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Low-to-moderate nitrogen and phosphorus concentrations accelerate
microbially driven litter breakdown rates
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Abstract. Particulate organic matter (POM) processing is an important driver of aquatic
ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon
(C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have
shown effects at relatively low concentrations, responses of litter breakdown rates along
gradients of low-to-moderate N and P concentrations are needed to establish likely
interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems.
We established 25 combinations of dissolved inorganic N (DIN; 55–545 lg/L) and soluble
reactive P (SRP; 4–86 lg/L) concentrations with corresponding N:P molar ratios of 2–127 in
experimental stream channels. We excluded macroinvertebrates, focusing on microbially
driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum
L.) leaf litter. Breakdown rates, k, per day (d�1) and per degree-day (dd�1), increased by up
to 63 for maple and 123 for rhododendron over our N and P enrichment gradient compared
to rates at low ambient N and P concentrations. The best models of k (d�1 and dd�1)
included litter species identity and N and P concentrations; there was evidence for both
additive and interactive effects of N and P. Models explaining variation in k dd�1 were
supported by N and P for both maple and rhododendron (R2

adj¼ 0.67 and 0.33, respectively).
Residuals in the relationship between k dd�1 and N concentration were largely explained by
P, but residuals for k dd�1 and P concentration were less adequately explained by N.
Breakdown rates were more closely related to nutrient concentrations than variables
associated with measurements of two mechanistic parameters associated with C loss (fungal
biomass and microbial respiration rate). We also determined the effects of nutrient addition
on litter C : nutrient stoichiometry and found reductions in litter C:N and C:P along our
experimental nutrient gradient. Our results indicate that microbially driven litter processing
rates increase across low-to-moderate nutrient gradients that are now common throughout
human-modified landscapes.

Key words: carbon processing; detritus; ecological stoichiometry; ecosystem function; litter breakdown;
nutrient enrichment; organic matter quality; streams.

INTRODUCTION

Aquatic ecosystem dynamics are driven by important

detrital as well as algal resource pathways, both of which

are affected by excessive nutrient loading. In streams,

nutrient inputs affect consumers via changes in the

quantity, quality, and composition of algal resources

(Evans-White et al. 2009, Taylor et al. 2014). Detrital

resource quality also changes in response to nutrient

inputs, but its quantitative responses are fundamentally

different from those of algae and other primary

producers: detrital standing crops typically decrease in

response to nutrient enrichment (Benstead et al. 2009).

Concepts of aquatic ecosystem health consequently must

be expanded to include both algal and detrital responses

to nutrient enrichment (Dodds and Cole 2007, Palmer

and Febria 2012).

Few studies have tested the effects of both N and P on

detrital resources at concentrations associated with

current watershed land use change. Studies in which

nitrogen (N) and phosphorus (P) effects on detrital

carbon dynamics (specifically effects on litter mass loss

rates) were tested typically used single-concentration

combinations of N and P (Gulis and Suberkropp 2003,

Greenwood et al. 2007, Benstead et al. 2009) or

landscape or experimental gradients in N or P (P,

Rosemond et al. [2002]; N, Ferreira et al. [2006]; N and

P, Pascoal et al. [2003], Woodward et al. [2012]).

Landscape gradients establish more realistic ranges for

loss rates, but often incorporate confounding factors,

such as flow, that can vary among sites, or pollution
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effects that covary with nutrient concentrations. When

gradients in N (experimental; Ferreira et al. [2006]) or P
(landscape; Rosemond et al. [2002]) have been used to

determine responses of heterotrophic pathways without
such confounding effects, large responses in detrital

processing rates have been observed over relatively
narrow ranges of N or P concentrations. However,
dissolved N and P concentrations typically covary

across land-use gradients (e.g., Taylor et al. 2014) and
the relative importance and interactive effects of N and

P on detrital processing rates are less clear.
We used a crossed concentration-gradient design in

experimental stream channels to test simultaneous
effects of N and P on litter breakdown at multiple,

low to moderate concentrations. We focused on
microbially driven carbon (C) processing because

microbes (aquatic fungi and, to a lesser extent,
bacteria) are the ‘‘first line’’ of response of stream

detrital pathways to nutrient enrichment, which
typically stimulates microbial rates of growth, produc-

tion, and litter-associated respiration (Suberkropp and
Chauvet 1995, Gulis et al. 2008, Suberkropp et al.

2010). We tested whether microbially mediated litter
breakdown was N or P limited, whether responses to a

single nutrient depended on the availability of the
other (i.e., co-limitation), and how response magni-
tudes were dependent on litter species identity and

quality (initial C:N and C:P ratios). We tested the
effects of N and P enrichment on microbial biomass

(fungal biomass) and activity (respiration) and com-
pared those responses to the more integrative measure

of litter breakdown to examine which variables
responded most predictably to N and P concentration

gradients. We also tested for the effects of N and P
addition on litter nutrient content (C:N, C:P), due to

the increased importance of invertebrate detritivores in
accelerating litter loss rates when C:N and C:P are

reduced (Hladyz et al. 2009, Rosemond et al. 2010).
The dissolved nutrient concentrations we used reflect a

range of landscape conditions that would include
relatively pristine to moderately impacted streams in

the United States and Europe (Alexander and Smith
2006, Woodward et al. 2012), a range over which
experimental additions of both N and P have not been

previously tested within a single study. We predicted
that added N and P would result in additive increases

in microbial processing of litter, such that litter
breakdown rates would be highest at the highest

concentrations of N and P, and we expected higher
relative increases in breakdown rates for litter species

with higher initial C:N and C:P. We also predicted
additive effects of added N and P on microbial

respiration rates and fungal biomass.

METHODS

Study site and experimental channels

We conducted our experiment at the Coweeta
Hydrologic Laboratory (CWT), a United States Forest

Service (USFS) and Long-term Ecological Research

(LTER) site located in Macon County, North Caro-

lina, USA (3580303500 N, 8382504800 W). CWT is located

in the Blue Ridge Province of the southern Appala-

chian Mountains at approximately 693 m above sea

level Stream water was pumped from a third-order

stream (Shope Fork) into a 1500-L tank that supplied

three 378-L header tanks. Water entered aluminum

stream channels (0.15 3 0.15 3 4 m; n ¼ 26) through

adjustable spouts extending from the header tanks to

the top of each stream channel. Channels lacked

substratum to reduce differential nutrient uptake

associated with any possible differences in benthic

complexity. Nutrient enrichment relative to ambient

dissolved inorganic nitrogen (DIN; NO3
�-N þ NH4

þ-

N) and soluble reactive phosphorus (SRP) concentra-

tions in Shope Fork water was achieved by continu-

ously dosing 25 combinations of N (NH4NO3) and P

(H3PO4) using high-accuracy, multichannel peristaltic

pumps (Watson-Marlow, Wilmington, Massachusetts,

USA). Our target concentrations were represented by

five levels of elevated DIN across a gradient of 81–650

lg/L and five concentrations of elevated SRP across a

gradient of 11–90 lg/L. These concentrations represent
,10th to .50th percentiles of DIN and SRP in U.S.

rivers (Alexander and Smith 2006). Each target

concentration of P was crossed with low to high

concentrations of N and vice versa, resulting in 25

unique combinations of N and P concentration and a

range in N:P of 2 to 127 (Table 1). One stream channel

served as an ambient control, and received stream

water from Shope Fork only (mean DIN ¼ 55 lg/L;
mean SRP ¼ 4 lg/L; mean N:P ¼ 27.5; Table 1).

Experimental conditions

Physical parameters, including water depth (approx-

imately 0.1 m) were standardized among all channels.

Discharge within stream channels was adjusted weekly

to maintain a consistent 0.1 L/s rate in all channels. Fine

sediment was flushed from channels weekly to reduce

potential for anoxic conditions and differential micro-

bial uptake of nutrients. All channels were covered with

shade cloth to maintain consistent light levels that were

similar to forested streams at CWT. Water temperature

was recorded every 30 min by submersible temperature

probes (n ¼ 3 channels; Onset Computer, Pocasset,

Massachusetts, USA).

Water samples were collected weekly from the

midpoint of each stream channel, filtered through

Millipore nitrocellulose filters (nominal pore size 0.45

lm), transported to the laboratory on ice and frozen.

Samples were subsequently thawed and analyzed for

NH4
þ-N (automated phenate colorimetry) and NO3

�-N

(cadmium reduction followed by automated colorime-

try) with an Alpkem 300 Autoanalyzer (College

Station, Texas, USA). Phosphorus concentrations were

determined spectrophotometrically (ascorbic acid
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method [APHA 1998]; UV-1700, Shimadzu, Tokyo,

Japan).

Litter breakdown rates

Breakdown rates of red maple (Acer rubrum L.) and

rhododendron (Rhododendron maximum L.) leaf litter
were determined during late summer to early autumn

2011. These litter species have different chemical
composition (C:N, C:P) and physical attributes (e.g., a

waxy cuticle on rhododendron), resulting in different
breakdown rates under a variety of field conditions

(Kominoski et al. 2007, Ardón et al. 2009). Fine-mesh
bags (500-lm mesh) were used to exclude macroinver-

tebrates. Litter bags (n¼208) containing air-dried maple
or rhododendron leaf litter (1.1 6 0.07 g [mean 6 SE]),

were deployed in the stream channels on 23 August
2011. Ten litter bags (five of each species) were used to

measure handling losses and initial litter chemistry.
Litter bags (n¼ 52, two per channel on each date) were

collected after 7, 14, 28, and 59 d of incubation, returned
to the lab on ice, and processed within 12 h. Retrieved

leaf litter was rinsed to remove debris, oven-dried at
608C, and a subsample combusted at 5508C to calculate

ash-free dry mass (AFDM). On days 14 and 59,
subsamples of leaf litter were analyzed for microbial

respiration, fungal biomass, and elemental stoichiome-

try (see Litter nutrient content and elemental stoichiom-

etry).

Leaf breakdown rates were expressed as the decay rate
coefficient, k, per day (k d�1) and per degree-day (k
dd�1) in the exponential model mt/m0¼ e�kt, where m0 is

the initial AFDM and mt is AFDM at time t. The
exponential model mt/m0¼ e�kdd was used to calculate k

dd�1, where dd is degree-days. We tested the appropri-
ateness of this model for nutrient and leaf litter species

effects using goodness of fit (R2 . 0.50).

Microbial respiration rates and fungal biomass

Microbial respiration rates were measured as oxygen

uptake of decomposing litter at stream water tempera-
tures (Gulis and Suberkropp 2003). Multiple fragments of

leaf litter were collected from each litter bag within 12 h
of retrieval and placed in filtered stream water in

respiration chambers (30 mL), in an incubator set at
stream temperature. Oxygen concentrations were record-

ed every 5–7 min with YSI 5100 Dissolved Oxygen meters
(Yellow Springs, Ohio, USA) for 30 min in darkness.

Additional chambers (n¼ 5) containing only Shope Fork
stream water served as controls. Oxygen consumption

was determined from the slope of the regression of
oxygen concentration against time minus the control

slope and expressed per gram leaf AFDM per hour. Leaf

TABLE 1. Crossed gradient of five concentrations (lg/L) of dissolved inorganic nitrogen (DIN;
NO3

�-N þNH4
þ-N), soluble reactive phosphorus (SRP), and DIN : SRP (N:P) molar ratios in

experimental stream channels (n ¼ 25) at Coweeta Hydrologic Laboratory, Macon County,
North Carolina, USA.

Treatment

Targeted

Measured

DIN SRP N:P

DIN SRP N:P Mean %D Mean %D Mean %D

Control NA NA NA 54.5 (11.5) NA 4.4 (1.7) NA 27 NA
N1P1 81.3 11.3 16 54.9 (19.1) �32 10.0 (2.0) �12 12 �25
N1P2 81.3 33.8 5 55.2 (21.2) �32 27.4 (3.2) �19 4 �20
N1P3 81.3 50.6 4 101.7 (41.0) 25 36.2 (4.2) �28 6 �50
N1P4 81.3 67.5 3 32.1 (15.5) �61 44.4 (6.8) �34 2 �33
N1P5 81.3 90 2 31.6 (15.2) �61 77.3 (7.9) �14 1 �50
N2P1 243.9 11.3 48 146.0 (22.9) �40 9.4 (1.5) �17 34 �29
N2P2 243.9 33.8 16 177.6 (32.7) �27 33.7 (4.4) 0 12 �25
N2P3 243.9 50.6 11 140.9 (42.6) �42 47.3 (7.1) �7 7 �36
N2P4 243.9 67.5 8 258.9 (41.3) 6 67.2 (9.0) 0 9 13
N2P5 243.9 90 6 153.4 (38.1) �37 85.6 (7.9) �5 4 �33
N3P1 365.8 11.3 72 283.8 (69.9) �22 12.7 (2.8) 12 49 �32
N3P2 365.8 33.8 24 331.7 (71.3) �9 42.0 (7.7) 24 17 �29
N3P3 365.8 50.6 16 189.5 (39.4) �48 44.0 (4.3) �13 10 �38
N3P4 365.8 67.5 12 246.0 (38.5) �33 57.4 (7.4) �15 9 �25
N3P5 365.8 90 9 218.7 (41.0) �40 77.7 (8.7) �14 6 �33
N4P1 487.7 11.3 96 293.3 (44.7) �40 7.7 (1.1) �31 85 �11
N4P2 487.7 33.8 32 301.8 (39.5) �38 25.7 (1.8) �24 26 �19
N4P3 487.7 50.6 21 445.5 (102.0) �9 47.4 (5.9) �6 21 0
N4P4 487.7 67.5 16 209.7 (36.8) �57 57.4 (4.4) �15 8 �50
N4P5 487.7 90 12 283.3 (54.9) �42 67.3 (4.2) �25 9 �25
N5P1 650.3 11.3 127 400.1 (44.8) �38 9.2 (1.7) �19 97 �24
N5P2 650.3 33.8 43 544.8 (134.0) �16 46.5 (12.4) 38 26 �40
N5P3 650.3 50.6 28 508.2 (130.5) �22 47.4 (13.2) �6 24 �14
N5P4 650.3 67.5 21 461.7 (97.1) �29 69.8 (11.0) 3 15 �29
N5P5 650.3 90 16 305.3 (84.5) �53 68.5 (8.8) �24 10 �38

Notes: Measured concentrations are means (with SE in parentheses) from weekly water samples
collected throughout the experiment (n¼ 7 replicates). The percent difference between targeted and
measured nutrient concentrations and molar N:P ratios is shown as %D. NA, not applicable.
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litter was placed in labeled, pre-weighed vials and frozen

(�208C) until analyzed for fungal biomass.

Frozen leaf litter from microbial respiration trials was

freeze-dried and weighed to obtain dry mass. Fungal

biomass associated with these leaf litter samples was

estimated from ergosterol concentrations. Lipids were

extracted in methanolic KOH, partitioned into pentane,

and re-dissolved in methanol (Newell et al. 1988; as

modified by Gulis et al. 2006b). Ergosterol was further

purified and quantified by HPLC (Shimadzu) equipped

with a Phenomenex Kinetex C18 column (Torrance,

California, USA) and a UV detector set at 282 nm.

External ergosterol standards (Acros Organics, Geel,

Belgium) were used. To convert ergosterol concentration

to fungal biomass, we assumed an ergosterol concentra-

tion of 5.5 lg/mg of mycelial dry mass (Gessner and

Chauvet 1993).

Litter nutrient content and elemental stoichiometry

Leaf litter elemental stoichiometry (C:N and C:P) was

measured from maple and rhododendron litter on days 0

(initial), 14, and 59. Oven-dried (608C for 48 h) litter was

ground using a ball mill (Spex Certiprep 8000-D,

Metuchen, New Jersey, USA) prior to analyses. C and

N content of litter was estimated as a percentage of

AFDM, using a Carlo Erba 1500N CHN Analyzer

(Carlo Erba, Milan, Italy). Litter for P analysis was

weighed in acid-washed, pre-ashed ceramic crucibles,

combusted at 5008C, digested in acid, and analyzed

spectrophotometrically (ascorbic acid method; APHA

1998). Phosphorus concentrations in litter were ex-

pressed as a percentage of AFDM. All litter stoichiom-

etry data are presented as molar ratios.

Data analysis

Linear fixed effects models were used to assess effects

of leaf litter species (maple, rhododendron), dissolved

nutrient concentrations (N and P), and N3P interaction

on response variables (litter k, fungal biomass, microbial

respiration rate, and litter stoichiometry). Interaction of

N3P was included in models with N and P to determine

the interdependence of the effects of nutrient concentra-

tions on microbial litter processing. Adding parameters to

models can increase likelihood of selection, resulting in

overfitting of models. Akaike’s information criterion

adjusted for small sample size (AICc) was used for model

selection to determine the least amount of information

needed to explain variation in response variables (see

above). Models with delta AICc � 4 were considered

equivalent (Burnham and Anderson 2002).

Litter breakdown rates, microbial respiration, fungal

biomass, and litter stoichiometry data were compared

against log-transformed dissolved N and P concentra-

tions and non-transformed N:P molar ratios using single

or multiple linear regressions. The dual control of N and

P in driving breakdown rates was also tested by

regressing concentrations of N or P against breakdown

rates and then plotting residuals of those regressions

against concentration of the other nutrient. We also

plotted k dd�1 against dual gradients of N and P (i.e., in
three-dimensional plots). Saturation response curves

(following a Michaelis-Menten form) were fit to maple
and rhododendron litter breakdown rates (k d�1) to

estimate the half-saturation constant of DIN and SRP
concentrations (Km) whereby the process rate is half of
Vmax (the maximum breakdown rate). All statistical

analyses were performed using R version 2.14.2 (R
Development Core Team 2012).

RESULTS

Experimental conditions

Measured concentrations of DIN (range¼ 32–541 lg/
L) and SRP (range¼ 13–86 lg/L) in treatment channels

closely matched target concentrations (DIN range¼ 83–
650 lg/L; SRP range ¼ 11–90 lg/L) throughout the

experiment (Table 1). In general, greater percent
differences in targeted vs. measured concentrations were
detected in DIN than in SRP (Table 1). DIN and SRP

concentrations in the control channel were variable
throughout the experiment but remained consistently

lower than those in all treatment channels (Table 1).
Mean daily temperature in stream channels ranged

from 19.18C to 25.48C with a mean 6 SE of 23.08 6

0.28C throughout the study period. During that same

period, mean daily temperature in Shope Fork (source
water for stream channels) ranged from 10.28C to 18.68C

with a mean of 15.18C (60.38C).

Litter breakdown rates

Best models of breakdown rates (k d�1 and k dd�1) of

maple and rhododendron litter included litter species
identity, dissolved N and P concentration, and N 3 P

interaction, which provides evidence for both additive
and interactive effects of N and P (Table 2). Breakdown

rates (k dd�1) increased up to 63 for maple and 123 for
rhododendron over the N 3 P gradient (Fig. 1).

Breakdown rates increased along both N and P
concentration gradients, and higher N and P concentra-
tions interacted, leading to the greatest increases in k

dd�1 (Fig. 2). Additive effects of N and P were further
supported by residual plots of N vs. k dd�1 against P;

however, residuals of P vs. k dd�1 were less affected by
N (Appendix A).

Litter k was moderately affected by dissolved N:P
ratios, whereby k trended toward higher values at N:P ,

16 (maple k d�1 ¼ 0.018 6 0.001, k dd�1 ¼ 0.0008 6

0.0001; rhododendron k d�1 ¼ 0.008 6 0.001, k dd�1 ¼
0.0003 6 0.0001 [values are means 6 SE]) than N:P . 16
(maple k d�1¼ 0.016 6 0.002, k dd�1¼ 0.0007 6 0.0002;

rhododendron k d�1¼ 0.006 6 0.002, k dd�1¼ 0.0003 6

0.0002). However, there was stronger evidence for co-

limitation than effects of nutrient ratio per se; there were
subtle but consistent trends for the highest breakdown

rates for any given P concentration to occur at the
highest N:P ratios and for the highest breakdown rates

for any given N concentration to occur at the lowest N:P
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ratios (indicating further limitation by N and P,

respectively; Table 3).

Fungal biomass and microbial respiration

Fungal biomass was consistently higher on maple

than on rhododendron litter. Biomass ranged from 6 to

110 mg/g AFDM leaf litter on day 14 and from 10 to

140 mg/g AFDM leaf litter by day 59 (Appendix B).

Litter-associated fungal biomass was explained by

models that included N and P concentrations, litter

species, and time (Table 2).

Microbial respiration rates were similar for both

litter species. Rates ranged from 0.03 to nearly 0.60 mg

O2�(g AFDM)�1�h�1 on day 14 and from 0.03 to 0.54

mg O2�(g AFDM)�1�h�1 on day 59 (Appendix B). Top

models for microbial respiration rate included litter

species identity, time, N and P, and N 3 P interaction

(Table 2).

Litter nutrient content and elemental stoichiometry

Litter stoichiometry (C:N and C:P ratios) changed

during breakdown in response to dissolved N and P

concentrations and N:P ratios (Table 3; Fig. 3A–D). In

general, larger differences were observed between

control and treatment C:P than C:N for both litter

species (Table 3). Rhododendron C:N decreased with

added N from day 14 to day 59 but that response was

consistent across all N concentrations. Litter C:P of

both species decreased with increasing P concentration

by day 14, and rhododendron C:P decreased with

increasing P by day 59 (Fig. 3C and D). Models

explaining variation in litter stoichiometry included N

and P, N 3 P interaction, litter species, and time (Table

2).

DISCUSSION

We observed relatively large increases in microbially

driven litter processing rates across N and P concentra-

TABLE 2. Linear fixed-effects models and model weights comparing nitrogen (N) and phosphorus
(P) concentrations (lg/L, log10-transformed), N 3 P interaction, and leaf litter species (Acer
rubrum, Rhododendron maximum) effects on leaf litter breakdown rate per day (k d�1) and per
degree-day (k dd�1), fungal biomass (F), microbial respiration rates (R), and litter stoichiometry
(C:N and C:P) on days 14 and 59.

Model K DAICc AICc wt Cum wt Log likelihood

Leaf litter breakdown rates

k d�1

N þ P þ Species 5 0.0 0.59 0.59 486.9
N þ P þ N 3 P þ Species 6 0.7 0.41 1.00 487.7
k dd�1

N þ P þ N 3 P þ Species 6 0.0 0.62 0.62 787.1
N þ P þ Species 5 1.0 0.38 1.00 785.5

Fungal biomass

Day 3 0.0 0.45 0.45 �480.9
Species þ Day 4 1.4 0.22 0.66 �480.5
P þ Species þ Day 5 2.7 0.12 0.78 �480.0
N þ Species þ Day 5 2.9 0.11 0.89 �480.1
N þ P þ Species þ Day 6 3.8 0.07 0.95 �479.5

Microbial respiration rates

N þ P þ Species þ Day 6 0.0 0.36 0.36 36.4
P þ Species þ Day 5 0.3 0.31 0.67 35.1
N þ Species þ Day 5 2.2 0.12 0.79 34.2
N þ P þ N 3 P þ Species þ Day 7 2.3 0.11 0.91 36.4
Species þ Day 4 3.8 0.05 0.96 32.3

Litter C:N

N þ P þ Species þ Day 6 0.0 0.51 0.51 �435.7
P þ Species þ Day 5 1.2 0.27 0.78 �437.5
N þ P þ N 3 P þ Species þ Day 7 2.2 0.17 0.95 �435.7

Litter C:P

N þ P þ N 3 P þ Species þ Day 7 1.3 0.62 0.62 �895.8
P þ Species þ Day 5 1.9 0.25 0.87 �899.0
N þ P þ Species þ Day 6 3.1 0.13 1.00 �898.5

Notes: Data are from decomposing leaf litter exposed to five levels of dissolved inorganic
nitrogen (NO3

�-N þ NH4
þ-N; N) and soluble reactive phosphorus (P) concentrations added to

stream channels at Coweeta Hydrologic Laboratory, Macon County, North Carolina, USA.
Akaike’s information criterion adjusted for small sample sizes (AICc) was used to identify model
parsimony. Number of parameters in each model is K. The difference in AICc scores from the top
model (lowest AICc) is DAICc. AICc wt is the weighted AICc score, which is calculated as RAICc/
AICci. AIC¼ 2K� 2ln(L)þK; AICc¼AICþ 2K(Kþ 1)/(n� K� 1), whereby K is the number of
parameters in the model, L is the likelihood function for the model, and n is sample size. Cum wt is
the cumulative model weights of evidence. Models with DAICc � 4 are considered equivalent
(Burnham and Anderson 2002).
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tion gradients that are common throughout virtually

pristine to more human-modified landscapes (Alexander

and Smith 2006). Even the lowest treatment of N and P

concentrations (SRP 11 lg/L, DIN 81 lg/L) yielded a

greater than 33 increase in measured breakdown rates

over those measured in the control channel (SRP 2 lg/L,
DIN 54 lg/L). At higher concentrations, these rates

were quantitatively associated with both N and P

concentrations and were also indicative of co-limitation

by both nutrients. Our results illustrate potentially

strong control by relatively low concentrations of

dissolved N and P on breakdown rates of organic

matter in stream ecosystems. The changes in litter

stoichiometry that we observed due to increased

dissolved nutrient availability suggest that under typical

field conditions, increased macroinvertebrate feeding

would have additional positive effects on litter break-

down rates. A recent pan-European study also showed

that microbial responses to N and P occur at relatively

low concentrations, whereas macroinvertebrate respons-

es were inhibited at higher concentrations of N and P

due to confounding effects of accompanying pollutants

found in highly impacted streams (Woodward et al.

2012). Our test in experimental stream channels provides

further evidence that litter breakdown is constrained by

microbial nutrient limitation (both N and P) at low-to-

moderate concentrations. Moreover, the microbially

driven changes in litter stoichiometry that we observed

suggest that, where macroinvertebrate biomass is not

reduced by other pollutants, the indirect stimulation of

invertebrate-driven litter decomposition by dissolved

nutrients can be an important additional outcome.

Our findings are consistent with other studies that

indicate saturating effects of N or P enrichment on

stream C losses at relatively low concentrations (Rose-

mond et al. 2002, Ferreira et al. 2006, Gulis et al.

2006a, b, Woodward et al. 2012). To test for saturation

of processing rates, we applied Michaelis-Menten-type

asymptotic models to k d�1 (Appendix C), which had

similar or better fits than those of our linear models

(with the exception of rhododendron k d�1 vs. SRP,

which had a better linear model fit). Therefore, our

results generally suggest that under the conditions tested

here, the highest nutrient concentrations we used were

close to or above saturation. Our Km values for DIN and

SRP were roughly consistent with (SRP), or generally

lower than (DIN), those measured in other studies. In all

studies, Km values are generally higher for more

recalcitrant litter species. Here, Km for DIN was 25

and 31 lg/L for maple and rhododendron, respectively,

and these relative low Km values could in part be a result

of relationships derived from measured DIN concentra-

tions that were lower than targeted additions in stream

channels due to uptake (Table 1). Higher N half-

saturation constants for litter breakdown rates have

been observed in European streams (Ferreira et al.

[2006], N half-saturation constants, Km-N, of 183 lg/L
NO3-N for alder and 260 lg/L NO3-N for oak litter;

Gulis et al. [2006b], Km-N 162 lg/L NO3-N for alder

litter). Km values for SRP were roughly similar in our

study (5–15 lg/L) to values from other systems (lowland

streams in Costa Rica [Rosemond et al. 2002], Km-P, 6.5

lg/L PO4
�3-P; mountain streams in Portugal [Gulis et

al. 2006a]; Km-P, 9–21 lg/L SRP), and could partially

explain why measured vs. targeted SRP concentrations

were not as low as those for DIN (Table 1). In studies

where different litter types were tested, Km values also

depended on litter type (Gulis et al. 2006a, b).

FIG. 1. Surface contour plots of (A) maple (Acer rubrum) and (B) rhododendron (Rhododendron maximum) leaf litter
breakdown rates, k, per degree-day (dd�1) at different concentrations of dissolved inorganic nitrogen (DIN; NO3

�-NþNH4
þ-N)

and soluble reactive phosphorus (SRP). Values for DIN and SRP are log10-transformed means from weekly water samples
collected throughout the study (n ¼ 7 replicates). Adjusted R2 values for these fits were 0.67 (maple) and 0.33 (rhododendron).
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Consistent with studies finding that nutrient effects

on POM were dependent on litter type, we also found

differential responses in the two litter types we tested.

Higher-magnitude microbial responses to nutrient

enrichment are commonly found for lower-quality

litter species, such as oak and rhododendron (Stelzer

et al. 2003, Ferreira et al. 2006, Gulis et al. 2006a,

Greenwood et al. 2007, Woodward et al. 2012), and we

similarly observed stronger effects of N and P on

rhododendron k than on maple k (Table 3). In

addition, the greatest changes in fungal biomass and

activity due to nutrient enrichment have been found on

wood, which is even lower quality than leaf litter (Gulis

et al. 2004, 2008).

Observed reduction of litter C:N and C:P ratios due to

elevated dissolved N and P suggest in situ breakdown

rates would be accelerated further in the presence of

invertebrate detritivores. For example, macroinverte-

brate shredder biomass in CWT streams increases with

reduced litter C:N (Rosemond et al. 2010), and lower

C:N has also been associated with greater invertebrate-

mediated breakdown in other studies (Hladyz et al.

2009). The changes in litter C:N that we observed in this

study (.150 to ,100; Table 3) are consistent with

potential thresholds of lower vs. higher macroinverte-

brate contributions to breakdown (Rosemond et al.

2010). Likewise, lower litter C:P values observed in this

study (Table 3) are consistent with predictions of

reduced P-limitation of stream shredders (Tant et al.

2013). We observed higher reductions in litter C:P than

C:N (Table 3), suggesting overall greater reductions in P

than N limitation for consumers.

Our observations of apparent N and P co-limitation

of microbial organic matter processing could be

explained by differential responses of fungi and bacteria

to N or P. Fungi and bacteria are both important drivers

of stream organic matter breakdown, and recent

evidence suggests that fungi may be more N limited

and bacteria more P limited (V. Gulis, unpublished data)

over the range in concentrations that we tested. In a

previous whole-stream nutrient enrichment study at

Coweeta, fungi comprised 99% and bacteria 95% of total

FIG. 2. (A, C) Maple (Acer rubrum) and (B, D) rhododendron (Rhododendron maximum) leaf litter breakdown rates, k, per
degree-day (dd�1) as a function of dissolved inorganic nitrogen (NO3

�-NþNH4
þ-N; DIN) and soluble reactive phosphorus (SRP)

concentrations (lg/L). Values for DIN and SRP are log10-transformed means from weekly water samples collected throughout the
study (n¼7 replicates). Bubble size in all plots corresponds to target dissolved N:P molar ratios (small, N:P � 16; large, N:P . 16).
Solid lines are linear regressions. Dashed lines are 95% confidence intervals. Note that, in three of the four plots, control values
(represented by low concentrations of N and P) were lower than predictions based on 95% confidence intervals, indicating that
strong responses in breakdown rate were observed at even the lowest additions of N or P. Adjusted (adj) R2 values and P values are
shown.
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microbial biomass associated with benthic coarse

particulate organic matter (CPOM) and fine particulate

organic matter (FPOM), respectively (Tant et al. 2013).

Although fungi and bacteria associated with CPOM and

FPOM both respond positively to nutrient enrichment

(Baldy et al. 2007, Tant et al. 2013), bacteria may

continue to increase growth and production rates with

nutrient enrichment at elevated temperatures. In this

study, water temperatures in our experimental channels

were 5–88C higher than in Shope Fork and as high as

258C. Although temperature and nutrients can both

stimulate fungal activity (Fernandes et al. 2009, Ferreira

and Chauvet 2011), increased stream temperatures can

decrease fungal sporulation rates and alter fungal

species composition (Bärlocher et al. 2008, Fernandes

et al. 2009). Thus, the strong effect of P in this study

might be partly attributed to higher bacterial processing

rates during warmer periods of the experiment. Our

higher breakdown rates and greater relative response to

nutrient enrichment in experimental stream channels

compared to whole-stream experimental nutrient en-

richment with macroinvertebrates present (Greenwood

et al. 2007, Rosemond et al. 2010) are consistent with

temperature, and potentially bacteria, having additional

effects on breakdown rates in this study. These

comparisons also indicate that the magnitude change

in breakdown rates in this study overestimate what has

been observed under natural stream conditions; thus,

conservative extrapolation of these results would include

the direction, but not the size, of nutrient effects.

Understanding the mechanisms by which N and P

enrichment influence ecosystem function is important

for establishment of ecologically relevant nutrient

criteria in diverse aquatic ecosystems that vary funda-

mentally in trophic state, biogeochemistry, and human

influence (Alexander and Smith 2006). Low-to-moder-

ate nutrient concentrations accelerated microbial pro-

cessing rates of C and decreased litter C : nutrient ratios,

indicating that heterotrophic stream microbes simulta-

neously respond to both N and P. Therefore, quantify-

ing how ecosystem function changes along gradients in

N and P concentrations and N:P ratios is imperative to

establish broadly appropriate nutrient criteria among

different aquatic ecosystems. Understanding the re-

sponses of microbial communities to low-to-moderate

nutrient enrichment is important given both the range in

N and P concentrations from point and non-point

sources found throughout landscapes and the conserva-

tion imperative to predict nutrient effects on organic

matter quantity and quality throughout river networks

(Kominoski and Rosemond 2012). It is still unclear how

recent and projected increases in N relative to P

throughout U.S. streams and rivers (Alexander and

Smith 2006) may affect detrital carbon processing, but

TABLE 3. Breakdown rates per day (k d�1) and degree-day (k dd�1) and litter stoichiometry (C:N and C:P) for maple (Acer
rubrum) and rhododendron (Rhododendron maximum) leaf litter at different targeted concentrations of dissolved inorganic
nitrogen (DIN; NO3

�-N þNH4
þ-N) and soluble reactive phosphorus (SRP), and DIN : SRP (N:P) ratios on day 59.

Treatment

Acer rubrum Rhododendron maximum

k d�1 k dd�1

C:N C:P

k d�1 k dd�1

C:N C:P

Ratio %D Ratio %D Ratio %D Ratio %D

Control 0.004 0.0002 56.4 - 5548.7 - 0.001 0.00005 100.2 - 10276.8 -
N1P1 0.014 0.0006 49.2 �13 2446.8 �56 0.003 0.0001 98.7 �1 4595.2 �55
N1P2 0.015 0.0006 33.1 �41 1221.0 �78 0.005 0.0002 69.2 �31 3341.0 �67
N1P3 0.014 0.0006 45.1 �20 1909.1 �66 0.006 0.0003 55.2 �45 2709.5 �74
N1P4 0.014 0.0006 34.0 �40 1307.3 �76 0.004 0.0002 115.4 15 3643.5 �65
N1P5 0.016 0.0009 37.5 �34 1595.5 �71 0.007 0.0004 103.5 3 3391.8 �67
N2P1 0.015 0.0006 42.8 �24 2713.8 �51 0.009 0.0006 63.0 �37 4877.9 �53
N2P2 0.020 0.0009 25.2 �55 894.6 �84 0.007 0.0003 76.1 �24 3741.0 �64
N2P3 0.017 0.0007 29.4 �48 1147.2 �79 0.008 0.0003 94.4 �6 3027.7 �71
N2P4 0.019 0.0008 37.5 �34 5832.5 5 0.010 0.0005 80.1 �20 2702.4 �74
N2P5 0.021 0.0009 25.8 �54 830.0 �85 0.010 0.0004 66.4 �34 2474.7 �76
N3P1 0.015 0.0007 36.1 �36 1775.6 �68 0.003 0.0001 58.7 �41 4146.6 �60
N3P2 0.016 0.0007 28.3 �50 1251.8 �77 0.006 0.0003 51.3 �49 1860.0 �82
N3P3 0.022 0.0009 32.9 �42 1556.7 �72 0.006 0.0003 57.8 �42 2550.3 �75
N3P4 0.024 0.0011 31.2 �45 1087.7 �80 0.009 0.0004 54.6 �46 1703.0 �83
N3P5 0.020 0.0009 27.5 �51 1312.9 �76 0.009 0.0004 58.6 �42 2103.8 �80
N4P1 0.014 0.0006 32.3 �43 1490.3 �73 0.003 0.0001 75.4 �25 5144.5 �50
N4P2 0.022 0.0010 30.7 �46 1255.7 �77 0.006 0.0003 54.0 �46 3629.7 �65
N4P3 0.022 0.0009 33.7 �40 1928.0 �65 0.010 0.0004 51.6 �49 2061.7 �80
N4P4 0.020 0.0009 32.6 �42 1415.1 �74 0.009 0.0004 52.9 �47 2073.9 �80
N4P5 0.020 0.0009 33.5 �41 1411.1 �75 0.010 0.0004 48.0 �52 1946.4 �81
N5P1 0.017 0.0007 38.6 �32 1615.9 �71 0.005 0.0002 65.3 �35 4887.0 �52
N5P2 0.013 0.0006 26.3 �53 1189.4 �79 0.007 0.0003 64.0 �36 3392.3 �67
N5P3 0.020 0.0006 32.8 �42 1623.3 �71 0.007 0.0003 56.9 �43 3041.9 �70
N5P4 0.020 0.0009 31.4 �44 1106.1 �80 0.009 0.0004 55.7 �44 2083.4 �80
N5P5 0.019 0.0008 36.2 �36 1631.5 �71 0.007 0.0003 54.1 �46 1775.4 �83

Notes: Data are not replicated (n¼ 1). The percent difference between control and treatment litter C:N and C:P molar ratios is
shown as %D.
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increases in water temperatures are likely to interact

with added nutrients to increase net ecosystem carbon

losses (Fernandes et al. 2009, Ferreira and Chauvet

2011).
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