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Abstract

In scenarios where allocations are determined by participant’s preferences, Two-Sided

Matching is a well-established approach with applications in College Admissions, School

Choice, and Mentor-Mentee matching problems. In such a context, participants in the

matching have preferences with whom they want to be matched with. This article studies

two important concepts in Two-Sided Matching: multiple objectives when finding a solution,

and manipulation of preferences by participants. We use real data sets from a Mentor-Men-

tee program for the evaluation to provide insight on realistic effects and implications of the

two concepts. In the first part of the article, we consider the quality of solutions found by dif-

ferent algorithms using a variety of solution criteria. Most current algorithms focus on one

criterion (number of participants matched), while not directly taking into account additional

objectives. Hence, we evaluate different algorithms, including multi-objective heuristics, and

the resulting trade-offs. The evaluation shows that existing algorithms for the considered

problem sizes perform similarly well and close to the optimal solution, yet multi-objective

heuristics provide the additional benefit of yielding solutions with better quality on multiple

criteria. In the second part, we consider the effects of different types of preference manipula-

tion on the participants and the overall solution. Preference manipulation is a concept that is

well established in theory, yet its practical effects on the participants and the solution quality

are less clear. Hence, we evaluate the effects of three manipulation strategies on the partici-

pants and the overall solution quality, and investigate if the effects depend on the used solu-

tion algorithm as well.

Introduction

Committee memberships, group assignments, or internship allocations: There are may situa-

tions where decisions need to be made based on the participants’ preferences. Two-Sided

Matching is a scientifically grounded approach to determine such allocations when partici-

pants provide their preferences and allocations should be determined without involving mone-

tary transactions. While finding such an allocation (or solution) to the problem at hand is
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often an NP-hard optimization problem [1], different approaches in Two-Sided Matching

allow for efficiently calculating solutions with desirable properties [2].

Over the years, several different approaches have been developed to find these preference-

based allocations with good properties. In the general setting, many approaches focus on find-

ing a stable solution (no participant has an incentive to deviate from it) that matches as many

participants as possible [3]. These approaches are commonly either heuristics or approxima-

tion algorithms with a guaranteed worst-case performance. Multi-objective heuristics have

been proposed that also take into account secondary goals such as finding solutions that are as

beneficial as possible for the participants by matching them to (or close to) their preferred

solutions [4]. However, it is hard to estimate the practical performance of these algorithms

without applying them to realistic scenarios and preferences.

Additionally, a potentially major caveat in Two-Sided Matching is that some participants

will have an incentive to provide manipulated, altered preferences as it could improve their

outcome. There has been some theoretical and experimental work in this area that provides

initial results (e.g., [5], [6]), yet it is less clear how beneficial or severe such potential manipula-

tion can be for realistic preferences, and how it affects the overall solution for Two-Sided

Matching.

In this article, we address both of the previous aspects by providing a systematic compari-

son of state-of-the-art algorithms in Two-Sided Matching with respect to multiple quality met-

rics, and by analyzing the effects of preference manipulation on the outcome. Building on a

previous study [7], we use three realistic sets of preferences stemming from a mentor-mentee

program at our university, to conduct the analysis. Through systematic simulation-based eval-

uation, we compare different algorithms in their ability to create good solutions, and consider

different manipulation strategies.

We consider two main research questions in this article:

1. Research Question 1: For the considered realistic data sets, what is the performance of dif-

ferent solution algorithms relative to the optimal solution?

2. Research Question 2: How does preference manipulation affect the participants’ outcome

and the overall solution quality?

Answering these research questions will benefit the Two-Sided Matching research and

community by providing guidance on which algorithms to select for similar settings. In addi-

tion, it will provide valuable insights into the severity and prevalence of potential preference

manipulation. Together, the evaluation in this article will foster the use of Two-Sided Match-

ing for calculating allocations in preference-based settings.

The article is structures as follows. In Section 1 we provide the necessary foundations of

Two-Sided Matching, including the specification of commonly considered scenarios. We dis-

cuss related work relevant to this article in Section 2, and specify the methodology and setup of

this simulation-based study in Section 3. In Sections 4 and 5, we evaluate the performance of

the various algorithms and the effects of preference manipulation, respectively. Finally, we dis-

cuss the results in Section 6 and conclude our study with a summary and outlook on future

work in Section 7.

Two-Sided Matching foundations

We consider the matching of a set of mentors, X, and mentees, Y, in a university advising pro-

gram that encourages women to pursue a career in computing. The task at hand is to find a

match of mentors with potential mentees, hX, Yi consisting of pairs of individuals hx, yi where

x 2 X and y 2 Y, while aiming to ensure that both sides are as happy with the matching as

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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possible. As the number of mentors and mentees does not have to be equal, a match does

not guarantee that each mentor or mentee will be matched. However, as in our setting the

number of mentors is higher than the number of mentees, our goal is to find a mentor for each

mentee.

Both mentors and mentees have preferences Pi ¼ ðPi;j1 ; . . . ; Pi;jnÞ, j 2 Y and i 2 X, or i 2 Y
and j 2 X with whom they want to be matched. The preferences are represented by ordinal

ranks, where Pi,j denotes the preference rank that user i has towards user j. The most preferred

option (match) has rank 1, the second-most preferred match rank 2, and so on. The prefer-

ences represent transitive priority structures ≿, where each user of the opposite side is ranked

according to its priority. The asymmetric part�i indicates a strict priority, whereas the

symmetric part indicates an indifference. For example, j1� j2 means j1 is preferred over j2,

whereas j1 * j2 means the user is indifferent between j1 and j2. The preference towards being

unmatched is defined as Pi,;. If user j appears in user i’s preference list, j is said to be accept-

able for i. Similarly, unacceptable users do not appear in the preference list. If one or more

users j are unacceptable for user i, the respective preferences are said to be incomplete as these

users are missing in the preference ranking. This indicates that user i wants to remain

unmatched rather than being matched to users j. A preference profile is strict if 8j 2 X (j 2 Y),

≿j is asymmetric. If j* k for some users j and k, then the preference profile is said to have

indifferences, or ties.

In our case, we allow for preferences that are both incomplete and include ties. Mentors are

allowed to place restrictions on the specific mentees that they are willing to supervise (e.g.,

some mentors only want to be matched with undergrad students). Similarly, in our setting

mentees provide the names of up to 5 mentors that they would prefer. While this restriction

seems arbitrary, we decided to limit the number of mentors that each mentee has to rank to

reduce the time (and complexity) for the mentees to form a ranking out of a large pool of men-

tors. Due to these restrictions, preferences on both sides are incomplete. Furthermore, mentees

are allowed to be indifferent between their listed options. For example, they might state that

some mentors are equally preferred, while the remaining mentors are less preferred. Mentors

do no provide a further preference ranking, i.e., are by default indifferent between all allowed

options (i.e., allowed mentees after the previous restrictions).

Finding optimal solutions

Based on these stated preferences, Two-Sided Matching calculates a match hX, Yi where men-

tors are matched with mentees (or not matched at all). To evaluate the quality of a matching

between mentors and mentees, we use following standard criteria to consider the solution

quality: stability, the number of matched pairs, and the average welfare.

Stability is the core requirement of practically all approaches for Two-Sided Matching. In a

stable solution, no participant can be better off (be matched with a more preferred mentor/

mentee) by switching their allocated partner with another mentor/mentee pair. Proposed

mentor-mentee matches may fail in the sense of become undone after having been proposed,

because some participants see better opportunities. Specifically, a match hX, Yi containing at

least one pair of matched individuals hx1, y1i and hx2, y2i, x1, x2 2 X and y1, y2 2 Y, where x1

prefers y2 to y1 as a partner and y2 prefers x1 to x2 as a partner is said to be unstable. If the

unhappy participants, here x1 and y2, are aware of this, they would break their proposed men-

tor relationships and form a new pair. Stability is important as otherwise even one unstable

pair can lead to chaotic unraveling [8]. Note that stability is not further described as solution

property as all algorithms considered in this paper yield stable solutions, thus removing the

requirement to compare the stability of the different approaches.

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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The second criteria is the cardinality (number of matched pairs) of the match, i.e., the

number of pairs hx, yi where x is a mentor and y is a mentee. This might seem obvious, yet

finding a solution with the maximum number of matched pairs is itself an NP-hard problem

[1]. In our context, we aim to provide a mentor-mentee match for as many mentees as possible

as it is not guaranteed that a stable solution exists where all mentees are matched.

As a third criteria, the average preference rank that each participant is matched with is con-

sidered as Welfare of the solution (see e.g. [9] for a similar definition of an egalitarian metric).

That is, for each matched participant we sum up the preference rank Pij of their respective

match and calculate the mean matched preference rank:

Welfare ¼
X

ðx;yÞ2MatchedPairs

Pxyþ Pyx ð1Þ

For example, given that the highest (most preferred) rank is 1, a welfare score of 2 would

mean that participants are, on average, matched with their second most preferred choice.

While welfare is an important criteria for the solution, it is not commonly considered by many

approximation algorithms or heuristics in the general case of incomplete preferences with ties,

due to the NP-hardness of the problem. However, it can be easily included in evolutionary

algorithms as additional objective (see e.g., [4]). Also, note that the Welfare criterion only relies

on the preference ranks for calculation and thus does not consider non-linear utilities for dif-

ferent options. In other words, the preference difference between choice 1 and 2 is the same as

the preference difference between ranks 2 and 3. This follows the main literature in Two-Sided

Matching, yet could be extended to include cardinal utilities (e.g., normally or exponentially

distributed utilities). As this would require the consideration of weighted preferences and

extensions of the stability concept (and thus falls outside the main Two-Sided Matching litera-

ture), we do not consider cardinal utilities here.

Finally, Equality considers if both sides of participants are treated equally. For each

matched pair of mentor and mentee, the rank of the respective matched partner is calculated.

The equality score for a pair is defined as the difference of these two ranks. A solution is con-

sidered to be more equal if both mentor and mentee are close in the respective other prefer-

ence ranking. A solution that is completely equal would have score of 0 in this case.

Given these solution quality criteria, we aim to find a stable solution that matches as many

mentees as possible, while at the same time matching each participant as close to their most

preferred choice as possible. Several algorithms have been suggested for this case, and they are

described in the next section.

Preference manipulation

After defining the fundamental concepts of Two-Sided Matching, we can now consider prefer-

ence manipulation. Ideally, we want to find solutions which are simultaneously stable and

yield optimal values for the number of matched pairs, welfare, and equality, while at the same

time being immune to manipulation from participants. Unfortunately, Mechanism Design

tells us that only a certain combination of desired solution properties can be achieved in Two-

Sided Matching, and impossibility theorems provide valuable guidance in this case (see e.g.

[10] for an overview).

The question if participants submit their true or manipulated preferences is of particular

interest. From the viewpoint of the overall system, having a mechanism which is immune

against manipulation (incentive compatible) is important for several reasons. On one hand,

such a mechanisms guarantees that stable solutions calculated with the submitted preferences

will also be stable under the true preferences, i.e., we can be sure that the calculated solution

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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will be acceptable for all participants. On the other hand, participants know that it is in their

best interest to actually submit their true preferences, avoiding the need to decide on poten-

tially complex strategies. However, considering that stability is a fundamental requirement for

Two-Sided Matching solutions, the question is whether stability and incentive compatibility

can be achieved together. The fundamental result considering incentive compatibility in Two-

Sided Matching was developed by [3] and summarized in [11]:

Theorem 1 ([3]) No stable matching mechanism exists for which stating the true preferences
is a dominant strategy for every participant.

From a preference manipulation perspective, this result has serious implications on the

design of a Two-Sided Matching mechanism. As stability is commonly (and empirically) con-

sidered the most important property (see e.g. [2]), incentive compatibility needs to be sacri-

ficed if stability is to be guaranteed, which is the case for practically all current algorithms.

From a preference perspective, this result implies that some participants i have an incentive to

submit preference profiles P�i to the mechanism, where P�i 6¼ Pi.
Although this seems to be a rather negative result, the implications of the impossibility of

incentive compatibility for all participants are less clear. As [12] noted: “However the existing

theoretical results do not generally allow us to address the considerable demand for practical

advice about how to participate in such markets, once they are established. It is difficult to

advise participants in markets that use stable matching mechanisms when to behave straight-

forwardly (i.e. in a way that reveals their true preferences) and when there might be opportuni-

ties to behave strategically, and if so, how. This also suggests that there are some gaps in our

understanding of why stable matching mechanisms work so well in practice” [12, p.21]. For

example, as one of the few results in the literature, [12] find that only a small number of partic-

ipants have incentives to reveal altered preference rankings. Additionally, [6] show that there

can be non-strategy-proof matching mechanisms which are NP-hard to manipulate, i.e., find-

ing a successful manipulation strategy can be a hard problem.

Related work

In their seminal paper on Two-Sided Matching, [13] introduced the Deferred Acceptance

(DA) algorithm as a method to find a stable solution in case of complete preferences without

ties. While the DA guarantees to find a stable solution efficiently for a special case of Two-

Sided Matching, it sparked the study of more general scenarios and the development of further

algorithms. As such, related work in Two-Sided Matching can be broadly categorized into

solutions for different preference properties and solution quality criteria, and the analysis of

preference manipulation strategies.

Regarding preference properties and solution quality, we have to distinguish between com-

plete and incomplete preferences as well as the introduction of ties (indifferences). On one

hand, the DA can be used in all scenarios to compute a stable solution. On the other hand,

including additional solution criteria leads to considerably more complex problems. For exam-

ple, [8, 14] showed that the number of stable solutions for a given preference set can be large,

sometimes even exponential. With the exception of complete preferences without ties, where

there are polynomial-time algorithms to compute the welfare-best [15] and approximately fair-

ness-best solutions [9], finding the welfare-best or fairness-best stable solution is generally an

NP-hard problem and sometimes even hard to approximate [16]. For the most general case of

incomplete preferences and allowed indifferences, the common goal is to find stable solutions

that match as many participants as possible. For this specific case, approximation algorithms

have been developed that provide lower-bound quality guarantees for the solutions [17–19]. In

addition, other approaches that aim to increase the solution quality are heuristics such as

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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Genetic Algorithms with multi-objective target functions [4, 20, 21]. While heuristics do not

provide lower bound quality guarantees, they have been shown to work well on average and

offer the flexibility to optimize multiple solution criteria simultaneously. In another approach,

Erdil and Ergin [22] introduced an extension to the DA that can cope with ties in preferences.

Their algorithm tries to find potential Pareto-improvement cycles in a given solution which

might improve the overall quality of the solution.

Based on the practical relevance of potential manipulation effects, such as potentially

increasing or decreasing one’s chances of getting into a particular school/college/hospital, pre-

vious research on preference manipulation has concentrated on two main aspects. First, the

theoretical existence and properties of manipulation. Second, the effects of manipulation in

selected settings, e.g., the well-understood Deferred Acceptance Algorithm [13] or for many-

to-one matching scenarios.

Considering the existence of preference manipulation, [3] showed that there can be no

incentive-compatible solution algorithm in standard Two-Sided Matching scenarios that

always yields a stable solution. Analyzing its strategic properties, the DA is strategy-proof for

the proposing side, yet not strategy-proof for the accepting side [11]. Moreover, not putting its

most preferred alternative first is a dominated strategy for the participants of the accepting

side [11, p. 105]. [5] show that (again in the case of strict preferences) for any tie breaking rule,

there is no mechanism that is strategy-proof and dominates the DA. [23] consider manipula-

tion in the DA and show that all weakly beneficial group manipulation strategies of accepting

participants are beneficial for all other accepting participants and harmful for all proposing

participants. Furthermore, this is true if participants from the accepting side apply a truncation

of preferences. Studying the prevalence of manipulation in experimental settings, [24] show

that truncation of preferences for the accepting side in a DA is applied only rarely. Through

structured laboratory experiments, [25] analyze the prevalence of preference truncation on a

number of different factors. Knowing the theoretically best truncation strategy in a given sce-

nario, they show that the existence of theoretically profitable truncation does not increase the

chances that participants manipulate their preferences. However, they show that the risk of

being worse off due to truncation (e.g., when truncating too much) leads to a decrease in

observed preference truncation.

[26] study optimal degrees of truncation if one side of participants manipulate their prefer-

ences in the standard DA setting. They find that the optimal truncation degree can be substan-

tial, especially for systems with many participants, and that an equilibrium exists where

everyone manipulates. In addition, they show that when preferences are correlated, the opti-

mal truncation degree is lower than for uncorrelated preferences.

In many-to-one settings, several studies looked at the effects of manipulation in the respec-

tive markets. Under certain conditions, the percentage of participants that can successfully

manipulate their preferences in a student-optimal stable matching converges to zero for large

markets [27, 28]. [5] discuss the effect of strategy-proofness on efficiency (measured in average

rankings) in the school-choice problem using date from New York and Boston school districts.

Furthermore, [29] studies manipulation strategies in the school choice problems. In particular,

[29] considers the option for schools to manipulate their submitted capacity (i.e., offering less

capacity than available), and the possibility to pre-arrange matches in which case the involved

student does not participate in the actual matching procedure. Whereas some of the studied

mechanisms are immune to capacity manipulation, [29] shows that all studied mechanisms

are not immune to pre-arranged matches. [30] suggest a method to compare how manipulable

matching algorithms in the School Choice setting are, and show that changes made to the

School Choice algorithms in Chicago and England are justified as they decreased the potential

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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manipulability of the algorithms. In addition, [24] show that when the DA is applied in a prac-

tical setting, such as National Resident Matching Program, only about half of the resulting out-

comes were stable. In addition, preference manipulation occurs much more frequently on the

side of participants applying for a certain position or spot, as compared to the side of the offer-

ing participants (hospitals, schools, etc.).

Methodology and approach

Solution quality

Given the preferences and solution evaluation criteria introduced in the previous chapter, we

compare a set of different algorithms in their ability to find a good solution for this NP-hard

problem. As a baseline, we use the previously introduced Deferred Acceptance (DA) algo-

rithm. Having been developed to find a stable solution in case of complete preferences without

ties, it does not guarantee that the maximum number of mentor/mentee pairs are found in

case of incomplete preferences with ties. However, by breaking the ties (even in an arbitrary

fashion), the DA can calculate a stable solution based on this tie breaking, which produces a

stable solution under the original preferences (see, e.g., [1]). We use this approach of arbitrary

tie breaking for the DA in the following evaluation. In addition, as solutions generated by DA

under strict and complete preferences yield an optimal solution for one side and a pessimal

solution for the other side, our DA implementation uses a mentee-proposing version as we

wanted the matching results to be favorable for mentees. Besides the DA, we compare two gen-

eral sets of approaches that aim to find a solution with as many matched pairs as possible:

Approximation algorithms and heuristics.

Approximation algorithms

Approximation algorithms provide a guaranteed performance with respect to the number of

matched pairs. In other words, given the actual optimal solution (the one with the highest

number of matched pairs), the calculated solutions are within a certain boundary to this opti-

mal solution. We consider following approaches that have been proposed in the previous years

(for a description of the underlying pseudocode for each algorithm we refer to the respective

publication):

• Shift: [31] describe an approximation algorithm for this case, in the following abbreviated as

Shift. For certain preference structures, this algorithm provides non-trivial quality bounds

for finding the stable match of maximum size. Shift operates through breaking indifferences

in a systematic manner and applying the DA on the resulting set of strict preferences. In par-

ticular, if indifferences occur on both sides of the market, Shift guarantees non-trivial quality

bounds if the length of indifferences is at most 2.

• Király: [18] presents an algorithm with a 5/3 approximation ratio in the general stable

matching case, and a 3/2 approximation ratio when ties are only allowed on one side.

• McDermid: [17] presents an algorithm that improves upon the algorithm by [18] by provid-

ing a 3/2 approximation ratio, which is the best known approximation ratio for the general

case without restrictions on tie lengths.

• GSModified: [19] presents another algorithm with the same 3/2 approximation ratio as the

algorithm by [17], yet with an additional improvement in runtime.

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
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Heuristics

In contrast to approximation algorithms, heuristics do not provide a guaranteed solution qual-

ity. However, it is less clear how the algorithms perform on average. Previous research consid-

ered different types of heuristics which are described below. We focus on the Genetic

Algorithm heuristic in the subsequent evaluation.

• LocalSearchSMTI: [32] present local search heuristics to solve the generalized stable match-

ing. They start with solving the relaxed version of the problem (assuming complete prefer-

ences), thereby potentially introducing instability, and then deleting unstable pairs through

an iterative process until stable solutions are found.

• Genetic Algorithm in combination with Threshold Acceptance: [4, 33] suggest the use of

Genetic Algorithms (GA) for the general problem with incomplete preferences and ties. The

GA is initialized with a set of 50 different (but stable) starting solutions, which are calculated

by arbitrary tie breaking and using the DA to calculate a stable solution. These starting solu-

tions are then evolved by using mutation and crossover operators. Crossover operators take

two existing stable solutions, exchange certain (randomly selected) parts of the respective

solution, and uses the resulting new solutions in the next evolution step. Mutation operators

randomly switch participants in two matched pairs, resulting in local changes to the solution.

The GA typically uses the best solution of the population after 100 evolution rounds. After

this initial GA, a Threshold Accepting (TA) algorithm is used to further improve the solution

quality. The TA evaluates small adjustments to the solution (similar to the Mutation in GA)

in every round until no improvement can be found. TAs are efficient in finding local

improvements, as shown in [33], and well suited to complement the GA. We use a variant of

the heuristic for the evaluation, GATA-Mixed, which uses a mix of DA, Király, McDermid,

GSModified, and LocalSearchSMTI starting solutions for the GA phase. This particular

method has been shown to perform well in similar settings [7].

Optimal solutions

Conceptually, we can also formulate the problem of finding maximum sized matchings as con-

straint optimization problem. Using a formulation similar to [34] and [35], the SMTI one-to-

one matching problem can be formulated as follows. The difference in this formulation is in

Eq (5), which stems from a slightly different definition of the ≿ relation. Conceptually, how-

ever, the two formulations are equivalent:

maxðx;yÞ
X

i2X;j2Y

zi;j ð2Þ

X

i2X

zi;y � 1 8y 2 Y ð3Þ

X

j2Y

zx;j � 1 8x 2 X ð4Þ

X

j ≿x y

zx;j þ
X

i ≿y x

zi;y þ zx;y � 1 8hx; yi 2 A
ð5Þ

zx;y 2 f0; 1g 8x 2 X; y 2 Y ð6Þ
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zx;y ¼ 0 8ðx; yÞ 2 ðX � YÞnA ð7Þ

Note that this optimization problem is NP-hard, and thus only tractable for a small number

of participants. For our three matching scenarios, we can calculate the optimal solution and

use it as a baseline reference against which we can compare the other algorithms. As IBM

CPLEX was used to calculate the optimal (maximum cardinality) solution, the ‘CPLEX’ identi-

fier will be used to indicate this particular solution.

Manipulation strategies

In centralized Two-Sided Matching mechanisms, participants submit their preferences to a

central instance (e.g., clearinghouse with a specific solution algorithm), which then calculates a

solution based on the information submitted by the participants. In general, the question

whether participants will submit their actual preferences or manipulations thereof depends on

the incentive compatibility of the underlying mechanism. If it is not in their best interest, some

participants might submit untruthful information, i.e., information that does not reflect the

true preferences of the participant. While using manipulated preferences might be beneficial

to individual participants, it leads to several detrimental effects for the entire system. First, the

calculated allocation might not be the best overall solution in case all participants would dis-

close their true preferences. Second, preference manipulation can also lead to the emergence

of blocking pairs with respect to the true preferences. More specifically, if the mechanism

assumes that all submitted preferences are truthful and the resulting match based on these sub-

mitted preferences is stable, some participants might have incentives to deviate from the solu-

tion if they can switch with other participants and be better of (i.e., if they can find blocking

pairs).

In order to study the implications of a lack of incentive compatibility for the existing mech-

anisms, the actual manipulation strategies need to be defined. Previous work has considered a

set of different preference manipulation strategies, which are introduced subsequently.

Truncation. Conceptually, listing more participants of the opposite site as acceptable in

one’s preference profile might increase the chances of being matched to one of the less pre-

ferred options. Hence, deciding which participants to include in the profile is an important

strategic consideration. Artificially decreasing the number of acceptable participants can thus

potentially increase the chances of being matched to a more preferred alternative. However,

stating otherwise acceptable alternatives as unmatchable also increases the chance of the par-

ticipant being unmatched, as it decreases the options that the mechanism can consider. This

consideration describes the truncation strategy defined by [12]. Given the true preference

ranking of length n of participant i, a truncation is defined as the preference ranking that con-

tains the first k participants, k< n, in the same order as the true preferences. [12] showed that

truncation strategies dominate non-truncation strategies under certain assumptions for the

preference rankings, making them an interesting candidate for the following evaluation.

Truncation strategies involve an inherent trade-off. Truncating to a high degree aims to

avoid being matched to less preferred alternatives, yet simultaneously increases the probability

of remaining unmatched. [12] showed that for a given preference set, the number of partici-

pants benefiting from truncation when using the DA mechanism is small, yet its behavior

under other algorithms or indifferences in preference rankings remains to be explored. Using

analytical models, [36] extends the analysis of [12] for priority-based and linear programming

mechanisms, and shows that under certain assumptions (symmetric information) the same

result about truncation preferences holds.

Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0213323 March 12, 2019 9 / 27

https://doi.org/10.1371/journal.pone.0213323


Re-ordering. In general, stable solutions calculated by matching algorithms cannot guar-

antee that each participant is matched to its most preferred option. Therefore, it is likely that

participants will be matched with their 2nd, 3rd, 4th, etc. choice, depending on the specific

outcome. One potential strategy for participants who suspect that they are not likely to be

matched with their most preferred alternative is shuffling or re-ordering: Putting more pre-

ferred alternatives (in their true preferences) in lower ranks might result in a better match for

them. For example, if a participant is on average matched to its third choice, putting their true

first choice at rank 3 might yield a better result for them. However, as the matching depends

on the preferences of the other participants, it is not straightforward to see whether such a

strategy might be useful. Furthermore, for strict and complete preferences [11] show that not

putting the most preferred alternative first is a dominated strategy for the Deferred Acceptance

Algorithm.

The re-ordering or shuffle strategy thus creates a new preference ranking which is submit-

ted to the mechanism. It can be described by the degree of manipulation k, which defines that

the strategy randomly shuffles the first k ranks. We will consider different degrees of manipu-

lation in our subsequent evaluation and study its effects on the matching outcome.

Strategic re-ordering. While the previous re-ordering strategy is a potential option to

manipulate preferences, a more strategic version of re-ordering should include a user’s per-

ceived chances of getting matched to their preferred choice into account. For example, if a

user knows that a particular mentor is very popular, they could put another mentor as pre-

ferred choice due to the low likelihood of getting matched to the actual preferred choice (while

still wanting to get matched to a good option). A similar type of strategy was observed in the

Boston school choice mechanism, where the popularity of a school influenced the likelihood of

participants to include additional ‘safe choices’ in their preferences [37]. Hence, we also con-

sider a more strategic version of re-ordering: For this, the user first estimates the popularity of

a choice using the number of times the choice appears in the first k preference ranks of the

other users. Then, the user calculates a relative popularity by multiplying this popularity with

the preference rank of the particular user in one’s preference rank. Finally, the user selects the

option with the lowest relative popularity score and puts that option as new choice for prefer-

ence rank 1.

To illustrate this strategy, consider following example: A user has a preference ranking 1�

2� 3. Based on all users, user 1 has a popularity of 4, user 2 a popularity of 3, and user 3 a pop-

ularity of 1. The relative popularity scores would be [4 � 1, 3 � 2, 1 �3] = [4, 6, 3] users 1, 2, and

3, respectively. Hence, picking the smallest score, the user would put option 3 as new preferred

rank.

The reason behind this strategy is straightforward: the user wants to maximize the combi-

nation of being matched to a good choice, while taking into account the likelihood of being

matched to said choice. In realistic applications, the challenge of this strategy would be to get

realistic estimates of the popularity score. However, in a mentor-mentee setting, such informa-

tion could be available through perceived interactions with certain mentors / mentees at com-

mon workshops and meetings.

Preferences

For the preferences, we used a set of real preferences coming from a mentor-mentee matching

at our university. In total we have three instances of mentor-mentee matching preferences

stemming from the last three years of the program. After an initial meeting, mentees provided

a preference ranking for mentors based on common (research) interests and other consider-

ations. Table 1 provides an overview of the preferences and their structure. For this,
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preferences that were not mutually acceptable were deleted in the respective preference rank-

ings, leading to the deletion of a small number of mentors/mentees for the scenarios. The first

set (subsequently referred to as scenario) consists of 20 mentees and 22 mentors, the second

set of 23 mentees and 24 mentors, and the third set of 28 mentees and 33 mentors who wanted

to participate in a college-wide program. As we can see, the third scenario involved larger pref-

erences (i.e., more acceptable preferences), as well as a considerably larger number of prefer-

ences with ties.

Evaluation: Solution quality

The first part of the evaluation considers the relative performance of the algorithms with

respect to three main metrics used to quantify the solution quality of Two-Sided Matching

solutions: Number of users matched, welfare, and fairness. We ran several simulations as

described in the subsequent sections and evaluated the resulting outcomes.

Simulation parameters

To evaluate the performance of the various algorithms with respect to finding high-quality

solutions, a simulation-based evaluation approach is used. Specifically, several algorithms

require a tie-breaking to calculate their solutions, and the (usually random) way of breaking

these ties can influence the resulting solutions. Hence, we independently repeat all scenarios

100 times and report the averaged results for the respective algorithms. 100 repetitions are a

commonly selected number of simulations to balance simulation run time and the ability to

analyze algorithms and strategies in different scenarios (different preferences in our case),

while also avoiding to potentially declare overly small effect sizes as significant (see e.g. [38]).

The simulation parameters used for the evaluation are shown in Table 2. We consider real

preferences obtained from three years of matching Mentors to Mentees, as well as several solu-

tion algorithms. The optimal solution refers to the solution obtained through a CPLEX imple-

mentation of the optimization problem given in Eq 2, and by definition corresponds to the

solution that yields the largest number of matched users for a given scenario (yet is only solv-

able for smaller instances). Additionally, the performance on several standard evaluation met-

rics is reported and analyzed.

Table 1. Preference overview.

Scenario Mentors Mentees Avg Length Mentor Preferences Avg Length Mentee Preferences Percentage Preferences with Ties

1 22 20 7.14 3.6 0.54

2 24 23 23.0 4.87 0.51

3 33 28 25.2 5.96 0.97

https://doi.org/10.1371/journal.pone.0213323.t001

Table 2. Simulation input parameters for comparing algorithm performance.

Parameter Range Description

nX {20, 23, 29} Number of mentees

nY {22, 24, 33} Number of mentors

algo {DA, Kiraly, GSM, McDermid, GATA, CPLEX} Solution Algorithm

sc {Matching Size, Welfare, Fairness, Stability} Solution Criteria

https://doi.org/10.1371/journal.pone.0213323.t002
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Finding maximum sized matchings

The prime goal of practically all established solution approaches in Two-Sided Matching is to

find a solution of maximum size. As discussed before, for the number of participants in our

case study we can calculate the optimal solution (with respect to number of participants

matched) and compare the approaches against each other.

Number of participants matched. Starting with the main objective in current approxi-

mation algorithms, we compare the performance of the different approaches in the case where

all participants submit their preferences truthfully (specifically, we assume that the submitted

preferences are the true, non-manipulated preferences).

Figs 1 and 2 show the absolute number of matched participants and the relative number of

matched participants compared to the optimal solution, respectively. Overall, the average

number of matched participants is very similar across algorithms, with MCDermid and

GATA-Mixed finding the maximum number of matched participants in all of the 100 repeti-

tions for both scenarios (Kiraly finds the maximum number in the first scenario, but not

always in the second or third scenario). Also, both GSModified and the original DA algorithm

have slightly lower performance, with the DA averaging to find the maximum sized solution in

87.8%—97.5% of the cases, and GSModified in 95.1%—100% of the cases. The differences

seem to me larger for the second scenario with more participants, which is not surprising as

the increased number of participants increases the complexity of the overall problem.

In addition to the number of matched participants, we now consider the performance of

the algorithms with respect to Welfare and Fairness. Recall that Welfare indicates how close to

the most preferred solution the average participant is matched with, and Fairness compares

the two Welfare scores for mentors and mentees. In this sense, a Welfare score of 1 indicates

that the average participant is matched to their most preferred option, whereas a Fairness

score of 0 indicates that both sides are treated perfectly fair.

Fig 1. Absolute number of matched participants.

https://doi.org/10.1371/journal.pone.0213323.g001
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Fig 3 shows the average Welfare for the algorithms, as well as the average Mentor Welfare

and Mentee Welfare. We can see that the average overall Welfare scores across algorithms are

fairly similar, yet we do observe certain differences. First, GATA-Mixed seems to yield the best

quality with respect to Welfare. On average, it achieves Welfare score of 1.21, 2.45, and 2.08, as

Fig 2. Relative number of matched participants compared to optimal solution.

https://doi.org/10.1371/journal.pone.0213323.g002

Fig 3. Average welfare scores for participants.

https://doi.org/10.1371/journal.pone.0213323.g003
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compared to the second best solutions Kiraly and GSModified with scores of 1.25, 2.54, and

2.19, as well as 1.42, 2.52, and 2.18 respectively (a reduction between 3% and 14%). Consider-

ing mentee Welfare, GATA-Mixed again provides the best results, outperforming the second

best solutions by 1% to 6%. The error bars (plus and minus one standard deviation of the

results) indicate that there is some fluctuation across the 100 repetitions, yet the general rank-

ing of the algorithms seems clear. Considering Welfare differences between mentors and men-

tees, we see that the average welfare of mentors seems to be smaller than that of mentees.

Specifically, mentors are matched close to their first choice on average, while mentees are

matched to their second choice on average (third, depending on the algorithm). This is not

surprising, however, when the structure of the preferences is taken into consideration. In the

three scenarios, mentors have preferences with considerably more indifferences, meaning that

they are happy with the match as long as the mentee is acceptable for them. In contrast, mentee

preferences include a higher percentage of strict preferences, which makes it less likely for

them to always be matched to their first choice. Differences between algorithms are similarly

visible when we break down overall Welfare into Mentor and Mentee Welfare, where GATA-

Mixed seems to outperform the other algorithm.

Finally, Fig 4 shows the Fairness scores of the different algorithms. On the one hand, we see

that the performance of the algorithms is fairly similar again, despite minor fluctuations.

GATA-Mixed seems to perform best on average, even though the error bars show that other

algorithms (e.g., DA in this case) sometimes lead to equally good or better results.

Summarizing the comparison of the algorithms with respect to the three performance met-

rics, we saw that for the given scenarios, McDermid and GATA-Mixed always yielded the

maximum number of matched pairs. In addition, GATA-Mixed seems to consistently outper-

form the other approaches with respect to secondary metrics such as Welfare and Fairness.

This can be attributed to the fact that GATA-Mixed is specified as a multi-objective heuristic,

whereas the other algorithms are approximation algorithms focusing on the number of

matched pairs. Overall, for the given scenarios, GATA-Mixed seems to be the preferred option

Fig 4. Average fairness score of solutions.

https://doi.org/10.1371/journal.pone.0213323.g004
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as it yields solutions that are favorable for the overall system (matching as many participants as

possible, thus maximizing the number of mentor-mentee pairs), and for the participants

(matching them as close to their most preferred choice as possible).

Evaluation: Preference manipulation

Simulation parameters

For the preference manipulation simulation, we again consider the previously discussed data

sets. The parameters used for this part of the evaluation are shown in Table 3. For a given data

set, we vary the percentage of manipulating participants pM and the type or degree of manipu-

lation dM. The manipulation type can be truncation, re-ordering/shuffling, or strategic re-

ordering/shuffling (see the previous sections for details). For truncation strategies, the degree

of manipulation defines how much the preferences are truncated. For example, in a scenario

where non-truncated preferences have a length of 10, truncation of degree 0.5 means that the

truncated preferences have length 5. To ensure the robustness of the findings, in particular

accounting for the fact that many algorithms employ random elements and thus potentially

yield different solutions at every run, 100 independent repetitions are made for each scenario.

The results are averaged over these 100 runs.

In general, both mentors and mentees can manipulate their preferences, i.e., both sides can

potentially manipulate. In the case of the DA algorithm and the shuffle and strategic shuffle

strategies, however, we only consider manipulation by the mentors, i.e., one-sided manipula-

tion. This is based on the theoretical analysis by who show that putting the most preferred

option first is a weakly dominant strategy for the proposing side in the DA algorithm. That is,

users on the proposing side (see [13] for details) should not use shuffling strategies from a

rational point of view.

Effects of manipulation on participant outcomes

The inherent goal of participants who manipulate their preferences is to improve their out-

come, i.e., to be matched to a more preferred option. Hence, we start our analysis with evaluat-

ing the effects on the manipulating participants’ outcome. As we consider two parameters that

affect manipulation, degree of manipulation and percentage of manipulating users, we evaluate

these effects separately (by averaging over the other parameters).

Fig 5 shows the absolute effect of manipulation for the manipulating users based on a

change in their matched rank, given different degrees of manipulation. The figure shows sev-

eral interesting results. First, on average both the truncation and the shuffle strategies lead to a

decrease in matched rank, whereas the strategic shuffle strategy leads to absolute effects fluctu-

ating around 0. This means that effectively, manipulating participants are mostly worse off (on

average) than if they would not manipulate, or in case of the strategic shuffling, the average

result would not change considerably. Second, the shuffle strategies lead to less extreme

changes in average matched rank, whereas truncation to a high degree can lead to substantial

Table 3. Simulation input parameters for the manipulation study.

Parameter Range Description

nX {20, 24, 29} Number of mentees

nY {22, 23, 33} Number of mentors

pM {0, 0.1, 0.2, . . ., 0.9, 1} Percentage of manipulating users

s {shuffle, strategic shuffle, truncation} Manipulation strategies

dM {0.1, 0.2, . . ., 0.9} Degree of manipulation

https://doi.org/10.1371/journal.pone.0213323.t003
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losses in welfare (matched rank) for the manipulating participants. Third, the average loss in

matched rank increases with increasing (more aggressive) manipulation for truncation strate-

gies, indicating that manipulating participants can quickly be worse off by this strategy.

Fourth, we see that in some cases, the change average matched rank is positive, indicating that

manipulation can slightly pay off in these cases. However, compared to the overall behavior,

manipulation on average still leads to a loss. Finally, we see that there is not much difference

between the solution algorithms, indicating that the observed behavior is a result of the manip-

ulation itself and not an artifact from a particular solution procedure.

In addition to the absolute change in matched rank, Fig 6 shows the relative change in

matched rank. This is calculated as the percentage change of manipulating participants’

matched rank using the respective rank in the non-manipulated case as baseline. A value of

-100 would indicate a relative loss of 100% compared to the previous matched rank. We can

see that, similar to the absolute matched rank comparison, truncation leads to considerable rel-

ative losses in matched rank, especially for higher degrees of manipulation. In the case of shuf-

fling strategies, relative improvements and losses again fluctuate around 0%, with strategic

shuffling leading to fewer differences between the algorithms.

The previous considerations considered different manipulation degrees, i.e., how severely

the preferences were manipulated (shuffled or truncated). Figs 7 and 8 consider the effects of

the percentage of manipulating participants, i.e., how many participants actively submit

manipulated preferences. Overall, the results are quite similar to the previous evaluation.

Manipulation using the shuffle strategies seem to lead to less gains or losses than truncation

strategies, and the effect of manipulation seem to increase (both positive and negative) with an

increasing number of manipulating users. With the lack of difference between solution algo-

rithms, we can see that neither shuffle strategy seems to be a particularly promising manipula-

tion strategy for participants. On the other hand, a higher number of manipulating users leads

to a loss in average matched rank (welfare) of manipulating participants. In other words, the

more participants try to improve their outcome by misstating their preferences, the worse off

Fig 5. Change in matched rank for manipulating participants based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g005
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they will be (on average). Algorithm behavior for truncation is also quite similar, with certain

algorithms leading to smaller or higher average differences in matched rank.

Fig 8 shows a more pronounced differentiation between solution algorithms, even though

the absolute differences between the approaches are quite small.

Fig 6. Relative change in matched rank for manipulating participants based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g006

Fig 7. Change in matched rank for manipulating participants based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g007
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While the previous figures show that manipulation only seems to be beneficial in a small

subset of cases while leading to average losses, we will now look at an manipulating individual’s

probability that its manipulation is successful (in the sense that the average matched rank gets

better). Figs 9 and 10 show the probability that submitting manipulated preferences lead to a

Fig 8. Relative change in matched rank for manipulating participants based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g008

Fig 9. Probability of successful manipulation based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g009
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better outcomes for the manipulators. Success in this case is defined as the percentage of simu-

lation scenarios in which submitting the manipulated preferences leads to an improvement.

The figures show that success probabilities are mostly between 0% and 20% in the first sce-

nario, between 0% and 50% in the second scenario, and between 0% and 45% in the third sce-

nario. While this might seen promising, the interpretation of this is that in 80%, 50%, and 55%

of the cases in scenario 1, 2, and 3, respectively, manipulation does not pay off. In addition to

the average losses from manipulation as seen earlier, this leads us to conclude that the potential

gains of manipulation seem to be outweighed by the potential losses, at least for the preferences

studied here. Interestingly, Fig 10 shows that the probability of successful manipulation first

increases, then decreases again for shuffling strategies with an increasing number of manipu-

lating users, while truncation strategies seem to be less successful overall when many users

manipulate. An interpretation of this result is that many manipulating users introduce com-

plexity into the system that makes it less likely to benefit from active manipulation.

Finally, we see that there seems to be a difference between solution algorithms. In particu-

lar, CPLEX and McDermid seem to have the highest probability of success, whereas DA and

GATA-Mixed seem to have the smallest success probabilities. This result needs to be carefully

considered along the algorithm performance results in Section to select a solution algorithm

with favorable properties both for solution quality and susceptibility to manipulation.

Effects of manipulation on non-manipulating participants

The previous section considered the effects of manipulation and success probabilities for the

manipulated participants. However, there is a second side that needs to be investigated: the

effects of manipulation on truthful, non-manipulating participants. In particular, we want to

investigate to what degree these participants are affected by the presence of manipulation in

the matching.

Fig 10. Probability of successful manipulation based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g010
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Figs 11 and 12 look at the absolute and relative change in matched ranks, this time for the

non-manipulating participants. Several aspects can be observed from the figures. First, on

average non-manipulating users are worse off when other users manipulate. This is true both

in the absolute change in matched ranks as well as the relative change in matched ranks. In

Fig 11. Change in matched rank for non-manipulating participants based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g011

Fig 12. Relative change in matched rank for non-manipulating participants based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g012
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particular the relative change in matched ranks indicates that non-manipulating participants

can be considerably worse off. Second, the truncation strategy leads to worse outcomes for

non-manipulating participants than the shuffle strategies. Third, there seems to be little

difference between the solution algorithms, with the exception of the truncation strategy in

scenarios 2 and 3, where we observe that three algorithms lead to smaller losses for non-

manipulating participants (DA, GSMODIFIED, and MCDERMID).

Similar to before, we also consider the effect of the percentage of manipulating users on the

results. Figs 13 and 14 show several interesting results. First, increasing the number of manipu-

lating participants seems to increase the losses for non-manipulating participants. This indi-

cates that the more manipulation happens in the Two-Sided Matching, the worse off the non-

manipulating participants tend to be. Second, for truncation there seems to be a reverse in this

trend in scenario 3, where manipulation suddenly leads to less losses for non-manipulating

participants when nearly all other participants manipulate. However, due to the fact that in

this case only single participants do no manipulate and the sample size of this consideration is

reduced, this particular result can be a statistical artifact and should not be over-emphasized.

Effects of manipulation on stability of solution

Having evaluated the effects of manipulation both on the manipulating as well as the non-

manipulating participants, we now consider manipulation effects on the overall Two-Sided

Matching market. As discussed previously, stability is the major goal of any solution in Two-

Sided Matching and thus is enforced by all solution algorithms. However, the stability that the

solution algorithms calculate is based on the submitted preferences, not the truthful prefer-

ences that participants might keep for themselves. Hence, it is entirely possible that solutions

will be stable under the submitted preferences, yet not under the actual preferences.

To study this potentially hazardous effect, we compare the solutions calculated based on the

submitted, manipulated preferences to the original, truthful preferences. I.e., as we know the

Fig 13. Change in matched rank for non-manipulating participants based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g013
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actual preferences in our simulation setting, we can calculate the number of unstable pairs that

solutions calculated based on manipulated preferences have. Figs 15 and 16 show the number

of unstable pairs based on different manipulation degrees and percentage of manipulating par-

ticipants. We can see that the average number of unstable pairs, based on the original

Fig 14. Relative change in matched rank for non-manipulating participants based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g014

Fig 15. Number of unstable pairs based on degree of manipulation.

https://doi.org/10.1371/journal.pone.0213323.g015
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preferences, seems to be between 0 and 2 in scenario 1, 0 and 5 in scenario 2, and between 0

and 10 in scenario 3.

Interestingly, while both shuffling strategies and truncation can lead to instability in many

cases, strategic shuffling seems to lead to fewer unstable pairs, with instability occurring for

small degrees of manipulation (i.e., only considering the top choices for a switch) or a high

percentage of manipulating users. A potential explanation for this type of observed behavior is

that this type of strategy does not considerably affect the resulting matching, i.e., some users

changing their first preference rank does not seem to impact the resulting (stable) solution.

While these numbers do not seem to be particularly large, they do indicate that instability can

be introduced by preference manipulation. In particular with the knowledge that even one

unstable pair can lead to a complete unraveling of the entire solution, this is a result that needs

to be emphasized, as it shows that manipulation can lead to potentially significant effects on

the overall solution (and the acceptance of the solution) in Two-Sided Matching.

Discussion

The previous evaluation showed several interesting results with respect to differences in solu-

tion algorithms as well as effects of preference manipulation.

Considering Research Question 1, the solution quality for the three studied scenarios, we

saw that several algorithms were able to match the optimal algorithm for the number of partic-

ipants matched, i.e., the size of the matching. In addition, all the considered algorithms were

reasonably close to the maximum size matching. As this is the most common optimization

target (acknowledging that stability is implicitly assumed), the results are encouraging, in par-

ticular for applications with a smaller number of participants. Furthermore, when we take sec-

ondary metrics such as Welfare (average matched rank) and Fairness (Welfare differences of

the two sides) into account, we saw that the algorithm GATA-Mixed provided strong results

by yielding better Welfare scores while retaining the maximum size matching. Overall, for the

Fig 16. Number of unstable pairs based on percentage of manipulating participants.

https://doi.org/10.1371/journal.pone.0213323.g016
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given preferences, mentors were matched closer to their best choice than mentees. For partici-

pants of this matching, this is an added benefit as it ensures that many mentor mentee pairs

can be established, and at the same time the mentors and mentees are on average matched

close to their most preferred option. Hence, even in scenarios where the optimal number of

matched participants can be calculated, it is worthwhile to consider other approaches such as

multi-objective heuristics, as they might be able to improve upon other metrics.

To answer the second research question, we studied several effects of preference manipula-

tion on participants and the overall solution quality. The summary of the results are:

• Considering the three manipulation strategies, shuffling, strategic shuffling, and truncation,

the results showed that the truncation strategy leads to larger effects, i.e., the gains and losses

from manipulation are considerably larger.

• On average, manipulation leads to losses for both manipulating and non-manipulating par-

ticipants. Whereas there are cases where manipulation can lead to small gains, the majority

of the evaluated cases showed a substantial loss from manipulation.

• Non-manipulating participants are practically always worse off when others submit manipu-

lated preferences.

• In most cases, gains and losses seem to be independent of the solution algorithm that is used

to calculate the solution. For certain algorithms the probability of a successful manipulation

is different from the other approaches. For example, the success probability seems to be

highest using the optimal CPLEX algorithm, and lowest for the DA and GATA-Mixed

algorithms.

• Manipulation introduces instability into the final solution. The results showed that the solu-

tions calculated based on manipulated preferences are not stable under the original prefer-

ences. This is a potentially dangerous side-effect of manipulation, as it is well known that

even a single unstable pair can lead to an unraveling of the provided solution.

Overall, this study provided relevant insights into using different Two-Sided Matching

algorithms, and in the usefulness (and danger) of submitting manipulated preferences. Given

that the average benefit from manipulation was negative for our considered scenarios, there

seems to be little practical incentives for participants to actually submit manipulated

preferences.

Conclusion

Two-Sided Matching is an established and well-suited approach to match participants based

on their preferences. Applied in a variety of settings, various solution algorithms have been

developed and target specific metrics for solution quality. In this article, we extend previous

research in this area by providing a systematic comparison of several solution algorithms using

realistic sets of preferences derived from a Mentor-Mentee application at our university.

Comparing the quality of the calculated solutions between the considered algorithms, we

find that several algorithms are able to consistently find the ‘best’ solution with respect to sta-

bility and number of matched participants. Additionally, a considered multi-objective heuris-

tic was able to improve secondary objectives such as the average matched rank and fairness of

the solution, while retaining good performance on the other metrics.

Considering the effects of preference manipulation, we studied three types of potential

manipulation (truncation, shuffle, and strategic shuffle) over a variety of scenarios. The results

for the given set of preferences show that manipulation is rarely beneficial and on average
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leads to potential losses for the manipulating participants. Additionally, we find that manipula-

tion by participants introduces instability in the solution, which is a potentially hazardous

result as the effects of instability can cause the entire solution to unravel.

We believe the results of this evaluation provide relevant guidance and insight into the dif-

ferent solution algorithms and the effects of preference manipulation. Going forward, there

are several aspects that we plan to consider. First, we want to extend the analysis to include a

broader set of preferences. This will allow us to get more generalizable results and study the

effect of certain model parameters on the observed outcomes. Second, we will consider more

advanced forms of preference manipulation, for example through active learning techniques

used by participants instead of passively selecting one single strategy. Third, we will consider

the evaluation of cardinal utilities and their effect on the resulting Welfare and Fairness scores,

taking into account that users might have strongly different preferences for their top choices

but not highly different preferences for lower ranked choices. Finally, we want to explore how

Two-Sided Matching can be applied for dynamic matching scenarios instead of one-time sce-

narios. This can open up an entire new area of applications for Two-Sided Matching and pro-

vides a fruitful area of investigation.

Supporting information

S1 Data. The preference sets used in this manuscript, in addition with summary tables of

the results and a Data Dictionary providing information on the variables. The complete set

of matching outcomes and manipulated preferences for each scenario and simulation run can

be found in the repository https://zenodo.org/record/2555099 with doi 10.5281/zenodo.

2555099.
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