

University of Nebraska at Omaha DigitalCommons@UNO

Biology Faculty Publications

Department of Biology

2016

The complete mitochondrial genome of the shoal chub, Macrhybopsis hyostoma

Sarah Gaughan

Robin Johnson

Jun Wang

Michael Wachholtz

Kirk Steffensen

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub

Part of the Biology Commons

Authors

Sarah Gaughan, Robin Johnson, Jun Wang, Michael Wachholtz, Kirk Steffensen, Timothy King, and Guoqing Lu

Mitochondrial DNA Part B

Resources

ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20

The complete mitochondrial genome of the shoal chub, Macrhybopsis hyostoma

Sarah Gaughan, Robin Johnson, Jun Wang, Michael Wachholtz, Kirk Steffensen, Timothy King & Guoging Lu

To cite this article: Sarah Gaughan, Robin Johnson, Jun Wang, Michael Wachholtz, Kirk Steffensen, Timothy King & Guoging Lu (2016) The complete mitochondrial genome of the shoal chub, Macrhybopsis hyostoma, Mitochondrial DNA Part B, 1:1, 911-912, DOI: 10.1080/23802359.2016.1197069

To link to this article: https://doi.org/10.1080/23802359.2016.1197069

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

6

Published online: 04 Jan 2017.

Submit your article to this journal 🕑

Article views: 215

View related articles 🖸

則 🛛 View Crossmark data 🗹

MITOGENOME ANNOUNCEMENT

∂ OPEN ACCESS

Taylor & Francis

Taylor & Francis Group

The complete mitochondrial genome of the shoal chub, Macrhybopsis hyostoma

Sarah Gaughan^a, Robin Johnson^b, Jun Wang^{a,c}, Michael Wachholtz^a, Kirk Steffensen^d, Timothy King^e and Guoqing Lu^a

^aDepartment of Biology, University of Nebraska at Omaha, Omaha, NE, USA; ^bNatural Systems Analysts, Inc., Leetown Science Center, Aquatic Ecology Branch, Kearneysville, WV, USA; ^cKey Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; ^dNebraska Game and Parks Commission, Lincoln, NE, USA; ^eU.S. Geological Survey, Leetown Science Center, Aquatic Ecology Branch, Kearneysville, WV, USA

ABSTRACT

The complete mitochondrial genome of the shoal chub (*Macrhybopsis hyostoma*) was determined to be 16,899 bp and contained 22 tRNA genes, 2 rRNA genes and 1 control region. The whole genome base composition was 30.5% A, 28.5% T, 24.9% C and 16.1 G. This complete mitochondrial genome provides essential molecular markers for resolving phylogeny and future conservation efforts.

ARTICLE HISTORY

Received 18 March 2016 Accepted 31 May 2016

KEYWORDS

Macrhybopsis hyostoma; mitochondrial; genome; next generation sequencing

Macrhybopsis chubs are a genus of the subfamily Leuciscinae, which consist of small-bodied fishes that are typically obligate river species (Galat et al. 2005). The shoal chub (*Macrhybopsis hyostoma*) serves as key food chain species for the endangered pallid sturgeon (*Scaphirhynchus albus*) (Gerrity et al. 2006; Herman et al. 2008) and has been experiencing significant population declines throughout their ranges, which may be attributable to anthropogenic disturbances (Hesse 1994; Steffensen et al. 2014). Previous molecular studies were unable to resolve the phylogeny of *Macrhybopsis* chubs with singular mitochondrial markers, making identifying populations that are susceptible to anthropogenic disturbances difficult (Nagle & Simons 2012).

Here, we report the complete mitogenome of the shoal chub, *M. hyostoma*. The shoal chub was collected from the Loup River near Pawnee Park in Columbus, Nebraska, and is part of the ichthyology collection at the University of Kansas Biodiversity Institute (KUI 41380). This mitogenome will establish a solid basis to resolve phylogenetic confusion within this genus and may aid future conservation measures.

Genomic DNA was extracted and purified from fin tissue using the Qiagen DNeasy Blood and Tissue Kit (Germantown, MD) for Genotyping by Sequencing (GBS). PCR free libraries were constructed with a TruSeq PCR Free library protocol and sequenced on an Illumina NextSeq500 (Kearneysville, WV) at the USGS Leetown Science Facility. Sequences were assembled using Velvet (Zerbino & Birney 2008), aligned with Mega 6.06 (Tamura et al. 2013) and annotated with MitoFish (Iwasaki et al. 2013). DOGMA was used to verify annotation and identify start and stop codons (Wyman et al. 2004) (Table 1). (Macrhybopsis hyostoma). Locus Start Stop Size (bp) Start Stop Anticodon Strand^a tRNA^{Phe} 1 69 69 H Jacobian 70 1057

Table 1. Characteristics of the mitochondrial genome of the shoal chub

tRNA ^{Phe}	1	69	69				Н
12SrRNA	70	1026	957				Н
tRNA ^{Val}	1027	1097	71				Н
16SrRNA	1098	2776	1679				Н
tRNA ^{Leu}	2777	2852	76			UAA	Н
ND1	2854	3828	975	ATG	TAA		Н
tRNA ^{lle}	3833	3904	72				Н
tRNA ^{GIn}	3903	3973	71				L
tRNA ^{Met}	3975	4043	69				Н
ND2	4044	5088	1045	ATG	TAG		Н
tRNA ^{Trp}	5089	5159	71				Н
tRNA ^{Ala}	5161	5229	69				L
tRNA ^{Asn}	5231	5303	73				L
0 ₁							-
tRNA ^{Cys}	5334	5402	69				L
tRNA ^{Tyr}	5403	5473	71				L
CO I	5475	7025	1551	GTG	TAA		Н
tRNA ^{Ser(UCN)}	7026	7096	71			UGA	L
tRNA ^{Asp}	7100	7173	74				Н
CO II	7180	7870	691	ATG	TAA		Н
tRNA ^{Lys}	7871	7945	75				Н
ATP8	7947	8111	165	ATG	TAG		Н
ATP6	8105	8787	683	ATG	TAA		Н
co III	8788	9571	784	ATG	TAA		Н
tRNA ^{Gly}	9572	9643	72				Н
ND3	9644	9992	349	ATG	TAG		Н
tRNA ^{Arg}	9993	10,061	69				Н
ND4L	10,062	10,358	297	ATG	TAA		Н
ND4	10,352	11,733	1382	ATG	TAG		Н
tRNA ^{His}	11,734	11,802	69				Н
tRNA ^{Ser(AGY)}	11,803	11,871	69			GCU	Н
tRNA ^{Leu(CUN)}	11,873	11,945	73			UAG	Н
ND5	11,946	13,781	1836	ATG	TAA		Н
ND6	13,778	14,299	522	ATG	TAA		L
tRNA ^{Glu}	14,300	14,371	72				L
Cytb	14,378	15,518	1141	ATG	TAA		Н
tRNA ^{Thr}	15,519	15,590	72				Н
tRNA ^{Pro}	15,590	15,659	70				L
D-loop	15,660	16,899	1240				-

'H and L denote heavy and light strands, respectively.

CONTACT Sarah Gaughan 🖾 sgaughan@unomaha.edu 💼 Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Phylogenetic tree generated using a maximum likelihood method and a general time reversal model based on fourteen complete mitochondrial genomes. The GenBank accession number is listed next to each species within the tree.

The total length of the mitogenome was 16,899 bp (GenBank Accession No. KX139437). The mitogenomes of these two chubs consisted of 22 tRNA genes, 2 rRNA genes and 1 control region. Fourteen of the tRNA genes were encoded on the heavy (H) strand along with all of the protein-coding genes except NADH dehydrogenase subunit 6. The whole genome base composition was 30.5% A, 28.5% T, 24.9% C and 16.1 G, which is analogous to other teleost mitochondrial genomes which exhibit A/T bias (Wang et al. 2013). The putative control region was located between tRNA^{Pro} and tRNA^{Phe} and was 1,240 bp long.

To investigate the position of *M. hyostoma* within Leuciscinae, a maximum likelihood tree based on 14 complete mitochondrial genomes was constructed using MEGA6 under the GTR + G + I model with 500 bootstrap replicates (Pattengale et al. 2010; Tamura et al. 2013) (Figure 1). This maximum likelihood tree phylogenetically positioned *M. hyostoma* as a sister clade to the Notropin clade supporting previous morphological phylogenetic analysis (Cavender & Coburn 1992).

Acknowledgements

We are sincerely grateful to George Cunningham and Ryan Vencil for assistance with specimen collection.

Disclosure Statement

The authors report no conflict of interest. The authors are solely responsible for the content and writing of this manuscript. Use of trade, product, or firm names does not imply endorsement by the U.S. Government.

Funding

This study was supported through funding from the University of Nebraska Omaha Graduate Research and Creative Activity (GRACA), UCRCA, Office of Graduate Studies Rhoden Fellowship and the Department of Biology.

References

Cavender TM, Coburn M. 1992. Phylogenetic relationships of North American Cyprinidae. In: Mayden RL, editor. Systematics, historical ecology, and North American freshwater fishes. Standford: Standford University Press; p. 293–327.

- Galat DL, Berry CR, Gardner WM, Hendrickson JC, Mestl GE, Power GJ, Stone C, Winston MR. 2005. Spatiotemporal patterns and changes in Missouri River fishes. Am Fish Soc Symp. 45:249–291.
- Gerrity PC, Guy CS, Gardner WM. 2006. Juvenile pallid sturgeon are piscivorous: a call for conserving native cyprinids. Trans Am Fish Soc. 135:604–609.
- Herman P, Plauck A, Utrup N, Hill T. 2008. Three Year summary age and growth report for sicklefin chub (Macrohybopsis meeki). Pallid Sturgeon Population Assessment Project and Associated Fish Community Monitoring for the Missouri River. Columbia, MO: United States Fish and Wildlife Service Columbia National Fish and Wildlife Conservation Office.
- Hesse L. 1994. The status of Nebraska fishes in the Missouri River, 5. Selected chubs and minnows (Cyprinidae): sicklefin chub (*Macrhybopsis meeki*), sturgeon chub (*M. gelida*), silver chub (*M. storeriana*), speckled chub (*M. aestivalis*), flathead chub (*Platygobio gracilis*), plains minnow (*Hybognathus placitis*), and western silvery minnow (*H. argyritis*). Trans Nebraska Acad Sci. 21:99–108.
- Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M. 2013. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol. 30:2531–2540.
- Nagle BC, Simons AM. 2012. Rapid diversification in the North American minnow genus Nocomis. Mol Biol Evol. 63:639–649.
- Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. 2010. How many bootstrap replicates are necessary? J Comput Biol. 173:337–354.
- Steffensen KD, Shuman DA, Stukel S. 2014. The status of fishes in the Missouri River, Nebraska: shoal chub (Macrhybopsis hyostoma), sturgeon chub (M. gelida), sicklefin chub (M. meeki), silver chub (M. storeriana), flathead chub (Platygobio gracilis), plains minnow (Hybognathus placitus), western silvery minnow (H. argyritis), and brassy minnow (H. hankinsoni). Trans Nebr Acad Sci. 34:49–67.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 30:2725–2729.
- Wang B, Ji P, Wang J, Sun J, Wang C, Xu P, Sun X. 2013. The complete mitochondrial genome of the Oujiang color carp, Cyprinus carpio var. color (Cypriniformes, Cyprinidae). Mitochondrial DNA. 24:19–21.
- Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20:3252–3255.
- Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829.