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Detrital stoichiometry as a critical nexus for the effects
of streamwater nutrients on leaf litter breakdown rates
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Abstract. Nitrogen (N) and phosphorus (P) concentrations are elevated in many
freshwater systems, stimulating breakdown rates of terrestrially derived plant litter; however,
the relative importance of N and P in driving litter breakdown via microbial and detritivore
processing are not fully understood. Here, we determined breakdown rates of two litter
species, Acer rubrum (maple) and Rhododendron maximum (rhododendron), before (PRE) and
during two years (YR1, YR2) of experimental N and P additions to five streams, and
quantified the relative importance of hypothesized factors contributing to breakdown.
Treatment streams received a gradient of P additions (low to high soluble reactive phosphorus
[SRP]; ;10–85 lg/L) crossed with a gradient of N additions (high to low dissolved inorganic
nitrogen [DIN]; ;472–96 lg/L) to achieve target molar N:P ratios ranging from 128 to 2.
Litter breakdown rates increased above pre-treatment levels by an average of 1.1–2.23 for
maple, and 2.7–4.93 for rhododendron in YR1 and YR2. We used path analysis to compare
fungal biomass, shredder biomass, litter stoichiometry (nutrient content as C:N or C:P),
discharge, and streamwater temperature as predictors of breakdown rates and compared
models containing streamwater N, P or N þ P and litter C:N or C:P using model selection
criteria. Litter breakdown rates were predicted equally with either streamwater N or P (R2¼
0.57). In models with N or P, fungal biomass, litter stoichiometry, discharge, and shredder
biomass predicted breakdown rates; litter stoichiometry and fungal biomass were most
important for model fit. However, N and P effects may have occurred via subtly different
pathways. Litter N content increased with fungal biomass (N-driven effects) and litter P
content increased with streamwater P availability (P-driven effects), presumably via P storage
in fungal biomass. In either case, the effects of N and P through these pathways were
associated with higher shredder biomass and breakdown rates. Our results suggest that N and
P stimulate litter breakdown rates via mechanisms in which litter stoichiometry is an
important nexus for associated microbial and detritivore effects.

Key words: carbon loss; decomposition; detritus; ecological stoichiometry; litter breakdown; nitrogen;
path analysis; phosphorus; processing; streams.

INTRODUCTION

Understanding biogeochemical cycles and the impacts

of human activity on ecosystem dynamics requires the

consideration of interactions among multiple elements

(Schlesinger et al. 2011). Nitrogen (N) and phosphorus

(P) both limit autotrophic production (Elser et al. 2007),

but less is known about the relative importance of N and

P for heterotrophic processes such as breakdown of

detrital organic matter (but see Woodward et al. 2012).

Increased anthropogenic mobilization of N and P often

occurs in disproportionate amounts, driving the relative

availability of N or P in recipient ecosystems (e.g.,

atmospheric N deposition vs. P-rich livestock waste

[Arbuckle and Downing 2001]). Thus, there is a need to

understand the specific effects of N and P on funda-

mental ecosystem processes such as detrital organic

matter breakdown.

Processing of detrital carbon (C) in aquatic ecosys-

tems is a function of interacting abiotic and biotic

factors, including temperature, physical abrasion, litter

stoichiometry, microbial conditioning, and detritivore

biomass (Hieber and Gessner 2002, Hladyz et al. 2009).

Under low-nutrient conditions, litter species identity can

be used to predict litter breakdown rates, as initial

nutrient content and other physical and chemical traits

can affect microbial colonization and consumption by

detritivores (Petersen and Cummins 1974). Nutrient

enrichment has been shown to increase nutrient content
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of decomposing litter, thereby reducing the natural

variation in litter stoichiometry (i.e., C : nutrient ratios;

C:N, C:P) between litter species (Rosemond et al. 2010).

This effect may relax consumer resource constraints on

detritivore growth and consumption of litter to affect

breakdown rates (Cross et al. 2003, Tant et al. 2013).

Aquatic fungi play a generally larger role in breakdown

of coarse particulate organic matter such as leaf litter

than bacteria (Findlay et al. 2002, Tant et al. 2013).

Fungi can affect nutrient content of conditioned litter by

incorporating both streamwater- and litter-derived

nutrients into their biomass (Suberkropp and Chauvet

1995, Cheever et al. 2013). The relative influence of

streamwater N and P on microbial- and detritivore-

mediated processes and on the links among fungi, litter

stoichiometry, and detritivores that drive breakdown of

C remains poorly understood.

Streamwater N and P may similarly affect the links

between fungal and shredder pathways of detrital C loss,

and therefore either nutrient may limit the rate of litter

breakdown (e.g., Ferreira et al. 2014). For example, P

may be critically important for the growth and biomass

accrual of fungi on litter, given that P-rich RNA is

needed for rapid metabolism (i.e., the growth rate

hypothesis [Sterner and Elser 2002, Grimmett et al.

2013]). Alternatively, N has been linked to increased

fungal biomass (Ferreira et al. 2006), and may be

important for fungi to produce N-rich enzymes to

acquire C from polymers (Sinsabaugh et al. 2009).

Increases in fungal biomass may alter litter stoichiom-

etry (both C:N and C:P) via immobilization of dissolved

nutrients to substantially increase litter nutrient content.

This altered stoichiometry may affect shredder con-

sumption and litter breakdown rates (Cheever et al.

2013, Scott et al. 2013). Shredder growth and consump-

tion rates have been associated with litter N (Rosemond

et al. 2010) or P content of detritus (Danger et al. 2013).

Thus, increased litter breakdown rates may occur when

N or P are elevated alone or together through similar

stimulatory effects on fungal biomass and activity,

increased litter nutrient content, and ensuing shredder

activity (Ferreira et al. 2014); but the relative contribu-

tions of N or P to these processes are unknown.

This study used crossed streamwater N and P

concentration gradients in five headwater streams to

test the effects of N and P on litter breakdown rates and

identify the mechanisms by which they occurred. We

used path analysis to test hypothesized causal links

among streamwater N and P concentrations, condi-

tioned litter stoichiometry (C:N, C:P), fungal biomass,

shredder biomass, discharge, temperature, and litter

breakdown rates; breakdown of litter is hypothesized to

occur through microbial processing (e.g., litter mass loss

due to respiration, biomass production, and spore

production in the case of fungi) and shredder feeding

(Fig. 1). Our experimental design precluded testing for

the isolated effects of N and P, but allowed us to

examine the relative strength of their effects on these

pathways. We predicted that the effects of dissolved N
and P on stream detrital food webs would propagate

through microbial pathways, whereby increases in

fungal biomass increase litter nutrient content and

enhance shredder biomass (Fig. 1). We tested path

models with N, P, and N þ P to assess the relative

strength of their singular or combined effects on litter

breakdown. We also tested path models using stoichi-
ometry of conditioned litter, as either C:N or C:P, to

evaluate the importance of litter N or P content for

explaining litter breakdown rates.

METHODS

Study site and experimental nutrient additions

This study was conducted at the Coweeta Hydrologic

Laboratory (CWT), a United States Forest Service

research station located in Macon County, North

Carolina, USA. Coweeta is a heavily forested 2185-ha

basin with mixed hardwoods (maple, poplar, and oak)

that are common in the Blue Ridge physiographic region
of the southern Appalachian Mountains (Swank and

Crossley 1988). The basin contains a network of low-

order streams that are heavily shaded year-round by

Rhododendron maximum. Reaches (70 m in length) in

five first-order streams within the Dryman Fork

catchment were identified for the nutrient manipulations

used in this study (358020 N, 838450 W). These five

FIG. 1. Hypothesized path model describing how nutrients
affect litter breakdown rates. Arrows indicate hypothesized
causal links between variables, with the direction of the effect
denoted by a (þ) or (�) symbol. The structured set of linear
equations that correspond to each response variable can be
described based on the links associated with each variable (e.g.,
shredders ; fungal biomassþ litter C:N/C:P, litter C:N/C:P ;

fungal biomass, etc.). We hypothesized that aquatic fungi play a
central role in mediating the effects of nutrients on leaf
breakdown due to their direct positive effects on shredders,
and positive indirect effects on shredders due to increased
microbially mediated litter nutrient content.
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streams were physically and chemically similar in terms

of elevation (;1200 m above sea level), aspect (four out

of five on east-facing slopes, one northeast), gradient,

pH, and temperature and were in close proximity (,0.5

km apart). Experimental additions of aqueous 21%
ammonium nitrate and 85% phosphoric acid occurred

continuously for two years (July 2011 through July

2013, following a year of pretreatment data collection,

hereafter: PRE, YR1, and YR2). Solar-powered meter-

ing pumps (LMI Milton Roy, Ivyland, Pennsylvania,

USA) delivered concentrated nutrient solutions into

gravity-fed irrigation lines according to a program based

on continuously measured discharge using a CR800

data-logger (Campbell Scientific, Logan, Utah, USA)

and a Nanolevel pressure transducer (Keller America,

Newport News, Virginia, USA). Each irrigation line had

drip spouts placed approximately every 5 m throughout

the experimental reach to ensure sufficient mixing. Each

stream was assigned a unique target concentration of N

(as dissolved inorganic nitrogen, DIN [nitrate þ
ammonium], including both mean background and

added N; 81, 244, 366, 488, and 650 lg/L) that

corresponded to a unique decreasing concentration of

P (as soluble reactive phosphorus, SRP; 90, 68, 51, 34,

and 11 lg/L), which resulted in five molar ratios of

dissolved N:P very close to target values (2, 8, 16, 32,

and 128, respectively). Therefore, N and P concentra-

tions were elevated above background concentrations in

each stream (target N concentrations were between ;23

and ;123 background, and target P concentrations

were between ;53 and ;313 background) and reflected

low-to-moderate enrichment consistent with observed

concentrations in streams experiencing land-use change

in the region (Scott et al. 2002).

Water samples for nitrate (as NO3
�-N), ammonium

(NH4
þ-N), and SRP were collected biweekly within each

experimental reach (n¼ 2) and upstream of the nutrient-

dosing system (n¼ 2), filtered in the field using 0.45-lm
nitrocellulose membrane filters (Millipore, Billerica,

Massachusetts, USA) and frozen until analysis. Ni-

trate-N, NH4
þ-N, and SRP concentrations were mea-

sured with an Alpkem Rapid Flow Analyzer 300 (DIN;

Alpkem, College Station, Texas, USA) at the University

of Georgia Analytical Chemistry Laboratory (Athens,

Georgia, USA) or spectrophotometrically (SRP) using

the ascorbic acid method (APHA 1998; Shimadzu UV-

1700, Tokyo, Japan).

Litter breakdown rates and stoichiometry

We measured breakdown rates of maple (Acer

rubrum) and rhododendron (Rhododendron maximum)

litter from December to June (PRE) and from Decem-

ber to April (YR1, YR2). Maple and rhododendron

represent dominant riparian tree species at CWT, have

distinct initial nutrient content (maple C:N/C:P was

;78/2645; rhododendron C:N/C:P was ;145/7552

[D. W. P. Manning and A. D. Rosemond, unpublished

data]) and have been used extensively for studying litter

breakdown rates in southern Appalachian streams

(Webster et al. 1999, Kominoski et al. 2007). Litter

bags were constructed using 5-mm plastic mesh pecan

bags (22 3 40 cm; Cady Bag, Incorporated, Pearson,

Georgia, USA) to allow access by shredders and to

maintain known quantities of litter. Freshly abscised

litter was collected during peak leaf-fall in October 2010,

2011, and 2012, air-dried in the laboratory for several

weeks, and weighed into 10 6 0.1 g packs. The litterbags

were anchored in the five experimental reaches on 1

December 2010, 27 November 2011, and 29 November

2012 for PRE, YR1, and YR2, respectively. Each of

those dates was designated as day 0 for their respective

years. Within each experimental reach, we delineated

four 17.5-m sub-reaches where seven arrays (one for

each sampling date) of the single-species litterbags were

deployed for a total of 280 bags for each year (5 streams

3 4 sub-reaches 3 7 sampling dates 3 2 species). Five

additional litterbags of each species were taken to the

sites, submerged in the stream, and immediately

collected to account for handling losses (Benfield 2006).

Incubated leaf litter was removed over time and

processed for mass remaining and litter stoichiometry.

In the PRE year, we collected leaf packs on days 7, 14,

21, 70, 109, 160, and 187 from each sub-reach. During

YR1 and YR2, we expected higher breakdown rates, in

particular for maple, so we used a shorter sampling

schedule (maple sampled on days 7, 14, 21, 34, 55, 63,

77; rhododendron sampled on days 7, 14, 21, 63, 110,

126, 143). On each sampling date, litterbags were

removed from the streams, placed into individual plastic

bags, and transported to the laboratory on ice. In the

laboratory, litter was rinsed over nested 1-mm and 250-

lm sieves to remove sediments and macroinvertebrates,

placed into paper bags, and dried for a minimum of 24 h

at 558C. The entire sample was weighed to determine dry

mass and ground using an 8000-D ball mill (Spex

SamplePrep, Metuchen, New Jersey, USA). A subsam-

ple was combusted at 5008C for 4.5 h to determine ash-

free dry mass (AFDM). We estimated conditioned litter

C:N or C:P content for litter material collected on day

70 (PRE) or day 63 (YR1, YR2). Conditioned litter C

and N content were determined using a Carlo Erba NA

1500 CHN Analyzer (Carlo Erba, Milan, Italy).

Phosphorus content of the conditioned litter was

determined using the plant dry ash/acid extraction

method followed by spectrophotometric analysis using

the ascorbic acid method (Allen 1974, APHA 1998).

Fungal biomass

Fungal biomass was estimated by measuring ergos-

terol concentration associated with five ;2 3 2 cm litter

pieces subsampled from each litterbag early in the

breakdown experiments (day 14). We measured ergos-

terol concentrations early in the breakdown process

because early fungal colonization of litter is indicative of

subsequent fungal community development and effects

on litter breakdown rates (e.g., Duarte et al. 2008,

DAVID W. P. MANNING ET AL.2216 Ecology, Vol. 96, No. 8



Sridhar et al. 2009). Briefly, lipids were extracted from

the freeze-dried, weighed litter pieces using liquid-to-

liquid extraction (Gulis and Suberkropp 2006), and

ergosterol concentrations were determined by HPLC

(LC-10VP, Shimadzu, Columbia, Maryland, USA)

equipped with a Kinetex C18 column (Phenomenex,

Torrance, California, USA) and a UV detector set at 282

nm. External ergosterol standards (Acros Organics,

Geel, Belgium) were used. Ergosterol concentrations

were converted to fungal biomass using a conversion

factor of 5.5 lg/mg of mycelial dry mass (Gessner and

Chauvet 1993).

Macroinvertebrate biomass

We focused our macroinvertebrate sampling efforts

for both maple and rhododendron litter collected on day

70 (PRE) and day 63 (YR1 and YR2), such that we

captured the time to ;50% mass loss for maple and

;15% mass loss for rhododendron under pretreatment

conditions. After rinsing the litter, the two size classes of

macroinvertebrates were removed from the nested sieves

and preserved separately in 70% ethanol. The macroin-

vertebrates in each sample were sorted, identified to the

lowest taxonomic unit (typically genus [Merritt et al.

2008]), and measured to the nearest millimeter. Biomass

was then determined using previously established

length–mass regressions for CWT stream taxa (Benke

et al. 1999; J. B. Wallace, unpublished data). We

estimated shredder biomass per gram of litter AFDM

remaining in each corresponding litterbag based on the

classification of specific taxa as shredders (Merritt et al.

2008).

Data analyses

Breakdown rate, k, was estimated using a linear

regression of the ln-transformed fraction of AFDM

remaining vs. time (negative exponential model; sensu

Benfield 2006). Specifically, the model isMt¼M03 e�kt,

whereM0 is the initial litter mass,Mt is the litter mass on

a given sampling day, and t is time (number of days

incubated in the stream). We estimated a specific k value

in four sub-reaches within each experimental stream,

such that our total number of litter breakdown rate

estimates was 120 (4 sub-reaches3 5 streams3 2 species

3 3 years). The primary predictor variables used in this

study were either ambient (PRE) or enriched (YR1,

YR2) DIN or SRP concentrations. For enriched values,

we used calculated concentrations based on experimen-

tal additions of N and P. Evidence of concentration-

dependent nutrient uptake in the treatment reaches

indicated that concentration estimates based on the

amounts of nutrients actually added were better than

measured streamwater concentrations to characterize

the experimental treatments (A. D. Rosemond, unpub-

lished data). Enriched concentrations were determined

based on the quantity of N or P added to each stream,

using records of concentrated nutrient solution refills,

measured ambient water nutrient concentrations, and

total daily discharge.

The path model

We constructed a path model with hypothesized

causal links based on previous studies of how nutrients,

other abiotic drivers, and biological factors are predicted

to affect litter breakdown rates (e.g., Hieber and Gessner

2002, Hladyz et al. 2009; Fig. 1). We used six predictor

variables for litter breakdown: temperature, discharge,

streamwater nutrient concentrations, fungal biomass,

shredder biomass, and conditioned litter stoichiometry

(C:N or C:P); a link between fungal biomass and litter

breakdown is included to imply fungal contribution to C

losses via respiration. We assessed model fit based on

comparisons of the implied model covariance structure

and observed covariance structure using v2 tests (Grace

2006). A path model was deemed to be consistent with

the data when modeled covariance structure and

observed covariance structure were not statistically

different (i.e., nonsignificant v2 test). If assessment of

the v2 test suggested that a model was inconsistent with

the data, we reevaluated model structure using one

degree of freedom v2 criteria and inspection of residual

covariance matrices to test the improvement in model fit

gained by adding a specific link to the model (Grace et

al. 2012). We removed links from the model to improve

model parsimony in cases where maintaining a specific

link had negligible impact on overall model fit based on

nonsignificant parameter estimates.

Once we arrived at an acceptable model to predict

litter breakdown rates, we compared models with this

underlying structure using N alone, P alone, or N and P

combined as predictors. We tested for the importance of

stoichiometry of decomposing litter (C:N or C:P) in the

same manner, such that we had two sets of three models

(i.e., N, P, and N þ P for litter C:N and C:P,

respectively). These six models allowed us to test for

the importance of N, P, and C:N vs. C:P for predicting

litter breakdown rates. We evaluated the support for

each model based on Akaike’s Information Criterion

(AIC; Burnham and Anderson 2002). In addition to an

overall model that included results from PRE, YR1, and

YR2, we analyzed models using a separate group

(hereafter: single-year) approach, to compare PRE,

YR1, and YR2, separately. To contrast the path

coefficients before and after experimental nutrient

enrichment, we compared model fit when all path

coefficients were allowed to differ to model fit when

coefficients were held constant among years using v2-
difference tests. For single-year modeling, we focused on

addressing differences in path coefficients using the

underlying structure of the best-supported overall

models.

Parameters of each model are reported as standard-

ized path coefficients to allow for direct comparison of

variables measured at different scales and are indicative

of the weight of each predictor variable for explaining
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variation in the response variables. (Unstandardized

coefficients are reported in Appendix A: Table A4.)

Standardized coefficients were obtained through z-

transformations such that means and variances of the

variables are adjusted to zero and one, respectively.

Because path analysis is a structured set of linear

regressions, basic assumptions of linear regression

apply; thus, we ln-transformed our predictor and

response variables to meet assumptions of normality

and linearity. All analyses were conducted using the

statistical software R, version 3.0.1 (R Development

Core Team 2013) and the package ‘lavaan’ (version 0.5-

16; Rosseel 2012).

RESULTS

Whole-stream nutrient additions

Experimental enrichment of the five study reaches

resulted in elevation of DIN and SRP, which generally

reflected target concentrations (Table 1). Enriched DIN

and SRP levels were on average between 0.85–83 and 3–

283 background (PRE) concentrations, respectively,

during the enrichment period. Mean temperature during

each breakdown experiment differed, at most, by 2.68C

across streams and years (mean temperature for all

streams and years ¼ 7.18C); within each stream,

temperature changed ,15% compared to pretreatment

(Table 1). Mean discharge ranged from 4.1–20.0 L/s and

changes in discharge ranged from 3% to 78% of pre-

treatment depending on stream and year (Table 1).

Litter breakdown rates

Across all five streams, maple and rhododendron

breakdown rates were higher compared to PRE in YR1

and YR2 (Table 2). Rhododendron breakdown rates

were affected by nutrients to a greater extent than

maple, and were 3.1–6.43 higher in YR1 and 2.4–4.73

higher in YR2 than PRE. Maple breakdown rates were

1.1–1.83 higher in YR1, and 1.1–2.73 higher in YR2

than PRE. Two-year averages for increases in rhodo-

dendron breakdown rates tended to be highest in the

two lowest N:P treatments (N:P ¼ 2 and 8; rates were

4.53 and 4.93, respectively), with decreasing response to

nutrients in higher N:P treatments (Table 2). Two-year

averages for increases in maple breakdown rates were

highest when treatment N:P was 128 (2.23), but

breakdown rates also increased when treatment N:P

was ,16 (Table 2).

Litter stoichiometry

Maple and rhododendron C:N and C:P were reduced

during YR1 and YR2 compared to PRE (Table 3) for all

treatments, with relatively greater differences in C:P for

both species. Rhododendron C:N and C:P decreased

;1.2–1.83 and 1.8–4.83 compared to PRE, which were

relatively greater changes than those of maple. Maple

C:N and C:P decreased ;1.2–1.43 and 1.1–2.53,

respectively (Table 3).

Path model: nutrient effects in an overall model

We arrived at a general model structure that indicated

that the primary influences of nutrients on litter

breakdown rate were propagated through effects on

fungal biomass, conditioned litter stoichiometry, and

shredders (Fig. 2a, b). The final model structure was

similar to our original hypothesized model (Fig. 1),

except for an added link between discharge and

TABLE 1. Mean (6SE) ambient (PRE) and enriched (YR1, YR2) nutrient concentrations (lg/L)
during each litter breakdown experiment for the five treatment reaches used in this study (n¼ 9,
11, 23, respectively).

Target
N:P Year

Nutrients (lg/L) Discharge (L/s)
Temperature (8C)

N:P DIN (6SE) SRP (6SE) Mean Max Min Mean (6SE)

2 PRE 12.5 17.0 (2.0) 3.0 (0.0) 6.3 16.4 2.2 7.09 (0.29)
YR1 3.0 120.5 (15.5) 90.1 (6.5) 5.2 16.5 1.7 7.79 (0.19)
YR2 2.6 80.4 (7.9) 69.4 (6.5) 8.3 34.6 1.6 6.48 (0.17)

8 PRE 127.6 173.0 (10.0) 3.0 (0.3) 21.9 43.2 13.2 7.66 (0.27)
YR1 14.3 302.8 (26.2) 46.9 (4.1) 18.1 75.7 6.1 8.28 (0.15)
YR2 8.6 149.1 (10.7) 38.6 (2.7) 17.9 74.5 8.3 7.35 (0.13)

16 PRE 27.1 49.0 (8.0) 4.0 (1.0) 9.6 25.2 3.1 6.69 (0.26)
YR1 18.0 429.5 (51.2) 52.8 (7.3) 5.7 26.0 3.0 7.22 (0.18)
YR2 16.0 409.1 (85.3) 56.7 (11.9) 5.7 8.9 2.1 6.32 (0.16)

32 PRE 125.1 238.0 (22.0) 4.0 (0.4) 12.0 23.0 6.3 7.06 (0.27)
YR1 42.7 362.8 (26.5) 18.8 (1.9) 6.1 16.0 3.8 8.00 (0.17)
YR2 30.6 388.1 (12.0) 28.1 (1.2) 7.5 17.8 3.6 6.98 (0.16)

128 PRE 57.5 78.0 (9.0) 3.0 (0.3) 18.7 118.4 6.7 6.38 (0.29)
YR1 103.3 366.9 (43.1) 7.9 (1.0) 9.8 45.2 2.1 6.95 (0.20)
YR2 105.6 494.1 (32.6) 10.4 (0.5) 10.7 44.2 0.1 5.72 (0.17)

Notes: Nutrient concentrations for PRE were measured ambient concentrations; YR1 and YR2
concentrations are based on the amounts of dissolved inorganic nitrogen (DIN) or soluble reactive
phosphorus (SRP) added to each stream estimated using records of total daily discharge,
concentrated nutrient solution refills, and background nutrient concentrations. Also reported are
the mean, maximum, and minimum daily discharge (L/s) observed for each treatment reach, in
addition to the mean (6SE) daily temperature (8C) recorded during each litter breakdown
experiment (PRE, YR1, YR2).
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TABLE 2. Mean breakdown rates (6SE) reported as decay coefficients (k, d�1) of the negative
exponential model.

Target N:P Year

Maple k Rhododendron k

Mean 6SE YRx/PRE Mean 6SE YRx/PRE

2 PRE 0.0106 0.004 0.0019 0.000
YR1 0.0115 0.004 1.09 0.0099 0.003 5.27
YR2 0.0215 0.005 2.04 0.0069 0.003 3.70

mean: 1.56 mean: 4.48
8 PRE 0.0133 0.004 0.0047 0.001

YR1 0.0207 0.002 1.56 0.0300 0.001 6.36
YR2 0.0252 0.000 1.90 0.0159 0.001 3.37

mean: 1.73 mean: 4.86
16 PRE 0.0096 0.001 0.0020 0.000

YR1 0.0124 0.002 1.30 0.0083 0.002 4.06
YR2 0.0191 0.003 2.00 0.0095 0.003 4.70

mean: 1.65 mean: 4.38
32 PRE 0.0152 0.003 0.0039 0.001

YR1 0.0177 0.001 1.16 0.0210 0.006 5.35
YR2 0.0166 0.002 1.09 0.0093 0.001 2.37

mean: 1.12 mean: 3.86
128 PRE 0.0074 0.001 0.0035 0.001

YR1 0.0135 0.002 1.83 0.0109 0.002 3.08
YR2 0.0195 0.003 2.65 0.0080 0.001 2.26

mean: 2.24 mean: 2.67

Notes: Also reported are the YR1/PRE and YR2/PRE ratios (and their means) that indicate the
multiplicative increase in breakdown rate between PRE and enrichment years (i.e., YRx/PRE¼ 2
indicates an increase in k by 23).

TABLE 3. Mean litter C:P and C:N ratios on day 70 and standard error for Acer rubrum (maple)
and Rhododendron maximum (rhododendron) leaves during PRE, YR1, and YR2.

Target N:P Year

Litter C:P Litter C:N

Mean 6SE YRx/PRE Mean 6SE YRx/PRE

Maple

2 PRE 2746 172 55 3
YR1 1102 33 0.40 40 2 0.72
YR2 1448 255 0.53 42 3 0.75

8 PRE 2254 244 47 3
YR1 986 87 0.44 38 5 0.81
YR2 1025 119 0.45 36 2 0.75

16 PRE 2124 201 51 3
YR1 1324 175 0.62 44 6 0.85
YR2 1170 106 0.55 37 2 0.73

32 PRE 2107 211 51 3
YR1 1175 163 0.56 34 4 0.67
YR2 1825 510 0.87 35 1 0.69

128 PRE 2331 123 52 5
YR1 1234 180 0.53 44 2 0.84
YR2 2062 273 0.88 40 2 0.76

Rhododendron

2 PRE 6223 683 112 1
YR1 1312 87 0.21 66 4 0.58
YR2 1873 151 0.30 64 4 0.57

8 PRE 5827 614 73 23
YR1 1294 109 0.22 59 2 0.81
YR2 2066 253 0.35 59 3 0.81

16 PRE 5023 217 103 3
YR1 1886 141 0.38 64 3 0.63
YR2 2442 198 0.49 63 2 0.62

32 PRE 4430 384 101 6
YR1 1626 119 0.37 60 3 0.59
YR2 1425 114 0.32 63 4 0.63

128 PRE 5026 72 113 n.a.
YR1 2875 90 0.57 69 1 0.61
YR2 2293 645 0.46 64 2 0.57

Notes: Also reported are the YR1/PRE and YR2/PRE ratios, indicating the magnitude of
change in C:P or C:N compared to PRE. n.a. means ‘‘not available.’’
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shredders, and a pruned link between temperature and

litter breakdown (Fig. 2a, b). Thus, candidate models

maintained this general model structure, and excluded

temperature as a predictor variable. We tested six

candidate models containing N, P, N þ P and C:N and

C:P that had 13 to 15 path coefficient estimates

(Appendix A: Table A1). Of these six candidate models,

five were found to have good agreement between

modeled and observed covariance matrices based on v2

tests (Appendix A: Table A1). These five models

included the three models with litter C:N (and stream-

water N, P, and N þ P) and two models with litter C:P

(and streamwater P and NþP) (Appendix A: Table A1).

The model with the best support based on AIC included

N and litter C:N (v2¼ 9.3, df¼ 5, P¼ 0.10; Appendix A:

Table A1). Although the model with the most support

based on AIC contained N and C:N, we also found

support for a path model containing P and C:P based on

v2 tests (v2 ¼ 0.7, df ¼ 5, P ¼ 0.95; Appendix A: Table

A1).

We tested the importance of specific parameters

(stoichiometry, discharge, fungal and shredder biomass)

for the fit of the overall path model by fixing path

coefficients to zero, and then ranked the importance of

each parameter based on DAIC when the full and

reduced models were compared. For both C:P/P and

C:N/N models, removing any of the four parameters

resulted in significantly reduced model fit (v2 difference
test P , 0.05 in all cases; Appendix A: Table A2). For

the C:P/P model, conditioned litter stoichiometry (C:P)

was the most important parameter for model fit (DAIC

¼ �47; Appendix A: Table A2), while for C:N/N, the

most important parameter was fungal biomass (DAIC¼

�271; Appendix A: Table A2), followed by litter

stoichiometry (C:N; DAIC ¼ �34; Appendix A: Table

A2).

Nitrogen effects on litter breakdown

Nitrogen concentrations affected litter breakdown

rates through positive effects on fungal biomass, which

were linked to decreases in litter C:N and positive

indirect effects on shredder biomass. Overall, the C:N/N

model explained 57% of the variation in litter break-

down rates, and 20%, 36%, and 36% of the variation in

fungal biomass, shredders, and litter C:N, respectively

(Fig. 2a). Streamwater N positively affected fungal

biomass, which was linked to reduced litter C:N, that

then positively affected litter breakdown rates through

increased shredder biomass (Fig. 2a). There was a strong

link between litter C:N and litter breakdown (Fig. 2a)

and significant positive effects of fungi through C:N on

litter breakdown (compound path¼�0.603�0.48¼0.3;

P , 0.05). Fungal biomass, discharge, and shredder

biomass had comparable influence on litter breakdown

rates, but litter C:N was 2.2–2.73 more important

compared to these three variables (Fig. 2a).

Phosphorus effects on litter breakdown

Similar to N effects on litter breakdown, P concen-

trations affected litter breakdown rates through fungal

biomass, litter stoichiometry, and shredder pathways.

Overall, the C:P/P model explained 57% of the variation

in litter breakdown, and 34%, 39%, and 51% of the

variation in fungal biomass, shredders, and litter C:P,

respectively. Streamwater P positively affected fungal

biomass, which was linked to reduced litter C:P, that

FIG. 2. The best-supported models for PRE, YR1, and YR2 relating (a) N or (b) P concentrations to drivers of litter
breakdown rates. Standardized path coefficients are reported, and the sign of the coefficient indicates the direction of the
correlation between variables. The models explained 57% of the variation in litter breakdown rates. Weights of the arrows
correspond to path coefficients adjusted based on standard deviations, with strength of the correlations indicated by arrow width.
Small, medium, and large arrows denote adjusted coefficients ,0.30, ,0.45, and .0.45, respectively. Dashed arrows indicate
nonsignificant path coefficients.
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then positively affected litter breakdown rates through

increased shredder biomass (Fig. 2b), although the

strength of this path was lower compared to that of

the C:N/N model. In contrast to the C:N/N model, the

C:P/P model included a direct link between SRP and

litter C:P, and there was a strong link between litter C:P

and litter breakdown (Fig. 2b), and significant positive

effects of fungi on breakdown rates via C:P (compound

path ¼ �0.29 3�0.52 ¼ 0.15; P , 0.05). As with the

C:N/N model, fungal biomass, discharge, and shredder

biomass had similar influence on litter breakdown rates,

but litter C:P was 2.1–2.93more important compared to

these three variables (Fig. 2b).

Path models: single-year models

The models above include data from PRE, YR1, and

YR2 together. These models reflect how similar varia-

tion in N and P concentrations, due to time or space,

would affect litter breakdown. Insights into the effects of

N vs. P were also obtained by contrasting model

structure between PRE (no added nutrients) to YR1

or YR2. We analyzed the two best-supported models for

C:N/N and C:P/P (Appendix A: Table A1) with each

year treated as a subset of the data. For both C:N/N and

C:P/P models, the model structure was consistent among

years (C:P/P, v2 ¼ 3.1, 11.6, and 2.1 for PRE, YR1,

YR2, df ¼ 12; C:N/N, v2 ¼ 5.4, 4.7, and 8.0 for PRE,

YR1, and YR2, df ¼ 15; all P . 0.05). For the C:P/P

model, we found significant reduction in model fit when

path coefficients were held constant (v2 difference test; P
� 0.05). We found marginal evidence for differences in

model fit when path coefficients were held constant for

the C:N/N model (v2 difference test; P¼ 0.07). Prior to

enrichment for both the C:N/N and C:P/P models,

conditioned litter C:N or C:P was the central predictor

of litter breakdown rates and shredder biomass, which

in this case was solely determined by litter species

identity, not streamwater nutrient concentrations (Ap-

pendix A: Table A3). During the enrichment years for

both C:P/P and C:N/N, fungal biomass, shredders, and

discharge became stronger predictors of litter break-

down rates (Appendix A: Table A3). Conditioned litter

C:P, and to some extent C:N, were weaker predictors of

litter breakdown rates in YR1 and YR2 compared to

PRE, but remained a nexus of the paths linking fungal

biomass, shredders, and breakdown rates (Appendix A:

Table A3). The amount of variation in litter breakdown

rates explained by the single-year models differed from

year to year, although in each case the models explained

.30% of the variation in litter breakdown.

DISCUSSION

Our study showed that streamwater N and P affected

litter breakdown through stimulation of fungal biomass

and changes in litter stoichiometry, which were associ-

ated with higher shredder biomass and litter breakdown

rates. These effects occurred via multiple pathways and

included a collection of interactions with litter stoichi-

ometry at their center. Path analysis indicated that the

strength of N and P as predictors of these C loss

pathways was similar. Our study adds to evidence that N

and P loading accelerates detrital C loss from ecosys-

tems, thereby reducing standing stocks of an important

energy source (Benstead et al. 2009, Suberkropp et al.

2010, Woodward et al. 2012), and reveals some of the

fundamental mechanisms by which these effects occur.

Nitrogen and phosphorus effects on litter

breakdown pathways

Previous studies have revealed that a key effect of

nutrient enrichment of detritus-based systems is in-

creased detrital quality for consumers, and our results

emphasize the central importance of this effect for

predicting litter breakdown rates (Cross et al. 2003,

Rosemond et al. 2010, Scott et al. 2013). Based on the

overall models, litter breakdown in streams could largely

be predicted using conditioned litter stoichiometry

(using either C:N or C:P) across gradients of low-to-

moderate nutrient enrichment, given that large ranges in

N and P availability will be reflected in corresponding

gradients of litter C:N and C:P. By examining single-

year path models, we were able to ascertain that the

strongest driver of litter breakdown before nutrient

enrichment was conditioned litter stoichiometry (C:N

and/or C:P), owing to the large range in litter C:N and

C:P content driven by species differences and associated

microbial activity. During YR1 and YR2, we observed

substantial decreases in conditioned maple and rhodo-

dendron litter C:N and C:P, by as much as 1.83 for

rhododendron C:N and 4.83 for rhododendron C:P. As

a result, litter species differences in terms of C:N and

C:P were weaker predictors of litter breakdown rates

during YR1 and YR2.

The streamwater nutrient-mediated convergence of

C:P content of different litter species facilitated by

microbial pathways is likely an important determinant

of shredder biomass and activity, because of reduced

consumer resource stoichiometric imbalances (Cross et

al. 2003). Consumer resource imbalances are typically

determined using threshold elemental ratios (TERs;

Sterner and Elser 2002), in this case, the C:P or C:N

threshold at which growth limitation by either element is

minimized (e.g., Frost et al. 2006, Danger et al. 2013).

The results of this study support TER predictions, as we

observed the highest shredder biomass in litterbags

containing litter with C:N and C:P content that

approached or matched reported stream shredder TERs

for C:N and C:P (Frost et al. 2006, Tant et al. 2013)

(Appendix B: Fig. B1). The effects we observed based on

fungal biomass measured at early stages of decay

support the idea that the initial (approximately two-

week) fungal colonization of litter is an important

predictor of litter stoichiometry at later stages of decay,

shredder colonization, and breakdown rates (Duarte et

al. 2008, Sridhar et al. 2009).
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Path analysis showed that N and P had similar effects

on litter breakdown via both fungal biomass and litter

stoichiometry, but the similar consequences of N and P

on breakdown rates appear to be driven by subtly

different mechanisms. The key difference between the

overall C:N/N and C:P/P models was the inclusion of an

apparent link between streamwater P and litter C:P in

the overall C:P/P model. In contrast, litter C:N was not

predicted by streamwater N, but was strongly predicted

by fungal biomass. The differences in the models imply

two alternative mechanisms driving the effects of N and

P on litter breakdown. First, the absence of direct effects

of streamwater N on litter C:N suggests that reductions

in litter C:N are driven indirectly by positive N effects

on fungal biomass. This result is consistent with

previous studies that showed increased fungal biomass

and increased litter N content due to elevated stream-

water N (e.g., Ferreira et al. 2006, Rosemond et al.

2010). Microcosm studies complementary to this study

also demonstrated that fungal growth rates were more

strongly related to N concentrations compared to P,

indicating that N may be more important for fungal

biomass accrual on litter (V. Gulis, unpublished data).

Second, the apparent direct effect of streamwater P on

litter C:P in the overall model suggests that litter C:P

and fungal biomass may be decoupled, presumably

because fungi may exhibit flexible cellular C:P via P

storage (e.g., as polyphosphate granules [Beever and

Burns 1980; V. Gulis, unpublished data]). However, we

cannot rule out increased litter P due to abiotic sorption,

microbial community shifts (e.g., Gulis and Suberkropp

2004), or the effects of bacteria (but see Gulis and

Suberkropp 2003, Tant et al. 2013).

Nutrient enrichment resulted in increases in litter

breakdown rates via pathways that were driven by both

microorganisms and shredders. Our findings illustrate

that losses due to shredder feeding were stimulated by

initial fungal colonization and subsequent changes in

litter stoichiometry; thus it is difficult to adequately

partition contributions by either microorganisms or

shredders. Litter mass loss driven by microorganisms

includes multiple mechanisms: production of microbial

biomass, respiration, production of exoenzymes, and in

the case of fungi, production of spores. We were not able

to measure all of these microbial-driven C loss

pathways, which together may result in high C loss,

particularly in the early stages of litter breakdown, such

that less litter C is subsequently available to shredders

(Tant et al. 2015). However, comparing a primary

measure of microbial-driven C loss, respiration, to

shredder-driven C loss illustrates that losses directly

attributed to microorganisms alone can be smaller than

the effects of microorganisms and shredders combined.

Specifically, we found estimated mass (milligrams of C

per day) of maple and rhododendron litter respired by

microorganisms or consumed by shredders increased by

1.73 and 9.43 under nutrient-enriched conditions,

respectively. Our path analyses are consistent with this

contrast illustrating the important interactions between

microorganisms and shredders in driving litter break-

down rates, which resulted in greater C losses compared

to the effect of one microbially driven pathway alone.

Overall effects of gradients of N and P on

litter breakdown

Increased litter breakdown rates across the experi-

mental gradient of N:P were likely because of similar

effects of N and P on fungi, litter stoichiometry, and

eventually shredders, demonstrating that rapid C loss

from detritus-based aquatic ecosystems could occur in

situations where either N or P is elevated relative to the

other nutrient. Our experimental design included treat-

ments with relatively low levels of added P relative to N

and vice versa (e.g., ;430 lg N/L and 9 lg P/L vs. 100

lg N/L and 80 lg P/L), suggesting that large changes in

breakdown can occur with elevated concentrations of

one nutrient and minor alleviation of nutrient limitation

by the other. For this reason, the ratio of nutrients was

found to be a poor predictor of litter breakdown, as

shown by stronger support for models containing N and

P separately compared to N and P combined, and poor

agreement between observed and modeled covariance

matrices when N:P was used as a predictor (D. W. P.

Manning and A. D. Rosemond, unpublished data).

Species-specific differences in initial litter nutrient

ratios may have been important in the context of

differential responses to N vs. P enrichment. Breakdown

rates for both litter species were elevated across all

nutrient treatments, but generally the highest break-

down rates for rhododendron occurred when stream-

water P concentrations were greatest and the highest

breakdown rates for maple occurred when streamwater

N concentrations were greatest. Deficiencies in litter

nutrient content may help explain these patterns.

Rhododendron litter is much lower in P content than

maple, and thus colonizing microorganisms require P

from the water column, and respond most when it is

available. Rhododendron litter gained much more P in

low vs. high N:P treatments (;43 vs. ;23 increase in P

content compared to PRE in N:P¼ 2, 128, respectively).

Maple litter may have had adequate P availability for a

stronger response to streamwater N in the high N:P

treatment. Specifically, maple litter gained similar P

content in both low and high N:P treatments (;23 vs.

;1.53 increase in P content compared to PRE in N:P¼
2, 128, respectively). Thus, because rhododendron litter

was initially more P deficient, differential changes to

litter P content created a more defined gradient in litter

P content compared to maple and potentially limited the

increases in rhododendron breakdown rate where

streamwater N:P treatments were high (128) and litter

P gains were low.

Our results show that low-to-moderate enrichment of

aquatic ecosystems with gradients of N and P concen-

trations caused substantial acceleration of C loss, and

that streamwater N and P and associated effects on litter
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C:N and C:P had similar magnitude effects on

breakdown rates via microbial and detritivore pathways.

We propose that dissolved N and P modulate litter

breakdown rates through effects on fungal biomass and

litter C:N (N-driven effects), as well as effects on litter

C:P owing to abiotic or biotic P immobilization on

detritus (P-driven effects). The N and P effects on litter

stoichiometry appear to be important for shredder

pathways, because litter C:N and C:P can be reduced

to levels that approach shredder nutrient demand (Frost

et al. 2006). The N and P concentrations we used for this

study are comparable or lower than those observed in

streams experiencing moderate land-use change across

the southern Appalachians (Scott et al. 2002), and are in

the lower range of continental nutrient gradients in the

United States and Europe (Alexander and Smith 2006,

Woodward et al. 2012). Mechanisms for accelerated

litter breakdown described in this study likely occur in

many systems with similarly elevated nutrient concen-

trations. Our results imply that elevated N and P

throughout river networks could lead to increased litter

breakdown rates, reduced C retention, and altered

delivery of C to downstream ecosystems (Cole et al.

2007, Benstead et al. 2009, Woodward et al. 2012).
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