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THE AGGREGATION OF CONTROLS AND THE AUTONOMY OF SUBORDINATES* 

I. The Unique-Supervisee Problem: 

In contemporary economic systems, the great majority of people spend their 

working hours in a relation of subordination to one or more of the fellow-members 

of the organizations to which they belong. When their goals or preferences with 

respect to the outcomes of their activities in the organization diverge from 

those their superiors would like to see them pursue, their decisions are nor

mally constrained by orders or rules limiting their "autonomy." How constraining 

these orders or rules may be will depend, in part, on the supervisors' perception 

of their performance--on the information that reaches supervisors about it. 

Supervisors, in general, have a limited capacity to collect, process, and act 

upon the detailed information available to their subordinates, They must make 

their decisions, therefore, on the basis of aggregated information, whether col

lected in consolidated form from their subordinates or summarized from the more 

detailed reports they receive "from the field." 

My purpose here is to analyze precisely an intuitively obvious notion: that 

the more aggregated the information available to a supervisor happens to be, the 

more autonomy the individuals he supervises will enjoy. 

Due to the aggregation of controls, multi-level hierarchies, including 

Soviet-type economic administrations, may be far less "centralized" than they 

appear to be from a cursory examination of their command structure. Indeed, 

there is a parallel between decentralization via the aggregation of controls and 

decentralization via the parceling out of linear objective functions that sub-

ordina• t es are inst ructed · l' •to maximize. 
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In this first section, I analyze the relation between a supervisor and a 

single supervisee. In the second, I consider controls over several supervisees. 

In the third, I use an elementary game-theoretic formulation to analyze the 

strategies open to a supervisor and his supervisee, where the former may either 

accept aggregated information or "inspect" (at a cost) and the latter may either 

take advantage of the possibilities opened up by aggregation or behave as if the 

supervisor were actually going to inspect. 

The model about to be described relies heavily on an approach to informa

3
tion theory developed by Jacob 1"'.iarscha:(2 and later by Roy Radner, which may be 

summarized as follows in the context of our problem. 

Let Y ={y} denote the set of possibla outcomes of supervisee k's actions. 

We assume all vectors in Y to be in Rn. (The elements of a vector yin Y may, 

for example, be quantities or numbers of n different goods or expenditures cor

responding to n budget ite1r.s.) :':t is taken that no other individual in the 

system can have more detailed information aDout these outcomes. 

A partition of Y is a set of possible descriptions of the outcomes of k's 

actions. He have just seen that k's information about the outcomes of his own 

actions corresponds to the finest partition {y} of Y, where every element is 

represented separately. Suppose then elements of every vector y are parti-

tioned into q subvectors where q is smaller than n. Consider now subvector y i 

of a vector yin Y, defined by this partition denoted~- Let z be the descrip

tion of k's outcomes in a certain period communicated to a supervisor h. All 

then. elements of yi defined by the finest partition {y} are mapped into a 
J. 

single element z. of z, where z. is our ttaggregated vectortt corresponding to 
J. J. 

partition~-
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In this paper, the mapping is assumed to be linear. That is, 
ni 

io i h io . 1 . f b io . h. d f" ed
zi = I 1T. y., were ,r. is e ement Jo su vector 1T , whic is e in by

J J Jj=l 
the same partition r;; of then elements in a vector of 11 aggregation prices" 1r 

0
; 

and y~ is the j'th element of subvector yi (j = l, ... , n.; i = l, .•• , q).
J 1 

Aggregation may be by tonnage or number of items, in which case the elements of 

any subvector ,rio will all be unity; by some indicator of quality (yarn count 

for cloth, calorific value for fuels); or by any conventional price system. 

Any vector yin Y is thus aggregated to a vector z with the aid of an aggre

gation matrix rr 0 
, the rows of which ere obtained by partitioning the set of the 

elements of 1T 
0 according to the same r;; already used to define the subvectors of y. 

,-
lo ,rlo 0 

1T 0 . <· 0 0 0 ,rln_ 
.J.. 

0 02o 2o 1T2 
0 00 0 7Tl 1T 

no n~ 
- or 

0 

0,rqo0 0 0 0 1T 
n n 

Jq 

We have therefore: 

z = n°y 

where z is an aggregated 7ector in Rq (q < n). 

.,
The main idea use.c.: in this model of the supervision relation is that once 

the elements of yi have been "scrambled" in z. , they cannot be retrieved individu-
1 

I 

ally. Supervis011 h cannot distinguish between z. and z. , as long as they are 
1 l. 

equal, even tho~gh they may have been aggregated from distinct subvectors in y. 
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Two examples: (1) yi is a vector of the quantities produced of n. different 
J. 

kinds of steels by a subordinate mill; z. is the combined tonnage of these steels;
l 

the supervisor of the mill (main office of a corporation or a ministry in a cen-

trally managed economic system) receives the message z. from the mill, which it 
l 

cannot unscramble to differentiate the quantities produced of the various kinds 

iof steel. (2) y. is the expenditure on a specific item in a school budget; z. 
J J. 

is the combined expenditure on n. such items. The school superintendent can 
J. 

control z. but not the expenditu1°es on the individual items y~.
J. J 

A supervisor may receive very detailed information from a subordinate but 

be incapable of using it in tr.::.s form. If he has to aggregate yi to z. and if 
J. 

he loses the individual elements y~ in so dc::.,.1g ~ one would be tempted to con
J 

elude that he might just as well have received the raessage in already aggregated 

form, although it is conceivable that, in situations where supervisees were un-

certain as to how the information might be employed, a superYisor might still 

wish to collect info1"mation in :nore detailed form than he could use. 

We begin with the analysis of the behavior of a supervisor controlling the 

performance of a single supervisee. 

In the present model, it is assumed that a supervisor has preferences P 

(a complete preordering) over all possible outcomes of the activities of his 

supervisee, where these outcomes are described according to the finest partition 

of these outcomes {y}. For reasons that will be spelled out later (which have 

to do with his uncertainty regarding the capabilities of the supervisee), he 

will accept any performance yielding him a minimum UM of satisfaction. To be 

precise, he will accept any vector yin Y at least as desirable as some vector y' 

https://dc::.,.1g
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4
in an indifference class M. A performance during a given period is "acceptable" 

when the supervisor imposes no penalty on his supervisee and/or takes no action 

to correct his futur•e behavior (in case the environment is expected to stay the 

same in subsequent periods). The "acceptable set" of the supervisor, the set of 

vectors y at least as desirable as any vector in M, is denoted G. This set is 

assumed to be closed. It must also be bounded from below: there always exists 

some vector y with the property y :::._y for ally in G. Finally, I assume non

satiety: if y' is in G, t:ten any vecto:::·• y such that y :::._ y I must also be in G. 

These three assumptions seem natural and realistic for many situations that might 

be analyzed. 

What criteria of ace:epta~Jility ,,i::;_1 the supervisor apply if the information 

he receives about his sui;ervisee's performance is aggregated? Consider a 

q-dimensional vector ze obtaj_;.:ed by aggregating an n-dimensional vector ye in 

the acceptable se0c G- The supei•visor' will not be able to o.;_stinguish ze from 

e e 
some other vector z with identical elements but aggregated from a vector y 

not in G. The bas5.c assumption of this paper is that the supervisor will accept 

-
ze if he exercises what may be called "aggregated controls," even though he 

would not have accepted ye if he had been able to check on his subordinate's 

disaggregated performance. 5 As we shall see presently, the supervisor may find, 

if he exercises such aggregated controls, that the performance of his "sector" 

has deteriorated. We will consider this possible deterioration from the super

visor's point of view in section 3. For the time being, our concern is with 

the possibilities opened up for the supervisee as a result of the aggregation 

of controls. 
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Example: a manufacturer of shoes instructs one of its plants to produce 

at least 50,000 pairs of shoes in the next quarter with an assortment by sizes 

corresponding to last quarter's actual sales. The plant produces 50,000 pairs 

but discreetly violates the assortment order. It is too expensive for the 

manufacturer to check on the assortment. The retail stores receiving the un

balanced assortment make no complaint because there is a seller's market and it 

is hard to get good shoes. The supervisor cannot act otherwise than accept the 

plant's performance. 

It may be presu.iled that if the costs of obtaining information are high, a 

supervisor will not check on the detailed performance of a supervisee, unless 

he believes that the losses he may be suffering from the latter's failure to 

comply to his detailed orders are great enough to justify the expense of finding 

out what is really going on nbelow deck" (through an audit, a census, or a 

random sample) . 6 

The formal consequences of the assumption made above is this. Where the 

information reaching a supervisor is aggregated, his acceptable set GR will 

include, in addition to G, any vector y which, upon aggregation to z, will be 

e e
identical with a vector z aggregated from a vector y in G. Formally: 

R I o o e eG = {y n y = n y , ally in G}. 

To fix these ideas, we suppose the supervisee transforms inputs (negative 

elements of y) into outputs (positive elements of y) per period according to a 

routinized technology known to the supervisee but not necessarily, in such detail 

at least, to the supervisor. The se-:: Y contains every feasible vector y. 
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In addition to assuming that this set is closed, I shall also confine my 

analysis to cases where it may be assumed to be convex, thus excluding important 

instances where economies of scale are powerful enough to 11deconvexify11 the 

production set. 

The inputs used in these transformation activities are subject to various 

constraints (on the availability of physical factors of production, of borrow

able funds, etc.). Some of these constraints are determined by states of the 

environment, the probability distribution of which is assumed to be at least 

approximately known to the supervisee but not to the supervisor. Given a vector 

of constraints win Q, the set of all possible constraint vectors, the vectors y 

are limited to a set Y in a. particular period t where w has occurred ( t = 1, 
()j 

, T). This set is obviously bounded from above, in the sense that there 

exists a vector y such that y .::_y for ally in Y. The set Y is called '~he 
w 

attainable set, given w.n 

The supervisee is either subject to an incentive plan or pursues one or 

more self-assigned goals. In either case, we assume that he seeks to maximize 

a linear functional 1ry where TT is a vector of non-negative price weights. The 

"vector of incentive prices 11 1r in general will not be identical with the vector 

. . 0 
of aggregat ion prices 1r • 

The elements of 7T may correspond to market prices if the supervisee is 

operating in a market setting and is maximizing profits; bu-the may also mini

mize his expenditures (i.e. maximize 1r y where y is the subvector of inputs 

in y and 1r- are their corresponding prices) or maximize the value of his output~ 

irrespective of costs.7 Any linear objective function with weights 1r will do. 
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That there must exist at least one maximizer y for TI on Y in all such cases 
w 

is guaranteed by the assumption that Y is closed, which extends to Y, and by
w 

the imposition of constraints on Y. These two conditions together ensure the 

compactness of Y . 
w 

Even though w is a vector of random variables at the time the supervisor 

issues his orders (e.g. sets a "plan 11
), we take it that the constraints are 

known to the supervisee during the period in which the vectors y are observed. 

Hence he should be capable of finding a maximizer for TI on Y (or at least a w 

vector in Y whic~'1 comes "close n +_:'.) maximizing Tiy in this set) .w 

The intersection of G with Y is denoted Ew. It too is obviously compact.
(;j 

. a aAny maximizer for TI on EuJ 1.s denoted y , Thus Tiy is the maximum value that the 

supervisee 's objective fu~ctLm :"."~!i 2.ssu-:rce if, he wer5=.. compelled to produce in 

the set G. 

We can now offer a :•eason why i:: , the intersection of Y and G, is likelyw w 
to occupy a significant subset of Y , excapt in rare occurrences where the vector 

w 

of constraints is extremely disadvantageous to the supervisee (in case of floods, 

unusual cold or hot spells, etc.). If it is costly for the supervisor to inter

fere directly in his supervisee 1 s affairs or to levy penalties on him for non

compliance (fines, dismissal, etc.) ,8 then he must 11set 11 M and hence G in such 

a way that, given almost any constraint vector inn, the supervisee must be 

capable of producing in G, This means that, for a "typical" constraint vector w, 
A 9 

some vectors in G will 1e interior to Y. 
w 

But how can the supervisor set G if he does not have detailed knowledge of 

his supervisee's production capabilities in the latter's most detailed nomenclature? 
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It has to be assumed that, on the basis of occasional inspection, the super

visor has a sufficiently good idea of the capabilities of his supervisee, under 

typical constraints, to deter'mine what he should accept and what he should reject 

if he did decide to pay t~1e cc-st of obtaining disaggregated information. I assume 

also that either G has bee::1 set before the vector of constraints w has been re

vealed (i.e. in a pl;:i.nned econo:ny befor•e the plan has gone into effect) or that 

so little information is availab.le to the supervisor about the impact of a 

given won his supervisee 1s capacities that it will have no effect on his mini

mum requirements. 

From now on, we shall dispense with the subscript w, although it should be 

kept in mind that every set Y and Eis contingent on the occurrence of a random 

vector of constraints w, assumed to rema.in fixed for the period under consideration. 

The autonomy of the supervisee is now defined as the ratio of the value of 

his objective function co::1strained by the necessity of producing a vector y 

acceptable to his superv-isor to the value of his objective function in the ab-

h . · ' 1 • lO -f ' dsense of t 1.s 01•gan1.zat:;.ona_ constraint. .L t he superv1.see were compell e to 

a * * produce in G, hi8 autonomy would be the ratio of TTY to TTY , where y is a maxi-

mizer for ri on Y. We will confine our a~tention to cases where every maximizer 
~·, 

y for ri on Y lies outside E (otherwise the relation between supervisors and 

supervisees wou.ld be so harmonious a.s to be totally devoid of interest).11 

The intersection of GR with Yis denoted ER. It too is obviously compact 

R 
(since Y 

A 

and G are themselves compact) and hence contains at least one maximizer 

for any price system ri. 

oLet us denote by y a mazimize1" for 7i on ER , riyo is then the maximum value 

https://availab.le
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of his objective function that a supervisee can attain (given w) when controls 

are exercised in aggregated form. 

Our first task is to figure out whether Tiy0 is greater or just equal to 

wya. (It cannot be smaller, since E, and hence ya, is contained in ER.) 

This problem is tackled in two stages, First we find out what the effect 

on enterprise autonomy would be if the supervisor could not distinguish vectors 

- e e -y and y in Y, where y is in E and y is r..ot, as long as they both aggregated 

o- o eto the same value TI y (=TI y ) . I call this case 11aggregation from n dimensions 

to scalars. n He then go on to partial aggregation of vecto1"S, such that a 

- e o- o e osupervisor cannot distinguish y and y as long as TI y = IT y , where II has more 

than one row. It turns out chat these two cases are linked in a significant way. 

What can be said about ER in the case of aggregation from n dimensions to 

? 'd m , • • ,. o Escalars. Consi er y , a minimizer ror TI on . (Such a minimizer must exist 

since Eis closed and bounded from below.) He now define Em as the set of 

Vecto"""'s y i·n Y such that TI
0 y _> rPym. It · t th t Em · 'd · 1~- is easy o prove a is i entica 

From now on, therefore, if we wish to find a maximizer y 0 for ;r on 

ER, we will seek it &~ong the vectors y satisfying the condition 1r
0 y ~ 1r 

0 ym. 

We first note that if 1r is identical with 1r 
0 and, as already assumed, 

* a o * * ify > ey , then 1ry must equal 1ry. · Or, to put the point in another way, y 

13must be in ER and be a maximizer for if on this set. The autonomy of the 

supervisee is complete. This obvious result may be interpreted as follows. 

If the production vectors of the supervisee are aggregated with the help of 

incentive prices or if supervisees 2re subject to an incentive system geared 

to their aggregate output expressed in terir.s of quasi-prices (e.g. if they 
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receive a bonus based on aggregate tonnage produced), then ER must include all 
;': ';':

the maximizers y , whether or not any of these y are included in the set E of 

points that h would consider acceptable under inspection. 

More analytically interesting are the cases where 1T and 71' 
0 differ. 

14A proposition, formally proved in a previous paper, is that if (1) Y is 

compact and convex, (2) Try*> Tiya, and (3) Tr0 ya > TI
0 ym, then 1Ty0 > 7rya. The new, 

. . o a o m and f undamental assumption, is t1at1 7f y > 7f y. To put the assumption different-

aly, the vector y is an interior point of the half space generated by the hyper-
- ...0 'TI a ..plane rr y through y' • This ensures tha-!_: some convex combinations of y and y 

with a positive weight on y* will be in ER. Since all such combinations are worth 

a a ER.more at prices 'IT than y , y cannot be a maximizer for 1T on Hence any maxi-

1T ER t·. f or on must .be- ·'mizer worn more tnan y.a The autonomy of the supervisee has 

15increased as a result of the aggregation r;;. 

Diagram 1 illustrates, in two dimensions, tte nature and extent of the 

increase in the supervisee's autonomy. 

0 
u 
t 
p \ 

u 
t 

0 

f 
M 

G 
0 

0 

d 

2 

y 

7f 

Output of Good l 

Diagram 1 
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In Diagram 1 above, Y is represented in the supervisee's disaggregated nomencla-
.•. 

ture. It should be observed that y" is located on a straight-line segment (from 

o' y to L) with a slope equal to that of rr. 

In the absence of any restraints imposed by the supervisor on his output 

-!: 
mix, the supervisee would maximize his payoff rry at y or at any point on the 

·'· 
straight-line segment on which y" is located, If he were obliged to produce an 

output mix: in G, he could do no better than produce at point ya. His autonomy 

-i: 
could then be measured as the ratio OU to Oy. If the supervisor were willing 

to accept any point in E worth as much at aggregation prices rr 0 as any arbitrary 

point in E, the supervisee would maximize his payoff at y 
0 

, His autonomy would 

OU OV
have increased from 1, to .,, , Such an increase is evidently possible since 

Oy Oy 
0

the basic condition of our first proposition is satisfi~d--rr0 ya exceeds rr ym 

(e.g. ya is an interior poiLt of the half space generated by the line rr 0 y 

mthrough y ) • 

Suppose that G, instead of heiug bounded from below by the unbroken curve M 

going through ym and ya were bounded by the curve M' through ym' The payoff 

a, 0 1 -1 

of the supervisee could then be increased from rry to rry At yv he would 

enjoy 100 per cent autoncmy, inasmuch as 1ry0 
::: rry • From this we conclude that 

om
there is a strictly monotonic (inverse) relation between the ratio 'IT y to 

0 a V O O * 16 
'IT y and the ratio 'ITY ·:o rry , up to the point where rry = 'ITY. In other 

words, the smaller the ratio of the minimum value at aggregation prices of 
-

points in E to tte val~e at these prices of ya, the greater will be the autonomy 

enjoyed by the supervisee . 
.•.3. .. ,11

For given y , y , ;;i.nJ y, this model also allows us to predict the minimum 



increase in autonomy that would result from the aggregation of controls with 

.d f . 0t he ai o prices 'IT . The following p:rioposition is demonstrated geometrically 

17for two goods, but it is easy to prove it algebraically for any number. 

We denote by b the maximum potential increment in the payoff of the super-

visee, starting from a maximizer on E such as ya, if all controls were removed. 

* a o * o a o * 6 is equal to 'ITy - rry • Next we compute 1T y and the differences Tr y - 'IT y 
-

and '!Toya - 'IToym, which are denoted y and o respectively. The proposition is 

that the minimum increment in the supervisee's payoff, irrespective of the cur

e 1s
vature of (convex) Y, equals - /J.. In other words the fraction of the maximum y 

potential increment in payoff /J. resulting from the aggregation of controls is 

at least}, the ratio of the difference in the value at aggregation prices of 

- a * 
ya and ym to the difference in the value at aggregation prices of y and y. 

Good 2 

* (y) 

0 
Good l 

Diagram 2 
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a ~'e 
In Diagram 2 above a line has been drawn between points D (y) and K (y ). 

,.. 

Since Y is convex, all the points on this line must be in Y including M, the 

point where this line intersects with the line TI 
0 y through ym. 

-
We first observe that B has the same value at prices TIO as D (ya), C (ym) 

as R, and Q as X. The ratio~ is equal to!~, which in turn equals~~ (propor

tional segments of lines crossed by parallel lines). Consider now the triangle 

DR DM ( . ,~ • h f h • )DXK. Clearly DX = DK since R11
J is parallel to t e base o t e triangle XK • 

DM UV
Shifting to triangle D~<.U, we observe that DK -· UK (since MV and DU both have 

O UV UV d U\" = O h . h hAt he same s1ope TI ) • Thus y - UK = ;;-, an u y' w 1.c. was w at we were 

trying to prove. 

That UV is only a minimum is apparent from Diagr~u 2. If we were to draw 

a line with slope Tio through y 0 , it woulc. intersect OK considerably to the 

right of V. But we cannot predict the precise location of y. 0 About all we 

a ~'{
can say is that, given the location of y_ and y_ ~ the efficiency frontier 

of Y, the increment in payoff beyond .2.. /1 will be greater, the greater the curva
y 

1 • , • a d -:: 18 
ture of t h e curve ~inK1ng y an y , 

It is worth noting that the increase in autonomy due to the possibility 

of producing an aggregated vector in GR, as compared to the obligation of pro

ducing a disaggregated vector in G, is rela·ted to the elasticity of substitu

tion among the different goods in the supervisor's preference function: the 

smaller this elasticity for any pair of goods, the greater will be the increase 

in autonomy resul-r:ing fron. the supervisor's aggregation of controls. Conversely, 

if goods 1 and 2 in Diagi0 2:n 1 had been related at ym by an infinite elasticity 

of substitution in "':he supervisor I s prefe~...,e::-ices, y 0 would have been in G, and 
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there would have been no increase in autonomy resulting from aggregation. 

(Autonomy would of course have been greater to begin with.) 

We now turn to the more difficult (and more realistic) problems raised by 

partial aggregation. 

Sufficient conditions for an increase in autonomy are fairly self-evident. 

0 10We begin with a partitioning of 1r into subvectors 1r to ,rqo and a corres

ponding partitioning of y and ,r. As we have already seen, the i'th row of 

matrix IT0 is a vector of n elements, the i'th subvector of which equals 1T 
~ 

consisting of n. 
]. 

elements, and all other elements are equal to zero, and the 

matrix n° maps production vectors inn-dimensional space into vectors in q-

dimensional space (1 < q < n). The acceptable and attainable set under partial 

aggregation is defined as: 

The procedure we are about to follow is this. After locating a given mini

mizer ya in Ewe pick out a subspace defined by a row of rr 0 --say the i'th--and 
-aconstruct a set containing all the vectors in Y that are identical with y except 

in the i'th subspace. We then look for a vector in this set whose i'th subvector 

is worth more at the prices listed in the i'th subvector of 1T 
0 than the i'th sub-

-
vector of ya itself. If this vector exists, we see immediately that it must be 

-
worth more at prices than ya.lg If it does not, we go on to the next subspace 

and eventually investigate every one of the q subspaces to find at least one 

vector with the desired properties, Eventually the procedure may be repeated 

with other maximizers for 1T on E if ya is ~ot unique. A sufficient condition 

for finding a vector ys with the desired properties in some subspace i of the set 
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worth more at prices than ya.ig If it does not, we go on to the next subspace 

and eventually investigate every one of the q subspaces to find at least one 

vector with the desired properties" Eventually the procedure may be repeated 
-

with other maximizers for -rr on E if ya is not unique. A sufficient condition 

for finding a vector ys with the desired ;-roperties in some subspace i of the set 
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a 
previously defined (i.e. of the vectors y identical with y , or any other maxi-

mizer for 1T on E, in ever)' subspace but the i 1th) is that 1Tioyia should exceed 

io im · · f h .; 1th f f1T y , where the superscript 1 re ers tote~ subvector o a vector o 

prices or of proc.uction. In ot:1er words, the same condition that allowed us to 

0 
find a vector y 

0 wo1•th more at prices 'IT than ya where rr consisted of a single 

o io i io i ia 
row 1T allows us to find a subv~ctor y such that 1T y > 'IT y This is not 

surprising considering that t:he eJ.emen':s :in every :::ubvector defined by a par

20 
tition aggregate to a scalar (a single element i:1 the agg"'egated vector). · 

Necessary conditions for 1ry
O 

to exceed mta are even har•der to spell out in 

the case of partial than in the case of aggregation from n goods to a scalar. 

o o a 
We do know, however, that if there does not exist a vector J such that 'TTY > 'TTY 

when controls ar'e aggregated. fron1 n goods to a scalar, there cannot exist a vector 

y 
0 1 

such that 1ry
O' 

> 'lTYa. where ER is defined as the se:t o-f points in Y such that 

o o e e _ o 
n y > n y , for ally in E, and n has more than one row built up from the par-

tition of the same ·rr 
0 

(i;:a.rt~3.l aggregation). This (weak) necessary condition 

for a gain in a~tono~y under partially aggregated controls follows from the 

familiar proposition that if 2. single-constraint maximum problem is broken up 

into two or more separate constraints, the value of the maximand to the new 

problem cannot be greate:i:., ·than what it was for the single-constraint problem. 

Thus if ya is a rnaxim:i.ze:r for ,r on ER generated from a single acceptability con-

a 
straint, there cannot exist a vector worth more than y at prices TI if this 

single constraint is broken up into separate constraints. But if sufficient 

conditions for a gain in autonomy under complete aggregation are satisfied, how 

can we be sure -t_o generate an improvement under partial aggregation? 
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ia
Our first problem is that, even though y , for some subspace i, is located 

io i h , im on t h e hyperp1ane 1T y t rougn y and hence our sufficiency condition does 

not obtain, there may still be points on this hyperplane worth more at prices 

i ia 
1T than y . In this case the analysis in the appendix applies with appropriate 

modifications. But even if we cannot find a y 0 such that 1ry0 
> 1rya in any of 

the q subspaces that we have constructed starting from ya or some other maxi-

mizer for 1T on E, we may still be able to discover such a vector by starting 
maximizer. 

from some vector in E other than a/ Suppose that for some vector ye in E and 

s i is i ie de ds 
y in Y, it happened that 1T y > .r y in the i 1th subspace (where y = y 

_, . ) is . , s . . ~ )(d r i; J. = 1, . . . , q and y is sucn t 1·1at y is in Y . Now we cannot mechani-

s a e a s
cally claim that 1ry necessarily exc'"eds 1ry , since 1ry < TIY , and hence, 1ry 

. h amay b e sma11er or 1arger --c an 1ry . If we write out the component subvectors of 

e s a 
y, y, and y , however, we immediately see that, for an improvement to occur, 

i is d i ie .... d ' d"ff b at he d1"fference between 1T y an ,r y mus .. excee tne i erence etween 1ry 

e
and ,ry • 

I could not find the precise condit:i.ons that would permit one to predict 

whether there existed vectors such as ye in E that were superior to ya as 

starting points. 

II. A Supervisor and K Supervisees 

The extension of the analysis in the previous section to a situation where 

a supervisor h has more than one supervisee is fairly straightforward. 

Denoting a supervisee by the subscript k (k = 1, ... , K), we first add 

the constrained production sets of all K supervisees to obtain the joint
K 

production set of h (i.e. Yh = l Yk). This set must evidently be compact and 
k=l 
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convex if the component sets have these proper":ies. The acceptable set 1i 
intersects with Yh to form the attainable and acceptable set Eh. The set ER

h 
is 

now defined as: 

and 

o a a o R 
For nyh to exceed nyh, where yh and yh are maximizers for non Eh and Eh 

respectively, the same sufficient conditions apply as in the case of a unique 

supervisee. The question to be analyzed now is the relation of the autonomy 

of the individual supervisee to any putative increase in the ratio of ny~ to 

anyh for all K supervisees ·i:ogether. 

By the non-satiety '3.G2Um?tion oDly points on the efficiency frontier of Yh 

qualify as possible maximizers :for an:t set o::' positive prices on Eh and EhR 

respectively. We first proceed to decompose these efficient subsets, de-

'"' ,.,R
noted Eh and Eh respectively,, into subsets of Y1 to YK. According to a basic 

mathematical theorem, if yh is an effid.ent point on a compact set then there 

must exist some semi-positive vector of prices p such that pyh ~ pyh for all 

yh in Yh. By another theorem on sets formed as the sum of compact sets, if 
K 

21 
yh = I yk' then pyk > pv, for all yk in Y, (k =1, ... K). Thus, by the 

- -'K K ' k=l 
choice of appropriate price vectors, every efficient point of Eh and Eh

R 
can be 

'"'D nDR
decomposed into K efficient points of Y to YK. Let Ek and Ek stand for the1 

efficient sets fork obtained, respectively, from the decomposition of Eh and 

E~. It follows also from the theor'em just cited that if ya and y 0 are maximizers 

,... ,..._R a o '"'D ---DR
for non Eh and Eh then yk and yk must be maximi.zers for non Ek and Ek respec-

tively (k = 1, ... • K). 22 
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o aThe fact that riyh > rryh > ,ryh implies that at least one supervisee must 

gain autonomy from the aggregation of controls. But it is easy to construct 

an example where h has two supervisees k and i such that rry~ = rry:, even though 

such, in other words, that the entire gain would 

accrue to L This w!.11 be the case if i can shift from y: toward a more advan

tageous product mix (presumably in the direction of the mix represented by y:) 

without incurring substantia~ly higher marginal costs, whereas any attempt by 

k to increase its payoff would face steeply rising marginal costs. 

This example is illustrated in Diagram 3 below. 

G 
0 

0 G 
d..---

2 

Good 1 

Diagram 3 
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'"'D "D . •
In this diagram Ek and EQ, are indicated by heavy lines on the efficiency fron-

tiers of Yk and Yi respectively. As a result of the aggregation of controls, 

the point yh0 becomes admissible for the joint production of k and i. The area 

opened up bet ween yh an O k ·b1 or;. to improve is·t payoa d yh ma es i·t possi, e f n • ff by 

moving from Yi
a-

to Yi,
o Supervisee k, on th2 other hand, cannot increase his 

-
autonomy--his maximizer for TI remains at y~. The reason is clearly that, because 

of the sharply increasing relative mar~inal cost of producing good 1 fork, any 

combination of a point -co the right of y:- and a point between y:- and y~ would 

yield a joint production y, ttat would :fa.11 inside the efficiency frontier of h.
n 

While it does not strain the imagination to assume that a unique super-

visee might, afte1' sorae ::xperirr.entation, figure out the gener'al pattern of his 

supervisor's p:'.'.'eferences , it is hard to believe that several supervisees would 

not only have this knowledge but be able ·::-o locate points such as y: and y~ for 

various possible degrees of aggregation o~ controls (of which more will be said 

presently). Even if a plan or target were set by h for each of its supervisees 

and all the individual targets were known to each supervisee, this would only 

give k a first approximation to the location of these critical points. He 

would also have to have information on how orders or "plans" were being fulfilled 

by each co-supervisee. Indeed, if the penalties for a failure on the part of 

all K supervisees to produce a joint vector in G--which presumably contains the 

aggregate target as we2.1 as tolerable deviations the:..~efrom--were very heavy, 

there would be a strong indu~ement ~or the supervisees to exchange information 

and collude to avoid this traLJsgression. It might even pay tin the situation 

depicted in Di2grarn 3 to transfer to '.-c a :)art of its ir..creased payoff in exchange 
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-a
for k's agreement to 11stay put 11 at yk. This strategy would only make sense of 

course if 2 had reason to believe that h would not impose detailed controls on 

the output mix and would be content to assess the performance of k and 2 in its 

aggregated nomenclature. 

III. An Inspection Game 

In this concluding section, we shall ignore the special information problems 

arising from a multiplicity of supervisees and analyze the relation between a 

supervisor and his supervisees as if the latter behaved as a single decision

making entity k. The problem I wish -t::o consider is the following. Suppose that 

the supervisor has a choice of the degree o~ aggregatic~ of controls that it can 

impose on its supervisees. The finer the controls--the greater the disaggregation 

of production vectors--which the supervisor wishes to impose, the higher the 

information cost he must pay. On the other hand, the supervisees are aware that 

for each degree of aggregation, there is a different joint payoff; they may report 

their performance according to a.ny of the degrees of aggregation or "channels" 

both they and the supervisor can communicate in, but they risk the chance of a 

penalty if they choose production vectors on the assumption that the supervisor 

will exercise controls in a more aggregated form than the one he will actually 

opt for (if he decides to 11inspect"), Given the production and aggregation 

strategies available to the "players 0 --the supervisor and the colluding super

visees--we seek to throw light on the general ~haracter of the solutions that 

may be expected to games with this format. 

But first I have a preliminary observation to make on the supervisor's 

strategy of aggregation. We have seen that, ceteris paribus, the smaller the 
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elasticity of substitution between pairs of commodities in G, aggregated in GR, 

the greater will be the increase in payoff open to the supervisee(s) upon aggre

gation. Suppose that we could measure the supervisor's loss, corresponding to 

the supervisee's potential gain in autonomy resulting from the admissibility of 
-

a vector y~ in GR compared toy~ in G, as the difference in the supervisor's 
-a o

utility associated with the indifference classes containing yh and yh respectively. 

This loss will clearly be smaller if the supervisor can partition the set of 

n goods in such a way that pairs of goods related by a high elasticity appear 

in the same subvector and pairs with a lowe:::- elasticity in different subvectors. 

The headquarters of the shoe plant already cited in an earlier example might 

want to include in a list of goods for potential aggregation (if detailed con

trols are not exercised) men's shoes of the same size though of different 

patterns and styles, on the presumption that the elasticity of substitution 

among shoes of different styles but of the same size would be higher than be

tween shoes of the same style but of different size. Similarly, if the head 

of a trust or Soviet-type association supervising different coal mines had 

preferences reflecting the specialized demands of its customers, it would aggre

gate coals by calorific value or other demand indicator rather than according 

to geological er mineral characteristics that would affect primarily production 

costs. If a higher degree of aggregation were desired, any two subvectors v and 

w resulting from the first partition might be aggregated, provided the goods 

entering into v had a relatively h:igier elasticity of substitution with goods 

entering w than in the case of pairs of goods in subvectors that would be aggre

gated in different aggregates of subvectors. 
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Consider again two partitions of then goods in a production vector, one 

obtained as a coarsening of the other. As in the first section, the super

visee produces at ya if he seeks to maximize nis payoff and satisfy his super

visor in te!'ms of his disaggregated preferences d .. e. ya is a maximizer for 1r in 

G) and at y0 if he wishes only to satisfy his supervisor's aggregated preferences 

o ~R)(i.e. y is a maximizer for 'IT on ,.~ . Assume that sufficient conditions for an 

o a
increase in, autonomy are met and that 'TTY > -rrY. Clearly, .!E.. terms of the super-

visor's disaggregated preferences, his level of satisfaction at y0
, denoted u-, 

-
is lower than that attained at ya, denoted Um. (In Diagram J., the lower level 

corresponding to u0 is shown as a dottec in.difference cu!'ve passing through y 
0 

.) 

Now for the gan1e to be of any inte!'est (and to make any sense), supervisor h 

must pay a cost, expressible in utility foregone, to obtain the detailed infor

mation corresponding to the finer of the two partitions (for if the additional 

information were free, he would always "inspect.a). Call the decrement in 

utility level associa.ted with this cost of infor·mation I. We now introduce a 

reward R, 23 whi6.1 will be conferred on the supervisee if the supervisor finds 

~ inspection that his sup,.;rvisee k has produced a vector in G, and a penalty T, 

which will be imposed on kif he finds that k has produced in GR but not in G 

(as if controls were in fact aggregated). 

We assume that Rand Tare fixed, irrespective of the extent to which com

pliance may have been easy or difficult to achieve fork or of the extent of 

transgression by k of h 1 s directives. To ::iegin with, we also assume that the!'e 

is a unique vector of resou!'ce constraints w. 
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The payoff matrix of the game is give:1 below. 

Supervisor;s choice of channel 

/---------__....,....._~ 
Aggregated Disaggregated 

(no inspection) (inspection) 
(81) (82) 

As if controls 
were to be 0

1ry I U 
0TTY - T / U - I 

Supervisee k's 
production 

aggregated (a. )
1 

decision As if controls 
were to be a 

TIY / 
m 

U 
disa.ggregated 
(a.2) _____________.__________, 

Let us first assume that the game is going to be p].ayed. only once. Then it is 

evident that h's second strategy e is dominatec by the first 81 : unless2 

information costs are negl:.gitI.e, it would not pa:; h to inspect , since, irres-

a C
pective of k's decision to produce at y or at y , h 1 s utility level would be 

lower than if he had chosen not to inspect. But if k knows that I is non

negligible in terms of h's utility level, he will guess that h will play e1 ; 

he should therefore play a. . His payoff w.Hl be Tiy
0 and h's will be U-.

1 

But a supervisor-supervisee relation is not a one-shot affair. It is 

embedded in the rules of organizations, which are normally endowed with acer

tain degree of continuity, if not of permanence. Let us therefore suppose that 

the same game is repeated a number of times. If his concerned with his total 

(or average) utility over time, it may now be rational for him to play e on
2 

some trials, in order to induce k to play a 0 at least part of the time. Clearly, 
"-
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the larger T and Rand the smaller I, the more likely his going to be success-

ful in "teaching" k that his first pure strategy will not pay. 

At this point we may ask what mixed strategy k can adopt that will guaran

tee him the highest "security level"--the largest minimum--payoff he can expect 

if h tried to punish him by adopting the strategy that would minimize his (k's) 
24payoff. 

That v, the highest nsecur.i.ty level" fork, will be the same whether h 
?5adopts s

1 
or s

2 
is shown in the d:i.agrai"TI below. -

Try0 

_... 
0 - T _.,Try ---

(1,0) (o) (0,l)
X 

Diagraiil 4 

The payoffs associated with each pure strategy pair are shown on the 

vertical lines above (1,0) and (0,1). ':'he 0 line exhibits a.11 the convex1 

combinations of the payoffs Try0 and Trya associated with different combinations 

of k's strategies a.1 and a2 when h 1-lays s1 . The s2 li:r.e is similarly defined 

for combinations of a.1 and '.o'.2 when h plays s2. The lines cross because Rand T 

are positive. 

https://nsecur.i.ty
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The coordina·tes (x
1 

, x ) of any point x are the weights attached to
2 

a and a in a convex combina.tion of thes,~ two strategies.
1 2 

If k chooses a mixed strategy (x1 , x ) in the interval X~l), then h's2 

best response, on the assumptions made above, is s • The vertical distance
2 

from any point (x
1

, :x. } ( suc£1 as the one shown in the diagram) to the 13 line
2 2 

represents k's security level. The interval of the 8 line corresponding to
2 

points in X~l) is marked as a heavy line. On the other hand, if (x
1

, x )
2 

is in x~ 2), then h's best response is r3
1 

. The interval of the i3l line corres-

d • . t . X( 2 ) 1 . h .pen ing to poin s in k a so appeal"S in .e.c.7y type. The Lighest security 
. \ 

level vis clearly attained at the point x(o,, where the two lines cross. 

· · · f • . d ( opt xopt)Using this observation to solve or the opt:;.maJ. mixe strategy x , ,1 2 

f . d - opt R , opt _ T 
we in that = R+'f anu - R+T • Pis we would have expected, the greaterx1 x 2 

T relative to R, the more often k should play a if he wishes to protect him2 

self 
; 

from h's punitive strategy, if R were zero, this maxirn:in strategy would 

induce k to play a exc.J.usively, thus limiting his payoff to 1rya.
2 

v, the minimum payoff k can expect if he adopts the mixed strategy 

( opt opt)x , x , equa1s;
1 2 

( 11-y
0 

)R + ( r.ya)T 
R + T 

av av O a
It is easily verified that aR > O ar:d aT < 0, as long as rry > 1ry. 

What should ;i do to maximize his utility if he we1,e to observe that k 

• d t . ( opt opt)?actually employed ·,::he mixe s .:rategy xl · , x . Again he can do no better
2 

than play 13
1

. But then k should 1,evert "co the "8Ur\S strategy x: and h will be
1 

worse off. The only hope for h ,~11 2.n 2x·cended game is to play f3 often enough
2 
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fork to form the impression that h fo more in-::erested in punishing him for 

transgressions than in immediately maximizing his (h's) utility. This impres

sion will be fortified if Tis relatively low and weakened if it is high, for 

h will not be willing to adopt a strategy dominated in a game limited to a 

single play if he is likely to incur a heavy immediate loss in so doing (unless 

the penalty for transgression is so heavy that k naed only be reminded on rare 

occasions that h is capable of playing 02). 

Let (y1 , y ) denote any of h's mi:zed strategies. Suppose y2 to be the2 
· ·minimum 1eve1 of 15n requir-eu• ~ to· ~1nduce .kto seeK· cover am1... p1ay (xopt , opt) •2 1 x2 

Then h's average payoff will be: 

- R -
w = (1-y )(~)U - + (l-y )(_!-)lfl + y <--){\1 - I) + - (_!__)(Om - I) = 2 R+T 2 R+T 2 'R+T , Y2 R+T 

_::~ u- _!_ Un+ - IY2R+T R-1-T 

Thus h's average payoff will be a convex combination of U- and Um with 

weights R!T and R:T' minus a fraction of inspection costs I equal to the propor

tion of the plays where h has resorted to his second strategy. 

That T should be as great as possible to maximize h's utility is self-

·a 26evi ent. It is perhaps not so intuitive that the reward for (revealed) com-

pliance should be as low as possible if this goal is to be achieved. 

A stochastic vector of input constraints may now be re-introduced. As in 

the first sections, we assume that (1) Mis invariant to the particular input 

constraintsthat k is actually faced with in a given period 1 (2) G is known to k 

with certainty, ar.d (3) R a!cd Tare fixed scalars, invariant to any of the 
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variables in the problem. Given the first of these assumptions, it does not 

seem to matter, in playing h:i.s game, ho,;,; mi.:.ch or how little h may know about 

k l b·1· . 27s capa 1. 1.ties. 

A simple example, involving aggregation from n goods to a scalar, is 

illustrated below. 

Good 2 
G 

y (w') 

Good 1 

Diagram 5 

In the case illustrated, w 1 is a more favorable config11ration of input con

straints than w, allowing an expansion from Y(w) to Y(w'). It happens here 

that y~w') is included in GR so that aggregation of controls, in case w' crops 

up, enables k to attain 108 per cent autonomy. This is of course accidental. 

While the payoff of k will necessarily increase if 00 1 occurs rather than w, 

the autonomy ratio may actually dec~ease (if, fer example, the slope of the 
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efficiency frontier of Y(w 1 ) were appreciably sn·.aller above 1r
o 

y through y 
m 

and greater below that line). Neither is there any way of ascertaining a priori 
a a 

whether 1ry(w) is larger or smaller than 1ry(w 1 ) 

0 0 
1ry(w) ny(w,) 

Whichever is larger, however, should make little or no difference to the 

choice of strategies that k and hare likely to adopt, since, whether w occurs or 

w' , 13 will be dominated by 13 and the maximizing strategy of k will still be2 1 -R T The latter point is evident from the fact that neither 1ry0 nor 'ITYa(R+T 'R+T). 

appear in the solution to the problem of maximizing v. 3ince R, T, and I are 

fixed, there are no new factors to affect the behavior in a repeated game of 

either k or h. I conjecture, therefore, that under these assumptions the 

relative frequency of inspection (13 ) in an optional s~rategy for hover an2 

indefinite number of periods will be the same :for any vector of constraints to 

28which k may be subject. 

I shall not dwell on the case, already alluded to in the beginning of this 

m paper, where h decides on his minimum acceptable level of utility U after 

observing w or, more generally, after observing k;s capabilities. The super

visor may, for example , set Urr: in such a way that k can only produce in G if 

his vector of constraints is exceptionally favorable; then when a typical con-

straint vector such as crops up, k is forced to cite "objective difficulties" 

for his failure to comply with h's orders. If his not willing to accept just 

about any performance backed up by such 11 excuses," he must pay additional costs 

to obtain the informat!_on necessa1"y to check on these objective difficulties. 

This may be extremely -:costly, especia.:i.ly for- a highly disaggregated product mix. 

https://especia.:i.ly
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That contingent controJ_s of this sort a1°e at ·times applied in command economies 

of the Soviet type may hav,J to do with the fact that rnuch internal information 

about the production capacities of producing units are routinely passed on to 

their superiors at frequent intervals so that the incrementa.l costs of obtaining 

information to check on excuses for transgressing directions may be fairly low. 

It is generally 1"ecognized tba-:.: pressure on subo:r.dinates to coax out maximal 

performance--feasibl.e only under unusual.ly favor•ablc circumstances--is dimin-

. h. . h 29Ois ing int ese econom~es. If so, the asswrptior: of an invariant G may be-

come increasingly ~:'ealistic in analyzing supervisor--supervisee relations in such 

a setting. 

https://unusual.ly
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APPENDIX 

The linear programming formulation of the maximizing and minimizing 

problems considered on pages 11-42 can be represented as follows: 

. 0 
max rry or min rr y 

subject to: 

-Cy < -c 

By< b 

y. > 0 (j = 1, ... , n)
J 

where C is an m x n matrix and can m-dirnensional vector of non-negative 

coefficients, and B is an r x n matr:~x and b an r-dimensional vector of non

negative coefficients (n > 2). 
-
a dmb, ·- h( ) . ...Let y an y otn satis::y t .e m + r. constraints; ya is a maximizer 

m •.. ~ o S oa om
f or 1r and y a minimizer ror ,r • uppose rr v = 1T y • 

The secondary problem (after agg:r,egatfon of i:he constraints defining G) 

is: 

max rry 

subject to: 

By~ b 

o o e 
-1T y < -rr y 

where ye is any vector satisfying the (m + r) constraints of the first 

problem. 

a · h · 1Yo 1·s maximizer· .Lor.c tis prob· em. We reintroduce the assumption made 

earlier that E consis~s of more than o7e point. ~onsider the hyperplane rr0 y 
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through ym and denote by y the set of ally on this hyperplane. If ya and ym 

0 0 are distinct (if they are i.10t, see below), t~1en the condition 1r y > 1r y for all 

O 0yin. E ( except y ~ ym) cannot hold (since. not on1y 'IT ° ya =Trym = 'IT y" but a11 

convex combinations of ya and ym are on this hyperplane). It follows that 

either 1) one of then inequations defining G, say the j 1th, has the same or 

• 1 ,..f · · h 1 t · 0 2) yrn and ya J., i'e • thproportiona_ coer icients as t e e_emen s in 'ff or in e 

intersection of two or more of the constraj_n:_: equations defining G~ neither of 

which have coefficients; eq1_1al or p:-eoportiona.J. to the elements in '!To. If 1), 

o a
then a necessary and ~:icif icieni.: condi-:: ion for 'ITY > 1ry is that at least one 

of the n inequat:;.01s dc.:i:ining G other thaT'. the j 1th s~·.,ould ~1ave a positive 

a
shadow price for the >asis co:-.0 r1es1Jon<iing toy (i.e. should be just satisfied). 

Proof: If there is no othe:. binding const::->aint in G, every vector in Y located 

on 'IT 
On y must have been in E, Hence ya must tea maximizer for 'IT on ER as well 

as on E, and there cannot exist a y0 in :SR such that 1rv
0 

> 11ya. If, however, 

there was another bind:.ng constraint in -:; at the point ya, then clearly an 

increase in the value of the maximand rry would have been possible if this 

constraint had been rerr:oved, This constraint is, by definition, absent in ER. 

Hence at least one vector worth more at prices rr than ya can be found in ER. 

. . o R •All maximizers y for TT on E must be worth at least as much at prices 'IT as 

o athis vector, :-Ience 1ry > TTY 

If 2) , we have at least two 0£ t}1e inequations defining G strictly satis

fied at ya. AlJ. the r,oints y on 1T
0 y th1°ough ym and ya are either such that 

ay ~ aya or such that- dy ~-- c.y 
0

, where a and d are respectively row-vectors of 

coefficients of the j'th and d 1th inequa.tions that are just satisfied at ya. 

https://bind:.ng
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The above inequat5.ons folJ.ow from the fact that the only points such that 
-

dd ,a . h .. fG d' f be on t heay > aya ~ y > ay are in t1 e interior o an tnere ore cannot 

minimizing hyperplane w 
Qr, 
y. Hence if either of the inequations have a positive 

0yshadow price and the constraint to that inequation is relaxed, points on w 

satisfying the remaining constraints wiJ.J. be opened up that will be worth more 

• h aat prices tan y. 

Finally, if y2. and ym are identical and E consists of more than one point, 

-athen y must be located at the intersectiori. of two or more hyperplanes defined 

by the inequati::ms defining G. It suffices tha-:: tl1ese inequations should have 

positive shadow prices f0r the p-r>oposition in 2) above to go th11ough. 

note that it is nalmost but not quite" necessaryReturning to case 1), we 

for two of the inequat:ions defining G to have positive shadow prices. We 
.,. 

could have a situatj_on where 1) y" was identical with y 0 and 2) the inequation 

with the coefficients proportional to the elem~nts of ·rr 0 had a zero shadow 

. o . a . , . 
could stil 1 exceed wy , even tnoug11 only one other constraintprice, but 1ry 

in G had a positive shadow price. 
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FOOTNOTES 

.•. 

.. I am grateful to Geoffrey Heale, Yoav Kislev, Richar•d R. Nelson, and 

Martin Weitzman for their perceptive comments on a preliminary draft of this 

paper. 

1 on this latter type of decentralization, see Kenneth Arrow, "Control 

in Large Organizations/' Management Science_, Vol. 10 s April 1964, pp. 399-401. 

2Jacob Marschak "P:r.obJ.ems in Information Economics in Management Con-

trols," in New Directions :.n Basi:'.! Research, New York, Toronto, and London, 

1964. 

3
Roy Radner, i:compet:i tive Equilibrium under Uncertainty, 11 Econometrica, 

Vol. 36, 1968. 

4This satisf:.cing approach was firs-;: developed in J. Kornai, Anti-equilibrium; 

On Economic Systems~i.. the ~asks of Resear•ch, Amsterdam and London, 1971, 

pp. 96-97 and, independently, in J. M. Montia.s, '1.'1. Framework for Theoretical 

Analysis of Economic Reforms in Soviet-type Economies," in M. Bornstein, ed., 

Plans and Market, New Haven, 1973. 

5An alternative way of modeling this supervision relation would be to 

assume that the supervisor would insist on a higher level of performance if he 

received performance reports in an aggregated than in a disaggregated form. 

In this way the supervisor might compensate for the greater risk he incurred 

of accepting an aggregated ~rector that would turn out to be inferior for the 

system as a whole. This :::tra"::egy would ;_1ave the disadvantage of causing the 

supervisor to reject c,;;rtain vectors that were actually aggregated from vectors 
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than 
in G. More frequent inspection might be required/under the behavior conditions 

spelled out in the model developed in the text. To determine whether it would 

pay the supervisor to adopt the strategy of restricting the autonomy space of 

supervisees when his controls were aggregated, however, would demand a more 

detailed specification of the costs of inspection and of interference than the 

present model provides. 

6on the superYisor's possible strategies for maximizing his utility, see 

below, section 3. 

7If the supervisee is rewarded for 100 per cent fulfillment of his targets 

but gets nothing reore for overfulfillment, his behavior cannot be represented 

by a linear objective function. It also strains belief to assume, in case 

his performance should depend on his exertions, that his effort can be incor

porated as an input ~ith a fixed weight in his objective function. For a model 

incorporating alte!"native assumptions, see Michael Keren, "On the Tautness 

of Plans," Review of Economic Studies, forthcoming. 

8On the "power" of ' the supervisor over his supervisee and its relation 

to the cost to the former of imposing penalties, see below, section 3. 

consisted of a single point on the efficiency frontier of Y
A 

(I) 
then 

a less favorable constraint vector 00 1 would be likely to generate a production 

"" set Yw, that did not intersect with G at all. 

101 will not dwell on the interesting question, raised by Geoffrey Heale 

in a recent discussion, as to whether a definition of autonomy should not in

clude some notion of increased choice, ir~espective of whether the new options 

available enable a supervisee to increase the value of his maximand. My own 
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feeling is that the widening of the set of options in order to be valued by 

the supervisee , must ~ under certain circumstances at least , lead to a higher 

value of his maximand. It would not, in any case, be an easy matter to define 

autonomy in terms of opportunity sets in such a way that two situations could 

be compared and their relative degree of autonomy cardinally measured. 

11The reader may wonder whether it is realistic to represent a situation 

where a supervisor can decide -~1hat a supervisee should do, at least in aggre

gated terms, hut cannot set ~pan incentive system that will induce him auto

matically to perform according to his desires. For one thing, immediate super

visors in many organizations ~~e not free to determine either the incentive 

system according to which ~heir supervisees are rewarded nor the price systems 

that are used to evaluate their performance. The elaboration of an incen

tive system that will be equitable when appl:i.ed to a significant number of 

subordinates in an organization and that will induce all of these subordinates 

to perform in a desirable manner is a formidable task which goes much beyond 

the narrow range of problems discussed in this paper. Another consideration 

is that, if the supervisor does have control over the incentive system for his 

supervisees, the performance of the latter may be subject to appreciable fluc

tuations (e.g. in the volume and composition of his output) due to random 

exogenous constraints, so that it may be very difficult for the supervisor 

to set incentives in such a way that supervisees will be induced to produce 

in an acceptable set at all times. 

12E • (1) b h " ~· ' . f ER,in. ~R is in. , t e e1e:n.n1tion overy vector y .r., . Em since , y 

. E d ( ) o a o ·,n h d f. . . 
,r o-y = 1T

oya where y a is. some vector in ~ an 2 'IT y ~ 1r y by t e e im.tion 

h f . . . ...:1m d h o- o :m l . . ~ . h in1t1on of vectors in. Em •of y, an ence 'IT y ~ 1T y , w1ic satisries tie ~e 

https://appl:i.ed
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b ·t + . Em 1 b . RI nowshow that an ar 2 rary vector y in must a so e in E • By the 

f . . . f Em o + o m o + o m + R
de inition o , ,r y .:_ TI y. Suppose ,r y = TI y. Then y is in E , since 

m • • G - . l o + omy is in , A~ternative y, suppose TI y > TI y. Since both sides of the in-

o + omequality are scalars, this can be written ,r y = dir y where dis a constant 

. o + 0 (d m) B d m b h . .l h y = 'IT y . ut y, y tenon-satiety assumption,arger tan unity or ,r 

0must be in G. Thus if we substitute dym for ya and ir0 for rr in the defini-

tion of GR above, we see that y+ must be in GR. Since y+ , by assumption, is 

in Em, it must be in Y. If y+ is in GR and in Y , it must be in ER, the w w 

intersection of these two sets. 

o -1: o m13Proof: iry* .:_ TIYm by the definition of y*. Then n y ~ ,r y, since, 

0 ,..,, f b h d f" . . f Emby assumption, TI= n. ~Dere ore, y t e e 1n1t1on o , y is in that 

set, and hence in ER. is a maximizer for non Y, it must also be 

a maximizer on ER, a subset of Y. This result does not depend on the con

vexity of Y. No·:::e , however , that it does not necessarily hold for aggregation 

from n to q, where q > 1 (see footnote 20). 

14J. M. Montias, op. cit., Appendix B. 

lSTh d. . o a o m • h 2 b t h . 1econ ition 7r y > 1T y is necessary wen n = , u, wen n 1s equa 

R o m
to three or more goods, vectors in E located on the plane TI y through y 

(or ya) may be found that are worth more at prices n than ya. I was only able 

to find necessary conditions for Tiyo to exceed ny a in case n > 2 under con-

ditions where Y can be taken to conform to a linear technology and G can be 

defined as the set of points Cy.:_ c where C is an m x n matrix and c is an 

m-dimensional vector 0£ non-negative coefficients (see Appendix). 
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16 a a'As long as y (respectively y ) is an interior point of the half space 
1 

generated by n°y through ym (respectively through ym ), the basic condition of 

·t· l . . f" - ( o a om . o a1 om') h o aproposi ion is satis 1ea TI y > 1r y ana TI y > TI y sot at ny > ny 

o' a'{respectively ny > ny ). The upper limit to this improvement is of course 

set by the condition where the maximizer for 1r on ER is worth as much at prices 

* o'
TI as y (e.g. y in the diagram is the upper limit in this case). 

17By definition~, defined in the next paragraph in the text, equals 
0 a Om y 

TI Y_ - 1T Y Since Y is convex and 1r 
0 ya > n°ym > n°y*, there must exist a 

o a o 1: 
n Y - TI y 
convex combination yb of ya and y* on n°y through ym. 

in the above expression: 
0 a 0 b

0 1i y - 7T y 
y ·l:0 a 0 

1T y - 1T y 
-

~·~ aBy definition~= ny - 1ry The payoff corresponding to yb is 1ryb. The 

. ' ff d . • b aincrement in payo· ~e to aggregation is ny - ny. The critical ratio of 

the increase in payoff from aggregation to the maxil!!um possible increment is 
..,Yb a .,,.o a .,,.oyb 
II - ny to II y IITo show that this ratio is equal ---------, we need only note 

* a a a o * 
ny - ny 1r y - 1r y 
that we have here the ratios of two aggregates at different prices of the same 

a b - ~•· 
vectors with elements (yj - yj) and (yj - yj) respectively (j = 1, . • . ' n). 

A familiar proposition from index-number theory tells us that the ratio of all 

such aggregates must be equal, irrespective of price weights. The equality of 

the two ratios allows us to conclude that nyb - nYa equals£.. 11· 
y 

18If there is a set of maximizers for 1r on Y rather than a unique maximizer 

(as in Diagrams 1 a:1.d 2), then the measure~ will depend on which of the 
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maximizers are chosen on this set of maximizers. The largest value of -t5 A,
y 

and the one making the most sense, will be obtained by choosing any maximizer 

for 'IT on Y that maximizes the value 'IT 
0 y. 

19call this vector ys and its subvectors in the i'th and j'th subspaces 

yis and yjs. Since Tiiyis > 1riyia and Tijyjs = 1rjyja (j ¢ i; j = 1, ... , q), 

·t f 11 h s > Tiy.a 

20ror detai· 'ls, see '1r ont·1as, _op. c1"t . It should be observed that 

* 

1 o ows tat ny 

if 'IT and 'IT 
0 are identical, it is not necess2rily true that y will be in ER 

when q > l. For this proposition to hold, we must have: 

i i,': ..,.i im
1ry :::_uy 

( e • .... h h m •f or every subvector J. · f rom l to q. Any vector y in r. ot er t an y satis-

fying the set of q re:~ations will also do . ) If we substitute 'IT 
io on both 

o,•; om 
sides of the above inequation (i = q), we see that TI y ~ TI y and 

that y* must be in ER. 

21This follows from Theorem I.2 in T. C. Koopmans's, Three Essays on the 

State of Economic Science, New York, Toronto and London, 1957, p. 12. 

a22consi'der a price· syst em pana a vect or yha such that pyh :::_ pyh for all y 
K - -

in E and py: ~ pyk for all yk in Ek (k = 1, , I y: = y:.K), where 
- k=l 

(k = 1, • • • , K).By the definition_of Ee, y: must be in this set for every k 
-

a a ,. 11 k • a · · · f "ED SupposeClearly, eyk 2.. 'IT'Yk :ror a , wnere yk 1.s a maximizer or 'if on k. 

. ~ a a 
t hat f or some supervisee :~, 1ry.Q, < ny9.,. Then, summing over all supervisees, 

- = = K = a a a , a a
By the theorem already cited, yh must beeyh < eyh, where yh eq~als. ~l yk. 

'"'DJ< ,....D 
a maximizer for non l Ek and hence on Eh, a subset of this last sum of sets. 

k=l 
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a
But the last inequality contradicts the assumption that yh is a maximizer 

D
for ,r on Eh. This proves that 1TY: = .ry: for all k and hence that y: is a 

maximizer for 1T on EkD for all k. The same reasoning can be applied to prove 

o b . . f ,,DR f 11 kh ea maximizer on Lk or a .tat yk must or 1T 

23This reward may be quite small relative to 1Tya and to T, but it would 

be unrealistic to suppose that k would derive no advantage from an inspection 

tnat had uncove1"ed no serious deviatio:1 of performance from orders. 

24rn this non-zero-sum game, such a strategy would not necessarily be 

optimal for h. But is is relevant because it places limits on h's ability to 

punish k for· adopting ct, at least part of the time and thereby to "teach" him 
..L 

not to transgress his orders. 

25The diagram is adapted from R. D. Luce and H. Raiffa, Games and Decisions; 

IntI'oduction and c1,iti.cal Survey, New Yor}'( and London, 1957, Appendix 3, 

pp. 394-97. 

26A more complex and realistic model would coLsider the cost to h of 

imposing a penalty on k (e.g. the manager o= k might resign and it might be 

costly to replace hi:n). Such a consideration, ceteris paribus, would tend to 

limit T. For a more general model of power in hierarchies incorporating the 

cost to h of imposing penalties on k, see John Harsanyi, 11 Measurement of Social 

Power" in Game Theory and Related Approaches to Social Behavior, M. Shubik, ed., 

New London and Sidney, 1964, pp. 183-206. While this is the only reference 

to Harsanyi 's paper, I sh01.11d-· acknowledge its general influence over the con

ceptual approach adopte-1 in this paper. 
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27 we recall that h needs to :<now something a!JOUt n ={w} and about k's 

technology in order to sc.t Mat a level that will permit k to produce in G 

"most of the time." The greater the cost to h of imposing a penalty on k for 

not producing in G, the greater the likelihood that Mwill be set in such a 

way as to enable k to produce in G, for almost any win n, if he wishes to 

do so. 

28The possibility of an exception to this general principle should be 

recognized in case w1 c~anged the constz•ained production set in such a way 

as to cause a relatively .iarge difference in tI1e ratios 

a a 
rry( 'ffV 1 I)W,'\ J \ w

and 
0 0 

1TY(u) "Yi\W'·) 

For, while k's rnaximin st."'a·:egy wculd not be affected, the de:::irability of 

adopting it against an occa::;:i.onal play of h's second strategy might differ 

in the two situations: k :night take mo:oe c;1ances-···Le. play a.. more often 
J. 

than the maximum strategy would dictate--in situations where Jifferencesbe-

o d a .tween TI'Y an_ -rry were except1.onally large. 

29See the tliscussion in Michael Keren, op. cit. 
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