The Economics of Higher Education in Virginia

Phillip A. Jones

Clarence R. Jung Jr.
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/robins-white-papers
Part of the Business Commons

Recommended Citation

Jones, Phillip A. and Clarence R. Jung. 1989. "The Economics of Higher Education in Virginia." E.C.R.S.B. 89-1. Robins School of Business White Paper Series. University of Richmond, Richmond, Virginia.

This White Paper is brought to you for free and open access by the Robins School of Business at UR Scholarship Repository. It has been accepted for inclusion in Robins School of Business White Paper Series, 1980-2011 by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.

THE ECONOMICS OF HIGHER EDUCATION IN VIRGINIA

Phillip A. Jones

Clarence R. Jung
1989-1

THE ECONOMICS OF HIGHER EDUCATION IN UIRGINIA
by
Phil Jones and Clarence Jung - 1989

Background

This study is based primarily on financial data from colleges and universities in uirginia for the two academic years 198 华- 88 and 1988 -88. The data base stems from detailed data submitted by virtually all colleges and universities to the federal and state governments and reported in the Integrated Postsecondary Education Data survey (IPEDS). The data were accessed by Professor Jones from the State Council of Higher Education using the Bitnet computer program. (These data can be accessed for any college or university in the country, but this study employs only Virginia data.)

The aim of the study is to gain an understanding of the matrix of finaricial, economic and academic factors which determine the nature of a college or unjuersity; and to interpret these factors as they relate to decisions facing faculty, administrators, government officials, students and families and other interested parties. Attention to these matters in the media today would suggest that this subject is hardly an irrelevant one.

```
Gereral Approach
This research proceeds, broadly speaking, in two ways. First, regression analysis is used to develop single equation models of the economic and academic factors involved in the source and application of funds for higher education. The equations use SAT so es as representative of the "quality" of schools as the primary dependent variable and various independent variables such as faculty salaries, scholarship assistance, tuition, academic support among others.
Second, ratio analysis and comparisons of revenue and expenditure pasterns are employed to find methods of evaluating colleges and universities for efficiency in the use of resources. In this approach, the intent is to ply the model of corporation finance to colleges and universities. (At the time of this writing, a good bit of the work in this approach is yet to be done.)
```



```
    -245 [E-0.215 5%-0.0555 C10
```


$s=50.51$

$$
R-s q=89.1 \%
$$

$$
R-s q(a d j)=82.0 \%
$$

```
O2=SHT
O2=-E (School Size)
CE=5jculty S\Xi⿺ary
CA = Tultan
C5 = (Endowment Incume)rstudent
CE = Scholarshi; Estudent
C7 = (Academic Expendi tures)/Student
cB = Black/Wh1 : E
CQ = AGademic Eupportigtudent
C10 = (Government Afpropriations)/Student
```

Curti-iWatson 5 tatistic $=2.62$ (rot significant at 5% level)
La: in: ECOED.REG;

```
    Single equation regression models were developed for the
private and public sectars, taken separately. Ultimately,
simultaneous equation models are more appropriate (cf. Dolan, Jung
and Schmidt, 1985). The data set for Virginia schools does
not, however, readily lend itself to such models.
    An immediate problem posed by single equation models is that
this interdependence manifests itself in the condition of
multicollinearity - i.e., variables can be expressed as linear
functions of each other. The presence of multicollinearity is
shown in a function developed for the private sector in which
SAT scores are a linear function of the following factors:
size of school, faculty salaries, tuition, endowment income,
scholarships, academic expenditures, black/white student composition,
student services expenditures, and government aid. (These variables
expressed on a per-student basis where appropriate.)
    The regression is shown in TAble 1, where it is clear
that the high multiple R-squared and the lack of significance in
the regression coefficients is the classic case of multicollinearity.
This problem is addressed by selecting a few independent variables
based on previous research and on observation of what appear to be
important relationships among the variables of the world of Academe.
```

```
    On that gasis, the following function sugges:= that high SATs
are associated with; well pald faculty; high tuition, historirallu white
studerit cody composition; and the provision of student services.
```



```
        +56.9(Studert Services) - .02(Scholarships)
        (9.43)
        (1.51)
        Adjusted R-square = 97%
where faculty salaries are measured in thousands of dollars, tuition
in collars per s:udent, race as zero or one for whilte us black composition
z E:udent socy, stwcent Eevibces and cholarshmps in dollars. t-va!ues
are given in parertheses.
    Ttis : au`tion yielcs results shat are not counter-intuitive.
zujl::y is associaied with higher "price" (tuition), more expensive factors
of p"oduetion (higher faculty salaries), and the provision of amenities
(student services). Scholarships do not appear as a statisticaliy
significant factor, possibly reflecting the mixtrre of financial resources
available to students for financial aid.
    However, the line item of scholars-ips is related to tuition, as
expressed in the following function:
    Scholarships = 5554+.18(Tuition)
                                    (2.37)
    Adjusted R-square = 17%
indicating that, on average, schools increase scholarship money at a rate
of $18 for every $100 increase in tuition. (Looking at increases in tuition
versus increases in scholarships for the two years, 1986-87 to 1987-88,
```



```
statisticaily insignifigan: and the correỉaton is near zero. Appendix n\f%L
sets out the tuition charges for private colieges and - niversities versus
increases in tuition for these two years - a pattern showing little or no
consistency, suggesting that these schools are hardly "colluding" on tuition
increases, as has been recently jlleged by government.)
```

That tuition is a major explanatory variable is indicated in the following equation:

$$
\begin{align*}
& \text { SAT }=544+\frac{.06(T u i t i o n)}{}(5.17) \tag{5.17}\\
& \text { Adjusted } 8-5 q=53 \%
\end{align*}
$$

indicating that for every $\$ 1000$ in tuition, SAT rise by 60 points. Of course, as indicated above, for every $\$ 100$ increase in tuition, scholarships rise $\$ 20$. And, by the following equation

Tuition $=\$ 5120+1.27$ (Endowment Income) (5.68)
for every 100 increase in endowment income, tuition charges rise by $\$ 127$. (nit., tuition rises with endowment income rather than being "offset" by endowment income,)

It is interesting to note the role of government aid for the private sector. GATs as a function of government assistance is

SAT $=1044-.14$ (\$government aid).

Government aid is defined here as assistance from all levels of government. The direction of "causation" is quite plausibly from

```
low SATS to government Bic, Euggesting that for every drop of
100 paints in average SAT scores, governments invest some $700
ir aid. This suggests that government aid to private schools is
perhaps doing no more than barely keeping srme struggling schools
in existence. This, in itself, may have important social
significance.
The composite picture which emerges from these regressions is one which shows high quality schools (as measured by average SAT scores af incoming freshmen t with high tuition, high faculty salaries, high levels of spending per student and with the level of government assistance inversely related to GATs. Other research studies indicate that alumni achievement in business and the professions is directly related to quality of student, faculty, and per capital spending (Nolan, Jung, and Schmidt, 1985). Still other research shows that SAT levels are closely correlated with family income (cf The New York Review of Books. October 12, 1989, p 67).
The foregoing analysis is based on standard regression analysis techniques. Another way of comparing schools is to rank order schools along dimensions suich as operating margin, increase in total revenue, return on endowment and so on. Data of this nature odes given in Appendix II. Comparing the institutions which are at the polar edges of wealth, it turns out that St. Paul's and Richmond are (not surprisingly) inversely related:
```

$$
\text { St. Pause }=26.2-\begin{gathered}
\text { (} .63 \text { (University of Richmond) } \\
(t-v a l u e)
\end{gathered}
$$

which suggests that the ranking of $5 t$. Paul's can be predicted for

```
any item by taking 26.2 3s base and subtracting . 634 of Richmond's rating. Suct a comparison does not yield a recipe for financial and operating management per se, but does suggest that the economic heal th of an institution is not achieved without large, one might say massive, does of money, It is interesting that \(\operatorname{st}\). Pauls and sweet Briar are not Lorrelated. Perhaps only the polar cases are significant, resource allacatian within schools varying so much depending upon the aims, history and miseion of particular schools.
(Analysis of this nature - i.e., examination of financial ratios, etc. is planned for joint work by Prifessors Jones and Jung. The example shown here is indicative of the nature of this work and possible conclusions which might emerge from such work.)
```

Analysis of public colles s and universities yields conclusions remarkably similar to those found for the private sector. Indeed, the fiscal factars shaping higher education in the publia sector appear to be broadly ther same as those for the private sector, with what seems to be orie important difference. The difference is that there are political pressures for spreading the wealth" in the public sector.

This hypothesis receives support from the equation below

```
which makes SATs a function of: size jf school, faculty salaries,
tuition, endowment income, scholarship assistance, academic
expenditures, race student services and government aid.
```

```
SAT \(=661+\underset{(0.74)}{.004(\text { school }} \underset{(0, i z e)}{ }+\underset{(1.10)}{8.8(\text { Faculty Salaries })}\)
+.03 (Tuition) +.67 (Endowment Income) - . 56 (Scholarships)
    \((0.64)(2.29)(-2.37)\)
```

 -.01 (Academic Expenditures) +84 (Black/White) \(+\underset{(0.18(S t u d e n t ~ S e r v i c e s) ~}{(0.39)}\)
 (-0.33) (0.51)
 (0.065jovernment Aid)

> In a sense, these results are surprising. The only variable showing positive association with GATs is endowment income (not a surprise in itself) while the scholarship factors is negative. It is surprising; for example, however that government appropriations are not positively related to GATs. Certainly the image is that stages spend more on the pretigious flagship (high SAT) schools. (Phil has some data which indicates in Ge that they do.) The plausible explanation is that governments try to *even things out:"

The two -variable regressions (ie., regressions relating SATE, in turn, one-on-one to faculty salary, tuition,...) do indicate that, broadly speaking the factors at work in the poublic sector are the same as for the private sector. For example, GATs and faculty salaries are positively related, and statistically significant as are the SAT and tuition. However, other variables are not significant: government assistance (as in the multiple regression); student services; academic expenditures. (Appendix III)


```
HTiyErsities are Expiaimed weli by arly three wariables: faculty
Eyaries, tultiun, erud race. (Tablez).
Thus, it appears that state policy is to invest in higher faculty salares in the fiagstip schools and that these schools charge higher tuitiun, pay faculty well, and over the years have accumulated endowment resaurces. These factors reerifurce the already-established high QuElity gi the institutions. However, when it comes to scholarships, a aderia gupport, and student services - the policy of the state government EEEns mucin mbre Egヨi itarian. Irdeed, the twotariable regression reajting SAT and schoiarships indicates that scholarehip monies are "spread" acrass institutions insuct a way that there is no differential impact among sctools.
```


Tatile 2 -

```
The regression equation is
C1 = 351+13.8 03 + 0.0505 04 - 331 c8
Freairin Eawf Etru
Const:ョn:
S
C4
%
# = E5. 2S
R-Sq=EG.E%
    R-Eq(adj) = 8E.8%
Ar.:.
```



```
C1 = SAT
c3 = Facuity Salar, 
CA = Tuition
CE = Black/White Student Body
\therefore11 varigties statistically significant at 5% level.
Durbiri-Watson =2.57 (n=24)
```

```
A Erozder Ferspective
    The picture which emerges from this analysis is slear.
It shows that the quality of an institution depends on the
dollars auailable to it and that these dollars, in turn,
produce quality.
    Hardly a startling discovery. However, the specificity
of the analysis is interesting. While the quality of a school
is a function of many factors, it turns out that just a few
variables are the crucial ones. These are: tuition, faculty
sa-aries, and endowmerit income.
    Interestingly, scholarship expenditures are either
statistically insignificant or are actually inversely related
to quality. A plausible explanation for this finding is that
the social contract in taday's world is one in which the aim
- both in the private and public sectors - is to make family
income neutral in terms of access to higher education.
    While the analysis in this paper, and the analysis in the
literature on this subject, find a number of other relationships
that are of interest (for example, spending for academic support
is statistically significant in the private, but not the public
sector), the nub of the matter is that price, income and quality,are
inextricably entertwined.
    Of course, this is the way the world works and that this
should be true in higher education is not (as indicated above)
surprising. However, the implications are not triuial when
```

```
vipued in a oroader context. That context is that graduates of
quality schools gó on to high Ievels of achievement in the business
and professslonal world and thus are in a position to ensure
alma mater's continued success and alma mater's continued ingestion
cf students whose socio-economic background prepares them well for
entrance to prestigious schools and whoce family income levels permit
the payment of the high cost of higher education.
    Thus, the findings of this study might be summed up in the
phrase from the popular song of the 1920s (fin't We Got Furi) that
"the ri:h get rich and the poor get poorer." Gne might interpret
tiis as ouidence of the efficient working of g market system in which
irnate personal ability and a supportive family backsround lead to
righ levels of output and productivity. or, onemight interpret
this as evidence for the Marxist view that the whole education system
of a society is merely an instrument for the fashioning of a sub-
servient work force.
```

That the graduates of quality schools do better in the business and professional world is shown in a study by Dolan, Schmidt and Jung (: 985 , Review of Economics and Statistics) in which a simultaneous equation model was developed showing the interdependence of student ability, faculty salaries and alumni achievement and the role of various exogenous factors. The focus of that study was on the identification of patterns of resource allocation within a school that would produce successful alumni. The study concluded that ${ }^{\text {"faculty salary, academic }}$ and administrative suppoprt ...quality students and quality faculty, buttressed by ... libraries, laboratories, and, more recently, computers,

```
3opear as the major togs drivirig the educational pracoss" pf. 519-520
    Although the data base for virginia schools is more limited in
this respect than for the Dolan-Jung-Schmidt study, analysis of
this data set via two-variable regressions indicates that the production
af Ph.D.s and Executives are related as follows:
```

```
Executives = -6.99 + .00843(5AT)
            R-square = 39%
Ph.D.s = 26.2 +.0.33(SAT)
    (3.52)
    R-square = 33%
```

That the quality of students appearing on these campuses is a function of family income and socio-economic status has been documented by the College Board, and set out at some length in a recent review article in the New York Review of Eooks. This is graphically illustrated in Figure \mathcal{M}^{\prime}). Taking the values in this graph and performing two-variable regression analysis indicates that SATs are a statistically significant function of income. The graph shows unambiguously, also, that scores on the SAT tests are a function of ethnic background.

That financially disaduantaged students lack access to higher education is not clear. The results in this paper indicate that there is an inuerse relationship between quality of students and scholarship aid (or that the relationship is not significant). The Dolan et al study found the coefficient for the scholarship variable was negative (and significant at the . 01 level). However, at least one study (Machlis, circa 1974) found that
low-income classes are underrepresented in higher education and that

[^0]```
the wealth" have a "disproportionately large number of students in
attendance."
```

Policy Implications

The crystal-clear indications are, from this study, that higher education in Virginia is a product of, and a component of, the social and economic system. That this statement is tinged with an economic interpretation of history (Marxist, to some degree) should not blind one to its legitmacy and importance. It suggests that, in the first place, that the system has
worked well in the past and serves society well in the present. To use a perhaps tired cliche, whatever is not braken should not be fixed. However, to say that the system works generally well and effectively is not to say that there are not important possibilities for change.

One important change is suggested and that is that consideration should be given to much higher levels of spending for low income and minority groups. The results of the present paper indicate that there is a definite thrust toward financial assistance to these groups. The algebraic signs of the coefficient for scholarship money and for government aid to private instiutitons would suggest this. Also, the apparent "spreading" of financial resources among the public institutions warrants such an inference.

But the overriding evidence here is that this is only marginally effective. The implication is that the term "massive" might be the oderative term. Large doses of caoital from the orjuate and

```
Fublic sectorsmant be in order. Much of that cafital would be
most effectively used at the Elementary and secondary schood levels
(see, e.g., the Dolan and Schmidt study, 1987, Economics of Education
Reviet,\mp@code{, Also, one might argue that the pricing system in higher}
education should, in theory at least, involve everimore price
discrimination than is presently the case.
 While these conclusions would appear to have a considerable
support in the context of this paper, an even broader context would
sugges: that ecucation is not the only scarce resource in society
and that spending for health, transportation, corrections, defense,
recreation might create an opportunity cost that would preclude
higher spending for education. The general equilibrium analysis
required to address this matter is beyond the scope of this study.
 At the level of partial equilibrium analysis, however, it is
clear that quality, price and income are the key determinants of
the nasure of higher education.
```


## REFERENCES

```
Dolan, Robert C., Jung, Clarence R., Jr., and Schmidt, Robert M.,
"Evaluating Educational Inputs in Undergraduate Education," The
Review of Economics and Statistics, Harvard University, (Aug. 1985).
Dolan, Robert [.., and Sctmidt, Pobert M., "Assessing the Impact of
Expenditure on Achievement; Some Methodolegical and Policy Considera-
tions," Economics of Education Review, Vol. 6, No. 3 (1987)
```

Machlis, David F., "Higher Education and the Financially Disaduantaged," Faper presented at Atlantic Economic Association meetings, in Richmond, Uirginia, (circa 1978).



```
 1986-87 +a 1987-88
```

The regr＝f
Le $=1$ ion Equstion is

| Fredictor | Eoef | Et日Eu | t－ratio | Q |
| :--- | ---: | ---: | ---: | ---: |
| Eonstant | 137.0 | 101.4 | 1.35 | 0.191 |
| E | 0.1780 | 0.1807 | 0.98 | 0.335 |

$\equiv=255.3 \quad \mathrm{R}-5 \mathrm{Q}=4.2 \% \quad \mathrm{R}-5 \mathrm{Q}(\mathrm{adj})=0.0 \%$

Aralysis of Yariance

| Egurce | DF | 55 | Ms | F | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Regression | 1 | 63470 | 63470 | 0.97 | 0.335 |
| Error | 22 | 1439226 | 65419 |  |  |
| Total | 23 | 1502595 |  |  |  |


| 口上こ． | C1 | $\underline{2}$ | Fit | Stdev．Fit | Residual | St．Resid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 513 | 127．01 | 228． | 52.5 | $-101.3$ | －0．40 |
| 2 | 337 | 88.0 | 197.0 | 58.4 | $-109.0$ | －0．44 |
| 3 | 457 | 153.0 | 218.3 | 52.4 | $-65.3$ | －0． 0.26 |
| 4 | 423 | －9．0 | 212.3 | 53.3 | －221．3 | －0．88 |
| 5 | 327 | 102.0 | 155.2 | 59.2 | －93．2 | $-0.37$ |
| 6 | 929 | 206.0 | 302.3 | 96.3 | －96．3 | －0．41 |
| 7 | 876 | 528.0 | 292.9 | 88.4 | 235.1 | 0.98 |
| 8 | 207 | －28．0 | 173.8 | フ2．01 | $-201.8$ | $-0.82$ |
| 9 | 58 | 97.0 | 147.3 | 92．6 | $-50.3$ | －0．21 |
| 10 | 175 | －400．0 | 168.1 | 76.1 | $-563.1$ | $-2.33 \mathrm{R}$ |
| 11 | 822 | 189.0 | 283.3 | 80.7 | $-94.3$ | －0．39 |
| 12 | 402 | 475.0 | 208.5 | 54.1 | 266.5 | 1.07 |
| 13 | 466 | 119.0 | 219.9 | 52.3 | $-100.9$ | －0．40 |
| 14 | 621 | 142.0 | 247.5 | 58.0 | $-105.5$ | －0．42 |
| 15 | 11 | 404.0 | 139.0 | 99.7 | 265.0 | 1.13 |
| 16 | 801 | 322.0 | 279.6 | 77.9 | 42．4 | 0.17 |
| 17 | $-10$ | 194.0 | 135.2 | 103.0 | 58.8 | 0.25 |
| 18 | 275 | 394.0 | 186.1 | 64.1 | 207.9 | 0.34 |
| 19 | 148 | 791.0 | 153.3 | 79.7 | 627.7 | 2.58 R |
| 20 | 807 | 582.0 | 280.6 | 78.7 | 301.4 | 1.24 |
| 21 | 813 | 130.0 | 281.7 | 79.5 | $-151.7$ | －0．62 |
| 22 | 845 | 631.0 | 287.4 | 83.9 | 343.6 | 1.42 |
| 23 | E15 | 91.0 | 24E．5 | 57.5 | －155．5 | －0．62 |
| 24 | 633 | 16.0 | 249.7 | 59.0 | $-233.7$ | －0．94 |

F deriotes an ots．with ヨ large st，resid．

MTE





的



 דை


Iitherty


Hamptan
Holl ins

Meremount：
 Reshanobe
Rharnarngugh


いrive ロf Feiotumot




$$
2
$$




$$
\begin{aligned}
& \text { Imstructrae } \\
& 190, \quad 1989
\end{aligned}
$$

HGaIVPFFTE 웅

$$
\therefore-2-a y
$$

$$
\underbrace{2}_{\infty}
$$

$$
5
$$



Aloadern




$11 \% 183$












$$
\begin{aligned}
& \text { 路: }
\end{aligned}
$$

mbenge mumater











离
㗐

## St Pane's is Mog $R$

```
551=26.2-0.634 53
```



Analysis of Variance

| SOURCE | DF | $5 S$ | MS |
| :--- | ---: | ---: | ---: |
| Regression | 1 | 561.33 | 561.33 |
| Error | 21 | 660.32 | 31.44 |
| Total | 22 | 1221.65 |  |


| Obs. | CB | Cl | Fit Stdev.Fit | Residual | St.Resid |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.0 | 22.00 | 16.66 | 1.18 | 5.34 | 0.97 |
| 2 | 7.0 | 18.00 | 21.73 | 1.55 | -3.73 | -0.69 |
| 3 | 9.0 | 24.00 | 20.47 | 1.37 | 3.53 | 0.65 |
| 4 | 12.0 | 24.00 | 18.56 | 1.20 | 5.44 | 0.99 |
| 5 | 4.0 | 24.00 | 23.63 | 1.88 | 0.37 | 0.07 |
| 6 | 5.0 | 20.00 | 23.00 | 1.76 | -3.00 | -0.56 |

$$
\text { St Pave's is uif } R
$$



Va lenion in U of $R$
$4 \quad 24 \quad 15 \quad 12 \quad 1$


MTE $>$ regress ct on 1 predictor in ce
The regression equation is
$\mathrm{c} 4=9.17+0.315 \mathrm{c} 2$

$s=7.587 \quad R-s q=6.7 \% \quad R-s q(a d j)=2.2 \%$
Analysis of Variance

| SOURCE | OF | $5 S$ | $M S$ |
| :--- | ---: | ---: | ---: |
| Regression | 1 | 86.70 | 86.70 |
| Error | 21 | 1208.77 | 57.56 |
| Total | 22 | 1295.48 |  |

MT >

## Va Union on st Paul's.

The regression equation is $\mathrm{c} 4=7.99+0.380 \mathrm{Cl}$

| Predictor | Clef | Stdev | t-ratio |
| :--- | ---: | ---: | ---: |
| Constant | 7.988 | 3.947 | 2.02 |
| Ci | $(t)$ | 0.3797 | 0.2089 |

Analysis of Variance

| SOURCE | OF | SS | MS |
| :--- | ---: | ---: | ---: |
| Regression | 1 | 176.17 | 176.17 |
| Error | 21 | 1119.31 | 53.30 |
| Total | 22 | 1295.48 |  |


| Unusual | Observations |  |  |  |  |  |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| Obs. | Ci | Fit Stdev.Fit | Residual | St.Resid |  |  |
| 4 | 24.0 | 1.00 | 17.10 | 2.05 | -16.10 | $-2.30 R$ |

$k$ denotes an obs. with a large st. resid.
MTG >

## Sheat Buin s C O PR

```
52=16.0+0.095 C3
```

| Predictor | Coef | Stdev | t-ratio |
| :--- | ---: | ---: | ---: |
| Constant | 15.956 | 2.713 | 5.88 |
| L3 | 0.0946 | 0.1713 | 0.55 |
| $\equiv=6.407$ | $R-5 q$ | $=1.4 \%$ | $R-5 q(3 d j)=0.0 \%$ |

Analyミis af Uariance

| SOURCE | OF | 55 | $M 5$ |
| :--- | ---: | ---: | ---: |
| Regression | 1 | 12.52 | 12.52 |
| Error | 21 | 861.91 | 42.04 |
| Total | 22 | 874.43 |  |


| Ots. | 03 | $C 2$ | $F i t S t d e v . F i t$ | Residual | St.Resid |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.0 | 8.00 | 17.38 | 1.35 | -9.38 | -1.50 |
| 2 | 7.0 | 22.00 | 16.62 | 1.77 | 5.38 | 0.87 |
| 3 | 9.0 | 25.00 | 16.81 | 1.57 | 8.19 | 1.32 |
| 4 | 12.0 | 15.00 | 17.09 | 1.37 | -2.09 | -0.33 |
| 5 | 4.0 | 13.00 | 16.34 | 2.14 | -3.34 | -0.55 |
| 6 | 5.0 | 23.00 | 16.43 | 2.01 | 6.57 | 1.08 |

$$
\text { Senect Brian us Uof } R \text {. }
$$



MTE ?

The regression equation is $\mathrm{C} 1=16.4+0.061 \mathrm{C} 2$


Analysis of Variance


St Paul's vs Sumet Briar


MTB >
$8 / 14 / 8^{9}$

Conelation matrix

$$
\begin{aligned}
& \begin{array}{llllll}
2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& \begin{array}{lllllll} 
& .42 & .38 & .52 & -.06 & -0.77 & .72
\end{array} \\
& \begin{array}{llllllllllll}
2 & .42 & .95 & .81 & .05 & .73
\end{array} \\
& 3.38 .95 \times .72 \quad .21 \times-.13 .62
\end{aligned}
$$

$$
\begin{aligned}
& 5 \quad-.06 \quad .10 \quad .21 \quad .01 \times \quad-.07 .01 \\
& \begin{array}{llllllll}
6 & -77 & -.05 & -.3 & -.05 & -107 & \times & -.29
\end{array} \\
& \begin{array}{llllllll}
7 & .72 & .72 & .62 & .67 & .01 & -.29 & \times
\end{array} \\
& 1=\text { SAT } \\
& D=\text { Academin } \# / F T E S \\
& 3=\text { Total } \$ / F T E S \\
& 4=\text { Trution } \$ / \text { FISS } \\
& 5=\text { hustn } * / F T E S \\
& 6 \text { = Xlumn White' Blach } \\
& 7 \text { = Avq Faculth }
\end{aligned}
$$

| C4 | 0.516 | 0.345 | 0.674 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05 | 0.510 | 0.216 | 0.609 | 0.651 |  |  |  |  |
| CE | -0.362 | 0.119 | 0.177 | 0.361 | 0.521 |  |  |  |
| 07 | 0.415 | 0.533 | 0.739 | 0.814 | 0.741 | 0.568 |  |  |
| ce | -0.774 | -0.212 | -0.289 | -1. 0.054 | -0.177 | 0.668 | -0.053 |  |
| 09 | 0.132 | -0.230 | 0.115 | 0.386 | 0.635 | 0.464 | 0.429 | -0.000 |
| E! | +.91 | 1.668 | 0.627 | 0.735 | 0.476 | 0.596 | 0.882 | 0.112 |
|  | CO |  |  |  |  |  |  |  |
| 011 | ..*** |  |  |  |  |  |  |  |
| MTE | $r$ betwe | cl and | - -610 |  |  |  |  |  |
|  | 01 | c3 | C4 | C5 | C6 | 07 | cs | c9 |
| C3 | 0.723 |  |  |  |  |  |  |  |
| 04 | 0.516 | 0.674 |  |  |  |  |  |  |
| 05 | 0.510 | 0.609 | 0.651 |  |  |  |  |  |
| CE | -0.362 | 0.177 | 0.381 | 0.521 |  |  |  |  |
| 67 | 0.415 | 0.739 | 0.814 | 0.741 | 0.568 |  |  |  |
| ce | -0.774 | -0.289 | -0.054 | -0.177 | 0.668 | -0.053 |  |  |
| cs | 0.132 | 0.115 | 0.386 | 0.635 | 0.464 | 0.429 | -0.000 |  |
| 010 | 0.211 | 0.627 | 0.735 | 0.476 | 0.596 | 0.882 | 0.112 | 0.243 |

MTE •

## Appendix III

$\mathrm{E1}=882+0.0113 \mathrm{E}$
Fredictor
Constant
Coef
881.65
0.011257
$\mathrm{F}-5 q=18.4 \%$
Stdev E2
$R-s q(\exists d j)=12.2 \%$
$\equiv=168.2$

Anシlyミis gf V̇riヨnce


$S i \geqslant 2$
－

$-1=1+25 \cdot \bar{r}$

$\equiv=120.7$
$F-E=52.3 \%$
Etuey 250.8

E．ę
3.77
0.002

Anヨlyミiミ of vari ヨnce


| OtS． | CE | C1 | Fit Stdev．Fit | Residual | St．Resid |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 44.4 | 1240.0 | 1152.7 | 56.6 | 87.3 | 0.76 |
| 2 | 33.7 | 939.0 | 877.3 | 42.9 | 61.7 | 0.51 |
| 3 | 33.0 | 515.0 | 859.2 | 46.1 | 55.8 | 0.46 |
| 4 | 35.6 | 1055.0 | 926.2 | 35.1 | 168.8 | 1.37 |
| 5 | 38.5 | 950.0 | 1000.8 | 33.7 | -50.8 | -0.41 |
| 6 | 35.2 | 914.0 | 915.9 | 37.3 | -1.9 | -0.02 |

Continue？


## Tution

## The regression equation is $\mathrm{Cl}=713+0.118 \mathrm{c} 4$

| Fredictar | Cobf | Etdeu | t-ratio | p |
| :---: | :---: | :---: | :---: | :---: |
| Const.ant | 712.7 | 129.8 | 5.49 | 0.000 |
| Ca | $11 \%$ | 0.05438 | 2.17 | 0.049 |
| $\equiv=159.5$ | R-Eq | . $6 \%$ | q(adj) | . $0 \%$ |

Arisly三i三 af Variance

| SOURCE | DF | $9 S$ | $M S$ | $F$ | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Eegression | 1 | 119516 | 119916 | 4.71 | 0.049 |
| Error | 13 | 330798 | 25446 |  |  |
| Total | 14 | 450714 |  |  |  |


| OtS. | C4 | C1 | Fit Stdev.Fit | Residual | St.Resid |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3143 | 1240.0 | 1083.8 | 63.2 | 156.2 | 1.07 |
| 2 | 1662 | 939.0 | 908.9 | 52.6 | 30.1 | 0.20 |
| 3 | 1654 | 915.0 | 908.0 | 52.8 | 7.0 | 0.05 |
| 4 | 168. | 1051.0 | 935.5 | 46.0 | 159.5 | 1.04 |
| 5 | 2079 | 950.0 | 958.2 | 42.4 | -8.2 | -0.05 |
| 6 | 1350 | 914.0 | 872.1 | 64.5 | 41.9 | 0.29 |

```
Sduelarbliys
#-107E-0.100 CE
```



```
= 173.5
\[
F-5 q=13.1 \%
\]
\[
R-s q(a d j)=6.4 \%
\]
Anjlysis of yariance
\begin{tabular}{lrrrrr}
EOUREE & DF & \(5 S\) & \(M S\) & \(F\) & P \\
Fegression & 1 & 59164 & 59164 & 1.96 & 0.184 \\
Error & 13 & 391550 & 30119 & & \\
Total & 14 & 450714 & & &
\end{tabular}
```



```
Contirue? \(\quad\) M
MTE ?
```


## Endent.

The regression equation is
$01=937+0.45305$

| Predictor | Coef | Stdev | t-ratio | P |
| :---: | :---: | :---: | :---: | :---: |
| Constarit | 936.62 | 46.02 | 20.35 | 0.000 |
| [5 | 0.4581 | 0.2141 | 2.14 | 0.052 |
| $=160.1$ | R-Eq | 0\% | q(adj) | . $3 \%$ |

Analysis of Variance

| SOUREE | DF | 53 | $M S$ | $F$ | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Eegression | 1 | 217351 | 117351 | 4.58 | 0.052 |
| Errar | 13 | 33363 | 25643 |  |  |
| TotE1 | 14 | 450714 |  |  |  |


| ODS. | $C 5$ | 01 | Fit Stdev.Fit | Residual | St.Resid |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 117 | 1240.0 | 990.2 | 41.6 | 249.8 | 1.62 |
| 2 | 10 | 939.0 | 941.2 | 45.1 | -2.2 | -0.01 |
| 3 | 0 | 915.0 | 936.6 | 46.0 | -21.6 | -0.14 |
| 4 | 25 | 1095.0 | 948.1 | 43.9 | 146.9 | 0.95 |
| 5 | 10 | 950.0 | 941.2 | 45.1 | 8.8 | 0.06 |
| 6 | 0 | 914.0 | 936.6 | 46.0 | -22.6 | -0.15 |

Continue?

```
Z=700+0.005 0%
```



Ariヨlysi at uari ance

| EOLEE | OF | $E S$ | $M E$ | $F$ | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Fegressian | 1 | 77488 | 77488 | 2.70 | 0.124 |
| Errar | 13 | 373226 | 28710 |  |  |
| Total | 14 | 450714 |  |  |  |



```
G=10\SigmaZ-394 Le
```



Anglysis of Variance

| EQURCE | DF | 55 | MS | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regressian | 1 | 269706 | 269706 | 19.37 | 0.001 |
| Errar | 13 | 181007 | 13924 |  |  |
| Tatal | 14 | 450714 |  |  |  |




```
EL=E5S+0.2DEE
```

| Fサッにiにtar | Coef | Stcev | t－r．tio | F |
| :---: | :---: | :---: | :---: | :---: |
| EのпEtant | 895.4 | 182．0 | 4.92 | 0.000 |
| C9 | 0.2008 | 0.4176 | 9． 48 | 0.639 |
| $s=384.6$ | R－Sq |  | （ $\operatorname{adj}$ ） | 0\％ |

Anヨコリミi三 of Vari．arice


Continue？

$$
\therefore=807+0.05 E 50
$$

|  | -106 | Stdev | t-rヨtio | F |
| :---: | :---: | :---: | :---: | :---: |
|  | 897.1 | 115.0 | 7.73 | 0.000 |
| CLI | $0.015 E 8$ | 0.01997 | 0.78 | 0.449 |

$s=182.0$
$\overrightarrow{R-s a}=4.5 \%$
$R-s q(a d)=0.0 \%$

- alysis of Variance

| EOURCE | DF | $S S$ | $M S$ | $F$ | P |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Regressior | 1 | 20155 | 20155 | 0.61 | 0.445 |
| Error | 13 | 430559 | 33120 |  |  |
| Total | 14 | 450714 |  |  |  |


| पם三. | 010 | 01 |
| :---: | ---: | ---: |
| 1 | 4872 | 1240.0 |
| 2 | 3047 | 939.0 |
| $\Xi$ | 3863 | 915.0 |
| 4 | 3360 | 1095.0 |
| 5 | 3872 | 950.0 |
| 6 | 3075 | 914.0 |


| Fit | Stdev.Fit |
| ---: | ---: |
| 973.0 | 47.8 |
| 944.6 | 65.2 |
| 957.3 | 55.2 |
| 949.5 | 51.0 |
| 957.5 | 55.1 |
| 945.0 | 64.8 |


| Residual | St.Resid |
| ---: | ---: |
| 267.0 | 1.52 |
| -5.6 | -0.03 |
| -42.3 | -0.24 |
| 145.5 | 0.85 |
| -7.5 | -0.04 |
| -31.0 | -0.18 |

Cortinus? $\quad$ п MTE ?


[^0]:    October 12, 1989

