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Introduction 

The declining fertility and increasing levels of schooling that accom­

pany economic development have been ascribed, in part, to the introduction 

of new medical inputs which have led to reductions in child mortality (Schultz 

{1971), O'Hara (1975)). Loosely speaking, these changing fertility and 

schooling patterns are hypothesized to have been "caused" by the exogenous 

mortality decline induced by the use of new medical technology. Recogni-

zing that the longevity of offspring may be subject to choice, as is fertility 

and child schooling, implies joint adaptation of all three to exogenous 

influences. In this theoretical choice framework, the pattern of declin-

ing mortality, declining fertility, and increased schooling can result 

from exogenous changes in the provision of medical services only with 

~ priori restrictions placed upon the preference structure (O'Hara, 

Rosenzweig and Wolpin (198~)). There is no convincing evidence that 

fertility and schooling decisions are conformable with the hypothesis 

in a regime in which child survival responds to parental decisions. 

In this paper we develop and implement an econometric methodology for esti-

mating a family~pecific exogenous component of life-expectancy 

which may be thought of as having analogous effects to medical technology. While 

waiting time models of the sort we estimate have a long tradition in 

statistics, economists are more familiar with models which seek to dis-

cover which characteristics of individuals and alternatives explain why 

an individual has made a particular choice when there is only a finite 

set of unordered alternatives. These studies are most often carried out 

using cross-sectional data which provide, at a particular point in time, 

attributes of choosers and the alternative choices they face as well as 

information on which alternative was selected. 
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When longitudinal data is available it is still possible to analyze the 

data as if it were cross sectional data. One would be free to pick an arbitrary 

time to study why some people are engaged in some activity and others aren't, 

but this strategy ignores the information available concerning how long people 

were engaged in that activity. After all, if the probability that someone 

is working is high, it seems reasonable to conclude that the same person would 

be in the state "working" for a long spell before shifting to the state "not 

working," or perhaps in the state "not working" for a short time before 

entering the state "working." Longitudinal data provides much more information 

than is contained in a simple cross-sectional survey of current behavior. 

Markov models are most often used to analyze transitions among states. 

Discrete time Markov chain models assign some probability to the transition 

from state i to state j during some discrete interval of time. This 

probability is assumed only to depend upon the current value of i and not 

the path taken to arrive in i. The length of the time interval chosen 

is arbitrary. Moreover, such models cannot be used to predict transition 

probabilities over time intervals which are not integer multiples of the 

time unit chosen for the analysis (Singer and Spilerman [1976]). When the 

discrete interval of time is allowed to become infinitesimally small, a 

transition is made to a continuous time Markov model. The continuous time 

Markov model is closely related to the Poisson process. Poisson processes also 

assume that for a given interval /:::,,t the probability of an event is a t,. t with 

independence for events in nonoverlapping time periods. Under these conditions 

interval is Poisson, and thethe distribution of the number of events in an 

distribution of waiting time between events is uponential. 

While the simple exponential model provides a good place to begin the 
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analysis of waiting times, most applications are likely to require 

extensions of the basic model. Many of the extensions to the exponential 

waiting time model have antecedents in earlier work on extensions to the 

Poisson distribution. For example, an early extension was to allow the 

values of a for each individual to be drawn from a gamma density function 

(see Greenwood and Yule !1920]). While their discussion was in terms of 

distributions of events which departed from the Poisson, it should be clear 

their approach also generates the gamma-exponential waiting time distribution. 

Newbold [1927] took the idea a step further by inferring the distribution of 

a from the observed distribution of events using the assumption 

that given a the distribution of events is Poisson. A similar exercise 

has been carried out with waiting time models in the more recent literature 

starting with Silcock [1954]. 

While allowing for heterogeneity in a improved the fit of the model 

to the data, early writers recognized that the departure of the distribution 

of events from the Poisson did not imply heterogeneity. The alternative to 

"accident proneness" models in which a varied across individuals was a 

"contagion" model in which successive events are not independent. Workers 

either learned from accidents, and subsequently had fewer, or accidents 

degraded response time generating yet more accidents. In either case the 

fundamental Poisson assumption of independence in non-overlapping intervals 

is dropped. This indeterminacy between heterogeneity and time dependence 

was dramatized when Eggenberger and Polya !1923, 1924] unwittingly arrived 

at the same distribution of events as Greenwood and Yule except by pos­

tulating a contagion or time dependent process (see Feller !1943]). The 

indeterminancy introduced by time dependence and heterogeneity has apparently 
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been recognized by actuaries and demographers in the study of life tables. 

In pointing this out Hoem [1972] makes a citation to Higham [1851). The 

problem of identifying whether heterogeneity or time dependence in waiting 

times is the true model has recently appeared in the economics literature. 

See, for example Salant [1977), Heckman and Borjas [1979), Flinn and Heckman 

[1980] and Coppock [1980]. 

One source of heterogeneity which is reasonably easy to identify in 

waiting time models is that produced by differences in observable charac.ter­

istics across individuals. Once we control for differences in our exogenous 

variables the exponential model may appear adequate (see Coleman [1964, 1973] 

and Tuma and Groeneveld [1979]). This heterogeneity can be easily introduced 

in the exponential waiting time model since the mean of waiting time is 1/a 

so one can set a= l/0x and regress t on x 

An additional extension to the usual waiting time model introduces a 

dynamic change to the system while ''waiting" is going on. For example, the 

heterogeneity due to differences in individual characteristics may be dynamic 

in the sense that the characteristics of the individual change through time. The 

work of Flinn and Heckman introduces such time varying regressors into a 

general waiting time model. They utilize the hazard function to model the 

time specific rates of transition and then derive the density for waiting 

time from the hazard function. Tuma and Groeneveld discuss the 

introduction of parameters which take on different values during certain 

discrete periods of time. 
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When applied work is done using waiting time models an often encountered 

problem is open intervals. Retrospective data provides information about 

when an individual was in a particular state, and the state currently occupied. 

The respondent does not usually know when he will depart his present state. For 

this last observed state the eventual waiting time to a change must be longer 

than the time spent in the state. Maximum likelihood solutions to this problem 

have been suggested by Salant, Tuma and Hannan [1978] and Flinn and Heclanan. 

Heclanan and Borjas suggest a sample selection correction to be used when 

one ignores the final open interval in a series of spells. 

In the next section, we discuss a static utility maximization model which 

highlights the fertility and child investment decisions. We show that the 

effect of an exogenous component of child longevity on fertility and child 

schooling can only be determined with knowledge of compensated price effects 

and other utility function relationships. The following section develops a 

generalized waiting time regression model applied to life expectancy. Our 

approach diverges from usual waiting time models in that we use a non­

exponential waiting time distribution, incorporating nevertheless many of 

extensions found in the more recent literature. We allow for family.-specific 

heterogeneity in life-expectancy and for time-varying explanatory variables. 

The structural equation for longevity is more akin to a "production function" 

for life in the sense that we use choice variables, which may be thought of 

as inputs, as regressors. Given this, we treat heterogeneity as a fixed-

effect which is permitted to be correlated with the regressors. The strategy 

is to .retrieve the heterogeneity component from the production function, 

assuming of course the inclusion of all inputs, 
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and to estimate its impact on fertility and child schooling. The third 

section discusses the Malaysian data used in the estimation, the fourth 

section reports results, and the last section summarizes and discusses 

further work. 

I. Theoretical Considerations 

we adopt a very simple static lifetime utility maximization model to 

illustrate the relationships between child endowments of health and 

parental decisions concerning fertility and investments in child health and 

schooling. Prospective parents are assumed to have preference orderings over 

family size, the characteristics or "quality" of these children, and non­

child related consumption goods. We consider two 111ajor components of 

child quality, survival or life expectancy, and schooling. The lifetime 

utility function is given by 

(1) U • U(N, L, s, Z) ui > o, uii < 0 i • N, L, S, Z 

where N is the number of live births, Lis the average length of life of 

children, Sis the average schooling of children and Z is a composite 

consumption item. 

Average child longevity is assumed to be produced with purchased inputs, X, 
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conditional on an endowment of health, V,vhich is unalterable and ~iven 
I 

at birth to every child in the family. The relationship given by 

(2) L • L(X, V) Lt Ly> 0 

represent• a production function for len~th of life. It is assumed that 

Vis known with certainty and that there either is no within family child-

specific stochastic variation in longevity, i.e., child longevity can be chosen 

with certainty, or if such variation exists it is unknown to the family 

and ignored in the maximization process. In addition, contraception is 

to be a fixedassumed to be costless and perfect, although there is assumed 

cost of bearing a live child. The budget constraint, with exogenous life­

time wealth, Y, is 

(3) Y • PN N + Px X + Ps S + Pz Z 

where pN is the price of a live birth, and Px• Pg, Pz are the respective 

per tmit prices of X, S, and z. 

In the context of this model, it is easy to see the difference between 

exogenously altering longevity and exogenously altering the health endowmen~, 

V. An experiment which randomly manipulated longevity in a population around 

each family's equilibrium would alter the level of fertility and child school­

ing according to compensated substitution-complementarity relationships only. 

This follows in a straightforward manner from conditional demand theory; in 

particular, fertility will be inversely related to and child schooling direct­

arely related to exogenou~ changes in longevity if fertility and longevity 

Hicks-Slutsky substitutes, and schooling and longevity are complements. On 

the other hand, population variation in V, even. though randomly distributed, 

does not imply an exogenous allocation of Las long as there are other mechan­

isms for altering L, i.e., as long as a production function like (2) exists. 
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To the extent that medical technology dominates other inputs in producing 

longevity, the experience during the economic development process would be more akin 

to the experiment of exogenously altering life expectancy. Estimation of 

compensated price effects would provide sufficient information to verify 

that the predicted movements in N and S would ensue from such an experiment, 

assuming the availability of appropriate prices. Confirmation of the theory, 

however, would also require direct evidence on the efficacy of health inputs. 

The impact of Von N and S when longevity can be varied is obtained 

in the usual way oy maximizing the utility function (1) given the production 

function (2) and tne budget constraint (3). Totally differentiating the 

resulting first-order conditions yieldsl 

(4) dN = !_ [L P dN + l (U L L - U L L ) (dN ) - ] 
dV V X d)' ). L V XX L X XV dPA U =UL4 

dS = !_ [L P . dS + !_ (U L L U L L ) (dS ) ]
dV L X V X dY ). L V XX - L X XV dP , -(5) 

x u-=u 

where). is the ma~ginal utility of wealth, and where subscripts refer to 

partial derivatives. 
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The impact of V on fertility and schooling is composed of two 

components, an income effect and a compensated substitution effect. 

If N and Sare normal goods then an increase in V will increase consump-

tion of N and Sas some of the real income gain induced in Lis trans­

ferred to other consumption goods. In addition, the impact of Von N 

and S depends upon the substitution-complementarity relationships be­

tween Land N. and.L· and S, and on second-derivatives of the 

longevity production function. If we assume that L V = 0 as we do in the
X

estimation, then with LXX < 0, the compensated price effect term will 

lead to a reduction in N and an increase in S if N and Lare substitutes, 

and S and L are comp1ements. Th f dN d dS b . d . here ore, dV an dV cannot e signe wit -

out income and price effect information. The point is, however, that 

if medical inputs have effects analogous to V, the consistency, of the 

hypothesis can be ascertained from (4) and (5) without estimates of their 

separate parts. Of course, if information on the use of medical inputs 

was available and if input usage was not subject to choice, this round­

about procedure would be unnecessary. 

In the next section, we show how the production function given by 

(2) can be estimated using a waiting time regression framework allowing for 

the assumed correlation between V and X. The productive inputs are per-

mitted to change through time, possibly in response to price variation 

through time, and stochastic individual child variation is introduced. 

The assumption of a static optimization model is rigidly maintained, however, 

in the sense that responses to child deaths in terms of subsequent input 

choices are ruled out. A dynamic adjustment model would require a differ­

ent and more complex estimation approach. 
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II. A Generalized Waiting Time Regression Model ·, 

In this section we develop a regression approach to waiting time 

models which incorporates many of the extensions to the exponential model. 

The introduction provided a brief survey of some of the many approaches 

taken in applying waiting time models to data. The chief advantage of the 

method we suggest here is that it combines a number of these features in 

a very simple regression framework. 

Maximum likelihood estimators possess very desirable large sample properties. 

Unfortunately they are often awkward to compute, requiring numerical methods 

to obtain not just a local maximum, but the global maximum for functions which 

are exceedingly nonlinear. While our method produces less efficient estimators, 

its ease of application is an important advantage. 

Our approach uses a nonexponential waiting time distribution, although 

it could be amended to roughly approximate the exponential. We also 

incorporate many of the other extensions to the basic exponential 

waiting time model. First, we allow for heterogeneity which arises due to 

differences in both observed and unobserved attributes. The unobservable 

heterogeneity component is allowed to be correlated with the observable 

heterogeneity component. Our approach is closer to fixed effects models than 

random effects models. Whenever unobservable heterogeneity has been introduced 

in waiting time models a random effects structure has been assumed. 

Second, we allow for explanatory variables whose value changes through 

time. We show how the effects of such variables can be sunnnarized using 

certain integrals. This is a useful result since it is not feasible to 

use all the values of such variables as regressors, nor is it immediately 

apparent how the information contained in such a variable can be sunnnarized 
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for use in a regression equation, We also extend our method to allow for a 

generalized distributed lag process on these variables. 

Third, we allow the coefficients of the exogenous variables to vary 

continuously through time. 

Finally, the regression equation developed here allows for the presence 

of open intervals in the data so that data on incomplete spells can be com­

bined with data on complete spells, 

The traditional approach to waiting time models has been to 

parameterize the instantaneous rate of failure, the hazard function. 

This function, ¢(t) is related to the probability density 

function . (p,d.f.) f(t) by 

¢(t) = f(t) / fl-/~ f(T) dT] 

The p,d.f. can be expressed in terms of the hazard function using 

tf(t) = ¢(t) exp I-/ ¢(T) dT],
0 

Whether the analysis goes forward in terms of the pdf or hazard 

function is largely a question of convenience since the two are 

functionally related. An analogous situation is the choice of the 

time or frequency domain in time series analysis. 

To facilitate the following analysis we assume the form of 

1ththe p.d.f. for the duration of life for the child of 

ththe j mother (parents) as 

(6) 

0< t.j < L.j
l. - l. 

Where Lij satisfies 1 = I
Lij 

fij(T) dT 
0 

with fij (t) > 0 0 < t ~ Lij .'!;_/ 

This formulation allows for attributes of the child, Xij' which 

do not change over time, attributes Zij(T) which do change over time, 

and a fixed effect, v j, which represents random mortality components . 

which are particular to the mother. 
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Censoring is a common feature of duration data. If we examine 

recent data on lifetimes many people will still be alive at the time the 

data are gathered. Let us assume there is censoring from above at 

3 
~ Lij' 

In this event we have 

(7) 

Tij • Pr (tij ~ Tij). 

We can evaluate the mean of tij' subject to the right censoring, by using 

the density function in (6). To ease the notation let 0ij = XijB 

and temporarily drop the subscripts. We must also define the following 

expressio,ns: 

Z(t) dt 

,:-2 
/ Tl t Z(t) dt 

The first term on the right hand side of (7) is 
T 

-T
2 (0+v)/2 + OT tz

0 

and the second term is 

Combining terms we obtain 

(8) E(t!T,8;v,Z(T)) =-(0+v) T2/2 

Similarly, 

(9) E(f IT,8 ,V,Z(i:)) = -2(94-v)T3 /3 - aT (T 2 z! - t2z!> + T2 

t"" E(tjT,0,v,Z('r)) + u where u is a random term with meanclearly, 

zero and finite variance. 
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Substituting from (8), rearranging terms, and adding the proper 

subscripts 

(10) 
= 

We cannot estimate the regression in (10) by ordinary least 

squares (OLS) since vj is unknown and presumably correlated with the 
4

the time series for Z(T). However, we can use the usuaixij or 

within group estimator for fixed effects models to estimate B and 

a, see Mundlak 11978]. It is clear by inspection that uij is 

heteroscedastic since 

Once we estimate Band a the estimated residuals from (10) may be 

averaged within the family to obtain an estimate of v j, and then 

Var(uij) can be estimated using (8) and (9). 

The heteroscedasticity of the u .. makes the first step within
l.J 

estimator inefficient, so we must weight using 

; = {4 Va; (u )/ T~ }-l/Z
ij ij ij 

These weights must be used to obtain the group means, and used again 

5 
to weight the deviations from group means. The covariance estimator 
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for a and Bis consistent if we increase eit~er the number of children 

per family or the number of families, provided there is more than one 

child per family. When the number of children per family becomes large 

the estimated converges to and the estimated value of 

Var(uij) approaches the true value and our weighted least squares 

estimator becomes the Aitken GLS estimator! 

Censoring and Exogeneity 

Each observation must have an exogenously chosen upper limit 

Tij which is feasible in the sense that fij(t) is positive for 

t -< T 
].
.j and the probability of living past Tij is positive. 

If it appears that this condition does not hold for some 

observations a smaller value of Tij can be chosen. In the 

empirical se_ct_io"Q w~ foc_us _011 _t!l-e first 24 months of life so T - - --- - - -- - - - - - - - - ~ - - - - ij 

is the lesser of 24 months or the age of the child had it survived 

to the date of the survey. 

We assume that while the family may adjust its inputs to the 

production of child survival to take into account its value of vj, 

it does not alter its time profile of Z(t) in response to random 

child deaths unexplained by either the inputs or the vj. A dynamic 

strategy of adjusting inputs to deaths will bias the results obtained 

with this method since the time varying explanatory variables will 

be functions of the dependent variable. 

Time Varying Coefficients and Pure Time Effects 

If it is suspected that the coefficients a and B themselves change 

through time this can be captured using the above method for time 
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varying regressors. For example, if it is believed that the coefficient 

t 2for Z(t) follows the pattern a+ at + a then estimation is 
0 1 2 

simply a matter of defining new time varying regressors tZ(t) and 

t 2 Z(t) and treating them as Z(t) was treated above. 

If there are pure time effects then one could define expressions 

to be used as time varying regressors.such as t , 

Alternatively, one could construct time varying indicator variables 

i(t) which take on the value one when the child is in a particular 

time interval,. 

In order to identify the pure time effects on the p,d.f. it 

is necessary to have sample variation in Tij since the ultimate 

regressors are integrals over t from zero to T..• If it is 
l.J 

important to estimate pure time effects one may select values of 

Tij to induce sample variation, The only restriction is that the 

values of chosen be independent of actual waiting times and 

that there be positive probability that t >Tij. The coefficients 

of the nonvarying regressors Xij could also be made to change 

over time simply by multiplying the expressions obtained for the 

7 
pure time effects by Xij' 

By allowing coefficients to change through time we have relaxed 

the implication cf the basic model that the effects of the exogenous 

variables have the same additive effect at all times, If the ordinate 

of the probability density function is very different through time 

then one might suspect that a model which was more nearly multiplicative 

than additive would be more desirable. Such a change could be achieved 

by transforming our measure of time so that the ordinate of the empirical pdf 

is more nearly constant through time.8 



-16-

Distributed Lags in Continuous Time 

One of the advantages of the above method is that it permits 

ti)!le varying explanatory variables. to be used in a waiting time 

regression. The use of certain integrals as sunnnary statistics 

enables us to deal with the embarrassment of riches contained in 

panel data. If we suspect that the p.d.f. for waiting time at t 

depends not only on the values of Z(T) at time t, but also upon 

values of Z(T) prior tot, we again confront a plethora of data 

since we may wish to allow Z(T) to be lagged by any continuous 

amount of time. To deal with this problem we will use a continuous 

time analog of the Almon polynomial method. That method is often 

used for distributed lags of variables measured over discrete 

intervals of time and employs terms of the form 

Since here our explanatory variables are measured continuously (or 

at least are subject to changes at irregularly spaced times) an 

alternative is to use 

f~ (t-1}_ k Z(T) d T • 

This transformation yields another time varying regressor which can 

be handled in the way described above. If we include a number of 

these terms in our regression for k=l, •• .s, each with coefficient 
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Yk , the effect of a change in Z at time T on the p.d.f. at 

time t is 

Since the variable Z(T) usually changes only at irregular 

intervals, the calculation of the required integrals is not difficult. 

The hazard function formulation of waiting time models usually specifies 

the hazard of time T to depend upon Z(T). When one examines the 

formul,a for the p .d. f. at time T in terms of the hazard function, it 

is clear f(T) depends upon an integral over Z(t) for t<T. Intui­

tively, lagged values of Z(t) influence the fraction of the population 

at risk at time T>t but the hazard is usually postulated only to be 

a function of Z(T). A more general formulation would allow the hazard 

at T to depend upon a distributed lag in z. 

In the absence of any firm theoretical basis for choosing a 

particular hazard function it is largely a matter of convenience 

whether one parameterizes f(T) or the hazard since one can always 

express one in terms of the other. 

Truncation and Grouping Durations 

It may be the investigator is reluctant to assume stability of 

the estimated coefficients across durations and does not wish to 

parameterize the shift in coefficients across time by making the 

coefficients explicit functions of. time. In this case the data may 

be examined sequentially through time. One model may be fit for 

durations from zero to t.1 another model from t to t , and so 
...1, . l 2 

forth. Only those who survived to the end of the previous stage 

of the analysis would be included in the next stage. The estimated 
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p.d.f. at each stage would be conditional upon survival to that 

stage. The complete p.d.f. for waiting time (as well as the mean 

of waiting time) could be numerically computed using the results 

from the various stages. 

Summary 

The method developed here is a fairly general regression 

approach to waiting time models. Problems such as censoring, time 

varying regressors and their distributed lags, fixed effects 

(heterogeneity), time varying coefficients and time dependent 

hazards can be accommodated. There are some restrictions on the 

method, so th~ avoidance of maximum likelihood is not costless. 

First, the entire history of any time varying regressors must be exogenous 

in a statistical sense and known up to the point of right censoring. Second, 

the point of right censoring must be exogenously chosen and there 

must be positive probability the waiting time exceeds the right 

censoring point. Finally, information about the distribution 

of the residuals is not used so the method, while computationally 

convenient, is not fully efficient. 
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III. The Data 

The density function for duration of life can be estimated given 

information about child-specific inputs within families containing at 

least two children. The permanent family component of child longevity, v.,
J 

can be calculated if all inputs that produce survival and that are subject 

to parental choice are included among the time-invariant or time varying 

regressors. A complete family life history is, therefore, required. 

The 1976 Halaysian Family Life Survey contains 1262 households con­

sisting of at least one ever married woman under 50 years of age as of the 

survey data. Except for some slight oversampling of Indian families and 

of fishing communities, the households form a random sample of all of 

Peninsular Malaysia. The essential feature of the survey for our purpose 

is that it contains a retrospective life history of each woman to the earlier 

of age 15 or age at marriage. The survey contains detailed information 

about pregnancy outcomes, child mortality, employment and housing charac­

teristics. 

The variables used in our analysis are presented in Table 1 together 

with descriptive statistics. They are cross classified by two character-

istics, whether the variables change through time and whether they pertain to the 

child or to the household. The sample chosen for the analysis consists only of Malay 

families with at least two live births and only of children for whom the male 

respondent in the survey corresponded to the father. The final sample consisted 

of 1938 children from 311 families. 
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Table 1 

Descriptive Statistics 

Mean 

Child Specific Time Invariant Variables 

Birth Interval: months to preceding birth if not 

first born, zero if first born 24.99 

Sex: 1 c male, 2 = female 1.51 

AMB: age of mother at birth (months) 302.4 

Mother over 40 at Birth:one if age of mother at 

birth 40 or more,zero otherwise .01 

Birthweight 7.01 

First Born: one if first born, zero otherwise .21 

Second Born: one if second born, zero otherwise .18 

Third Born: one if third born, zero otherwise .15 

Months breastfed (max. 24 months) 13.55 

Length of life II " 21.58 

Potential life 22.86 

Child Specific Time Varying Variables 

Breastfeeding: unity if breastfed at time t, 

zero otherwise .58 

Undivided Attention of Mother: fraction of potential 

time spent by mother at home at time t, not working 

at home .Si 
Divided Attention of Mother: fraction of potential 

time spent by mother at home at time t, work­

ing at home .02 

Father's Time at Home: fraction of potential time 

spent by father at home at time t .63 

Number of live siblings, age under one year at 

time t .08 

Number of live siblings at least one year old but 

less than five years old at time t .82 

Number of live siblings at least five years old 

but less than 10 years old at time t .88 

Standard 
Deviation 

21.02 

.50 

74.11 

.11 

1.41 

.41 

.39 

.36 

8.56 

6.29 

4.17 

.37 

.20 

.10 

.21 

.15 

.67 

.96 
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Standard 

Mean Deviation 

Number of live siblings at least 10 years old but 

less than 15 years old at time t .48 .81 

Number of grandparents in household at time t .44 .82 

Number of relatives under 10 years old in household 

at time t .22 .84 

Number of relatives over 10 years old in household 

at time t .36 .95 

Child Care Help - Own Children: fraction of poten-

tial time at t .01 .06 

Child Care Help - Grandparents: fraction of poten­

tial time at t .04 .11 

Child Care Help - Other Relatives, Neighbors, 

Servants: fraction of potential time at t .02 .09 

Access to Piped Water: one if piped water is 

accessible, zero otherwise .26 .19 

Access to Toilet Facilities: one if toilet 

facilities are accessible, zero otherwise .64 .23 

Electricity in House: one if house has elec-

tricty at time t, zero otherwise .25 .43 

Number of sleeping rooms in house at time t 2.13 .98 

Modern Walls: one if walls constructed of 

modern materials, zero otherwise .16 .36 
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-
The child specific time invariant variables are sex, birth order, 

age of mother at birth, interval to the preceding birth, and birthweight. 

For approximately half of the children weight was reported only as a 

categorical variable; very small, small, average, large, and very large. 

Weights of 3,5,7,9, and 11 pounds were assigned in those cases and an 

approximate weight variable was created which takes on the value zero if 

real weight was reported and the approximate weight otherwise. These child 

endowment variables should reflect only their inherent biological relation­

ship to longevity as long as all other parental inputs are observed. Weight 

at birth is, for instance, in part determined by pre-natal maternal health 

care although it is clearly an endowment of the child at birth. 

The household or faaily-specifictime~invariant variables consist of 

parental schooling levels and parental ages. Notice that- together with 

age of mother at each birth, age of mother at the time of the survey 

fixes the cohort of each child. Of course, the effect of these 

variables cannot be disentangled from the fixed effect since they do not 

vary within families. However, they will enter in the second stage of our analysis. 

The child-specific time-varying variables include a dichotomous breast­

feeding variable, Le., whether, at any time t during the 24 months of potential 

life we consider,that the child is being breastfed, and a set of variables 

which accounts for the number of other live siblings of different ages 

with whom household level inputs must be shared at each time t of the 

24 month period. 9 This latter set is divided into four categories, the number of 

live siblings under a year old, the number between one and five, the number 

between five and ten, and the number between ten and fifteen. It should be 
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noted that the manner in which time varying variables enter the formulation 

of expected duration, namely as integral expressions over the entire po­

tential life of the child, requires information about the dynamic 

variables over potential life independent of actual duration of life. For 

children who die (prior to 24 months), it is therefore necessary to know 

What the value of the time-varying variable would have been had the child 

not died. Clearly, if a child dies while being breastfed, the necessary 

information is not available. Operationally, we have assigned the average 

duration of breastfeeding of those childrenwithinthe family who survived 

for at least 24 months to those children who were not weaned prior to 

death. This provides an unbiased estimate of "desired" breastfeeding since 

we have assumed that random child deaths unexplained by the inputs or the 

fixed effect are uncorrelated with the inputs, although desired breast­

feeding is not measured without error by this procedure. 

The final category consists of family level variables that change 

through time. Since children are born at different stages of the family 

life cycle, each child will face a different profile of each household level 

input even though at any time teach child faces the same level of the input. 

As long as the only determinants of the within-family distribution of these 

inputs at time tare fully captured by the age distribution of living 

children at time t and possibly also by child endowments, or as long as 

the inputs are "public" goods, the family level variable will capture the 

child-specific input. These variables consist of family composition other than 

siblings,noo-parental child care time, parental home time, and housing and sanitation 
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characteristics as described in Table 1. 

The date of birth and date of death were not always known precisely 

for each child. Length of life was, nonetheless, computed 

in fractional months for each child by assigning values for the missing 

information based upon the assumption that the d,y and month of birth (and 

death) followed uniform distributions. When birth and death. information 

were both missing, death dates were constructed conditional on the death date be­

ing subsequent to the birth data. In addition, length of life was 

always constrained to be as least as large as the duration of breastfeeding. 

Approximately 18% of all children who died had no missing information, 

another 52% were missing either or both the day of birth and the day of 

death, and 21% had no information other than year of birth or year of death.lo 

The population histogram for duration of life of I1alay children 

whose potential life is at least as great as 24 months is depicted in 

Table 2. Almost 8% of all live born children die within the first 24 

months. Over 1% die in the first 2 weeks and over 5% die within the first 

six months. The density is basically flat after 12 months although the 

number of deaths is so sparse that it may not be possible to accurately 

ascertain the shape of the density after 12 months. We attempt to capture 

the shape of the density by the inclusion of a first month dummy variable. 

There are not enough deaths among children with potential lives under 24 

months to estimate the shape of the density with more detail. 

https://death.lo
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Table 2 

Duration of Life Frequency Distribution in Months: 
Children with Potential Life of 24 Months or More 

Length of Life, Frequency Per Cent Cum. Per Cent 

0 - .49 25 1.136 1.136 

.50 - .99 12 .546 1.682 

1.00 - 1.49 10 .454 2.136 

1.50 - 1.99 13 .591 2. 727 

2.00 - 2.49 10 .454 3.181 

2.50 - 2.99 6 .274 3.455 

3.00 - 3.49 7 .318 3.773 

3.50 - 3.99 6 .274 4.047 

4.00 - 4.49 8 .362 4.409 

4.50 - 4.99 7 .318 4. 727 

5.00 - 5.49 10 .454 5.181 

5.50 - 5.99 1 .045 5.226 

6.00 - 6.49 1 .045 5.271 

6.50 - 5.99 9 .365 5.636 

7.00 - 7.49 4 .182 5.818 

7.50 - 7.99 2 .091 5.909 

8.00 - 8.49 4 .182 6.091 

8.50 - 8.99 5 .227 6.318 

9.00 - 9.49 2 .091 6.409 

9.50 - 9.99 1 .045 6.454 

10.00 -10.49 3 .137 6.591 

10.50 -10.99 4 .182 6. 773 

11.00 -11.49 5 .227 7.000 

11.50 -11.99 0 .ooo 7.000 

12.00 -12.99 4 .182 7.182 

13.00 -13.99 1 .045 7.227 

14.00 -14.99 2 .091 7 .318 

15.00 -15.99 2 .091 7.409 

16.00 -16.99 1 .045 7 .454 

17.00 -17.99 1 .045 7.500 

18.00 -18.99 l .045 7.545 

19.00 -19.99 3 .137 7.682 

20.00 -20.99 2 .091 7.773 

21.00 -21.99 1 .045 7.818 

22.00 -22.99 l .045 7.864 

23.00 -23.99 0 .ooo 7.864 

24.00 - 2027 92.136 100.000 
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IV. Results 

A. The Production Function Estimates 

The estimated parameters of the density function are presented in Table 3 

both with and without a fixed effect. The magnitude of the coefficients 

are interpreted as the effect of unit changes on the monthly probability 

of death; for the time-varying variables the unit change occurs at each 

instant of potential life. Table 4, column 1, converts the density parameters 

to unit effects on life expectancy, i.e., on mean duration. 

Consider first the endowment variables. An extra pound of birthweight 

reduces the monthly probability of death by 1 1/2 tenths of one percent or 

increases expected duration of life (over the first 24 months) by almost 

2 weeks. Using approximate weight yields a similar, though slightly s~aller, 

effect. Females have a lower monthly probability of death and higher mean 

duration of over 3 weeks. First barns have greater likelihood of death 

in each month than do second horns, second horns a greater likelihood of death than 

third horns, and third horns a greater likelihood of death than higher order births. 

Notice that we control for si·bling age composition and age of mother at 

birth; either higher parity children are inherently more resilient 

or parents gain experience in childrearing. Women who give birth at age 

40 or more (given parity, etc.) have children with lower life expectancy. 

We experimented with four other age categories, under 25, 25-29, 30-34, 

and 35-39, but there was no descernible age gradient across these groups. 

Finally, the length of the interval from the previous birth has very little 
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Table 3 

Probability Density Function for Waiting Time to Death-­

First 24 Months of Life 1 

(t-statistics in parentheses) 

Birth W~ight 

Birth Weight {approx.) 

Sex 

Birth Interval 

First Born 

Second Born 

Third Born 

Mother over 40 at Birth 

Number Live Siblings Under One 

Number Live Sibling One to Five 

Number Live Siblings Five to Ten 

Number Live Siblings Ten to Fifteen 

Number Relatives Under Age 
Ten Present 

Number Relatives Over Age 
Ten Present 

Number Grandparents Present 

Child Care Help 
Own Children 

Child Care Help 
Grandparents 

Child Care Help 
Other 

Electricity 

Access to Piped Water 

Access to Toilet Facilities 

Number Sleeping Rooms 

Modern Walls 

Undivided Attention of Mother 

Fixed Effects 

-.001517 
(5.07) 
.000577 
(3.18) 
-.002762 
(5. 4 7) 
.000021 
(.86) 
.008960 
(4.57) 
.003613 
(3.19) 
.001971 
(2.10) 
.009541 
(3. 73) 
.033070 
(9.70) 
.004615 
(5.92) 
.000086 
(.19) 
.000021 
(.05) 
.000177 
(. 31) 
-.001106 
(2.09) 
.000374 
(.50) 
.005713 
(1.18) 
-.008363 
(2.16) 
-.019120 
(4. 38) 
-.000772 
(.60) 
.000824 
(. 55) 
.002043 
(1.12) 
.000631 
(1.46) 
.001087 
(.70) 
-.006271 

No Fixed Effects 

-.000871 
(3. 48) 
.000250 
(2. 47) 
-.001939 
(3. 38) 
-.000038 
(1. 87) 
-.003311 
(1. 94) 
-.003465 
(2 .63) 
-.000341 
(.32) 
.003915 
(.99) 
.039 310 
(9. 04) 
.000097 
( .13) 
-.001253 
(2. 27) 
-.000438 
(1.06) 

-.001017 
(2.67) 
.000543 
(1.54) 
.000733 
(1.48) 
-.001432 
(. 34) 
-.002957 
(1.21) 
-.007998 
(2.25) 
-.005577 
(6.61) 
.001180 
(1.4 7) 
.000388 
(1.36) 
.000014 
(.05) 
.001524 
(2.01) 
.001967 

(1.53) (1.4li). 
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Table 3 continued 

Divided Attention of Mother -.016060 -.002608 
(2. 35) (1.06) 

Father's Time at Home .001205 .001959 
(.35) (1.48). 

Breastfeeding -.003328 .001408 
(2.45) (1.43) 

First Month (Dummy) .015650 -.004241 
(1.01) (.30) 

Constant .010990 
(3.69) 

1
The coefficients are the parameters of the probability density function 

given by equation (6). A positive (negative) sign implies an increase 
(decrease) in the instantaneous probability of death. 
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Table 4 

Estimated Mean Duration Effects from Probability Density Function 

and from Ordinary Least Squares - Fixed Effects 

Probability Density 
1Function 

Birthweight .437 

Birthweight (approximate) -.166 

Sex .795 

Birth Interval -.006* 

First Born -2.58 

Second Born -1.04 

Third Born -.568 

Mother over 40 at Birth -2.75 

Number Live Siblings under One -9.52 

Number Live Siblings One to Five -1.33 

Number Live Siblings Five to Ten -.025* 

Number Live Siblings Ten to Fifteen -.006* 

Number Relatives under Age Ten Present -.051* 

Number Relatives over Age Ten Present .319 

Number Grandparents Present -.108* 

Child Care Help - Own Children -1.65* 

Child Care Help - Grandparents 2.41 

Child Care Help - Others 5.51 

Electricity .222* 

Access to Piped Water -.237* 

Ordinary Least 

Squares 

.401 

-.083* 

•776 

.001* 

-4.60 

-2.75 

-1.93 

-2.90 

-6.30 

-1.87 

-.560 

-.263* 

-.000* 

.540 

-.280* 

-3.36* 

3.92 

3.13 

1.45 

-.620* 



---

-30-

Table 4 continued 

Access to Toilet Facilities -.588* -1.68 

Number of Sleeping Rooms -.182* -.210* 

Modern Walls -.313* -.650* 

Undivided Attention of Mother 1.81* 3.52* 

Divided Attention of Mother 4.64 6.19 

Father's Time at Home -.347* -1.05* 

Breastfeeding .033 .033* 

1 2aEt --- = J x density function parameters; T = 24.
dx 2 

aEt (LBF - PL)x -.003328; LBF • 14, PL = 24; LBF = length of breast­
aLBF feeding, PL• potential life. 

*indicates standard error that exceeds one-half coefficient value 
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effect on the mopthly probability of death. But, lengthening that interval, 

given parity and mother's age at birth, will generally alter the age compo­

sition of living siblings which is also included in the regression. Thus, 

as in the case with the other endowment variables, interpretations must be 

made with care. Indeed, since we do not have explicit information about 

the distribution of inputs within the family, the endowment variables such 

as sex and parity may reflect the allocation process unless that 

process depends only upon child age. 

The existence of siblings under one year old during the first 24 months 

of life has a substantial negative impact on life expectancy. For example, 

being separated by 18 months from the next birth as opposed to 

a 24 month separation, i.e., number of live siblings under one equals .25 

as opposed to zero, implies a reduction in life expectancy of 2.38 months. 

Note, however, that the mean number of live siblings under one is only .08 

and that the standard deviation is .15_.ll An increase in the number of 

older live siblings also increases the monthly probability of death, parti­

cularly for siblings under five. An additional sibling between the ages 

of one and five reduces life expectancy in the first 24 months by 1.33 

months. Live siblings over five, however, have much smaller impact on survival. 

Additional relatives in the household over age ten increase life-expectancy, 



-32-

possibly because they free parental time for child care, while additional relatives· 

under ten and grandparents are detrimental to survival though the effects 

are measured imprecisely. Child care help supplied by older siblings in-

creases mortality while child care help by grandparents or by others includ-

ing relatives and servants increase survival. Given that we do not have 

information on exact parental child care time, it is not clear whether 

these alternatives replace or add to parental child care time on net. 

Moreover, within the range of the variables observed in the data, the 

effects are not exceptionallv lar2e. 

The housing and sanitation facilities are generally not important 

determinants of child mortality. Indeed, only electricity has the anticipated 

sign. Selectively eliminating subsets of these variables does not change results for 

the others and eliminating the entire group has no influence on the other findings. 

An increase in the fraction of each week spent at home by the mother, 

regardless of whether some home time is spent in production of items for 

market sale, reduces the monthly probability of death. Surprisingly, 

divided attention has a larger and more precisely measured favorable impact. 

To get some notion of magnitudes, a one standard deviation increase in un-

divided attention time (.20) increases mean duration of life by about 10 days while a 

one standard deviation increase in divided attention time (.10) increases mean 

duration by about 14 days. Father's home time, however, increases mor-

tality but the magnitude is not very great and the point estimate not precise. 
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Breastfeeding is estimated to reduce the monthly probability of death 

by three-tenths of one percent. Thus, a child who is not breastfed has 

a cumulative probability of death over the first 24 months of life that is 8% 

higher than a child breastfed for the entire 24 months. 

Put differently, increasing the length of breastfeeding by one month at 

the average length of breastfeeding of about 14 months, increases the ex­

pected length of life by 1 day; breastfeeding the first month, however, 

increases mean duration by 2 1/2 days. 

Finally, the dummy variable for the first month indicates a likeli­

hood of death in the first month that is .0157 higher than in any of the 

next 23 months. The uniform probability of death is .0033 per month so 

that the greater risk in the first month is substantial. Unfortunately, 

a more detailed description of the density function is not possible with 

this data. Such an analysis requires a significant number of deaths of 

children whose potential life is under 24 months and we have only a handful 

of such observations. The same shortcoming prevents the estimation of 

duration interactions either with endowments or time-varying variables. 

Table 3 also presents the results without fixed effects. Families 

with different inherent monthly probabilities of infant death are anti­

cipated, according to the theory of the first section, to choose differ­

ent life-cycle input paths. A comparison of the two columns in Table 3 

reveal substantively altered point estimates for some of the variables. 

For example, birth order effects are essentially reversed, the effect of 

live siblings between one and five is anPihilated and the effect of live 
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siblings five to ten reversed in sign. Reversals also occur for relatives 

under ten, relatives over ten, undivided attention of mother and breast­

feeding. As a general rule, the norr-fixed effect estimates are biased down 

when the fixed effect estimate is positive and biased up when the 

fixed effect estimate is negative. This suggests 

that families with inherently less healthy children attempt to compensate 

by purchasing more inputs. 

The second column of Table 4 provides estimates obtained from the 

naive regression of actual duration of life on the same determinants, 

except that time-varying variables are set equal to the mean value over 

potential life. In addition potential life and its square are added as 

regressors. The essential qualitative results are preserved, but quanti­

tative results are greatly distorted, both in the case of static and dyna-

mic variables. 

B. The Effect of Exogenous Mortality on Fertility and Child Schooling. 

Since most of the women in the sample are young, fertility is for many 

not complete and many children are still in school. We, therefore, adopt 

a waiting time model for both of these decisions. With respect to fertility, 

·1· 12we cons ider t he uration to f irst birth as a proxy f or 1d competed f erti ity. 

The upper truncation point (maximum potential duration) is set at 300 months, 

i.e., we estimate the density function only up to that point. In the case 

of schooling, we assume that all children begin at age six (we do not know 

school entry ages) with the upper truncation point set at 6 years of schooling. 

Children who have already left the household have no ~eported schooling informa­

tion~13 Children who died prior to entering school, but who had a positive 

potential level of schooling, are treated as follows.If all decisions are 

https://follows.If
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made at the beginning of the lifetime and are unalterable as is assumed 

in the statiemodel of the first section, then children who died prior to 

receiving formal schooling should be assigned a zero level of schooling. 

Of course, even if this is correct, it is the schooling level of surviving 

children that is of interest for testing the demographic transition hypothe-

sis. Therefore, we also perform the analysis excluding those children who died prior 

to entering school. It would also be correct to exclude those same children if house­

holds adapted to the death of a child by altering their household level allocation of 

resources to schooling. But, as already noted, sucha.dynamic response 

may not be compatible with the procedure used to estimate the mortality 

fixed effect. 

The regressions in each case consist of the family level fixed effects 

estimated from the waiting time regression shown in Table 3 and of all 

other family level variables which might influence life-expectancy, namely 

parental schooling levels and parental ages (cohort). It is easy to show 

that if the estimated fixed effect is the true fixed effect plus the 

effects of these other variables on duration of life, incorporating these 

other variables in the fertility and schooling waiting time models permits 

consistent estimation of the impact of the fixed effect on fertility and 

1 . 14 
schoo ing. There is the additional problem that the estimated v. measures 

J 

the true v. with error because families have only a finite number of children.
J 

However, the sampling variances of the vj 's appear to be very small 

relative to the magnitude of the fixed effect. Consequently, correction 

for measurement error makes little difference. 
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15
Results are reported in Table 5. The first column reports the effect 

of altering the inherent or exogenous family compon~nt of the monthly 

probability of child death (v.). The second column uses the same waiting 
J 

time formulations but substitutes the actual mean family monthly pro-

bability of death, i.e., it assumes that mortality is exogenous in the 

sense that it is uninfluenced by input choices. 

With respect to fertility, it is estimated that a family with a 1% 

per month higher probability of death of children within the first 24 months 

will have the first birth 2.9 months earlier (given a maximum age at first 

birth of 300 months). Since the average interval between births is slightly 

more than 30 months, the family would have .1 more children over its life­

time if no other intervals were changed. 

The schooling results imply that each live-born child in a family 

with a .01 higher monthly death probability would, on average, have .4 

fewer years of schooling; each surviving child, however, would receive 

almost the identical average level of schooling. The schooling 

of surviving children, therefore, appears invariant to exogenous mor­

tality, although total family resources devoted to schooling is lower in 

families with higher inherent mortality. It is possible that the mortality 

fixed effect calculated only over the first 24 months of life is not closely 

related to human capital investments that don't begin until age six. 
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Table 5 

The Effect of Exogenous and Endogenous Mortality 

on Fertility and Child Schooling1 

(t-statistics in parentheses) 

Fixed Effect (v.) Mean Monthly 
(exogenous) J Probability of Death 

(endogenous) 

Waiting Time to First Birth .0063 .0144 
(1.64) (1.20) 

Duration of Schooling 2.254 14.87 
(all children) (4.48) (11.87) 

Duration of Schooling -.1858 1.55 
(surviving children) ( .55) (1.22) 

1 see Table 3, note 1. 
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The results, therefore, imply that exogenous increases in mortality increase 

fertility but do not affect the schooling of surviving children. The 

former is consistentwith the hypothesis that exogenous improvements in medi­

cal technology may, in part, account for the positive correlation between 

fertility and mortality observed in aggregate time-series observations 

for many countries. Increased schooling levels, however, may have other 

causes. Results are quite different if these models are estimated using 

the mean monthly probability of death which presumably includes preferences 

as well as endowments. Both the fertility and schooling responses are great­

ly magnified as compared to the influence of exogenous mortality. Families 

who "choose" to have higher mortality, also choose to have higher fertility 

and lower schooling, even of surviving children. The hypothesis concerning 

the relationship between medical technology and the demographic transition 

is much more strongly supported in the cross-section when preferences 

are not purged from the measure of mortality. 
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V. Conclusions 

In this paper we have devised a regression method for estimating a 

family-specific endowment of child survival which incorporates time vary­

ing regressors in a static lifetime decision model. In estimating the 

production function for life expectancy we found important connections 

between child endowments, such as sex and parity, and survival. Parental 

choices about birth spacing, child care time and breastfeeding also were 

found to influence life expectancies. In the second stage of the analysis, 

we found that families with higher endowed mortality rates began child-

bearing earlier and presumably would ultimately have more children, but Jurchased 

equal schooling for their surviving children. These fertility results are consistent 

with the interpretation of the demographic transition which rests on exo-

genous medical imfrovements as a contributing cause. 
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Footnotes 

1The compensated price effects are those obtained from a model which 

omits the production function (2), and thus reflects only properties 

of the preference function. If additional structure is imposed on the 

model such as the interactive prices of Becker and Lewis (1973), assump­

tions about the preference structure would still be required to obtain 

predictions from this model (see Rosenzweig and Wolpin 1980a). We, there­

fore, ignore this added complexity. 

2
This lower case vis opposite in sign to the upper case Vin the 

previous section. 

3
rt is important to notice Tij is not estimated and is not a function 

of the unknown variables. 

4 2Since Tij is a random variable, we also require for consistency that 
2

E(u1j/Tij' other regressors) c O. 

5 This standard transformation, which eliminates the across group 

variation and leaves only within group variation is of the form 

where R.j is the sample mean of the Rij for group j. Because we must 

weight each observation by Wij' we must use 

-w
R*.. = w .. (R .. - R • . ) 

1.J 1.J 1.J J 

where 

-w 2 2
R •. = L w .. R .. /Lw ..

J i 1.J 1.J i 1.J 
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6rf fixed effects are not present the procedure is greatly simplified 
. 

to simple two stage weighted least squares. 

7Note that the behavior of the hazard function through time can always 

be inferred from the p.d.f. 

8Transformations of time have been used before in waiting time models. 

For example, the pdf for the Weibull waiting time model is 

r-1 a rf ( t) = re t expf-ut J 

and if we measure time in -r units where -r=t,r we obtain the simple 

exponential model 

By transforming time a Weibul model can be converted to an exponential 

model where the "forgetfulness" property is restored. 

9 some household level inputs may be more akin to public goods in which 

case the number of siblings is irrelevant. 

10This created some difficulty in deciding upon whether a child died 

while being breastfed when actual dates of birth and death were missing. 

For children breastfed less than 3 months, a separate question was asked 

about the reason for weaning one of the answers to which was that the child had 

died. For those breastfed longer than three months, we followed the conven­

tion of assuming the child died prior to desired weaning only in cases 

where our estimated month of death occurred at the month of weaning. 

Veleting the 19 households for which this problem arose did not alter the 

results significantly. 

11This effect is quite large and at least suggests the possibility that 

the random death of a child may induce a shortening of the interval to the next 

child. This may be particularly true when a child dies while being breastfed 
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since it is thought that breastfeeding provides natural contraception. 

Our assumption is that the family, even in this case, maintains its opti­

mal lifetime plan, i.e., the next birth occurs at the same date as if the 

child had not died. Note that the fact that we consider only the first 

24 months of life mitigates the problem if adaptation to a child's death 

influences decisions by a lag of more than 24 months. Had we chosen a 

potential life of, say, 6 months the replacement interpretation would 

not arise at all. To check robustness, we deleted the variable number 

of live siblings under one, and found no substantial differences in results. 

12 
rt is possible that they merely start earlier in order to have a 

longer period in which to replace children when they die. As already 

noted, this dynamic behavior may not be consistent with our estimation 

strategy for the fixed effect (v.).
J 

13
0mitting these children may not be innocuous if schooling is related 

to parity, and if, as we postulate, the mortality fixed effect is related to 

age at first birth. 

14consider the general model 

* y = a 1vj + a 2x + E 

Where y is some transformation of fertility or schooling, v. * is the true 
J 
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family specific component of child mortality and xis a representative 

family variable such as mother's schooling. We estimate from the prod~c­

tion function only v., where 
J 

* 
V = V + B Xj j 1 . 

Thus, in the second stage, we estimate 

y = a1vj + (a - a 1s1) x + E,2 

from which a is retrieved. Without knowledge of s
1 

, however, a cannot1 2 

be estimated. 

15There are 2e8 households and 1018 children used in the age at first birth 

regression and the first schooling regression respectively. The same households 

are used in both; the reduction in sample size from the original 311 households and 15 

children occurred primarily because some households had no children old enough 

to have begun school and because children not currently in the household had 

no schooling information. 
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