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THE AGGREGATION OF CONTROLS AND THE AUTONOMY OF SUBORDINATES®

I. The Unique-Supervisee Problem:

In contemporary economic systems, the great majority of people spend their
working hours in a relation of subordination to one or more of the fellow-members
of the organizations to which they belong. When their goals or preferences with
respect to the outcomes of their activities in the organization diverge from
those their superiors would like to see them pursue, their decisions are nor-
mally constrained by orders or rules limiting their "autonomy." How constraining
these orders or rules may be will depend, in part, on the supervisors' perception
of their performance--on the information that reaches supervisors about it,
Supervisors, in general, have a limited capacity to collect, process, and act
upon the detailed information available to their subordinates. They must make
their decisions, therefore, on the basis of aggregated information, whether col-
lected in consolidated form from their subordinates or summarized from the more
detailed reports they receive "from the field."

My purpose here is to analyze precisely an intuitively obvious notion: that
the more aggregated the information available to a supervisor happens to be, the
more autonomy the individuals he supervises will enjoy.

Due to the aggregation of controls, multi-level hierarchies, including
Soviet-type economic administrations, may be far less "centralized" than they
appear to be from a cursory examination of their command structure. Indeed,
there is a parallel between decentralization via the aggregation of controls and
decentralization via the parceling out of linear objective functioms that sub-

ordinates are instructed to maximize.l




In this first section, I analyze the relation between a supervisor and a
single supervisee. In the second, I consider controls over several supervisees.
In the third, I use an elementary game-theoretic formulation to analyze the
strategies open to a supervisor and his supervisee, where the former may either
accept aggregated information or 'inspect" (at a cost) and the latter may either
take advantage of the possibilities opened up by aggregation or behave as if the
supervisor were actually going to inspect.

The model about to be described relies heavily on an approach to informa-
tion theory developed by Jacob Marschak2 and later by Roy Radner,3 which may be
summarized as follows in the context of our problem.

Let Y £ {y} denote the set of possiblas outcomes of supervisee k's actions.
We assume all vectors in Y to be in R®. (The elements of a vector v in Y may,
for example, be quantities or numbers of n different goods or expenditures cor-
responding to n budget items.) Tt is taken that no other individual in the
system can have more detailed information about these outcomes.

A partition of Y is a set of possible descriptions of the outcomes of k's
actions. We have just seen that k's information about the outcomes of his own
actions corresponds to the finest partition {y} of Y, where every element is
represented separately. Suppose the n elements of every vector y are parti-
tioned into g subvectors where q is smaller than n. Consider now subvector yi
of a vector y in Y, defined by this partition denoted z. Let z be the descrip-
tion of k's outcomes in a certain period communicated to a supervisor h. All
the n, elements of yi defined by the finest partition {y} are mapped into a
single element zs of z, where Zs is our Yaggregated vector' corresponding to

partition C[.




In this paper, the mapping is assumed to be linear. That is,
T
io
z, =

5 yg, where 7.0 is element j of subvector ﬂlo, which is defined by

™
j=1 o
the same partition r of the n elements in a vector of "aggregation prices™ m ;
and y; is the j'th element of subvector yl G=1, ... , n.; 1i=1, ... 5 Q)
Aggregation may be by tonnage or number of items, in which case the elements of
any subvector 7° will all be unity; by some indicator of quality (yarn count

for cloth, calorific value for fuels); or by any conventional price system.

Any vector y in Y is thus aggregated to a vector z with the aid of an aggre-

gation matrix HO, the rows of which zre obtained by partitioning the set of the

o) . .
elements of 7w according to the same £ already used to define the subvectors of y.
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We have thefefore:
z = noy
where z is an aggregated vector in R (q < n).
The main idea uss¢ in this model of the supervision relation is that once
the elements of yi have been "scrambled! in Zss they cannot be retrieved individu-
1

ally. Supervisor h cannot distinguish between z; and Z;, as long as they are

equal, even though they mey have been aggregated from distinct subvectors in y.




Two examples: (1) yi is a vector of the quantities produced of n. different
kinds of steels by a subordinate mill; zo is the combined tonnage of these steels;
the supervisor of the mill {main office of a corporation or a ministry in a cen-
trally managed economic system) receives the message zZs from the mill, which it
cannot unscramble to differventiate the quantities produced of the various kinds
of steel. (2) y; is the expenditure on a specific item in a school budget; z;
is the combined expenditure on ng such items. The school superintendent can
control zs but not the expenditures on the individual items y§°

A supervisor may receive very detailed information from a subordinate but
be incapable of using it in this form. If he has to aggregate yi to zZs and if
he loses the individual elements y§ in so deing, one would be tempted to con-
clude that he might just as well have received the message in already aggregated
form, although it is conceivable that, in situations where supervisees were un-
certain as to how the information might be employed, a supervisor might still
wish to collect information in more detailed form than he could use.

We begin with the analysis of the behavior of a supervisor controlling the
performance of a single supervisee.

In the present model, it is assumed that a supervisor has preferences P
(a complete preordering) over all possible outcomes of the activities of his
supervisee, where these outcomes are described according to the finest partition
of these outcomes {y}. For reasons that will be spelled out later (which have
to do with his uncertainty regarding the capabilities of the supervisee), he
will accept any performance yielding him a minimum UM of satisfaction. To be

precise, he will accept any vector y in Y at least as desirable as some vector y'
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in an indifference class M.tP A performance during a given period is "acceptable"
when the supervisor imposes no penalty on his supervisee and/or takes no action
to correct his future behavior (in case the enviromment is expected to stay the
same in subsequent periods). The "acceptable set'" of the supervisor, the set of
vectors y at least as desirable as any vector in M, is denoted G. This set is
assumed to be closed. It must also be bounded from below: there always exists
some vector y with the property y > y for all y in G. Finally, I assume non-
satiety: if y' is in G, then any vector y such that y > y' must also be in G.
These three assumptions seem natural and realistic for many situations that might
be analyzed.

What criteria of acceptability will the supervicor apply if the information
he receives about hits supervises's performance is aggregated? Consider a
q-dimensional vector 2% obtaired by aggregating an n-dimensional vector ye in
the acceptable set G. The supervisor will not be able to distinguish z° from
some other vector ze_3 with identical elements but éggregated from a vector yé
not in G. The basic assumption of this paper is that the supervisor will accept

z° if he exercises what may be called "aggregated controls," even though he
would not have accepted ye-3 if he had been able to check on his subordinate's
disaggregated performance.5 As we shall see presently, the supervisor may find,
if he exercises such aggregated controls, that the performance of his "sector"
has deteriorated. We will consider this possible deterioration from the super-
visor's point of view in section 3. For the time being, our concern is with

the possibilities opened up for the supervisee as a result of the aggregation

of controls.



Example: a manufacturer of shoes instructs one of its plants to produce
at least 50,000 pairs of shoes in the next quarter with an assortment by sizes
corresponding to last quarter's actual sales. The plant produces 50,000 pairs
but discreetly violates the assortment order. It is too expensive for the
manufacturer to check on the assortment. The retail stores receiving the un-
balanced assortment make no complaint because there is a seller's market and it
is hard to get good shoes. The supervisor cannot act otherwise than accept the
plant's performance.

It may be presumed that if the costs of obtaining information are high, a
supervisor will not check on the detailed performance of a supervisee, unless
he believes that the losses he may be suffering from the latter's failure to
comply to his detailed orders are great enough to justify the expense of finding
out what is really going on '"below deck" (through an audit, a census, or a
random sample).6

The formal consequences of the assumption made above is this. Where the
information reaching a supervisor is aggregated, his acceptable set GR will
include, in addition to G, any vector y which, upon aggregation to z, will be

identical with a vector z° aggregated from a vector ye in G. TFormally:

R .
G = {ylHOy = Hoye , all ye in G}.

To fix these ideas, we suppose the supervisee transforms inputs (negative
elements of y) into outputs (positive elements of y) per period according to a

routinized technology known to the supervisee but not necessarily, in such detail

at least, to the supervisor. The set Y contains every feasible vector y.




In addition to assuming that this set is closed, I shall also confine my
analysis to cases where it may be assumed to be convex, thus excluding important
instances where economies of scale are powerful enough to 'deconvexify' the
production set.

The inputs used in these transformation activities are subject to various
constraints (on the availability of physical factors of production, of borrow-
able funds, etc.). Some of these constraints are determined by states of the
environment, the probability distribution of which is assumed to be at least
approximately known to the supervisee but not to the supervisor. Given a vector
of constraints ¢ in @, the set of all possible constraint vectors, the vectors y
are limited to a set §w in a particular pericd t where w has occurred (t =1,
... » T). This set is obviously bounded from above, in the sense that there
exists a vector ; such that y i.; for all y in Y. The set §w is called “the
attainable set, given w."

The supervisee i1s either subject to an incentive plan or pursues one or
more self-assigned goals. In either case, we assume that he seeks to maximize
a linear functional my where 7 is a vector of non-negative price weights. The
'vector of incentive prices" w in general will not be identical with the vector
of aggregation prices x°.

The elements of 7 may correspond to market prices if the supervisee is
operating in a market setting and is maximizing profits; but he may also mini-
mize his expenditures (i.e. maximize Ty where y is the subvector of inputs
in vy and~ﬂ- are their corresponding prices) or maximize the value of his output,

re

. . 7 . . . - . . . . .
irrespective of costs. Any linear objective function with weights m will do.




ofs

That there must exist at least one maximizer y" for m on §w in all such cases
is guaranteed by the assumption that Y is closed, which extends to Qw’ and by
the imposition of constraints on Y. These two conditions *together ensure the
compactness of Qw'

| Even though w is a vector of random variables at the time the supervisor
issues his orders (e.g. sets a "plan"), we take it that the constraints are

known to the supervisee during the period in which the vectors y are observed.
Hence he should be capable of finding a maximizer for m on Yw (or at least a
vector in Yw which comes ''close" *+o maximizing Ty in this set).

~

-

The intersection of G with Yw is denoted E,+ It too is obviously compact.

. s . a a . .
Any maximizer for T on E, is denoted y~. Thus Ty"~ is the maximum value that the

supervisee's objective function would assume if he were compelled to produce in

the set G.

We can now offer a reason why Bw, the intersection of §w and G, is likely
to occupy a significant subset of §w° except in rare occurrences where the vector
of constraints is extremely disadvantageous to the supervisee (in case of floods,
unusual cold or hot spells, etc.). If it is costly for the supervisor to inter-
fere directly in his supervisee's affairs or to levy penalties on him for non-
compliance (fines, dismissal, etc.),8 then he must "set" M and hence € in such
a way that, given almost any constraint vector in Q, the supervisee must be
capable of producing in G. This means that, for a "typical" constraint vector w,
some vectors in G will bte interior to ?w‘g

But how can the supervisor set G if he does not have detailed knowledge of

his supervisee's production capabilities in the latter's most detailed nomenclature?




It has to be assumed that, on the basis of occasional inspection, the super-
visor has a sufficiently good idea of the capabilities of his supervisee, under
typical constraints, to determine what he should accept and what he should reject
if he did decide to pay the ccst of obtaining disaggregated information. I assume
also that either G has been set before the vector of constraints w has been re-
vealed (i.e. in a planned economy before the plan has gone into effect) or that

so little information is available to the supervisor about the impact of a

given w on his supervisee's capacities that it will have no effect on his mini=-
mum requirements.

From now on, we shall dispense with the subscript w, although it should be
kept in mind that every set § and E is contingent on the occufrence of a random
vector of constraints w, assuned to remain fixed for the period under consideration.

The autonomy of the supervisee is now defined as the ratio of the value of
his objective function constrained by the necessity of producing a vector y
acceptable to his supervisor to the value of his objective function in the ab-
sense of this organizational constraint,lo If the supervisee were compelled to

produce in G, his autonomy would be the ratio of nya to ny

!, o

, where y 1is a maxi-

a,
b2

mizer for 7 on Y. We will confine our a‘tention to cases where every maximizer

o

y“ for ¢ on § lies outside E (otherwise the relation between supervisors and

supervisees would be so harmonious as to be totally devoid of interest).ll
The intersection of GN with Y is denoted R, It too is obviously compact

(since § and GR are themselves compact) and hence contains at least one maximizer

for any price system 7.

o) - R o ., .
Let us dencte by y a maximizer for w on E. wy 1is then the maximum value
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of his objective function that a supervisee can attain (given ) when controls
are exercised in aggregated form.

Our first task is to figure out whether Wyo is greater or just equal to
“ya. (1t cannot be smaller, since E, and hence ya, is contained in ER.)

This problem is tackled in two stages. First we find out what the effect
on enterprise autonomy would be if the supervisor could not distinguish vectors
.§ and ye in %, where ye is in B and y is not, as long as they both aggregated
to the same value no§ (= ﬁoye). I call this case "aggregation from n dimensions
to scalars.' We then go on to partial aggregation of vectors, such that a
supervisor cannot distinguish y and ye as long as Ho§ = Hoye, where T° has more
than one row. It turns out chat these two cases are linked in a significant way.

What can be said about ER in the case of aggregation from n dimensions to
scalars? Consider ym, a minimizer for ™ on E. (Such a minimizer must exist
since E is closed and bounded from below.) We now define E' as the set of
vectors y in Y such that ﬂoy 2_ﬁoym° It is easy to prove that E" is identical
with ER.l From now on, therefore, if we wish to find a maximizer yo for ¢ on

R . . . . .
E", we will seek it among the vectors y satisfying the condition ﬂpy Z‘ﬂpym.

We first note that if 7 is identical with m° and, as already assumed,

2 %

* a o * . . ¥
Ty > 7wy , then 7y must equal my . Or, to put the point in another way, y
. R - s 13
must be in E° and be a maximizer for 7 on this set. The autonomy of the
supervisee is complete. This obvious result may be interpreted as follows.
If the production vectors of the supervisee are aggregated with the help of
incentive prices or if supervisees are subject to an incentive system geared

to their aggregate output expressed in terms of quasi-prices (e.g. if they



- 1i -

receive a bonus based on aggregate tonnage produced), then ER must include all

ote A

the maximizers y", whether or not any of these yh are included in the set E of
points that h would consider acceptable under inspection.

More analytically interesting are the cases where T and 7° differ.

A proposition, formally proved in a previous paper,lu is that if (1) § is

compact and convex, (2) ﬂy” > ﬁya, and (3) Tfoya > Tfoym, then Tfyo > 'ﬂya. The new,

and fundamental assumption, is that Woya > woym. To put the assumption different-

ly, the vector ya is an interior point of the half space generated by the hyper-

o m e . . a &
plane 7y through y . This ensures tha® some convex combinations of y and y

. e . . ® . . R L. . .
with a positive weight on y will be in E°. Since all such combinations are worth

. a _a - . R )
more at prices 7 than y , y cannot be a maximizer for m on E. Hence any maxi-

. R X X - a .
mizer for m on E must be worth more than y . The autonomy of the supervisee has
. . 15
increased as a result of the aggregation g.
Diagram 1 illustrates, in two dimensions, the nature and extent of the

increase in the supervisee's autonomy.

0
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0 Cutput of Good 1

Diagram 1
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In Diagram 1 above, Y is represented in the supervisee's disaggregated nomencla-

ture. It should be observed that yh is located on a straight-line segment (from

]
yo to L) with a slope equal to that of w.

In the absence of any restraints imposed by the supervisor on his output
mix, the supervisee would maximize his payoff 7wy at y“ or at any point on the

’,

straight-line segment on which y“ is located. If he were obliged to produce an

output mix in G, he could do nc better than produce at point ya. His autonomy
could then be measured as the ratio OU to Oy"~ If the supervisor were willing
to accept any point in E worth as much at aggregation prices 7° as any arbitrary

point in E, the supervisee would maximize his payoff at yoq His autonomy would

. gu oV . . . . .
have increased from —, to ——,. Such an increase is evidently possible since

Ov Dy & _
. ey y . s . P o m
the basic condition of our first proposition is satlsfled-—woya exceeds 7 ¥y

-

(e.g. ya is an interior poirt of the half space generated by the line ﬂoy
through ym).

Suppose that G, instead of bheing bounded from below by the unbroken curve M

= . t
going through ym and vy~ were bounded by the curve M' through ym . The payoff

1 ~ ! ~1
of the supervisee could then be increased from 7y~ to my . At y  he would

(OB

o’
o«

enjoy 100 per cent autcncmy, inasmuch as wyo = 7y . From this we conclude that

. . . . . ; . o]
there is a strictly monotonic (inverse) relation between the ratio 7 ym to

ﬂoya and the ratio wya to wyo, up to the point where wyo = ny“.le In other

words, the smaller the vatio of the minimum value at aggregation prices of

points in E to the valte at these prices of ya, the greater will be the autonomy

enjoyed by the supervisee.

. a
For given y ', y

X
oo

m . . e s
, and v, this model also allows us to predict the minimum




increase in autonomy that would result from the aggregation of controls with
the aid of prices 7°. The following proposition is demonstrated geometrically
for two goods, but it is easy to prove it algebraically for any number.l7

We denote by A the maximum potential increment in the payoff of the super-

™

R R .. a . :
visee, starting from a maximizer on E such as y , if all controls were removed.

ote

. % a ] o * . o a o %
A is equal tomy - my . Next we compute m y and the differences vy -7y

and ﬂoya - ﬂoym, which are denoted y and § respectively. The proposition is

that the minimum increment in the supervisee's payoff, irrespective of the cur-

5 8 . . .
vature of (convex) Y, equals §-A.18 In other words the fraction of the maximum

potential increment in payoff A resulting from the aggregation of controls is

$ . . . L. .
at least 7 the ratio of the difference in the value at aggregation prices of

- - 2
kY

ya and ym to the difference in the value at aggregation prices of ya and y .

Good 2

Diagram 2




- 14 -

N7

In Diagram 2 above a line has been drawn between points D (ya) and K (y“).
Since § is convex, all the points on this line must bhe in Y including M, the
point where this line intersects with the line woy through ym.

We first observe that B has the same value at prices ™ as D (ya), C (ym)

. s DR
BQ° which in turn equals oX (propor

tional segments of lines crossed by parallel lines). Consider now the triangle

DXK. Clearly §§-= §§~(since RM is parallel to the base of the triangle XK).
D

Shifting to triangie DXU, we observe that =% = %%‘(since MV and DU both have

DK
uv _ uv .
;\‘J:K' = T” and UV

as R, and Q as X. The ratio %—is equal to BC

the same slope 7). Thus A gy which was what we were
i

S
Y
trying to prove.

That UV is only a minimum is appavent from Diagram 2. If we were to draw

a line with slope o through yo, it would intersect OK considerably to the

right of V. But we cannot predict the precise location of yo. About all we

Te

can say is that, given the location of ya and y“ on the efficiency frontiepr

gf_i} the increment in payoff beyond $-A will be greater, the greater the curva-
ture of the curve linking ye-1 and y*,lg

It is worth noting that the increase in autonomy due to the possibility
of producing an aggregated vector in GR, as compared to the obligation of pro-
ducing a disaggregated vector in G, is related to the elasticity of substitu-
tion among the different goods in the supervisor's preference function: the
smaller this elasticitv for any pair of goods, the greater will be the increase
in autonomy resulting from the supervisor's aggregation of controls. Conversely,
if goods 1 and 2 in Diagram 1 had been related at ym by an infinite elasticity

. . . . o - .
of substitution in the supervisor's prefereaces, y would have been in G, and



there would have been no increase in autonomy resulting from aggregation.
(Autonomy would of course have been greater to begin with.)

We now turn to the more difficult (and more realistic) problems raised by
partial aggregation.

Sufficient conditions for an increase in autonomy are fairly self-evident.

go

. . e s . o}
We begin with a partitioning of 7° into subvectors nl to 7° and a corres-

ponding partitioning of y and w. As we have already seen, the i'th row of
matrix N° is a vector of n elements, the i'th subvector of which equals nio,
consisting of n. elements, and all other elements zre equal to zero, and the
matrix 1° maps production vectors in n-dimensional space into vectors in g-
dimensional space (1 < g < n). The acceptable and attainable set under partial
aggregation is defined as:

o e

R v%; v e E}

£ {yIHOy =1

The procedure we are about to follow is this. After locating a given mini-

mizer ya in E we pick out a subspace defined by a row of HO—-say the i'th--and

~ -

construct a set containing all the vectors in Y that are identical with ya except
in the i'th subspace. We then look for a vector in this set whose i'th subvector

is worth more at the prices listed in the i'th subvector of 7° than the i'th sub-

a . . . . . .
vector of y  itself. If this vector exists, we see immediately that it must be

worth more at prices than yablg

If it does not, we go on to the next subspace
and eventually investigate every one of the g subspaces to find at least one
vector with the desired properties. Eventually the procedure may be repeated

. - . a | \ . .. cas
with other maximizers for T on E if y 1is not unique. A sufficient condition

e as s . . . . .
for finding a vector y  with the desired properties in some subspace i of the set
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there would have been no increase in autonomy resulting from aggregation.
(Autonomy would of course have been greater to begin with.)

We now turn to the more difficult (and more realistic) problems raised by
partial aggregation.

Sufficient conditions for an increase in-autonomy are fairly self-evident.

We begin with a partitioning of 7° into subvectors ﬂlo to 73° and a corres-
ponding partitioning of y and m. As we have already seen, the i'th row of
matrix I° is a vector of n elements, the i'th subvector of which equals “io’
consisting of n. elements, and all other elements are equal to zero, and the
matrix 0° maps production vectors in n-dimensional space into vectors in gq-

dimensional space (1 < g < n). The acceptable and attainable set under partial

aggregation is defined as:
2% = {y|n°% = 1%°%; y° e B}

The procedure we are about to follow is this. After locating a given mini-

mizer ya in E we pick out a subspace defined by a row of HO-—say the i'th--and

~ -

construct a set containing all the vectors in Y that are identical with ya except
in the i'th subspace. We then lock for a vector in this set whose i'th subvector

is worth more at the prices listed in the i'th subvector of 7° than the i'th sub-
vector of ya itself. 1If this vector exists, we see immediately that it must be

worth more at prices than ya°19

If it does not, we go on to the next subspace
and eventually investigate every one of the g subspaces to find at least one

vector with the desired properties. Eventually the procedure may be repeated

. . » - e 8 . . s s e
with other maximizers for T on £ if y is not unique. A sufficient condition

e as s . . . . .
for finding a vector y with the desired properties in some subspace 1 of the set




- 16 -

. . . . . . a . .
previously defined (i.e. of the vectors y identical with y , or any other maxi- .

. . . . . io_ia
mizer for m on E, in every subspace but the i'th) is that 77y~ should exceed
io_im e s e a1
7y~ , where the superscript i refers to the i'th subvector of a vector of

prices or of production. In other words, the same condition that allowed us to

. . a o . .
find a vector yo worth more at prices m than y where 1T consisted of a single

o . io iio i ia . s
row m allows us to find a subvector y such that »"y" > my . This 1s not
surprising considering that the elements in every subvector defined by a par-

tition aggregate to a scalar (a single element in the aggregated vector).zo

. o . _.a .
Necessary conditions for my to exceed Tv are even harder to spell out in
the case of partial than in the case of aggregation from n goods to a scalar.

s . , 0 0 a
We do know, however, that i7 there does not exist a vector y such that ny > 7y

when controls are aggregated from n goods to a scalar, there cannot exist a vector

yo' such that 'rryo7 > wya where EK is defined as the set of points in § such that
noy > noye, for all ye in E, and no has more than one row built up from the par-
tition of the same T (partial aggregation). This {(weak) necessary condition
for a gain in autonomy under partially aggregated controls follows from the
familiar proposition that if a2 single-constraint maximum problem is broken up
into two or more separate constraints, the value of the maximand to the new
problem cannot be greater than what it was for the single-constraint problem.
Thus if ygl is a maximizer for ¢ on ER generated from a single acceptability con-
étraint, there cannot exist a vector worth more than ya at prices m if this
single constraint is broken up into separate constraints. But if sufficient

conditions for a gain in zutonomy under complete aggregation are satisfied, how

can we be sure 1o generate an improvement under partial aggregation?
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. . . ia ..
Our first prcblem is that, even though y= , for some subspace i, is located
io 1 . im . . ...
on the hyperplane 1y~ through y~ , and hence our sufficiency condition does

not obtain, there may still be points on this hyperplane worth more at prices

7" than yla, In this case the analysis in the appendix applies with appropriate
e s . . o o a .,
modifications., But even if we cannot find a y~  such that 7y > ny in any of
: . a .
the g subspaces that we have constructed starting from y or some other maxi-

mizer for m on E, we may still be able to discover such a vector by starting
maximizer. e
from some vector in E other than a / Suppose that for some vector vy in E and
o s i i idie . . .
yS in Y, it happened that nlyls > W yle in the i'th subspace (where yde = yds
(d#i; i=1, ... , q) and yls is such that ys is in Y). Now we cannot mechani-

. . . _a s
cally claim that ﬂys necessarily excaeds ﬂya, since ﬂye < 7y , and hence, 7y

a .
may be smaller or larger than ny . If we write out the component subvectors of

e s a . . - .
y .,y , and y , however, we immediately see that, for an improvement to occur,
. i is iie . \ . a
the difference between 7"y and ¢y~ must exceed the difference between Ty
e
and ny .
I could not find the precise conditions that would permit one to predict

whether there existed vectors such as ye in E that were superior to ya as

starting points.

II. A Supervisor and K Supervisees

The extension of the analysis in the previous section to a situation where
a supervisor h has more than one supervisee is fairly straightforward.
Denoting a supervisee by the subscript k (k = 1, ... , K), we first add

the constrained production sets of all X supervisees to obtain the joint-

~

K .
production set of h (i.e. Yh = Z Yk). This set must evidently be compact and
' k=1
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convex if the component sets have these properiies. The acceptable set Gh

intersects with Yh to form the attainable and acceptable set Eh. The set Bi is

now defined as:

R o) o e e
Eh {yth Vi > T Y, 3 YL E Yh and thEh}.

1]

For ﬂyg to exceed ﬂyi, where yi and yg are maximizers for 7 on Eh and ER

h

respectively, the same sufficient conditions apply as in the case of a unique
supervisee. The question to be analyzed now is the relation of the autonomy

of the individual supervisce to any putative increase in the ratio of ﬂyg to

a . .
™V, for all K supervisees *ogether.
By the non-satiety ascumption only points on the efficiency frontier of Yh

. . . . - - ., . . R
ualify as possible maximizers for any set of positive prices on E. and E
" £ »

h h
respectively. We first proceed to decompose these efficient subsets, de-
R . . 5 > . .
noted Eh and ﬁh respectively, into subsets of Yl to YK' According to a basic

mathematical theorem, if y, is an efficient point on a compact set then there

h

must exist some semi-positive vector of prices p such that oy, > p for all
P Yn 2 P¥y

Y1 in Yh' By another theorem on sets formed as the sum of compact sets, if
K
- - - ~ 2
¥y = 2 Yie» then py, > oY, for ally, in¥Y (k=1, ..., K). =t Thus, by the
k=1 — "k k K
choice of appropriate price vectors, every efficient point of Bh and Eg can be
A ~ A’\D

decomposed into K efficient points of Yl to YK' Let Ek and EiR stand for the

efficient sets for k obtained, respectively, from the decomposition of Eh and

%i. It follows also from the theorem just cited that if ya and yo are maximizers
o ~R a o . ~D ~DR
for m on Eh and Eh then Ve and Yy must be maximizers for T on EP and Ek respec-

tively (k = 1, ... . K).22
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X ® o a . .. .
The fact that Yy, > MYy, > 7y, implies that at least one supervisee must
gain autonomy from the aggregaticn of controls. But it is easy to construct

an example where h has two supervisees k and ¢ such that ﬂyi = ﬂyi, even though

wyg > ny; and ﬂy; > nyz -=- such, in other words, that the entire gain would

accrue to 2. This will be the case if £ can shift from yz toward a more advan-
tageous product mix (presumably in the direction of the mix represented by y;)
without incurring substantially higher marginal costs, whereas any attempt by

k to increase its payoff would face steeply rising marginal costs.

This example is illustrated in Diagram 3 below.

Good 1

Diagram 3



In this diagram %i and %g are indicated by heavy lines on the efficiency fron-
tiers of §k and %2 respectively. As a result of the aggregation of controls,
the point yﬁ becomes admissible for the joint production of k and ¢. The area
opened up between yi and yg makes it possible for £ to improve its payoff by
moving from yi to yz. Supsrvisee k, on the other hand, cannot increase his
autonomy--his maximizer for 7 remains at yi. The reason is clearly that, because
of the sharply increasing relative marginal cost of producing good 1 for k, any
combination of a poirt to the right of yi and a polnt between yi and yz would
yield a joint production vy that would fall inside the efficiency frontier of h.
While it does not strain the imagination to assume that a unique super-
visee might, after some z=xperimentation, figure out the general pattern of his
supervisor's preferences, it is hard to believe that several supervisees would
not only have this knowledge but be able to locate points such as yi and yi for
various possible degrees of aggregation of controls {of which more will be said
presently). Even if a plan or target were set by h for each of its supervisees
and all the individual targets were known to each supervisee, this would only
give k a first approximation to the location of these critical points. He
would also have to have information on how orders or "plans'" were being fulfilled
by each co-supervisee. Indeed, if the penalties for a failure on the part of
all K supervisees to produce a joint vector in G--which presumably contains the
aggregate target as well as tolerable deviations therefroﬁ——were very heavy,
there would be a strong inducement Zor the super;isees to exchange information

and collude to avoid this transgression. It might even pay & in the situation

depicted in Dicgram 3 to transfer to k a nart of its increased payoff in exchange
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for k's agreement to "stay put' at yi. This strategy would only make sense of
course if 2 had reason to believe that h would not impose detailed controls on
the output mix and would be content to assess the performance of k and % in its

aggregated nomenclature.

I1I. An Inspection Game

In this concluding section, we shall ignore the special information problems
arising from a multiplicity of supervisees and analvze the relation between a
supervisor and his supervisees as if the latter behaved as a single decision-
making entity k. The problem I wish to consider is the following. Suppose that
the supervisor has a choice of the degree of aggregaticn of controls that it can
impose on its supervisees. The finer the controls--the greater the disaggregation
of production vectors--which the supervisor wishes to impose, the higher the
information cost he must pay. On the other hand, the supervisees are aware that
for each degree of aggregation, there is a different joint payoff, they may report
their performance according to any of the degrees of aggregation or "channels"
both they and the supervisor can communicate in, but they risk the chance of a
penalty if they choose production vectors on the assumption that the supervisor
will exercise controls in a more aggregated form than the one he will actually
opt for (if he decides to "inspect"). Given the production and aggregation
strategies available to the "players'--the supervisor and the colluding super-
visees--we seek to throw light on the general character of the solutions that
may be expected to games with this format.

But first I have a preliminary observation to make on the supervisor's

strategy of aggregation. We have seen that, ceteris paribus, the smaller the




elasticity of substitution between pairs of commodities in G, aggregated in GR,
the greater will be the increase in payoff open to the supervisee(s) upon aggre-
gation. Suppose that we could measure the supervisor's loss, corresponding to
the supervisee's potential gain in autonomy resulting from the admissibility of

a vector yg in GR compared to yg in G, as the difference in the supervisor's
utility associated with the indifference classes containing yé and yﬁ respectively.
This loss will clearly be smaller if the supervisor can partition the set of

n goods in such a way that pairs of goods related by a high elasticity appear

in the same subvector and pairs with a lower elasticity in different subvectors.
The headquarters of the shoe plant already cited in an earlier example might
want to include in a list of goods for potential aggregation (if detailed con-
trols are not exercised) men's shoes of the same size though of different
patterns and styles, on the presumption that the elasticity of substitution
among shoes of different styles but of the same size would be higher than be-
tween shoes of the same style but of different size. Similarly, if the head

of a trust or Soviet-type association supervising different coal mines had
preferences reflecting the speclalized demands of its customers, it would aggre-
gate coals by calorific value or other demand indicator rather than according

to geological cr mineral characteristics that would affect primarily production
costs. If a higher degree of aggregation were desired, any two subvectors v and
W vesulting from the first partition might be aggregated, provided the goods
entering into v had a relatively hiher elasticity of substitution with goods
entering w than in the case of pairs of goods in subvectors that would be aggre-

gated in different aggregates of subvectors.
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Consider again two partitions of the n goods in a production vector, one

obtained as a coarsening of the other. As in the first section, the super-

visee produces at ya if he seeks to maximize his payoff and satisfy his super-

. . . . ‘ ‘s a . - .
visor in terms of his disaggregated preferences (i.e. y 1is a maximizer for m in
o . . . . .
G) and at y if he wishes only to satisfy his supervisor's aggregated preferences
s o . . R . . s
(i.e. y is a maximizer for = on G ). Assume that sufficient conditions for an

. . . o} a . .
increase in autonomy are met and that y > ay . Clearly, in terms of the super-

. . . . . . o) -
visor's disaggregated preferences, his level of satisfaction at y , denoted U ,

is lower than that attained at ya, denoted U". (In Diagram 1, the lower level
corresponding to U° is shown as a dotted indifference curve passing through yo.)

Now for the game to be of any interest {and to make any sense), supervisor h
must pay a cost, expressible in utility foregone, to obtain the detailed infor-
mation corresponding to the finer of the two partitions (for if the additional
information were free, he would always "inspect.”). Call the decrement in
utility level asscciated with this cost of information I. We now introduce a
reward R,23 which will be conferred on the supervisee if the supervisor finds
on inspection that his supervisee k has produced a vector in G, and a penalty T,
which will be imposed on k if he finds that k has produced in GR but not in G
(as if controls were in fact aggregated).

We assume that R and T are fixed, irrespective of the extent to which com-
pliance may have been easy or difficult to achieve for k or of the extent of

transgression by k of h's directives. To begin with, we alsoc assume that there

is a unique vector of resource constraints w.



- oy -

The payoff matrix of the game is given below.

Supervisor’s choice of channel

Aggregated Disaggregated
(no inspection) (inspection)
(8,) (8,)

As if controls

were to be wyo /U ﬂyo -T /U -1
Supervisee k's aggregated (ul)
production
decision As if controls - -

were to be Ty~ [ g™ ﬂya + R/ Ut -1

diszggregated

(a2)

Let us first assume that the game is going to be played only oace. Then it is
evident that h's second strategy 8? is deminated by the first Bl: unless

information costs are negligiblie, it would not pay h to inspect, since, irres-
pective of k's decision to produce at ygl or at yc, h's utility level would be
lower than if he had chosen not to inspect. But if k knows that I is non-
negligible in terms of h's utility level, he will guess that h will play Sl;
he should therefore play o . His payoff will be ﬂyo and h's will be U .

But a supervisor-supervisee relation is not a one-shot affair. It is
embedded in the rules of organizations, which are normally endowed with a cer-
tain degree of continuity, if not of permanence. Let us therefore suppose that
the same game is repeated a number of times. If h is concerned with his total

(or average) utility over time, it may now be rational for him to play 82 on

some trials, in order to induce k to play o, at least part of the time. Clearly,
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the larger T and R and the smaller I, the more likely h is going to be success-
ful in "teaching" k that nis first pure strategy will not pay.

At this point we may ask what mixed strategy k can adopt that will guaran-
tee him the highest "security level'--the largest minimum-payoff he can expect
if h tried to punish him by adopting the strategy that would minimize his (k's)
]payoff.zl+

That v, the highest "security level' for k, will be the same whether h

25
adopts Bl or 62 is shown in the diagram below.

o~

- 6 .
y° \\\“-£\ffff\ -

s e e
o, B ™~~~
(e} T e
o (1) (2)
X, X,
. K W K N
oy A Y rd
(1,03 (213 22) X(o) (0,1)
Diagram 4

The payoffs associated with each pure strategy pair are shown on the

vertical lines above {1,0) and (0,1). The Bl line exhibits all the convex

. . o ., . a . . s . . .
combinations of the payoffs wy and ny associated with different combinations

of k's strategies a., and o, when h vlays 8

1 5 The 82 lire is similarly defined

1
for combinations of aq and %5 when bk plays 52. The lines cross because R and T

are positive.
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The coordinates (Xl’ x2} of any point x are the weights attached to

al and % in a convex combination of thesz two strategies.

If k chooses a mixed strategy (xl, x2) in the interval Xél)

,» then h's
best response, on the assumptions made above, is 62. The vertical distance
from any point (il, §2) (sucii as the one shown in the diagram) to the 62 line
represents k's security level. The interval of the 82 lire corresponding to

points in Xil)

(2)
k

is marked as a heavy line. On the other hand, if (xl, x2)

is in X » then h's best response is B+ The interval of the By line corres-

/2)

onding to points in X also appears in heavy tvpe. The highest securit
g X L 3
. P . . (0} . . .
level v is clearly attained at the point x where the two lines cross.

Using this observation to solve for the optimal mixed strategy (xipt, x;pt),

. . . T
we find that xoPt = »EL-ana xOPt =

1 BT 5 T R As we would have expected, the greater

T relative to R, the more often k should play a, if he wishes to protect him-
gself from h's punitive strategy. If R were zero, this maximin strategy would

induce k to play o, exclusively, thus limiting his payoff to nya.

2
v, the minimum payoff k can expect if he adopts the mixed strategy

(xipt, xgpt), equals:

(sy IR + (ay™)T
R+ T

It is easily verified that g%-> 0 and %%-< 0, as long as nyo > ﬂya.

What should h do to maximize his utiiity if he were to observe that k

actually employed the mixed strategy (xoPt xgpt)?

1 s Again he can do no better

than play 3,. But then k should revert to the pure strategy x. and h will be

worse off. The only hope for h in 2n axtended game is to play 62 often enough
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for k to form the impression that h is more interested in punishing him for
transgressions than in immediately maximizing his (h's) utility. This impres-
sion will be fortified if T is relatively low and weakened if it is high, for
h will not be willing to adopt a strategy dominated in a game limited to a
single play if he is likely to incur a heavy immediate loss in so doing (unless
the penalty for transgression is so heavy that k nsed only be reminded on rare
occasions that h is capable of playing 52).

Let (yl, YQ) denote any of h's mixzed strategies. Suppose §2 to be the

minimum level of By required to induce k to seek cover and play (xoPt, Xgpt)

Then h's average payoff will be:

. T T n -
= (1- y2)(R+T)L + (1-y )(P+T)U + 32 o )(I - I)+ y2(R+T)(L -1I)=
= - T 11 -

i [l | —
T tTrmr U "Vl

Thus h's average payoff will be a convex combination of U~ and U™ with
weights §§T-and §§T3 minus 2 fraction of inspection costs I equal to the propor-
tion of the plays where h has resorted to his second strategy.

That T should be as great as possible to maximize h's utility is self-
evident.26 It is perhaps not so intuitive that the reward for (vrevealed) com-
plianc; should be as low as possible if this goal is to be achieved.

A stochastic vector of input constraints may now be re-introduced. As in
the first sections, we assume that (1) M is invariant to the particular input

constraintsthat k is actually faced with in a given pericd, (2) G is known to k

with certainty, ard (3} R and T are fixed scalars, invariant to any of the

|
|
z
E
|
i
|
;
|
;
|
|
i
x
|
|
|
é
|




variables in the problem. Given the first of these assumptions, it does not
seem to matter, in playing his game, how much or how little h may know about
sass 27
k's capabilities.
A simple example, involving aggregation from n goods to a scalar, is

illustrated below.

Good 2

Diagram 5

In the case illustrated, w' is a more rfavorable configuration of input con-
straints than v, allowing an expansion from Y(w) to Y(m')' It happens here
that y?w,) is included in GR so that aggregation of controls, in case w' crops
up, enables k to attain 100 per cent autonomy. This is of course accidental.
While the payoff of k will necessarily increase if w' occurs rather than w,

the autonomy ratio may actually decrease (if, for example, the slope of the
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efficiency frontier of wa’) were appreciably smaller above woy through ym
and greater below that line). Neither is there any way of ascertaining a priori
M a yo
whether ' (w) is larger or smaller than (w?y .
o o
™ (w) RICD!
Whichever is larger. however, should make little or no difference to the
choice of strategies that k and h are likely to adopt, since, whether y occurs or
w', 8y will be dominated by Bl and the maximizing strategy of k will still be

E%T-’ §§TJ. The latter point is evident from the fact that neither nyo nor wya

appear in the solution to the probiem of maximizing v. Since R, T, and I are
fixed, there are no new factors to affect the behavior in a repeated game of
either k or h. I conjecture, therefore, that under these assumptions the

relative frequency of inspection (8,) in an optional strategy for h over an

2
indefinite number of periods will be the same Ffor any vector of constraints to
which k may be subject.28

. I shall not dwell on the case, already alluded tc in the beginning of this
paper, where h decides on his minimum acceptable level of utility u" after
observing w or, more generaily, after observing k's capabilities. The super-
visor may, for example, set U" in such a way that k can only produce in G if
his vector of constraints is exceptionally favorable; then when a typical con-
straint vector such as crops up, k is forced to cite "objective difficulties"
for his failure to comply with h's orders. If h is not willing to accept just
about any performance backed up by such "excuses," he must pay additional costs

to obtain the information necessary to check on these objective difficulties.

This may be extremely costly. especiaily for a highly disaggregated product mix.


https://especia.:i.ly

That contingent controls of this sort are at times applied in command economies
of the Soviet type may have to do with the fact that much internal information
about the production capacities of producing units are routinely passed on to
their superiors at frequent intervals so that the incremental costs of obtaining
information to check on excuses for transgressing directions may be fairly low.
It is generally recognized that pressure on subordinates to coax out maximal
performance--feasible only under unusually favorable circumstances--is dimin-
ishing in these economies.29 If so, the assunption of an invariant G may be-
come increasingly »ealistic in analyzing supervisor-supervisee relations in such

a setting.
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APPENDIX

The linear programming formulation of the maximizing and minimizing
problems considered on pages 11-k2 can be represented as follows:
max my or min ﬂoy
subject to:
<y £ -c
By <b
yj_>__0 (5 =1, ... , n)

where C is an m x n matrix and ¢ an m-dimensional vector of non-negative

coefficients, and B is anr X n matrix and b an r-dimensional vector of non-

negative coefficients (n > 2).
a m., .. . . a
Let vy~ and vy both satisfy the (m + r) constraints; y

is a maximizer

m s - o o o
for # and y & minimizer for vy . Suppose 1y = wy .

The secondary problem (after aggregation of the constraints defining G)

[N
L7

max Ty
subject to:
By <b
o o_e
Ty <-1m¥
e . . . . .
where y~ is any vector satisfying the (m + T) constraints of the first
problem.
o . . . . . . .
v is a maximizer for this problem. We reintroduce the assumption made

earlier that £ consis*s of more than one point. Consider the hyperplane woy




through ym and denote by yV the set of all v on this hyperplane. If ya and ym
are distinct (if they are not, see below), then the condition noy > ﬂ°§ for all
y in E (except y = ym) cannot hold (since not only woya = woym = w°§ but all
convex combinations of ya and ym are on this hyperplane). It follows that
either 1) one of the n inequations defining G, say the j'th, has the same or
proportional coefficients as the elements in 7° or 2) ym and ya lie in the

intersection of twc or more of the constraint equations defining G, neither of

. ar e . 4 s . o
which have coefficients equal or proportional to the elements in n . If 1),

L

e ‘s o] a . .
then a necessarv and surficient condition for wy > wy i1s that at least one

of the n ineguat:ors dafining & other than the j'th siould have a positive

t

shadow price for the lLasis corresnonding to y  (i.e. should be just satisfied).

Proof: If there is no othe:r binding constraint in G, every vector in Y located

o N a - R
on Ty must have been in E. Hence y must ke a maximizer for 7 on E as well

R o} a
uch that 7y > 7wy . If, however,

0
o

. o .

as on E, and there cannot sxist ay in &5
- e . a

there was another bind:ng constraint in 3 at the peint y , then clearly an

increase in the value of the maximand ny would have been possible if this

. . . . e e X . R
constraint had been vemoved. This constraint is, by definition, absent in E .

. a .
Hence at least one vector worth more at prices 7 than y~ can be found in ER.

. (@ R . . .
All maximizers y~ for 7 on E must be worth at least as much at prices 7 as

. . o
this vector. Hence wy > 7y .

If 2), we have at least two of the inequations defining G strictly satis-

fied at y . All the points § on woy through ym and ya are either such that

a . ~ . 4 e
ay < ay or such that dy < ¢y , where a and d are respectively row-vectors of

n

coefficients of the j'th and d'th inequations that are just satisfied at ya.
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The above inequations follow from the fact that the only points such that
ay > aya and dy > dygl are in the intericr of G and therefore cannot be on the
minimizing hyperplane no§. Hence if either of the inequations have a positive
shadow price and the constraint to that inéquation is relaxed, points on w°9
satisfying the remaining constraints will be opened up that will be worth more
at prices than ya.

Finally, if yé and ym are identical and E consists of more than one point,
then ya must be located at the intersection of two or more hyperplanes defined
by the inequations defining G. It suffices that these inequations should have
positive shadow prices for the proposition in 2} above to go through.

Returning to case 1), we note that it is "elmost but not quite" necessary

for two of the inequations defining G to have positive shadow prices. We

oTa
W

could have a situation where 1) y was identical with yO and 2) the inequation
with the coefficients proportional to the elements of 7° had a zero shadow

. o) . a , .
price, but Ty could still exceed Ty , even though only one other constraint

in G had a positive shadow price.
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pp. 96-97 and, independently, in J. M. Montias, "A Framework for Theoretical
Analysis of Economic Reforms in Soviet-type Economies," in M. Bornstein, ed.,

Plans and Market, New Havea, 1973.

5An alternative way of modeling this supervision relation would be to
assume that the supervisor would insist on a higher level of performance if he
received performance reports in an aggregated than in a disaggregated form.
In this way the supervisor might compensate for the greater risk he incurred
of accepting an aggregated vector that would turn out to be inferior for the
system as a whole. This strategy would have the disadvantage of causing the

supervisor to reject certain vectors that were actually aggregated from vectors
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than
in 6. More frequent inspection might be required /under the behavior conditions
spelled out in the model developed in the text. To determine whether it would
pay the supervisor to adopt the strategy of restricting the autonomy space of
supervisees when his controls were aggregated, however, would demand a more
detailed specification of the costs of inspection and of interference than the
present model provides.
6On the supervisor's possible strategies for maximizing his utility, see

below, section 3.

| 7If the supervisee is rewarded for 100 per cent fulfillment of his targets
but gets nothing more for overfulfillment, his behavior cannot be represented
by a linear objective function. It alsc strains belief to assume, in case
his performance should depend on his exertioms, that his effort can be incor-
porated as an input with a fixed weight in his objective function. TFor a model
incorporating alternative assumptions, see Michael Keren, "On the Tautness

of Plans," Review of Economic Studies, forthcoming.

8On the "power" of the supervisor over his supervisee and its relation
to the cost to the former of imposing penalties, see below, section 3.

ng E consisted of a single point on the efficiency frontier of ?w then
a less favorable constraint vector w' would be likely to generate a production
set Qw' that did not intersect with G at all.

loI will not dwell on the interesting question, raised by Geoffrey Heale

in a recent discussion, as to whether a definition of autonomy should not in-
clude some notion of increased choice, irvespective of whether the new options

available enable a supervisee to increase the value of his maximand. My own
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feeling is that the widening of the set of options in order to be valued by
the supervisee, must, under certain circumstances at least, lead to a higher
value of his maximand. It would not, in any case, be an easy matter to define
autonomy in terms of opportunity sets in such a way that two situations could
be compared and their relative degree of autonomy cardinally measured.

llThe reader may wonder whether it is realistic to represent a situation
wherea supervisor can decide what a supervisee should do, at least in aggre-
gated terms, but cannot set up an incentive system that will induce him auto-
matically to perform according to his desires. For one thing, immediate super-
visors in many organizations are not free to determine either the incentive
system according to which *heir supervisees are rewarded nor the price systems
that are used to evaluate their performance. The elaboration of an incen-
tive system that will be eguitable when applied to a significant number of
subordinates in an organization and that will induce all of these subordinates
to perform in a desirable manner is a formidable task which goes much beyond
the narrow range of problems discussed in this paper. Another consideration
is that, if the supervisor does have control over the incentive system for his
supervisees, the performance of the latter may be subject to appreciable fluc-
tuations (e.g. in the vclume and composition of his output) due to random
exogenous constraints, so that it may be very difficult for the supervisor
to set incentives in such a way that supervisees will be induced to produce
in an acceptable set at all times.

lQEvery vector v in =R is in E" . since (1) by the definition of ER,

w°§ = “oya where ya is some vector in E, and (2) ﬂoya 3_ﬂ°ym by the definition

m o= onm . . s s sas PO
of y , and hence 'y > n'y , which satisfies the definition of vectors in E .
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I now show that an arbitrary vector y+ in E" must also be in ER. By the

definition of Em, w°y+ > noym. Suppose n°y+ = woym. Then y+ is in ER, since

—

m . . - . . . .
y 1is in G. Altermatively, suppose n°y+ > ﬂoym. Since both sides of the in-

equality are scalars, this can be written w°y+ = dnoym where 4 is a constant
. o_+ O, ..M m . .

larger than unity or 1y = 7 (dy ). But dv , by the non-satiety assumption,

must be in G. Thus if we substitute dy" for y°o and 7° for I° in the defini-

tion of GR above, we see that y+ must be in GR. Since y+, by assumption, is

U | f o + . . AR .o . . =R

in E7, it must be in Ym. Ify is in G and in Yw’ it must be in E, the

intersection of these two sets.

% % %
13Proof: Ty 3_nym by the definition of y . Then noy Z_Woym, since,

)

by assumption, 7 = ng Therefore, by the definition of Em, y" is in that
y ¥

. R e U - o s
set, and hence in £, But if y is a maximizer for 7 on Y, it must also be

~

a maximizer on ER, a subset of Y. This result does not depend on the con-
vexity of Y. Note, however, that it does not necessarily hold for aggregation

from n to q, where q > 1 (see footnote 20).

luJ. M. Montias, op. eit.., Appendix B.

o a

J'5The condition Ty > ﬁoym is necessary when n = 2, but, when n is equal

to three or more goods, vectors in ER located on the plane ﬂoy through ym

(or ya) may be found that are worth more at prices 7w than ya. I was only able

to find necessary conditions for nyo to exceed nya in case n > 2 under con-
ditions where Y can be taken to conform to a linear technology and G can be
defined as the set of points Cy > c¢ where C is an m % n matrix and c is an

]

m-dimensional vector of non-negative coefficients (see Appendix).
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6 . a'y . . . .
1 As long as ya (respectively ya ) is an interior point of the half space

t
generated by noy through ym (respectively through ym ), the basic condition of

Y g 1 Py
proposition 1 is satisfied (ﬂoya > 1°y" and %% > ﬂoym ) so that my° > 1y
!

. o a' . . . .
(respectively my > nya ). The upper limit to this improvement is of course

set by the condition where the maximizer for w on ER is worth as much at prices

® o' ., . . NP .
7 asy (e.g.y in the diagram is the upper limit in this case).

R . . .
_17By definition 7 defined in the next paragraph in the text, equals
o a o m A - :
w -7 . . w
ZY¥Y — T ¥ | Since Y is convex and ﬂoya > ﬂoym > noy , there must exist a

o.a o %
Ty - TwYy

convex combination yb of ya and yw on ﬂoy through ym. Substituting noyb (= noym)

in the above expression:
o a o b
§ _ny -7y
Y o a o %
Ty - Ty

2
kS

By definition A = my - 7y . The payoff corresponding to yb is nyb. The
increment in payoff due to aggregation is wyb -~ ﬂya. The critical ratio of

the increase in payoff from aggregation to the maximum possible increment is

b a o a ob

Ty - Ty Ty - Ty

= To show that this ratio is equal to , we need only note

& a o a o
Ty - Ty - Ty =7y
that we have here the ratios of two aggregates at diffevent prices of the same

-

a %
vectors with elements (y? - y?) and (y? - yj) respectively (j = 1, ... , n).
A familiar proposition from index-number theory tells us that the ratio of all
such aggregates must be equal, irrvespective of price weights. The equality of

the two ratios allows us to conclude that nyb - nya equals %-A-

~

18 . . . X . .
If there is a set of maximizers for m on Y rather than a unique maximizer

°

(as in Diagrams 1 and 2), then the measure %—will depend on which of the
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maximizers are chosen on this set of maximizers. The largest value of g-A,
and the one making the most sense, will be obtained by choosing any maximizer

o . s o
for 7 on Y that maximizes the value T'y.

lgCall this vector ys and its subvectors in the i'th and j'th subspaces

yls and yjs. Since lels > ﬂlyla and ﬂ]yjs = ﬂ]yja G #A1i;5=1, ... ,a),

it follows that ﬂys > ﬂya.

20For details, see Montias, op. cit. It should be observed that

Te

. [ . . s s , . w . . R
if w and T are identical, it is not necesserily true that v will be in E

when q > 1. For this proposition to hold, we must have:

ii® _idm
>_'H'y

-

for every subvector i from 1 to q. {(Any vector ye in E other than ym satis~
fying the set of g relations will also do.) If we substitute 7 on both

. . P R L. O ¥ o m
sides of the above inequation (i = 1, ... , q), we see that T'y > Iy and

that y“ must be in ER.

21This follows from Theorem I.2 in T. C. Koopmans's, Three Essays on the

State of Economic Science, New York, Toronto and London, 1957, p. 12.

22

Consider a price system p and a vector yg such that pyi Z.th for all y
K 2

in E and pyf: > py, for ally, in E (k = 1, ... , K), where I v = yﬁ".

a

k=
By the definition of Ei, Vi must be in this set for every k (k

1, «.. 5 K),

Clearly, ﬂyi g_ﬂyi for all k, where yi is a maximizer for w on %i. Suppose

{1

that for some supervisee ﬁ,ﬂyz < wy?. Then, summing over all supervisees,
- = = K =
ﬂyi < ny;, where yi equals Z Yy e By the theorem already cited, yi must be
K . Wk=1
a maximizer for m on ) E and hence on Eg, a subset of this last sum of sets.
k=1

[RE]
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But the last ineguality contradicts the assumption that yg is a maximizer

for m on ED. This proves that ﬁyi = ﬂyi for all k and hence that y: is a

h
maximizer for 7 on Ei for all k. The same reasoning can be applied to prove
that yi must be a maximizer for m on EiR for all k.

23This reward may be quite small relative to ﬂya and to T, but it would

be unrealistic to suppose that k would derive no advantage from an inspection
that had uncovered no serious deviation of performance from orders.
24 . , .

In this non-zero-sum game, such a strategy would not necessarily be
optimal for h. But is is relevant because it places limits on h's ability to
punish k for adopting ¢, at least part of the time and thereby to "teach" him

e
not to transgress his orders.

25The diagram is adapted from R. D. Luce and H. Raiffa, Games and Decisions;

Introduction and Critical Survey, New York and London, 1957, Appendix 3,

PpP. 394-97.
26A more complex and realistic model would consider the cost to h of

imposing a penalty on k (e.g. the manager of k might resign and it might be

costly to replace him). Such a consideration, ceteris parikbus, would tend to

limit T. For a more general model of power in hierarchies incorporating the
cost to h of imposing penalties on k, see John Harsanyi, "Measurement of Social

Power" in Game Theory and Related Approaches to Social Behavior, M. Shubik, ed.,

New London and Sidney. 1964, pp. 183-206. While this is the only reference
to Harsanyi's paper, I should- acknowledge its general influence over the con-

ceptual approaci: adopted in this paper.
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27We recall that h needs to kuow something about Q@ = {w} and about k's
technology in order to set ¥ at a level that will permit k to produce in G
"most of the time." The greater the cost to h of imposing a penalty on k for
not producing in G, the greater the likelihood that M will be set in such a
way as to enable k to produce in G, for almost any w in @, if he wishes to
do so.
28The possibility of an exception to this general principle should be

recognized in case w' changed the constrained production set in such a way

as to cause a relatively large difference in the ratios

(W) Y

‘|>

a

I'4

A

(o] ..
ﬂy((;\ i|y<

£

')

For, while k's maximin strategy would not be affected, the decirability of

-

adopting it against an occasional play of h's second strategy might differ

in the two situations: k might take more chances--i.e. play a. more often

than the maximum strategy would dictate--in situations where differencesbe-

o a .
tween 1y and 7Y weve excepticnally large.

ity R

29See the discussion in Michael Keren, op. cit.
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