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* Network Intrusion
» Intrusion Detection system

« SNORT

* What if new unknown packet comes?
E.g. ‘Zero Day’

Neural Network

Positive + Zero Day

Block diagram of the neural network based intrusion detection system



Deep Learning Vs Power Consumption

Introduction (Contd.) (%‘

Memristor
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« Memristive system could be a solution



Anomaly Detection Methods and Applications (%ﬁ%‘

What are the anomalies?

 Abnormalities/outliers

Y
A D2 D]_

» X

lllustration of anomalies in two-dimensional data set
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Anomaly detection Methods:

* Unsupervised (AE, GAN, RNN, LSTM etc)
« Supervised (DNN, CNN)

* Hybrid model (AE+SVM)

* One-Class Neural Network

Applications:

* Cyber-Intrusion Detection

« Malware Detection

* Internet of Things (loTs) Big Data Anomaly Detection
* Fraud Detection

« Medical Anomaly Detection

» Industrial Damage Detection



Motivation and Challenges @

University of
Dayton

Motivation:
* Deep learning implementation for IoTs and edge devices

» Detection and learning of anomalies in real-time

Challenges:
* Boundary between normal and malicious is not explicitly defined

« Continual learning and the catastrophic forgetting



Our Contribution (%%‘

University of
Dayton

Design and implementation of unsupervised autoencoder in memristor
crossbar devices

Develop autoencoder training in memristor device

Proposed an online learning system for network anomaly detection



Dataset Preprocessing @

NSL-KDD network dataset<& KDD Cup’99 dataset

Training data has125,973 packets, 23 different data types

43 attributes, consists numerical and alphanumeric data

Preprocessed and sorted out the packets

Network is pretrained with 90% of Normal

Tested with 10% normal and 10% of total malicious

data
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Normal Packet

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,
0,0,1,0,0,150,25,0.17,0.03,0.17,0,0,0,0.05,0,normal,20

Malicious Packet

0,tcp,ftp_data,SF,334,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0,0,
0,0,1,0,0,2,20,1,0,1,0.20,0,0,0,0, warezclient,15

Preprocessed Malicious Packet

0,0.5,0.188,0.629,3.55¢~7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.003
91,0.00391,0,0,0,0,1,0,0,0.588,0.098,0.17,0.03,0.17,0,0,0,0.05
,0,0,0.9523

Preprocessed Malicious Packet

0,0.5,0.188,0.629,2.42¢~7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.003
91,0.0039,0,0,0,0,1,0,0,0.00/8,0.078,1,0,1,0.2,0,0,0,0,1,0.714
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System Prototype Model Autoencoder (AE) Neural Network
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AE-2:Real-Time Training

* AE learns to regenerate the input data at output

Intrusion And Anomaly Detection System with AE neural Network * AE can reduce the dimension of input data
9



Memristive Neural Network and Crossbar Circuit (%‘
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Training of the Network (%%‘
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apply x;

crossbar computes the dot product DP,

output signal y;

error : §; = (x; —y;)f'(DP;)

backpropagate the error §; = ¥, 8, wy ;f'(DP;) in each hidden layer

update the weights according 6; as Aw; = nd;x

_ 2
calculate D= \/Z(Xi —Y;)? and Dgp = \/@
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System Flowchart of Anomaly Detection System (%%‘
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Pretraining of Autoencoder-1 (AE-1) (%%‘
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- Feature Regeneration in Xbar ) MSE Vs Epoch
. Incoming Feature — — — Regenerated Feature Memristor
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Input feature and regenerated feature of a sample through (AE-1) Training Error (MSE) in software and memristor X-bar
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Intrusion Detection Accuracy (%;‘

University of

Dayton
96 1400 i
—8—MATLAB Simulation —e—MATLAB
95 —i#t— Memristor based 0 1300 —id#— MEMRISTOR
1200 +
- 94 | E 00
> 03 g 1100 -
g = 1000 -
= 2
3 9 = 00l —F
S =
91
800 -
90 B 700 -
a' 89 ! . : b' 600 1 | |
10 20 30 40 50 10 20 30 40 50
Pretrained Epoch Pretrained Epoch
Intrusion detection Accuracy (AE-1) False Detection (Malicious + Normal)

Pretraining Epochs | Global Accuracy Nyn | Nym Np | Case

Accuracy = NSNNF X 100%

50 95.22% 56 546 | 602 Software
50 92.91% 65 868 | 933 Memristor
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Missed Detection

Intrusion Detection Accuracy (contd.)
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Anomaly Detection
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Real-Time Anomaly Detection:
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Real-time learning and anomaly detection
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Anomaly Detection in real-time

2

2

Enterprise Netwoyk

Positive=Normal + ‘zero day’

packets

Anomaly Detection System

AE-1: Pretrained Section

W —Positive—,
Negative

—> Normal Data

Malicious Data

‘o‘ O,
- WN v”l. / ;
: )m'i.‘\\.\\ \;’v’i ““: :
'n / /‘ iy
) ‘N ‘.l' AR .4/' :
Al

\ o H
'J ’l! w‘
! o«\\“ o«“‘:’/
‘0( ‘u‘ le—
40.0'\ m

0 m”

— Known

1 &.ih A‘\oi ;
oo

AE-2:Real-Time Training

O

University of
Dayton

16



Power, Area and Timing Analysis @
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. 4 Parameter Training Data | Recognition Data
Rorr = 1% 107Q, Ry, = 5 x 10* 0
Wire Resistance =5 Q, V.., = 1.3volt Area (mm?) 0.00271 0.00271
Transistor Feature Size : F= 45nm Power (mW) 20.6 756
Op-amp power = 3 X 10~% watt
h-amp p we Time (us) 2.02 0.384
Transistor Size= 50F?
: E | 2 2.90
Memristor area= 1 x 10* nm? nergy/One Sample (nJ) 8
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Summary %f

Dayton

Introduced the problem and proposed a possible solution

Presented the Autoencoder with memristor X-bar and the functionalities
Over all accuracy 92.91% with malicious packet detection accuracy 98.89%
Presented real-time anomaly detection system

Explained the power and energy requirement
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* Incremental learning algorithm & unseen class detection

« Adaptive learning system for battery power devices
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