;
the "replacement effect" is not a single parameter. The change in fer-
tility (the entire profile) induced by an exogenous child death will
depend upon the life-cycle stage of the parents,
the existing stock of children, the mortality environment, and the family
income prdfile.7 |

Direct replacement, i.e., births predicated on the realization of

a death, is often contrasted to the alternative strategy of hoawding.




Families in low survival environments, it is argued, will carry an in-
ventory of children in anticipation of future deaths (Schultz (1976),
Ben-Porath (1976)). This strategy would seem most tenable where older
children have non-negligible mortality rates since direct replacement

may be more costly (perhaps, in a biological sense) at later maternal
ages, or where desired fertility is non-negligiblé at older ages. The
model discussed in this paper does not allow for deaths of older children,
and thus, hoarding arises only due to the inability to replaée children
born at the very end of the fgrtile stage.

In the next section, I specify a discrete~time discrete-outcome dyna-
mic model of fertility with exogenous stochastic child mortality and imper-
fect foresight.8 Only a very simple framework is explored, although it
is surprisingly flexible with respect to the life-cycle fertility paths
that may be generated even when exogenous variables change smoothly
over the life-cycle., Maﬁy extensions to more complex settings will be obvious,
but are not necessarily tractable. Comparative static and dynamic
results are derived for 5 three period model. Section 3 presents simula-
tion results for a 20 period model to demonstrate the wide varilety of
fertility profiles that can be generated and to illustrate the sensitivity
of those profiles to variation in structural parameters. Section 4
discusses the estimation strategy. Several alternative maximum
likelihood estimators are presented reflecting different assumptions about
the origin and character of the error which up to that point has not been
introduced into the model. The approach is to numerically solve the dynamic
programming problem to determine the critical value of a particular

random preference narameter which would make a household indifferent




between having or not having a child. This leads to a probit~like solution in the
case of normal errors.9 Section 5 describes the data and section 6 presents
estimates of the model under the assumption that women know the stochastic
processes of the exogenous variables. The model is estimated using Malaysian
survey data containing households with complete retrospective information

on births, child deaths and husband's income. Section 7 provides a summary

and a discussion of extensions to more complicated models.

2. A Piscrete-Time Discrete-Outcome Bynamic Stochastic Model
of Fertility and Exogenous Child Mortality

The househoid is assumed to maximize an intertemporably separable
utility function over a finite horizon that has as arguments the number
- of surviving children and a single composite consumption good. There is
no direct consumption value to spacing birth;. A period is defined
to be that length of time within which a single birth may occur. Births
may occur only during the fertile life-cycle stage, the length of which

is known with certainty to be T periods. There are 1-T following periods of

on

sterility. Con

traception is ertile stage. There is a

fixed cost of bearing a live child whether or not the child survives the first peri-
od and there is a fixed cost of maintaining a live child for the first

period of its life that is technologically determined. Child mortality
and household incame are exogentus and each follows a stochastic process

known to the household.

The household's decisior --::7:- .+ ., any period t is described as follows:

T
(1) maxE ) ¥y, x
t 4=t 2

with respect to the vector (1
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where n, = 1 indicates a birth at t and n, = 0 no birth,

X‘t is  the level of goods consumption at L, M is the stock of sur-

viving children at time t governed by the law of motion

(2) M’t = Mt__l + n_ - dt; t=1,...,T
Mt=MT t=T4+1,...,1
Mo =0,

dt = 1 indicates a death at t and dt = 0 no death of a child born at t, T is the final

nveriod in which nt is subject to control (and therefore for which Xt is subiect to

control as well), t is the exogenously given end of life, § is a discount
faétor, and Et is the expectations operator conditional on information availa-

ble at t. Period 1 is the first period in which the woman makes an independent

decision about fertility. It is not necessarily the date of marriage, if

marriage 18 itself a decision about fertility. Barring illegitimate births,

the decision not to marry is viewed as a decision not to have children.

Child deaths are random with exogenous environmental determinants G.

Thus, at time t

(3) d =0 iff ¢

= 1 iff G

The vector Gt. may contain time varying variables, e.g., calendar time, to capture

exogenous forces causing a decline (or rise) in infant mortality through

time. All elements Of(;tand Y, are in the information set as of period 1.




The latent error ut has a known joint stationary distribution g(ul,...,ut)

with Eut = () for all t. However, the conditional mean need not be zero, i.e.,

10
Etut ¢ 0.

The budget constraint must be satisfied each period and is given by

4 Y =X + -

(4) t t b(nt dt) + cnt

.with Yt household income at t, c¢ the fixed cost of a birth and b the maintenance
cost of a child who does not die in the first period of life. Household income at
time t has exogenous determinants Ht’ e.g., age. It is assumed that women do no

market work so that husband's income is identical to household income. The income

relationship is described by

+ v

= 1
(5) Y, oyt v,

The random component v, has joint stationary distribution f(vl,.g,vT)

with Evt = Q, 1 All elements of Ht and Y, are in the information set

as of period 1.
It is important to specify precisely the content of the information set
before discussing the solution method. As of time t the household knows

how many children have survived to period t (Mg ). In addition,as has

-1
already been assumed, the systematic components of income and child
mortality in the past, present, and future are known as of t (Hiyz,...,HTY2 R
Glyl ""’GTYl ). Past realizations of income are obviously known, but
neither the current realization (vt) nor future realizations (vt+l""’vr)
is assumed known at t. Similsriy, past deaths are assumed knowp, but not

the fate of the current (pres:.c-tive at t) child or future children.




S8ubstituting the budget constraint into (1) and delineating the two

life-cvcle stages yields the equivalent problem:

’ T L T ]‘
(6) max E | } 4 '1u(M Y =b(n ~d)-cn)+3 62-1U(M*,Y2)3

|
{ i

[N

The maximization problem may be solved utilizing Bellman's principle.

There is only a single (discrete) control variable in each period given
optimal behavior in the future contingent on realizations, nt, and a
single state variable Hf-l’ the number of children surviving

12

to t, The solution is obtained by backwards recursion. For each period the fertil

ty decision will be conditional on past decisions and on future’optimal behavior.
It is not possible to solve for the decision rule analytically for

any arbitrary period. However, the general solution can be illustrated

and some results deduced by working backwards for two periods. Formalitiesg

are relegated to Appendix A. In addition, several simplifying assumptions

are adopted in order to facilitate the presentation. Appendix ‘A

presents

the more general case. Here it is assumed that the conditionsl {on prior
information) distributions of the mortality and income errors are statisti-
cally independent and that each of the error'processes is, in addition,

independently identically distributed over the life cycle.
Consider period T, the last decision period. Given all past decisions

and realizations, the household chooses nT to maximize

@ B UG ¥y = g Y= by - 4 - e

ToteT
+)6 U(Mr_1+nT—dT, Yc),
t=T+1 ' J




Define PT = f g(u,r)duT to be the probability of survival of a child
-G Y
T 1

born at T. The expected lifetime utility at T conditional upon a child

being born at T and conditional upon the available information as of T is

- b - ¢)

(8 E (@ /n, =1) = Pr Eq i UML) + 1Hy, + Vo

t-T [
+ I 1t

t-T
UG by, +v,) -
|

P

Similarly, the expected lifetime utility given no birth at T is

T
+IS6

!

T
o e l
(9) E(LG/n, = 0) = E_ UGty Hpy, +vp) + )6 UG, s By, + vt)l

t=T+1
g 4 to be the difference between (8) and (9) the decision to

have a child at time T is governed by

(10) n, =1 iff Jp = E'I‘LUT/nT =1) - E,I(Lur/n,r =0)>0

=0 iff JT<0

where JT can be written as
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4

. - - - 1Y( - + -
(11) JT = PT ET U(MT_l + 1,,;1-1T Y, + Vi b~ ¢) L(‘Lr_l, hT Y, Vo c)

:
]
l

T

+I Gt-T[U(l-Lr_l +1, Hoy,+v) - UM, Hoy,+v)] L
t=T+1 .

)
+ ET U(I-Lr_l, HT}IZ + Vo - c) - U(HT-I’ H.le + vT)k

J

In order to obtain concrete though only illustrative impli;atiowa, it is conven
ient to impose strong contemporaneous separability on the utility function
(this is not necessary in estimation). Together with concavity of the utility
function in income and children, the latter in the sense that increments
in utility decline with discrete additions to the stock of surviving

children, the following comparative static statements are easily demonstrated:

(12) 3., <0 ¥ <o M ¢
T
I 35 3c
3J 37 . 53 >
: >0 L - £=T+1,...,1 L I,
By vy PH Yy 3Gy v;

The greater the number of surviving children as of period T, MT-l’
the smaller the relative payoff to another child at T. Thus, for example,
- the death of a child born at T-1 will increase the differential gain to
a child at T, the replacement child. This does not imply certain replace-
ment, only a larger_differential payoff of a new child. An increase in the
bitth or maintenance cost also decreases the relative payoff, while an
increase in an éxogenous component of income at time T (IH:YZ) increases the payoff,

The payoff, however, is uneffected by anticipated future income, a result

that is, in particular, special to the contemporaneouys Separability assumption.




Changes in the probability of survival have an ambiguous effect

on the payoff; for example, if a birth was desired given certain survival

and zero birth cost (PT = 1 and ¢ = 0), increasing the survival

probability from some value less than unity would increase the differential payoff,

while if under the same circumstances the child was not desired, increasing

the survival probability would decresse the differential payoff.

The decision to have a child at T-1, conditional on information
available at T-1, depends not only on the events and decisions of prior
periods but also on the optimal future course viewed as of T-1l. Given a

child is born at T-1, expected lifetime utility is given by

LU -
(13) Ep @ 00, = 1)

= v + - -
Ppog Bpag¥Mpop * Ll gy ¥ Vg - b - 0)

T @Ry B U0l Yyt - O
+ & max L [ET__l ;ET(LUT[I-LI_I =M _,+ 1, =1)] j;.
; Pre1 gLE- By - M’I—2+l’n'1‘=0” ;
+ & max a-r._) {ET_‘J_ !E,l(Lur[MT_l = My ooty = 1)]}:
@-r ) | Er_y E (Lt AL m]‘ l

) N

where P is defined |
. -1 ed similarly to P, and where ET(LE}lMT-l =M, + 1o, =1)

is given by (8) with Mf-l = MT-Z + 1 and with similar definitions for
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13
the other exrressions in (13). If a child is not born at T-1, expected

lifetime utility is given by

.

a8 Ep_fuyylep = 0) =B fuo, By Y2 F "T-l)l

-

j 3
: r
;

+ ‘5“"“"; Fro1 [ET(L]{,}LI‘-l " Mgt T D
t

Er-l[ET(LLT'MT-l = Mp_pemp =0 &

Denoting JT_l as the difference in expected utilities with and without

a birth at T-1, the decision to have a child at T-1 is fully described

by
= 1 L 1 -
1s5) By =1 iff g = E (U il =D Ep (4% g =0 >0
nT-l = 0 iff JT_1 <0
where JT-l can be written as
6 - U
i

{
U0 gl jY, * Vg - e

By Vg gy Vg - @) UGt gy, v )

+ 0 max Prop | By Bp(URIM_ ) = Mp_p + Ling = D],
( l .

o

Pre1 ,LET-l;LET(L‘f'MT-l =My * g = 0]

| S
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, . - ] N
-6 ma"{ Pra1 {T_ §E LU by y = My_pomy D) i’
L

P'13-1[ N

-

In order to derive comparative static and dynamic results for the T-1
choice, it is necessary to consider each possible optimal future decision
separately. There are three cases: it is optimal to have a child in

period T under all contingencies, i.e.; n,, = 1 is optimal both when

T
MT-l = AT-Z + 1 and when MT—l = MT—Z; it is optimal to have a child at T

ouly if a child was not born in T-1 or if born did not survive, i.e.,

= 3 b
n 1 is optimal when dT-l MT 2 but not when HT 1= IT_ + 1; and

.nT is not opntimal under either alternative value of HT—l' Note that if
= 1 y = 1

n, 1 is optimal when MT-l AT-Z + 1, then it must also be optimal when

MT-l = HT-Z since it was shown that the differential payoff of a child at

T(JT) is inversely related to M I will consider each case in turn.

T-1°
It is convenient to let the first two terms in (16) be labelled DT—l
as 1t recurs in all three cases.

Case 1: nT = 1 with either MT—l = MT-Z + 1or MT-l = MT-Z'

The differential payoff to a birth, in this case, becomes
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(17 Jpog " Dpy + 8P (Pol B L [UQL_, + 2, upy, + Vo= b - ©)

\

Tot-T
- &, U(MT_Z +2, By, vt)]
t=T4+1 t

-ET-l[U(MT-Z + 1, HTYZ t v - b - ¢)

T t-T
=L 8TTUM_, + 1, Hey, + vt)]:

t=T4 1 |
J

+ @ - B éET-I[U(MT-Z PhowYtvp oo
i
L

T
-z s Tum

+1, 4 ¥, +v)]
t=T+1 -2 t2 ¢t

=E._ [V, B Y, + v, - ¢c)

T ' I
t-T l

=Z & UM, B oYyt vt)]$>
t=T+1 | i!
i

Under the assumption that U is strongly contemporaneously separable, it is easily

shown that
(18) ¥y 3y g
———— < 0 < 0 < 0
BMT_Z 3b 3c
aJ 3aJ
TT——l-— > 0 '—-1‘-:3-— = 0 t = T,ooo,T
H
3 7172 M, v,
aJ 3J
T-1 <0 T-1 2 0
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The implications for nT_l,-given n. = 1 is optimal, are similar to
those for . A birth is more "likely" im T-1 if there are fewer surviv-
ing children at T-1, if the cost of a birth and of maintenance are lower,
and if income at T-1 is higher, As befbre, anticipated future income has no effect
on the expected payoff and the probability of survival of the T-1 child
has an ambiguous effect. However, if the probability of survival of the
T period child (given that it is always optimal to have a T period birth)
is higher, the payoff to a T-1 period birth is lower.

Case 2: n, = 1 only if Mo, = MT—é

The expected payoff differential is now given by

{
(9)  Jp_y =Dy 6 { Pp g { Ep (UM, + 1, Hyy, + )
T

+3 6" Tuer, , + LH Yo +v)] !
t=T+1 T -

}

- PT-—lPT i ET_l[U(MT_z + 1, HTYZ + Vo b - ¢)

T .

t-T
+ & “U( +1,th +v)l:
t=T+1 MTZ 2 tJ

a - PT) {ET—I[U(MT-Z’ uTYz + Vo = c)

] :

T
+ Z
t=T+

- P

i

Y

t- ‘
8 TU(MT-Z’Ht Y tvly
1
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from which the following may he derived under separability:

(20 o1 <0 ¥y 20 V-1 =
aNT-Z 3b >: ac x i
3J S 3J
T"l >0 ___"E_—_l_ <0 ——I:—l'—.o t =T+1,.-.,T.
i S N . 5| =
—=- 2 — = b
aGTYl 3GT_1 Y,

These results are substantially different from those in case 1.
The replacement tendency (MT-Z) is still apparent as is the positive
T-1 income response (HT_le). However, income in period T is inversely
related to the T-1 payoff. This results from the fact that as income
in period T rises, the expecﬁed payoff from a birth in period T also rises.
Since, in this case, a T period birth is optimal only if a T-1 period
birth 1s not, the rise in T period income will reduce the payoff from
a T-1 period birth. A similar intertemporal interaction explains the ambi-
guity concerning the effects of birth and maintenance costs. The direct effect
of an increase in b or ¢ is to reduce the payoff in T-1, But, the indirect
effect is to reduce the payoff in T as well, which increases the payoff

of a T-1 bitth given that a T period birth is desired only when a T-1

period child does not exist. Analogous reasoning applies to the rest
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of the results and, therefore, need not be detailed.

Case 3: nT = 0 when MT-l = MT-Z or Mf-l = MT-Z +1

In case 3, the expected payoff is

i T

_ t-T
(21) 3p_y =Dy *# Prgf Epg[UQI, + 1, Hyyy + vp) MR = I
.

thz + vt) -U(MT_Z, HTYZ + vt)
1 - t=T
=z 6 U(MT v H Y4V )]0
£=T+1 -2 t 2t |

with comparative static results‘given by

@2) a3, 23, 33y,
3 <0 5 <0 3¢ <0
)
53 3J
-1 > 0 1l -0 t=7T,..,:
BH, 1 7, 2H Y,
5J
T-1 -
3¢ . v,
T-1 '1

These results are exactly as in case 1 with the exception that GT

does not enter into the decision given that a birth in period T is ruled
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out. There are no intertemporal interactions because the decigion at
T is independent of the decision at T-1, i.e, n, = 0 is always optimal.

The period T-2 decision is of the same form as the period T-1 decision
that appears in (15) and (16) except that T-2 replaces T-1 and T-3 re-
places T-2, However, the number of separate cases to be considered grows
by a factor of 3 since the set of possible future paths consists of all

feasible combinations of n N, dT—l and dT' Each period adds three

T-1°
times as many possibilities so that the problem quickly explodes. It

is, therefore, unwise to pursue analytically the implications of this

model. It is sufficient to mete from the two period solutions that there

may be important interactions between the current decision and past realiza-
tions, and anticipated future variables. This is true even though child
deaths are restri¢ted to occur ﬁnly in the birth period and maintenance costs

are assumed negligible after the first period of life. If either of these

assumptions is relaxed, more complex interactions would be induced.lA
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3. Simulations
Since it is difficult to gain further insights into the dynamic

structure of the model in an analytical fashion, I present in this section

a 20 period simulation of the model for a quadratic utility function. These
simulations are intended to illustrate the flexibility of the model

in generating fertility patterns and replacement responses. Note that at
this point the researcher is assumed to know as much as the individual

decision-maker.

Table 1 presents simulations for a quadratic utility function over several sets o
p;rameters. Simulations A.l to A.8 and B.1 to B.4 assume a flat income profile. The su

vival probability is assumed to be constant in all simulations. When the income

profile is flat (or declining) it would be optimal if unconstrained to have
all children at once. However, given a maximum of one birth per period the optimum
birth sequence is one without spacing. An asterisk indicates a child death so that cor
trasting rows with diféerent numbers of asterisks implies something about
replacement behavior. For example, simulations A.l to A.4 imply that there
is no replacement if the first child dies, replacement of one child if the
first and fifth child dies, and replacement of one child if the first,
fifth, and tenth child dies. With the probability of survival reduced to
«8 (from .9), replacement behavior is different; the first child is replaced as is
both the first and fifth df they die, but only two children are replaced
if the first, fifth and tenth die. Simulations B.1 to B.4, on the other
hand, indicate full zmplacement.ls

All of the other simulations posit a rising income profile. In each
simulation a fertility pattern with spacing emerges. Rising income creates
an incentive to have children later. Spacing emerges because of the
tension this creates with the underlying desire to accumulate children

rapidly. From the simulations.reported, it would appear that most any
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Simulations
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spacing pattern can be generated simply by varying the income profile and
the prebability of survival, Although not shown, it should be clear that
a rising survival probability profile would generate the same qualitative

result with respect to spacing.
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4. Method of Estimatidn
In general, the decision rules will be functions of higher order
moments of the random variableg (see Appendix A). This is true even with the
simplifying assumptions used in the derivation of the decisions rules in
section two. An important simplification is achieved if it 1s assumed that
the utility function in quadratic.. Decision rules turn out to be linear
so that only conditional first moments enter the solution and is analogous to

the certainty equivalence result for continuous variables. Therefore, let

. 2 2 .
1eoXie) = oMy, - aMie + BiXyp - BXie ¥ M XKoo

(24) UM
where 1 denotes the household and t denotes life—cyclé period. All para-
meters are presumedto be positive other than y which may be of either sign.

I also assume that households differ in their value of a s according to

(25)  opg mop L,

for reasons that are developed below. 1In order to present the estimation
strategy in an orderly fashion, two cases are considered, the first where
Cit is distributed independently and identically over time for each household,
and the sécond where Eit follows a permanent-transitor e. I do not
pursue more general formulations since they would be significantly more
expensive to implement, although not necessarily more difficult to characterize.
If the utility function is quadratic, and if the Eit's (and as before
the vit's) are conditionally (given the information set at t) distributed
independently of the uit's (the mortality error process) the decision rule
is linear.16 The decision rules at any time t will dee.nd only on the condi-
tional expectationsof unknown income shocks (vit""’vir)’the future prefer-

ence shocks (git+1?'°"€it)’ and the conditional distribution of the unknown

mortality shocks (gt(uit’°"uiT))'
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The decision rule for any arbitrary period t can, therefore, be

written as
(20) nt = l iff Jt(Qt’Etgiﬁl ,oon,EtEiT, gt(‘k"o.,uT) ’Etvt’...’Eth;e) :_ 0

= 0 iff Jt <0

where Qt =(€"it’Mt-1' GlYl,...,GT Yl’ Hle,..., HTYZ’dt-l""’dl’vt-l’°"’vl)

is the household's information set at t and © consists of the parameters El,
'QZ’BI'BZ'Y’CI’°2’6=' The exact form of Jt is not tractable to derive since it involve
solving the complete dynamic programming problem back to t.17Everything in

Qt is assumed to be available to the researcher except Eit' The parameters Yl

and Y, are assumed to be estimable from data.’

Estimation Method with Time Independent Preferences

Consider first the case where preferences are independently drawn each
period from the same distribution with zero mean, Thus, Etgit+i = 0
for all j>0.In this formulation households are alike in their underlying

preferences for children except that in each decision period the household draws a
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random child preference parameter (alit)'ln calculating ¢pe optimal fertility
path as of any particular time, the household assumeg, given that EtEit+j = 0 for j >
that it will behave in each future period as if its child preference parameter
was at the average value (El). Thus, for any given set of parameter values,
6, the exact desired fertility path from period t+l to T as
of t is determinate. The choice at t, although deterministic for the
household since Eit is known at t, is stochastic as viewed by the researcher,

Now, given 6 and assuming that the mortality and income processes are
known by the researcher, one can find for each t a value of Eit’ say Eft’ for which
Jt = 0. Notice that since analytical solutions for decision rules are not
available, the solution for EI: must be numerically obtained. Note that the
value of E;t depends on the choice of parameters 6 and on the past historv
of births and deaths as summarized by Mt-l' As long as the decision rule is
monotonic in alit’ the £;t computed in this way must exist and be unique. It
is fairly obvious that the relative payoff of a child at time t rises with the
marginal utility of a child as reflected in alit' In fact, Jt is linear in

ay in the quadratic formulation.l8

bility that individual i is observed to have a child in period t
conditional on the number of surviving children, Mt-l’ is given by

oo

(27)  Pr(n_ = 1lM, ;) - é* £Gg) dg, =1~ F(Ex)
T o

o
where f(Eit) is the density of Eit’with mean zero and unit standard deviation, ¢ is
the standard deviation of the unstandardized demsity, and F(eit) is the cumulative

distribution. Similarly,
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e
= - *

(28) Pr(n, = ojM,_)) 1

It is straightforward to form the likelihood function over any

number of periods, that is for any sequence of births, and over

individuals. Consider household i which has a birth sequence (Eil’ 512""51T)

4¢ €duals one or zero. For each time t a E;t is

calculated from the dynamic programming solution algorithm from which the like-

for periods 1 to T where n

1ihood of that sequence can be obtained as the product of the appropriate
probabilities as given by (27) and (28). The full likelihood over the

‘'sample of 1 women is given by % g Pr(n ). Choosing alternative

i=] t=]
values of 6leads to different values of E;t for each individual and period,

1e = PgeMey
and therefore, to different sample fikelihood values.19 A derivative free
maximization routine is required given the absence of analytical derivatives.
The utility function parameters, 31, a,s 81’ 82. and y are identified only
up to a factor of proportionality, 0.20 This is so because E* is homogeneous
of degree one in those parameters i? the quadratic case. However, b, ¢ and §

are identified without normalization since Jt is not homogeneous in these

21
parameters.

distributed over time,

]
o
[
P
]
[«
[
e w]
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=]
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o
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ince Eit is assumed t
any set of periods may be used to calculate consistent maximum likelihood

estimates. The computational burden lies in the fact that for each set

of parameter values, the dynamic programming algorithm must be used to calcu-

late éhe new set of E:%rfor each individual. It is possible that a single

year of data may be sufficient to identify all of the structural parameters

o6f the model, Identification rests upon there being a sufficient number of

future period observations on expected income and survival probabilities from which th
structural parameters aré implicitly retrieved (there are eight in the model presented

above). However, as already noted, the decision rule is, in general, interactive

in the exogenous variables so that there are, in essence, more “"reduced form"
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parameters than is immediately apparent. As the decision period is moved
back in time, the number of "reduced form" parameters increases rapidly,
Notice that since the functional forms of these decision rules are "unknown"

it is difficult to make a priori statements about identification,

Estimation Method with Household Speeific Preferences
A more general strategy would combine an unobserved permanent taste

component, Vis with a purely transitory component , Mg Thus, %4 T

al+\)i
error, it is not immaterial as to which periods are used in the estimation.

+ nit’ where Eit = Vi + nit' Since there is a persistent unobserved

Since the decision rule for any intérmediate period t is conditioned on

the previous fertility decisions (Mﬁ-l) which are themselves related to

the household specific component (vi), estimates will be consistent only

if the decision is conditioned upon the initial state since the initial state
variable, MO ,1s zero for all women and so is itself non-stochastic. It is,
therefore, crucial that the data contain complete life cycle information.

It is assumed that the household knows the permanent taste factor vy

at the beginning of the life-cycle. The recursive solution of the

maximization problem therefore requires that o be equal to a + vi from

the final decision period (T) back to the initial period. In addition, as

in the first case, the household draws another random term n ¢ at the time

i
the decision is made, i.e., at t,.
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To simplify the discussion, let v, take on only two values + v with

i
probability q and 1l-q respectively, i.e., there are only two types bf
households. Extensions to more heterogeneous populations will be obvious.

The estimation strategy can be heuristically described by the following steps.
Choose a set of structural parameters P. For a given value of v compute

the value of Ny for each i which sets Jl = () as was done in the first part of this

*
section, Denote this value as n1{+). Do. the same for ~v and denote the
* (<
critical value of "1 as nii'). Repeat for the second period, third period,
*(+) *(-)

etc., denoting n as the

it

it as the critical value at t for +v and n

critical value at t for -v .noting that each value is conditional on the
past birth and death sequence, Mg The probability that a household
has a particular birth sequence as of any period t is the probability that
the household has vi =+ v (q in this example)Atimes the probability of

the birth sequence plus the probability that the household has vi = <y
(1-q in this example) times the probability of the birth sequence. Thus,

for example,

Pr(nil =1, n, = 1) = q[Pr(n12 = 1|nil =1, dil’ +vi)Pr(nil = 1| +vl)]

* Q- Py, = 1ngy =1, 4, v )Pr(a, = 1 -v,)]

- Q[f *(+)f('nﬁ)dn1t }’ *G-)f(nic)dnit]
Ny2 41
26 )
+ @ -l tmdn, [ gy dn ]

Similar expressions are easily derived for other birth sequences, with the

sample likelihood given by products of birth sequence probabilities over

households.
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One can iterate on the values of v and q unti]l the likelihood of observing

sample is maximized. Choose another set of structural parameters (P),

and again find the maximum likelihood estimate of v and q. This pro-

cedure is repeated until the sample likelihood is maximized over v and gq, ang
the set of structural parameters. Of course, the actual procedure need

not proceed in this manner; v and q are treated simply as additional parameters

and optimized jointly with the other parameters.

the
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5. Data

The model can be estimated with data containing life-cycle

information on births, child deaths, and hpsbands' income.

The 1976 Malaysian family Life Survey is ideal for this purpose. It
contains 1262 households consisting of at least one ever married woman
under fifty yea;s of age as of the survey data. The sample is from
Peninsular Malaysia with some slight oversampling of fishing communities
and Indian families. The essential feature of the survey is that it con-
tains a retrospective life history of each woman to the earlier of age
fifteen or age at marriage with all of the necessary information.

The sample actually used in the estimation consists of 188
women. From the approximately 507% of the households that are Malay
(the other 50% consist of ethnic Chinese and Indians), the sample was further
restricted to currently married women over the age of thirty who have been married

only once and for whom there is no missing information. Since perfect foresight 1is n«

assumed about life-cycle income of the huéband, this age restriction insured suffici

observations on husband's income to permit a reasonable forecasting

The length of the period was chosen to be eighteen months as a compro-
mise between the necessity to have only a single birth within a period
and the computational benefit from having fewer periods in the life-cycle.
Of the total of 3086 periods, in only 30 periods (27 women) were there two

births within eighteen months. In those cases, a birth was moved to the




next period in which there was no birth. Each woman's initial period
was set at age fifteen or age at marriage, whichever - is first. The
implicit assumption is that marriage is not subject to choice prior to
age fifteen bu; is an independent decision, not unrelated to the fer-
tility decision, after age fifteen. The final decision period is assumed
to occur after twenty periods or approximately at age forty-five, given

that each period is eighteen months in length.

Husband's income (earnings) is reported continuously beginning at age fifteen.

That is, labor supply and wage rates are reported retrospectively at each moment
in time that either of them changes, beginning at husband's age fifteen. ?hus,

starting from the initial period of the woman, her husband's income,
possibly prospective if the woman was not married at that time, can be
computed for each eighteen month period. There are potentially as many
data points on husband's income as there are eighteen month periods in
the husband's life, aligned according to the wife's life cycle. A semi-
log (price deflated) earnings function was estimated for each husband
individually with period and period squared as regressors,where period

2
is simply age of husband suitably transformed to the wife's life cycle. 3 The log of

earnings was used as the dependent variable so that earnings predictions would always

- be positive. A predicted earnings profile was then generated and is the

- - 2
basis for the earnings observations used in the empirical analysis.

The woman is assumed to live for ten periods (fifteen years) after

her child bearing period, and husband's income is assumed to be constant and
equal thereafter to predicted income in the twenty-first period. It is thus
assumed that each woman knows with certainty the parameters of her husband's

earnings function at the beginning of her 1life cycle,
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Notice that log earnings is not given an autoregressive
structure; new information acquired during the life cycle requires updating
the future component of the dynamic programming decision rule each period,
which greatly increases the computational burden. What is optimal in the
future, say at t+l, as of t is not necessarily optimal as of t-1 when less
information is available,
The survival probability was obtained from state data on survival rates.25
The idea is that individuals use information about the mortality experience
of those in similar environments. Perhaps less aggregated data would be more
-appropriate, but such information is not'available. The predicted survival
probabilities are based upon a log odds regression on time, its square and
a constant for each state, The actual data spanned the period from 1948
to 1975 while predicted survival rates were needed from 1940 to 1990 given
the cohort span of the women in the sample, Details of the entire procedure
are provided in Appendix B.
The data therefore consists of the actual occurrences of births and deaths
for each woman, a predicted husband's income profile based on a semi-log quadratic in
time formulation, and a predicted survival probability profile based on a quadratic i

time logistic formulation. At each moment in time, the probability of a birth




-32-

depends in a complicated way upon the number of surviving children to that
time, the predicted future income of her husband, and the predicted future
survival probabilities.

The actual mean birth probability profile is presented in Table 2

for the complete twenty periods. Note that sample size falls after eleven periods

from 188 women for periods ome through eleven to 136 women by period fifteen to

only 44 women by period twenty. The birth probability is very low in period one,

rises to a peak in period four,and remains roughly constant until period
ten when it begins a slow decline. The very low probability in period
one is not due solely to a low marriage rate . In period one 58.5% of the women
were married while by the beginning of period four 91% of
the women were married. The same birth peobability in period four applied
only to married women would have yielded a birth probability of 34.5%
in period one rather fhan the observed 13.8%.

In the twenty periods,_there are 220 possible birth sequences. With
only 188 women it is impossible to determine with any accuracy the
sample likelihood of observing all of these different paths. However, the state
variable in the model in the preceding section is the number of surviving children
rather than their arrival sequence. Recall that for a single individual the
probability of a birth at t will be a declining function of the number
of surviving children to t. Looking across women is not ®&ppropriate
since they differ in observed and unobserved characteristics that presuma-
bly affect the fertility outcomes. Nevertheless, such a tabulation is
presented below as a descriptive device and to obtaip some indication of

the existence of permanent heterogeneity.
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Table 2

Sample Birth Probability Profile

Period Probability Period Probability
1 .138 11 .410
2 .335 12 425
3 .489 13 .321
4 .537 14 .360
5 .511 15 .310
6 .505 16 .262
7 511 17 .200
8 .516 19 140
9 .516 19 .140

10 .394 20 .105
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Given the small number of women that form the sample; the con-
tingency table shoying the probability 6f birthe conditional on the
number of surviving children is presented in Table 3 with a moving aver-
age of surviving children. This smooths out the relationship, hopefully making
whatevef pattern does exist more discernable. 1In addition,Table 3
pPresents only the first fourteen periods as the number of births becomes
too few after that time. Table 3 does not reveal a strong tendency
for women with more surviving children to have a larger probability of a birth as
would be expected if there was significant observed or unobserved hetero-

geneity in the underlying probability of a birth. Such a tendency is only revealed

beginning at period eight, with a more pronounced trend appearing after period eleven.

In several periods, the pattern is of an inverted U shape ignoring cells
with few observations. For most periods, one cannot reject the hypothesis
at conventional significance levels that there is no relationship between
the number of surviving children and the birth propensity, as revealed by
the x2 statistics presented in Table 3. Of course, there may be counter-
vailing forces which, if they exist, should be revealed upon estimating

the model.
As another crude measure of the importance of'heterogeneity,the observed
variance in the number of children born over all women and all periods was computed
and compared to the variance that would be expected if the birth process was
8imply Bernoulli. The former is obtained from }:(Nj - ?Hj)2 where Nj is the
number of children born to woman j, P 1s the sample probability of a birth
(.316), and Hj is the number of periods for woman j; the observed variance is

equal to 1394, The expected variance is obtained from the conventional

variance formhla for a binomial distribution ?(l - ?)EHj and is equal to 733.



Probability of a Birth Conditional on the Number of Surviving Children

Table 3

Number of

Surviving ‘ Period

Children 3 4 5 6 7 8 9 10 11 12 13 14
Oor 1 .486 .533 NYY +507 .538 .389 +435 063*%  ,438 .300*%  ,400* ,000%
lor2 .549 .604 .589 .509 .558 .500 .408 379 .367 .292 .211%  ,133
2or3 | .556 .544 514 495 .529 470 375 275 .209 .256 .241
Jor 4 +555 .532 429 .505 .570 451 .377 .320 .225 - .289
4 or 5 400%  ,500 .543 +594 442 430 .574 .220 .369

f .800%  .867* ,519 .415 435 574 .323 400

LIS 1.000* .583* 550 «552 459 .379 .340
i ot 8 500% 444 .533 .350 .483 .333
8or9 .500%  ,677%  .250* ,500 JA74
9 or 10 1.000* ,677% .333% ,556%

10 or 11 1.000*% 1.000% 1.000*%

11 or 12 1.000* 1.000%

12 or 13 1.000*

Number of

children born 92 101 96 95 96 97 97 74 78 71 51 50

Number of

women 188 188 188 188 188 188 188 188 188 167 159 147

x2 .813 1.30 2.95 1.52 4.77 16.7 6.63 14.5 11.1 28.9 16.3 18.8

d.f. 1 2 3 4 5 6 7 8 9 10 11 12

Probahility .38 .53 .41 .82 .45 .01 A7 .07 .27 .01 .14 .09

*
indicates 5 or fewer observations in the

appropriate cell

—gc-—
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In the most extreme case where women either had a child each period

or no chil&ren at all, the variance in total number of children would
be 11,984, Clearly, homogeneity is a more reasonable interpretation,
and particularly if important observed determinants of fertility are

included in the analysis.
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6. Estimation Results

The model was estimated for two samples, one using the birth out-
comes of the initial ten periods of each woman's life cycle and the
other using birth outcomes over each woman's entire life cycle. The ten
period sample was used primarily to test for unobserved heterogeneity since
the composition of the sample changes as more periods are added. Given
computational cost limitations only a model with two types of individuals
vas estimated as discussed in section 4. Since a likelihood ratic test
clearly rejected the existence of unobserved heterogeneity,results from the
ten period sample are not reported.26 It is assumed, therefore, that un-
observed heterogeneity will not,if ignored, seriously contaminate estimates
using the entire life cycle of each woman. The estimates presented below
therefore are based on the assumption that the random component of the
model (Et) follows a serially independent stochastic process.

The model is formulated slightly more generally than in previous
sections. In particular, the cost of birth is permitted to différ in
the first and second periods from each other and from subsequent periods
and the cost profile is permitted to have a quadratic shape. It is um-
likely a priori that income and survival proﬁability profiles can by them-
selves trace the life-cycle fertility profile shown in Table 2. Moreover,
presumed biological constraints early and late in the life-cycle associated
with a reduced propensity to conceive can be formally expressed as a
reduced contraceptive cost or an increased net cost of a birth.

The gtructure of the model is, therefore, as follows:

T

t-1 2
LU -t£16 (cltMt-GZHi + let - szxt + ylutxt + YZMtS)
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2
Yo = X + DO e+ (ogmy +epmy tey 4ot gt )n,

Glt = Gl + Eto‘ Et'° N(Oto)

where, in addition to previous définitions, =, is a dummy variable equal
to unity L{f the period is the first and zero otherwise, m, is a dummy
variable equal to unity if the period is the second and zero otherwisge,
and S is the woman's years of schooling. Thus c1 + c30 + c31 + c32 measures
the birth cost in period one, c2 + c30 + 2c31 + 4c32 the birth cost in
period two, and 30 + c3lt + c32t2 the birth costs in all periods after
the second. Notice that schooling 1is arbitrarily introduced as affecting
the incremental utility of surviving children. Obviously, schooling could
be modelled as affecting any or all of the cost parameters or any or all
of the other utility function parameters. Since it is unlikely that the
model could distinguish between these alternatives, the simplest approach
was adopted.27

Table 4 presents the estimates of the model under the assumption that
£, 1is normally distribhtééﬁit should be noted that the model was also
estimated under the restriction that €3 = 3, = 0. Not only was that
joint hypothesis resoundingly rejected, but the parameter estimates were not
reasonable?9 Some of the utility function and cost parameters were negative
as was the discount factor. Those results are, therefore, not specifically
described.

Although individual parameters cannot be translated into the

- experiments of interests, they do provide a simple check on the plausi-

bility of the estimates, and thus, of the method. All of the signs in Table 4
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Table 4

Maximum Likelihood Structural Parameter Estimates

Asymptotic
Parameter Estimate Standard Error

3, 3.854x1072 2.274x10"2
o, 5.761x10"’ 2.187x10"°
B, 5.376x107° 1.863x10™°
8, 4.130x10" 2 1.198x10" 14
v, 4.038x1078 1.195x10°3
Y, -4.614x10> 1.328x1073
b 3,433x10° 2.883x10°
e 2.228x10" 8.736x10°
c, 8.121x10° 4.701x10°
€50 2.884x10° 5.230x10°
&5y -3.025x10% 1.136x10t
csy 5.782x101 2.530x10"
5 9.155x10™ % 6.565x10">

In Likelihood = -1923.7



conform to rather strong priors; incremental or marginal utilities are
positive and diminishing in surviving children and in the composite good,
the cost of bearing a child is positive in all life cycle periodé as 1is

the time invariant maintenance cost, and the discount factor translates

into a rate of time preference of approximately .093. Magnitudes of the cost
parameters are also not unreasonable. The cost of a live birth in period
one (cl) is» 22,280 Malaysian dollars and in period two (CZ)

8,121 Malaysian dollars. The cost of a birth 1s lowest in period three,
3,314 dollars, and rises at an increasing rate reaching 25,407

dollars by period twenty. These costs may seem slightly high given that the
Malaysian dollar was worth about 33% of the U.S. dollar in 1960. The child
maintenance cost, on the other hand, is rather small, only

343 dollars.jUNotice also that the incremental utility of an addi-

tional surviving child rises with goods consumption (yl > 0) and falls

with mother's schooling (Yz < 0). However, quantitatively the non-~linear terms

in the utility function other than schooling are quite small and this feature

of the results is crucial to the comparative dynamics of the model discussed

below.

There are several ways to assess the fit of the estimated model. The
tn likelihood value as shown in Table 4 isg =1923.7. The model degenerates
to a simple Bernoulli process for births given that all of the parameters

excépt El‘are set to zero; ;1 must be estimated to retrieve the sample frac-

tion of births. The &n likelihood value for the pure chance model is -2059.9.

Twice the difference in the likelihoods of the two models 1s 272.4 which is
sufficient to reject the pure chance model at almost any significance level;

xz(.Ol) = 26.2 with 12 degrees of freedom. In addition, most of the indi-

vidual parameters are statistically significant at conventional levels (9 out of 13).




Table 5 compares the actual and prediéted birth probability profiles
while Table 6 uses the estimated parameters to predict birth probabilities
conditional on the number of surviving children, analogous to Table 3.

In both tables, it appears that the model does fairly vell; Indeed, the
xz statistics for the hypothesis that Table 6 and Table 3 are the samé,
i.e., that the predicted and actual probabilities do not differ, is only
rejected in one period as shown in Table 7. Overall, then, the model
seems to capture some gsignificant features of the data.

The estimated parameters may be used to explore the sengitivity of
fértility over the life cycle to changes in income and survival probability
profiles, to child deaths, and to mother's schooling. All of the results

will be presented first with intuitive explanations offered subgsequently.

Income Effects

Table 8 presents fertility responses to alternative income profiles
evaluated at the mean survival probability (flat profile) and at mean
mother's schooling (two years). To summarize the impact on the entire
fertility profile, the table depicts the expected number of children born
over periods one to five, six to ten, eleven to fifteen and sixteen to

twenty where the expectations are sums of the unconditional probabilities

ofvbirths within the subperiods, i.e., integrating over all possible valﬁes
of the state variable (the number of surviving children). Since income was
predicted from a semi-log income function, the experiments are performed
by changing the income function parameters.

The first row shows the fertility profile for an individual with a

flat income profile at the average sample income. In the next four rows
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Table 5

Actual and Predicted Mean Birth Probabilities

Period Actual Predicted
Probability Probability

1 .138 .138
2 .335 .360
3 .489 .552
4 .537 .543
5 .511 .530
6 .505 .515
7 .511 .498
8 .516 477
9 .516 454
10 .394 .428
11 .410 .400
12 .425 .376
13 .321 .345
14 .360 .312
15 .310 .281
16 .262 .250
17 .200 .216
18 .140 .182
19 .140 .149
20 .105 .122




Table 6

Probability of a Birth Conditional on the Number of Surviving Children: Predicted

Number of Period

Surviving

Children 3 4 5 6 7 8 9 10 11 12 13 14
Oor1 .552  .539  .523 .507  .481 ,472 .391 .412 .375 .400  .429 .333
lor2 .563 .622 .540 .519 .500 .471 .408 .400 .400 .375 .368 .333
2or3 .555 .558 .513 .505 .480 .446  .422 .392 .372 .333 .310
Jor 4 .550 .511 .506 .484 460 .423  ,406 .380 .325 316
borh .500 .500 .478 464  .430 407 .382 .34} .316
5 or 6 .600 .533 444 434 ,406 .382 .354 320
6 or 7 J50 417 444 404 378 362 .321
7o0r8 000 .444 400 .233 ,379 .333
8 or9 .333  .333 .375 .417 .369
9 or 10 000 .333 .333 .333
10 or 11 .000 .000 .000
11 or 12 .000  .000
12 or 13 .000

-c Q’-



Table 7
Tests of Equality between Predicted and Actual Birth Probabilities

Conditional on Surviving Children

Period
3 4 5 6 7 8 9 10 11 12 13 14
2 3.24 1.34 2.11 522 4.60 10.95 15.07 13.15 8.08 29,22 13.84 15.57
>
rd
]
18.31 19.68 21.03

xi(.OS)* 3.84 5.99 7.82 9.49 11.07 12.59  14.07 15.51 16.92

*
k equals the period number minus two.,
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Table 8

The Effect of Income on Fertility

ln¥ = a, + a,t ) N5 Ne-10  F11-15  Mre-20 N
ao ’ al Y

9.35 0 11,500 2.126  2.369  1.687  .867 7.047
8.52 0 5,000 2.117  2.362  1.682  .863 7.024
9.21 0 10,000 2.121  2.367  1.685  .866 7.039
10.13 0 25,000 2.134  2.380  1.699  .873 7.086
10.82 0 50,000  2.154  2.402  1.717 .85 7.158
8.52 088 11,500 2.126  2.376  1.769  .875 7.146




the mean income level is changed while maintaining the shape of the profile.
Income effects are obviously quite small. Income elasticities tend to rise
with the level of income with the arc elasticities ranging from .003 for
income between 5,000 and 10,000 dollars to .015 for income between 25,000
and 50,000 dollars. The last row shows the impact on the fertility profile
Vof altering the shape of the income profile while maintaining the mean

at approximately 11,500 dollars. The intercept parameter corresponds to an
income level of 5,000 dollars and income rises by almost 9% per period
(about 6Z per year). The fertility profile now is skewed slightly toward
later births, although, given the quite substantial alteratton in the in-

come profile the impact 1s megligible.

Survival Probability Effects

Table 9 presents the fertility respomse to changes in survival pro-
bability profiles in a fashion analogous to the previous table. Since
survival probabilities were predicted from a logistic formulation, experi-
ments are performed by changing the parameters of that equation. The first
row shows the fertility profile for a flat survival probability p
at the sample average survival probability (.94), assuming that income
is at thg sample average (flat profile) and that mother's schooling is
approximately at the mean level. Reducing the survival probability by .05
percentage points (next four rows) reduces the number of children by about
one-quarter of a child. Thus, women residing in environments with high
survival propensities have more children. Notice also that as the survival

probability drops, there is a tendency to have children earlier in the life cycle.
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Table 9

The Effect of the Survival Probability on Fertility

P .
In15 T3 tat N5 Ne_10 Nij1-1s Mg-20 ¥
) 8 P )
2.78 0 .94 2.126  2.369 1.687 .867 7.047
2.0 0 .89 2.078  2.326 1.614 .783 6.801
1.67 0 .84 2.032 2.282 1.540 .701 6.555
1.33 0 .79 1.979  2.230 1.453 .612 6.274
1.05 0 .74 1.927  2.175 1.367  .532 6.001
1.05  1.81 .94 2.003  2.356 1.722 .937 7.018




Altering the shape of the profile so as to have a rising trend in
the survival rate while maintaining the mean rate (last row) clearly

skews the fertility profile toward delayed childbearing.

| Replacement Effects

Table 10 shows the responsiveness of fertility to the occurrence of
child deaths. Each entry gives the expected number of children ever born
given zhat there are Mt-l surviving children as of period t for t = 2, ...10.
Replacement responses can easily be calculated by differencing any two
columns for a given row. Average income and survival probabilities, and
average schooling are assumed in the calculations. The last column averages
the tep}acement effects within each row. As Table 10 reveals, replacement
responses are trivial for this sample. A child death induces an increase

in the number of children ever born by at most .005.

Mother's Schooling Effects

Since mother's schooling merely shifts the marginal utility of a

child in an additive manner, its impact on fertility is to change the level
without changing the shape of the profile. Each additional year of school-
ing reduces the expected number of children ever born Approximately by .35
evaluated at the mean of the other exogenous variables. Schooling therefore plays
an important role in accounting for differences in completed fertility
across households.

To recapitulate, the fertility level and profile respond negligibly to
income levels and profiles and to child deaths. There is a noticeable

response to the level and profile of infant survival probabilities and a




Table 10

Expected Number of Births by Number of Surviving Children and Period

Number of Surviving Children

Period 0 1 2 3 4 3 6 7 8 :::I:g:-

ment

6.916 6.911 .005

£.5%5% 6£.541 6.536 .005

& S.707 0 5.993 5,987 5,982 .005
.4% 5,454 5,451  5.416 5.412 .003

5.897 4,897 4.893 4,889 4.884 4,884 .002

h 4.385 4.383 4.381 4.379 4.373  4.370 4.370 .003
3.890 3.88 3.886 3.882 3.879 3.874 3.874 3.874 .002

3.414 3.411 3,409 3.408 3.406 3.402 3.399 3.399 3.398 .002

10 2.964 2.960 2.956 2.956 2.953 2.951 2.946 2.946 2,946

2.943

.002

—6’—
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substantial impact of mother's schooling on completed fertility., Partial
insights into the relationship of these experimental outcomes to the para-
meter estimatés can be obtained by lookiné at the decision rule at period T
for the quadratic utility function as given in footnote sixteen. Rearrang-
ing terms, the income effects in terms of the change in the differential

payoff of a birth in period T are given by

AJ A3, :
= 28 (bP, + c), ———— =& 'y P t> T
BE. Y, 2% 8E, Y 1T

The magnitude of this change in the inténsity with which a child is desired
determines the change in the critical value of the taste parameter 5; |

and thus the change in the probability of a birth. Clearly, 1if 82 is

very small, as is evident in Table 4, the current income effeét will be
very small and if Y, is very small as is also evident in Table 4, future
income effects will be small. Simulations reveal that large increases in
82 and/or Yl’ of several orders of magnitude, given all other parameters,
can generate non-negligible income gffggcg; However, these increaseg are
many standard deviations from the point eétimate.

The replacement effect in period T is related to

&J T

- I _ .. 20,P, (14 % st Ty WP, + c).
-1 t=T+1

Replacement effects are obviously larger the greater are a, and I Our

. results reveal a, (and 71) to be indeed very small which accounts for the
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trivial replacement response. Again, simulations reveal that orders of

magnitude increases in a2 or Yl can generatesubstantialreﬁlacenent effects,

changes which are far outside reasonable éonfidence intervals for the estimates.
The survival probability effect.in period T,. unlike the income or

replacement effect; is related to the linear utility function parameters.

In particular, letting a6 = 82 =Y - 0,

2
AJ

XFE" (a; - b8,) |
which, given the parameter estimates, is not of negligible magnitude.
Notice that if b = 0, an increase in the survival probabiligy must
incfease the payoff to a birth. Indeed, even if all costs are zero, an
increase in b will increase the intensity with which a child is desired
(JT) and thus will increase the probability of a birth, although in a
deterministic world the decision to have a birth, i.e., the sign of JT
will be unaffected. |

It would, thus, appear that, in large part, it is the higher order
utility function parameters that are crucial in the determination of fer-
tility profiles and their responsiveness to exogenous variables. In the
extreme case where the utility function is linear in its arguments, and where
the cost of birth and the survival probability do not change over the life
cycle, it is intuitive that the fertility decision at any period would be
independent of current or anticipated future income and of the stock of

surviving children. Child spacing, in a probabilistic sense, would arise

only from the random taste component of the model (Et). Hence, given that
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the utility function is estimated to be essentially linear for this sample
of women (ignoring schooling effects), it is primarily variation in life

cycle birth costs and survival probabilities that determine fertility profiles.
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7. Conclusions

This paper is the first attempt to model sequential life cycle
individual fertility behavior in an uncertain environment in a way that
is conducive to éstimation. As such, I believe that it demonstrates the
empirical feasibility of the dynamic programming approach when the problem
at least ﬁas a tractable numerical solution. However, many major simplifying
assumptions were required and the sensitivity of the results to those assump-
tions is an important issue yet to be addressed. Extensions of the basic
fraﬁework to incorporate endogenous female labor supply, savings, and
imperfect contraception wduld compfise”a ratheréull agenda for future research.
The particular problem addressed in this paper, that of the timing
and spacing of children given significant infant morﬁality, has been
of concern to many social science researchers. Specifically, "the
replacement effect" estimated from this model, within a unified framework
of the life cycle fertility decision, is much smaller than that obtained
using other methods. At this stage, these estimates should be taken
no more or less seriously than those based upon looser theoretical con-

siderations.
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FOOTNOTES

*
Research support was received from the William and Flora Hewlett Foundation.

Zvi Eckstein contributed many useful comments and substan-

tially enhanced my understanding and appreciation of dynamic economic moaels.
Randall Olsen provided extremely valuable comments particularly, though not
exclusively ,with respect to the estimation methodology. Comments from

T. Paul Schultz and Paul McGuire are also gratefully acknowledged. Paul

McGuire most ably performed the rather complicated calculations.

lAs in all discrete time models, the length of a period is somewhat

arbitrary. In this model, biological limitations provide some guidance.

21t is not apparent how to formulate and estimate a structural contin-
uous time model of fertility. Vijverberg (1981) develops a model in which
individuals choose the points during the life cycle at which to bear children.
However, that methodology requires that the number of children be predeter-
mined. |

3Child mortality may, in part, be affected by the parental choice of

the levels of birth and maintenance costs. However, allowing for endogeneity
would greatly complicate the dynamics and the estimation. 1In addition,
allowing maintenance costs to vary with the age of the child introduces

overwhelming computational,though not conceptual,difficulties.

4Given the discrete nature of the outcome, spacing involves a fertility
pattern in which births are not all consecutive, i.e., if one indicates
a birth and zero not, then a 1, 0, 1 pattern is a birth sequence with
spacing. Spacing is different than timing in that the latter relates to
life-cycle phase. Thus, births may come predominately early or late in the
childbearing stage, and they may be spaced or not. The model presented here

solves for both aspects of fertility .

5If capital markets are perfect, child spacing could only be generated
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if additional complementary or substitute commodities for children are intro-
duced in the model, e.g., parental leisure. In addition, the introduction

of savings opportunities adds another choice variable to the model.

6Explicit models of child mortality and fertility (e.g., Ben~Porath

~and Welch (1977)) have been static .

7The assumption that there is only a one period maintenance cost
restricts the range of replacement behavior considerably. Replacement
is more likely to depend upon life-cycle stage if the total maintenance

cost at any time depended upon the age distribution of the living children.

8The model presented below is similar in structure to that of Heckman
and Willis (1975). Their focus is on contraceptive uncertainty while I
focus on survival uncertainty. They do not, however, attempt to solve

the dynamic programming problem nor do they estimate structural parameters.

9Some of the statistical issues that arise in this kind of problem
are discussed in Heckman (1980), although the statistical solution to con-
crete dynamic programming problems is not discussed there.

10
Learning based on a woman's actual previous mortality experience is

not considered. It is theoretically feasible to model, but it is not empiri-

cally tractable in the context of this model. Indeed, serial correlation in the

ut process will also be ruled out in the empirical application for similar reasons.

11
_As 18 the case with Ues in principle, Evtv

lzln the terminology of Heckman (1980), there is trme state dependence.

t.,need not be zero for t ¥ t°'.

As will become clear, however, there is no simple structural state dependence
parameter. If a single state dependence parameter even exists, it will be
a function of the underlying structural parameters of the model and S0 there

are no additional identification issues raised in the application.
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i
3There is a substantial simplification achieved by the assumptions

concerning the mortality and income error processes. Notice, for example,
(-] @

that [ gT_l(uT)duT = f g(“T)duT . See Appendix A.
=Gy =Gy

14The birth cost is permitted to change systematically over the life cycle in
the empirical work that follows and introduces dynamic considerations that could
mirror biologically related age variation in the cost of contraception which is

not itself explicitly modeled.

151t is very difficult to simulate a hoarding strategy given that

a child can die only in its first peridd of l1life.

16For example, with the utility function as in (24), the kernel of the

decision rule at T is given by

T ‘ T
R N t-T - ' t-T
JT PTET(alit) + lT L § ET(alit) a2(1 + 2“T—1) (1L+zI ¢ )PT
t=T+1 t=T+1
-;[Slb - (282b + yv) (b +‘c) + YbMT_l]PT
T t-T
+ ZBZbPTETYT + (PT)Y I § ETYt

t=T
- By + Bycde = yelf_, + 282c;TYT

Decision rules at times prior to T are simply sums of expressions that

are in a form similar to, though more complex than,JT; there are no second-order or hig
er teems in random variables. The independence assumption concerning the conditional
distributions of the Eit's and ut's is necessary in order that no covariance

terms enter the expression. = a i.e.
pression. Note also that ET(uliT) ay + EiT’ i.e.,

EiT is known to the women at T.

7
In general, Jt is a function that is highly interactive in observables,

Glyl""’GTYI’ gt(ht,...,uT), Eth""EtYT’ Mt-l’ and highly non-linear in para-
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meters, El,aZ,Bl,Bz, Ysc,b. Note that c and b are treated as parameters
because it is unlikely that any data set would contain them as variables.
Of course, the form of Jt depends upon the optimal future path of births
from t + 1 to T which cannot be determined without information about the

utility function and cost parameter values.

18
From footnote (16), it is easily seen that the only term in aliT

is aliTPT' For the general case, at time t, the term in a will be

lit
multiplicative in sums of products of probability of survival terms.

' %
19From footnote 18, the critical value of EiT’ EiT is given by
= a1+ 265 T) + 8 b - (28.b =
gp = Lo+ Z8 T+ 8D - (280 + V)b + ) - )]
T E.Y
+[29,(1 + 2 §tTy &+ YoM, o - 28,C "IFI
t=T+1 : T
T
t-T
L3 1 c(8, + B,¢)
- 28.bE.Y. - y t=T+1 ‘Tt + ve b1 A2
2°°T'T —— P 3
Py T T

0
Viewed differently, utility function parameters can only be determined
relative to each other.

21 For example, it is easy to see that doubling all of the utility function
parameters in the expression in footnote 16 doubles JT’ while performing a
similar operationfor the rest of the parameters does not lead to a general
effect on JT.

22
See Heckman (1980) for a discussion of the problem of initial condi-

tions in discrete models, and for suggested solutions.

23
Earnings are deflated by the price index that prevailed at the beginning

of each eighteen month period with the base year 1960. The price index is country

wide and was obtained from National Accounts of West Malaysia 1947-1976.

24
oThe expected value of income was formed without the variance correc-
g
tion e? that is strictly required under the assumption of normal errors

in the log equation. GCiven the retrospective nature of the data, it was

2
felt that measurement error would dominate the estimate of o°.
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sthere are eleven states in Peninsular Malaysia.

26The x2 value (twice the difference in the tn likelihood values of the two

models) was .2 which falls‘far short of the critical x2 value with two degrees of

freedom, xz(.OS) = 5,99,

27The average schooling level of the Malay women in this sample 1is
low, only about two years. Over fifty percent have no schooling and of
those who have any; the average level is only four and one-half years. Thus,
schooling is usually completed prior to age fifteen. Schooling is, there-

fore, treated as a parental decision, exogenous with respect to fertility.

28The maxiﬁization routine used was the DFP component of GQOPT. Standard
€rrors were calculated by inverting the matrix of second partials which were

obtained by onc percent perturbations of the parameters around the maximum.

29
The xz value for the likelihood ratio test was 204.2 which greatly

exceeds the critical xz value with two degrees of freedom,_xz(.OS) = 5.99,

3
0 It is possible, given actual income levels, that for some individuals

at some time periods consumption will be negative. There 1is no simple way

to impose a positivity constraint on consumption in the estimation, nor would
that necessatily_be desirable since the cost of a child vbuld be dictated

by the smallest income level of any woman in any period in which a child

was born.
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APPENDIX A

. Begin with the T period decision in which the household chooses
Up to maximize
(
(A.1) Ep S U(MT_l + o, - dy, Yo - b(nT - dT) - ch)

T t-T
+ ] 8 u(u,r__1 + o, - d, Yt)

t=T+1
If (5) 1is substituted into (7), and (3) is utilized, the expected

lifetime utility associatedwith having a child at time T (LUT) conditional

on the information set at time T can be written as

(A.2)
ET(LUT/nT = 1)
If f
[ N
- i s 1: / v - hd
Sy ) vyt L, ey b
T TR
' T
t-T ]
+ ] 8 o +1, H vy, +v,)|
o1ty i S e Y2 T Ve
hT(uT’ VT, eee VT) duT dv,r cee dvt
o o SM
r r
oo
+ ',' see K [U(MT_l! HTYZ + VT - c)
- o =
E t-T ]
+ & UM, ., Hy, + V)
— Mr_10 HeYy t’)
h'r(“'.l'_' Vpr eee 0 V) dup AV el AV



where hT(“T’ Vs ese s v;) is the joint conditional (on information at

time T ) density of the current and future random errors associated with

child mortality and income. Recall that Vo and Up are not known at T,
Similarly, the expected lifetime utility at T given that a child is

not born is

(A.3) ET(LUT/nT = 0)

|

= ’J ;l [U(M'r-l’ Hpvy + vyp)

T

t-T 1
+ Z 6 vu( Y, + V. ):
tmT4+1 M'1'-1’ H'1' 2 t’.

h,r(u.r, Vps eee s v_t) duT dvT ces dv‘r

Note that U is integrated out since a child that was not born cannot die,
Defining JT to be the difference between (A.2) and (A.3), the

decision to have a child at T is governed by

(A4) np=1 1f g = Ep(LUL/By = 1) ~ E (LU /0 = 0)

v
=]

= (0 1if JT<O

If hT(uT’ VT’ see o VT) - gT(uT) fT(VT, ces VT),' 1.2., if UT and

the vt's t=T, ..., T are independently distributed given past

information, then JT may be simplified to
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-
(A.S) JT - fooo // U(P‘T"l + 1, BTYZ + V,r -b - C) - U(HT_I, H,r'yz + VT - C)
- =t

. |
t-T
+t=T§1 8 [U(M‘r-l Tl Byt V) - UMy Byt vt),]

gT(ur) fT(ﬁ&, cess v}) du, dvy eee dV

+ fj UMy, Byy, + vy =€) = U0, Hyvy +vy)

fT(vT, secey VT) dvT ese dVT

For simplicity only, this independence assumption is adopted throughout the

rest of the discussion. In the text [ g'r(“'r) dqr = f g( “1‘) ugp = PT
J S - :

-G -Gy

T'1 T'1

and the integrals over the income densityare collapsed to an expectational
representation. The implications derived in the text assume that the
utility function is contemporaneously separable,

The expected lifetime utility given that a child is borp at T-1

is much more complicated than its counterpart at T. It is given by



(A.6)

+ 6 max

-2

T =
ET_l(LLT_lInT_l 1)

= N -h-
Jr Jf Vg + 1o By gvy + Y ymb=den ) Cup D) Gopdduy

1971
“Cpam
~Cr1My
T b + -
J( 0> BipyYp * vy =gy Cup D vy Dduy v,
'/i...;/r J/- //’ [var,_, +2, Hpv, + v, =b=c)
e-T
= e -Gy -Gy v
Tl AN t-1 UM, 42, H oy, + v, )]
T-2 t'2 7 Ve
L,
t=T+1
ero1 (Vpops P (Vphees V) du Lau,
dv_...dv_
i © w =G Y -]
1
I
+ | ... UM, + 1, Hoy, + V.—c
P - - T
- -0 -0 -GT lY]_ . t-T
- + ) § (x + v
- LG, + 1, He¥p V]
t=T+1
v u
, By (Mpogo U fpy (o a V) A duy
f
§
: FVT" dVT s
oo =) @«
; r 4 [
! l . . I U » v
| ‘/ ) Cup_, + 1, HLY, + V)
i . o _GT 161 + T t-T :
(o T\
+ E: § UL, Hyy, +v))

t=T+1

8y (W ) Ep g (Vpe e, v ) duy o

dvT...dvT
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| ~b-
I (UQMy_p+ 1, Ty, + vp-bec)

/ f [ Fr

T
’ }: t-T
| + §  U(M,_,+1, H y +v)]
| t=T+1 T2t e
Bpoy(upyy wp fpy Cupveyv)duy jduy

dvT, - dvT

pt 1 ~or-1Y
+f f [ [U(MT_Z, HTY2 + vT - )

T
! : - t-T
* ) 8 -
+ § max + U(HT_Z, HTYZ + vc)]

i t=T+1
Broq (o> B g (Vpy oy VD) Au dup

dvesee dvo,

. (UMp_y, Hisy + vy)
T
Y

+ UM, Ty + v )]
T 22 Hgyy * vy

t-T

B W) g G ee v dup
— dvT’.‘.dvT

vhere gp 3 W@y y) =_j; By (Up_gs up)duyp and

o © ]
fp (o ) = fj fr1®pgs Voo oor v )dvpeedy s
-0 -

It should be noted that not all four combinations of maximals are viable

as discussed in the text .
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If a child is not born at T~1, expected lifetime utility is given by

(A.7) E (Lu

In
T-1 T-1' T-1

(-]

= / .[U(MT

- 00
——
N oo

.

—oo -

.' o
+ 6 max -+ f
-C0

.
where gT l(u ) = ,

::0)

— HoogYo + Vv DI (v pdve

L fc [vO_,+1, Hy, + vi=b-c)

T
+ ) GtTU(MT s Hoy, + v)]

t=T+1

7 NS
. N\ -
J j [U(JT_Z, HTYQ + v& C)

T

Z. t-T

6 T
+ t=T+1 L(NT-Z’ HtYZ + Vt)]

8r_1 (U frq Gpsees vT)d'quvT. .dv

r

lUU”lT_29 UTYZ + VT)

! t-T
+ = (M +
v 6 U 2 Vt)]

. - ”’
t=T+1

f (v

-1 e u_[)dv ..dv

T’ T T

Br_y (Up_y» up)du ..

g’r—l(“r) fT—l(vT" o v_r)durdv,r. .dv
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Denoting JT-l as the difference in expected utilities with and without

a birth at T~1, the decision rule at T-1 is

(a.8) mp . =11ff g . = ET_l(LUT_llnT_fl)—ET_l(LUT_ll npy =™ 20

04ff 3o, <0

It may be verified that the conclusions reached in the text as to
the comparative statics of the T-1 decision carry over directly to the more

general case presented ahove.
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Appendix B

Information on survival rates of infants (aged less than one)

was available by state for the Malay population only from

1967 to 1972,Al974 and 1975, On a national basis, survival rates of
infantswere available from 1957 to 1970 for Malays while for the entire
Malaysian population they were available back to 1948, Predicted survival
rates were needed for Malays by state from 1940 to 1992, given the cohort
span of the woﬁen in the sample. The following procedure was employed

to form these estimates.Log national survival rates for Malays ywere
regressed on log national survival rates for all Malaysia, time and its

square, and a constant from 1957-1970. Log national survival rates for

Malays were then predicted from this regression for the period 1948-1956.

The log survival rate predicted from 1948-1956 and the log of the actual rate from
1957-1970 were then converted to log odds and regressed on time, its square and a
constant. The log odds of the survival rate was then predicted for the

period 1940-1947 and 1976-1992. The logistic formulation seemed to give

more credible predictions both backward and forward in time., Each state

lével log survival rate was then regressed on the national level log sur-

vival rate for Malays, a time trend and a constant over the overlapping

period, and predicted survival rates for each state were obtained for the

period 1940-1964, 1973, and 1976-1992. The predicted survival rates

combined with the actual survival rates for the available years were com~

bined to form a state level Malay-gpecific survival rate series for the

period 1940-1992. 1In the last stage, the log odds for each state based

on this series was regressed on time, its square, and a constant. The sur-

vival probabilities predicted from these regressions were assumed to be




thosepredicted by the woman from the beginning of her decision making
period. Since each woman's state of residence was known at every moment
during the life-cycle the assignment was made on the basis of state of

residence at the beginning of each eighteen month period. Perfect foresight about

future residence is assumed. In the actﬁal sample, child deaths within the first
eighteen months occurred as follows: forty-seven women had one child death, eleven
women had two child deaths, two women had three deaths and two women had four
deaths. The actual mortality rate is about seven percent which is close to the

same figure calculated from the state data for this sample, about six percent.
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