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Abstract

Background: Influenza neuraminidase (NA) is an important surface glycoprotein and plays a vital role in viral replication and
drug development. The NA is found in influenza A and B viruses, with nine subtypes classified in influenza A. The complete
knowledge of influenza NA evolutionary history and phylodynamics, although critical for the prevention and control of
influenza epidemics and pandemics, remains lacking.

Methodology/Principal findings: Evolutionary and phylogenetic analyses of influenza NA sequences using Maximum
Likelihood and Bayesian MCMC methods demonstrated that the divergence of influenza viruses into types A and B occurred
earlier than the divergence of influenza A NA subtypes. Twenty-three lineages were identified within influenza A, two
lineages were classified within influenza B, and most lineages were specific to host, subtype or geographical location.
Interestingly, evolutionary rates vary not only among lineages but also among branches within lineages. The estimated
tMRCAs of influenza lineages suggest that the viruses of different lineages emerge several months or even years before their
initial detection. The dN/dS ratios ranged from 0.062 to 0.313 for influenza A lineages, and 0.257 to 0.259 for influenza B
lineages. Structural analyses revealed that all positively selected sites are at the surface of the NA protein, with a number of
sites found to be important for host antibody and drug binding.

Conclusions/Significance: The divergence into influenza type A and B from a putative ancestral NA was followed by the
divergence of type A into nine NA subtypes, of which 23 lineages subsequently diverged. This study provides a better
understanding of influenza NA lineages and their evolutionary dynamics, which may facilitate early detection of newly
emerging influenza viruses and thus improve influenza surveillance.
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Introduction

Influenza virus belongs to the viral family Orthomyxoviridae

and has a segmented negative-sense RNA genome in an enveloped

virion [1]. According to the antigenic properties of nucleoproteins

(NP) and matrix proteins (MP), influenza viruses are classified into

three types - A, B and C. The microscopic structural features and

genome organization of influenza A, B and C viruses suggest that

they descended from a common ancestor [2]. The influenza A

virus infects a wide variety of bird and mammalian species and can

cause moderate to severe epidemics annually and catastrophic

pandemics sporadically [2,3]. The influenza B and C viruses are

considered less pathogenic compared with influenza A and are

found mainly in humans, although there is increasing evidence

that B and C viruses can also infect other species [4].

Genetic mutation is considered one of the most important

molecular mechanisms in the evolution of influenza virus [5]. Like

most RNA viruses, the influenza virus has low fidelity RNA

synthesis, which results in a high mutation rate - around one

mutation per genome per replication [6], several orders of

magnitude higher than those in most DNA-based organisms [7].

Evolutionary forces such as natural selection acting upon rapidly

mutating viral populations could shape the genetic structure of

influenza viruses in different hosts, geographic regions and periods

of time [8,9]. Importantly, rapid evolution could partially facilitate

the ability of influenza viruses to cross host species barriers and

successfully emerge in new hosts with often important public

health and/or veterinary health implications. One such example is

the Eurasian avian-like H1N1 swine virus, which was first detected

in pigs in Belgium in 1979, with all of the eight segments found to
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be derived from a Eurasian avian H1N1 virus, presumably

following adaptive mutation [10].

Influenza virus has also shown the propensity to escape

immunity because of continuous antigenic drift, i.e., mutation at

the epitope positions of HA and NA segments [11,12]. Antigenic

drift may often result in structural changes in antigenic sites, which

must be recognized by the host immune system in order to

suppress viral infection [13]. This antigenic drift often requires the

update of annual influenza vaccines to assure a match between the

vaccine and currently circulating viral strains [14]. Additionally,

influenza viruses undergo more dramatic antigenic changes,

known as antigenic shifts, which occur following reassortment

between different subtypes of influenza viruses within a single host

[2].

Each of the influenza viral genes is thought to be important in

viral replication and interaction with host cells; therefore, un-

derstanding the evolutionary tempo and mode of each viral gene

can provide new insight into the epidemiology of influenza viruses

[15,16]. Among the eight segments, neuraminidase (NA) is of

particular significance. NA is a major surface glycoprotein of

influenza A and B, but does not occur in influenza C [17]. It plays

a key role in virus replication by removing sialic acids from the

host cell surface and thus releasing newly formed virions [18].

Drugs that inhibit this NA activity, known as neuraminidase

inhibitors, are often used for the treatment of influenza [19].

However, drug resistance mutations (e.g., H275Y) have been

broadly observed in epidemic viruses [20].

Influenza A viral neuraminidases are classified into nine

subtypes (N1–N9) according to their antigenic properties, whereas

influenza B neuraminidases are classified into two lineages [21].

Previous phylogenetic analyses of influenza viral NA sequences

have provided important insight into understanding the evolution

of influenza viruses; however, these studies mainly focused on

either specific types or subtypes [15,22,23,24]. A global perspec-

tive of the evolutionary history of influenza NA genes and their

spatial, temporal, and host associations remain lacking. In

addition, evolutionary rates of influenza viral genes were estimated

(,1023 substitution/site/year) in previous studies [23,25,26];

however, only the average values across all branches were

presented. It is unlikely the evolutionary rates are the same in all

branches within a phylogenetic tree. The investigation of rate

variations among different branches is thus of significant

importance in understanding the interior evolutionary behavior

of the influenza virus. Moreover, selection pressure and positive/

negative selection sites were described in previous studies [23,26],

but only a small number of representative sequences were selected

for the estimations. Finally, the structural analysis of positively

selected amino acid sites, although essential for the development of

antiviral drugs and vaccines, has largely been neglected in previous

studies. In this study, we employed all influenza NA sequences

available in public repositories and conducted large-scale evolu-

tionary, phylodynamic and structural analyses to address the

above issues.

Results

Global Picture of Evolutionary Relationships of Influenza
A and B Neuraminidase (NA) Genes
The Maximum Likelihood (ML) and MCMC Bayesian analyses

demonstrate that the influenza NA gene diverged first into A and

B (Group I and Group II), followed by the division of influenza A

subtypes (Figure 1, File S1). The monophylic origin of influenza A

and influenza B was strongly supported by the bootstrap values

(100%). Within influenza A, two subgroups were found, one

consisting of subtype N2, N3, N6, N7 and N9 (Subgroup I) and the

other consisting of the remaining four subtypes, N1, N4, N5 and

N8 (Subgroup II) (Figure 1). Each subgroup consists of viruses

independently adapted to the avian, human, equine and swine

hosts, indicating that parallel evolution occurred in these two

subgroups (Figure 1). In addition, each of the nine influenza A NA

subtypes was found to form a distinct cluster with a high bootstrap

support value (.90%), indicating a monophyletic origin for each

subtype.

Phylogeny of Neuraminidase (NA) Genes within Influenza
A and B Viruses
A total of 23 lineages, two to three lineages for each subtype,

were identified within influenza A viruses, while two lineages were

classified within influenza B (Table 1). Lineages 1A and 2A were

further divided into five and three sublineages, respectively.

Human lineages were found in influenza A N1 and N2 subtypes

and influenza B, swine lineages in N1 and N2, equine lineages in

N7 and N8, and avian lineages in all influenza A subtypes. In

addition, avian lineages were found to have more combinations of

HA and NA compared with mammalian lineages.

Lineage analyses of influenza A N1 genes. Three lineages,

1A, 1B and 1C, were identified based upon strong bootstrap

support values (100%) of the phylogenetic tree, which was

generated from 4,146 sequences (Figure 2-A, Table 1). The

genetic distances between lineages ranged from 0.191 to 0.238.

Lineage 1A is a major avian lineage, which is further divided into

five sublineages: 1A.1 (H5N1), 1A.2 (Eurasian avian), 1A.3

(Pandemic H1N1 2009), 1A.4 (Eurasian avian-like swine) and

1A.5 (North American avian).

Sublineage 1A.1 originated from the recent highly pathogenic

H5N1 avian influenza epizootic that started in Asia around 1996

and has spread throughout the Eastern Hemisphere. The viruses

in 1A.1 are mostly from birds (n = 1,031), but some are from

humans (n = 164), swine (n = 8), tigers (n = 2) and mink (n= 1).

Sublineage 1A.2 is composed of mostly Eurasian avian influenza

viruses (n = 230), whereas some human highly pathogenic H5N1

influenza viruses (n = 24) sampled in 1997 in Hong Kong were also

found in 1A.2. Sublineage 1A.4 consists of Eurasian swine

influenza viruses which were originally derived from Eurasian

avian viruses and first detected in Belgium in 1979. Not

surprisingly, 1A.3 (Pandemic H1N1 2009) is grouped together

with Eurasian swine, which confirms previous findings that the NA

segment of pandemic H1N1 2009 viruses originated from the

Eurasian swine influenza viruses. Sublineage 1A.5 is composed of

viruses mainly from North American avian species (n = 162), with

a few exceptions: 1 viral sequence from human and 3 from

environmental samples.

Lineage 1B consists of mainly North American swine influenza

viruses, while 1C is a human lineage, consisting mainly of H1N1

human influenza viruses. The viruses in 1B correspond mostly to

the classical H1N1 isolates from swine (n = 126), but include 9

isolates from humans and 9 from birds, indicating sporadic

interspecies transmissions of influenza viruses from swine to

humans or birds. Lineage 1C consists predominantly of human

viruses (n = 1204), with a few exceptions, namely, swine (4 isolates)

and birds (2 isolates). Within the influenza A N1 subtype, avian

influenza viruses include sequences from multiple HA subtypes

(e.g., H1N1, H3N1, H5N1, H6N1, H7N1, H9N1, and H11N1),

whereas human and swine viruses have limited HA subtypes

(human: H1N1; swine: H1N1, H3N1).

Lineage analyses of influenza A N2 genes. The N2

sequences (3,754 in total) were classified into two major lineages,

2A and 2B (Figure 2-B, Table 1). The genetic distance between

Evolutionary Dynamics of Influenza Neuraminidase
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lineages 2A and 2B was estimated to be 0.204. Lineage 2A is

a major avian lineage whereas 2B consists of mainly mammalian

(i.e., human and swine) influenza viruses. Three sublineages were

further classified in 2A, 2A.1 for H9N2, 2A.2 for Eurasian avian,

and 2A.3 for North American avian.

The 2A.1 is a subtype-specific sublineage consisting of mainly

H9N2 avian influenza viruses, with the majority from birds

(n = 412), but with 24 sequences from swine and 4 from humans,

which indicates the occurrence of interspecies transmissions. The

2A.2 and 2A.3 correspond to Eurasian and North American avian

viruses, respectively. The viruses of 2A.2 are mainly from birds

(n = 342), but a few are from swine (n = 7) and humans (n = 2). A

similar result was also found in 2A.3, which includes 291 avian

viruses, 1 H7N2 human virus, and 29 viruses isolated from

environmental samples.

Within 2B, most of the influenza viruses are from human H2N2

and H3N2 influenza viruses (n = 2,340) and swine H3N2 and

H1N2 viruses (n = 214). However, avian influenza H3N2 viruses

(n = 11) were also found in this lineage. Interestingly, there were

five major clades of swine influenza viruses scattered within lineage

2B, suggesting these viruses originate from human viruses through

either genome reassortment or direct transmission events. It is also

noted that the branch lengths of the swine clusters are much longer

as compared to those of the closely related human viruses,

indicating extensive evolution of the N2 gene in swine viruses after

transmission from humans to swine.

Lineage analyses of influenza A N3–N9 genes. Three

lineages, 3A, 3B, and 3C, were found in N3, with genetic distances

between lineages ranging from 0.173 to 0.349 (Table 1, Figure S1).

Lineage 3A consists mainly of North American avian viruses

(n = 173), but includes several avian strains from South America

(n = 8). In addition, within lineage 3A, 166 sequences were isolated

from avian, 4 from swine, 1 from human, and 9 from

environmental samples. Lineage 3B is a Eurasian/Oceanian avian

lineage, while 3C is also an avian lineage, but does not show any

geographical pattern. Lineage 3B and 3C were all composed of

avian influenza viruses.

The N4, N5 and N6 subtypes were each classified into two

lineages, one corresponding to North American avian (4A, 5A and

6A) and the other Eurasian/Oceanian avian (4B, 5B and 6B)

(Table 1, Figure S2, Figure 2-C, Figure S3). The genetic distance

between lineages was estimated to be 0.198 for N4, 0.254 for N5,

and 0.250 for N6 viruses, respectively. All N4 and N5 viruses are

from avian species. Lineage 6A is composed mainly of North

American avian viruses (n = 336), with a few exceptions (n = 2)

from Asia avian viruses. Lineage 6B consists mainly of Eurasian/

Oceanian avian viruses (n = 121), but contains 6 avian viruses from

North America.

Three lineages were identified in N7 and N8, which

correspond to North American avian (7A, 8A), equine (7C,

8B) and Eurasian/Oceanian avian (7B, 8C), respectively

(Table 1, Figure S4 and Figure 2-D). For N9, 3 lineages were

Figure 1. Phylogeny of influenza A and B neuraminidase (NA) genes. Influenza NA genes form two groups (Group I and Group II), which
correspond to influenza A and B, respectively. Influenza A NA is further classified into two subgroups (Subgroup I and Subgroup II). The viral strains
are colored for different hosts: human in green, swine in blue, avian in red and equine in purple. The bootstrap support values are indicated at major
nodes. The scale bar at the bottom indicates the numbers of nucleotide substitutions per site.
doi:10.1371/journal.pone.0038665.g001
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identified: 9A, 9B and 9C, which correspond to North

American avian, Eurasian/Oceanian avian I and Eurasian/

Oceanian avian II, respectively (Table 1, Figure S5). The

genetic distances between lineages were found in the range from

0.297 to 0.320 for N7, from 0.269 to 0.298 for N8, and from

0.117 to 0.224 for N9, respectively.

Lineage analyses of influenza B neuraminidase (NA)

genes. The NA genes of influenza B viruses were divided into

two distinct lineages, B/Victoria/2/87-like (Vic87) and B/

Yamagata/16/88-like (Yam88) (Figure 3). All influenza B viruses

were found from humans, with no obvious geographical separa-

tion in either lineage. The genetic distance between Vic87 and

Yam88 lineages was estimated to be 0.06.

Substitution Rates and Times of Most Recent Common
Ancestor (tMRCAs) of Influenza A and B NA Lineages
Outliers were identified and removed before the estimation of

substitution rate and tMRCA for each lineage (Table S1). The

mean substitution rate and 95% HPD range for each lineage are

summarized in Table 2. Our results demonstrated that the mean

substitution rates estimated under random local clock (RLC)

model were generally lower than the corresponding rates

Table 1. The annotations, isolation periods, representative sequences and subtypes for the NA lineages.

Influenza Subtype
Lineage/
Sublineage Annotation

Isolation
period Representative sequence Main virus subtypes

A N1 1A.1 H5N1 1996–2010 A/Goose/Guangdong/1/96(H5N1) H5N1

1A.2 Eurasian avian 1934–2009 A/fowl/Rostock/45/1934(H7N1) H1N1, H3N1, H5N1, H6N1, H7N1,
H9N1, H11N1

1A.3 Pandemic H1N1 2009 2009–2010 A/Texas/05/2009(H1N1) H1N1

1A.4 Eurasian (avian-like) swine1979–2010 A/swine/Belgium/WVL1/1979 H1N1

1A.5 North American avian 1969–2008 A/duck/PA/486/1969(H6N1) H1N1, H3N1,H4N1, H5N1, H6N1,
H10N1, H12N1

1B North American swine 1930–2009 A/swine/Iowa/15/1930(H1N1) H1N1, H3N1

1C Major human 1918–2009 A/Brevig_Mission/1/18(H1N1) H1N1

N2 2A.1 H9N2 1994–2009 A/chicken/Guangdong/SS/94 H9N2

2A.2 Eurasian avian 1977–2008 A/duck/Hokkaido/5/1977 H3N2, H5N2, H6N2, H7N2, H9N2, H11N2

2A.3 North American avian 1966–2008 A/turkey/Wisconsin/1/1966(H9N2) H3N2, H4N2,H5N2, H6N2, H7N2, H9N2,
H11N2, H10N2, H13N2

2B Major human and swine 1957–2009 A/Japan/305/1957 H3N2, H2N2, H1N2

N3 3A North American avian 1971–2010 A/turkey/Oregon/1971(H7N3) H7N3, H4N3, H1N3, H10N3, H11N3,
H6N3, H5N3, H3N3, H2N3

3B Eurasian/Oceanian avian 1959–2009 A/shearwater/Australia/751/1975(H5N3) H1N3, H5N3, H4N3, H3N3, H8N3, H12N3,
H7N3, H2N3, H10N3, H11N3, H9N3

3C Other avian 1975–2009 A/sabines gull/Alaska/296/1975(H5N3) H7N3, H16N3, H3N3, H13N3, H5N3

N4 4A North American avian 1967–2010 A/turkey/Ontario/6118/1967(H8N4) H3N4, H8N4, H12N4, H4N4, H2N4

4B Eurasian/Oceanian avian 1979–2008 A/gray teal/Australia/2/1979(H4N4) H4N4, H8N4, H9N4,H10N4

N5 5A North American avian 1976–2009 A/mallard duck/ALB/60/1976(H12N5) H12N5, H1N5, H11N5, H3N5, H6N5,
H4N5, H5N5, H2N5, H9N5, H10N5, H7N5

5B Eurasian/Oceanian avian 1972–2009 A/shearwater/Australia/1/1972(H6N5) H6N5, H1N5, H3N5, H8N5, H10N5,
H12N5, H4N5, H14N5

N6 6A North American avian 1976–2010 A/mallard duck/ALB/20/1976(H4N6) H3N6, H4N6, H10N6, H6N6, H1N6

6B Eurasian/Oceanian avian 1956–2010 A/duck/Czech Republic/1/1956(H4N6) H4N6, H3N6, H5N6, H9N6

N7 7A North American avian 1977–2010 A/mallard duck/ALB/302/1977 (H10N7) H4N7, H10N7, H3N7, H2N7, H7N7,
H5N7, H8N7, H13N7

7B Eurasian/Oceanian avian 1902–2008 A/chicken/Brescia/1902(H7N7) H7N7, H10N7, H5N7, H11N7

7C Equine 1956–1977 A/equine/Prague/1/1956(H7N7) H7N7

N8 8A North American avian 1963–2010 A/turkey/Canada/1963(H6N8) H3N8, H4N8, H6N8, H7N8, H2N8, H10N8

8B Equine 1963–2010 A/equine/Miami/1/1963(H3N8) H3N8

8C Eurasian/Oceanian avian 1963–2010 A/duck/Ukraine/1/1963(H3N8) H3N8, H10N8, H11N8, H6N8, H7N8,
H2N8,H4N8

N9 9A North American avian 1966–2008 A/turkey/Ontario/7732/1966 (H5N9) H11N9, H13N9, H12N9, H5N9, H10N9,
H3N9, H2N9, H1N9, H7N9, H4N9

9B Eurasian/Oceanian avian I 1996–2010 A/duck/Siberia/700/1996(H11N9) H11N9, H5N9, H7N9, H6N9, H2N9, H1N9

9C Eurasian/Oceanian avian II1978–2004 A/duck/Hong Kong/278/1978(H2N9) H11N9, H5N9, H15N9, H10N9, H2N9

B Yam88 B/Yamagata/16/88-like 1988–2009 B/Yamagata/16/1988

Vic77 B/Victoria/2/87-like 1987–2002 B/Victoria/2/1987

doi:10.1371/journal.pone.0038665.t001
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estimated under uncorrelated exponential relaxed clock (UCED)

model (Table 2). In the following, we present the results based

upon the RLC model, a new model that can reveal the rate

heterogeneity among branches.

The Bayesian consensus tree for each lineage, along with

posterior mean branch lengths scaled in real time, is depicted in

Figure 4. To reflect the rate variation, we colored branches by

their posterior mean relative rate of nucleotide substitution. Blue

branches reflect a slow substitution rate, whereas red branches

indicate rapid change. For H5N1, the mean substitution rate was

estimated to be 3.0661023 subs/site/year (Table 2), with a low

rate (1.561023) found in earlier branches (blue) and a high rate

(4.2061023) in later branches (red) (Figure 4-A). In contrast, N1

genes of North American swine viruses have a mean rate of

2.5561023, with a decrease in rates during evolution: a high rate

(3.261023) in earlier branches (red) and a low rate (0.961023) in

later branches (blue) (Figure 4-B). It is noted that human H1N1

viruses were found to evolve at two different rates in two

circulation periods, with a low rate (1.361023) during 1918–1957

(blue) and a high rate (2.961023) after 1977 (red) (Figure 4-C).

The H9N2 lineage was found to have a mean substitution rate

of 4.4561023 (Table 2), with a constant rate of 4.961023 in the

majority of branches (red) and a low rate (2.661023) in a small

number of branches (blue) (Figure 4-D). The substitution rates

with the equine N7 lineage decreased from earlier branches (red)

(3.461023) to late branches (blue) (1.661023) and averaged at

2.6561023 (Figure 4-E). The influenza B Yama88 viruses has

a mean substitution rate of 2.361023 (Table 2), with a consistent

rate of 2.461023 in the majority of branches (red) and a rate of

1.561023 in a small number of branches (blue) (Figure 4-F).

Different rate heterogeneity patterns were also found in other

lineages (Data available from authors on request).

The time of most recent common ancestor (tMRCA) varies from

lineage to lineage (Table 2). The tMRCA for human H1N1 (1C),

which includes viruses causing the 1918 Spanish Flu, was dated to

1898 and the 95% HPD interval was between 1882 and 1909. The

tMRCA of H5N1viruses (1A.1) was estimated to be at 1988 (95%

HPD: 1984–1992), eight years before the outbreak of H5N1 avian

virus in 1996 in Asia. For 1A.2 (Eurasian avian in N1), the tMRCA

was estimated to beat 1927 (95%HPD:1922–1931),with the earliest

sampling time being 1934. For the pandemic H1N1 2009 (1A.3), it

canbedatedback toNov19,2008 (95%HPD: June7,2008–Mar16,

2009).Themost recent commonancestor of theEurasian (avian-like)

swine (1A.4) can be dated back to 1978 (95%HPD: 1977–1979), one

year earlier than the first detection of this lineage in 1979. For lineage

2B, the tMRCAwasdated to1956 (95%HPD:1955–1957), one year

before the occurrence of human H2N2 in 1957. The tMRCAs for

other lineages are shown inTable 2 and theMCC trees are available

from the authors upon request. The above results suggest that

pandemic or epidemic viruses emerged several months or several

years before their initial detection, indicating the crucial role for

enhanced surveillance of newly emerging viruses.

Selection of Influenza A and B Neuraminidase Lineages
Different selection pressures were revealed in different lineages

as indicated by the ratio of non-synonymous (dN) to synonymous

Figure 2. Maximum-likelihood (ML) tree of influenza A NA subtypes. A: N1; B: N2; C: N5; D: N8. The annotation for each lineage was labeled
on the trees. Three lineages in N1 (1A, 1B and 1C), two lineages in N2 (2A and 2B), two lineages in N5 (5A and 5B), and two lineages in N8 (8A and 8B)
were classified. The bootstrap values supporting the corresponding lineages are shown to the left of the major nodes. Scale bars indicate the
numbers of nucleotide substitutions per site.
doi:10.1371/journal.pone.0038665.g002
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(dS) substitutions per site (dN/dS) (Table 3). Within influenza A, the

highest dN/dS ratio was observed in 2B - human N2 lineage (0.313),

which was slightly higher than that of 8B - equine N8 lineage

(0.281), 1C - human N1 lineage (0.261), 1A.1 - H5N1 (0.274) and

2A.1- H9N2 (0.252), most likely reflecting host immune selection

pressure, as a result of continuous circulation within the respective

hosts and/or vaccination. The lineages under the most purifying

selection were lineage 9C (0.068), 4B (0.062) and 5B (0.078). In

comparison, the dN/dS ratios for influenza B lineages were

comparable: 0.259 for Yam88 and 0.257 for Vic87.

Human lineages were found to have the largest numbers of

positively selected sites, with 16 sites for the human N2 lineage

(2B), 9 sites for human H1N1 lineage (1C), and 8 sites for Yam88

lineage (Table 3). In addition, H5N1 (1A.1) and H9N2 (2A.1),

have 10 and 7 positively selected sites, respectively. No positive

selection sites were detected in lineages 3C, 6B, 7A, 7C, 8B, and

9A–9C. Other lineages were found to have one to six sites under

positive selection.

Protein structure analyses revealed all the positively selected

sites were located at the surface of the NA protein and pertained

to antibody binding and/or interactions with the sugar molecules

of host cells (Figure 5, Figures S6, S7, S8, S9, S10, S11, S12,

S13, S14, S15, S16). In addition, a number of positively selected

sites reside in regions of the NA protein where neuraminidase

inhibitors have been known to bind, indicating strong selection in

influenza viruses with molecular markers predictive of antiviral

resistance.

In the human H1N1 lineage (1C), amino acid positions 151,

222 and 344 were found to be under a strong positive selection,

and the amino acids in these appear to interact with the NA

inhibitor – zanamivir, a drug molecule according to the NA

structure (Figure 5-A). In addition, positively selected sites 344

and 365 are located in the B-cell antigenic regions. The amino

acid position 319 in human H1N1 lineage, identified to be

under positive selection, forms a hydrogen bond with position

379, whose backbone carbonyl is involved in interactions with

calcium ions (Figure 5-A). This Ca2+ ion interacts with positions

379, 389, 387, 382, and 381, forming H-bonds with position

385 and position 383. These interactions are crucial in protein

folding to create the appropriate tertiary structure for sialic acid

binding (which allows the NA to cleave the sialic acid) or for

NA inhibitor binding.

With regard to another human lineage (2B), positions 126 and

127 were found to be within the binding pocket of influenza A

virus (Figure 5-B). These two residues, along with residues 120 and

151 were found to be under positive selection. All these sites fold in

close proximity to each other, providing a hydrogen-bond network

that is essential for NA inhibitor binding. Specifically, position 151

forms a hydrogen bond to position 75, which itself is predicted to

bind to zanamivir.

Figure 3. Maximum-likelihood (ML) tree of influenza B NA genes. Two lineages, Yam88 and Vic87, were classified. The bootstrap values
supporting the corresponding lineages are shown on the major nodes. The scale bars indicate the numbers of nucleotide substitutions per site.
doi:10.1371/journal.pone.0038665.g003
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For human influenza B, positions 42, 65, 248, 345, 373, 389,

395, and 436 were found to be under positive selection (Table 3).

The crystal structure of the B/Perth/211/2011 virus NA region

with zanamivir, oseltamivir, or peramivir showed that residues 373

and 374 participated in drug binding, while residue 345 is involved

in calcium binding and dimerization of two NA monomers

(Figure 5-C, D).

Discussion

Evolution of Influenza Viral NA Genes - Types, Subtypes
and Lineages
The ML and Bayesian MCMC analyses revealed that the

divergence of influenza A and B NA genes occurred earlier than

the divergence of influenza A NA subtypes. Similar findings were

reported for the hemagglutinin (HA) genes [27], in which

influenza A and B HA genes were found to diverge first, followed

by the division of influenza A HA subtypes. Interestingly, within

influenza A, both subgroups (I and II) consist mainly of human,

swine, avian, and equine viruses and show similar patterns of host-

specific lineage composition (Figure 6). This strongly supports the

hypothesis that subgroup I and II viruses experienced parallel

evolution due to similar rates of genetic mutation and adaption to

host environments [2,7].

In this study, 23 NA lineages were determined within

influenza A based upon both theoretical (e.g., phylogenetic tree

topology) and empirical criteria (e.g., pandemic events). The

majority of lineages were found to be specific in hosts, or

Table 2. Substitutions rates and tMRCAs of different lineages for influenza A and B NA genes*.

Influenza Subtype
Lineage/
Sublineage Substitution rate (61023 subs/site/year) tMRCA (calendar year)

Mean
95%HPD
lower

95% HPD
upper Mean 95% HPD lower 95% HPD upper

A N1 1A.1 3.06/3.73 2.63/3.16 3.48/4.32 1988/1992 1984/1987 1992/1996

1A.2 3.42/4.07 3.03/3.43 3.79/4.74 1927/1931 1922/1923 1931/1934

1A.3 2.83/3.58 1.63/2.52 3.96/4.67 19-Nov-08/ 7-June-08/ 16-Mar-09/

7-Dec-08 12-Jun-08 30-Mar-09

1A.4 3.62/3.96 3.23/3.40 3.99/4.58 1978/1977 1977/1974 1979/1979

1A.5 3.00/4.05 2.69/3.04 3.36/4.99 1921/1950 1911/1920 1934/1967

1B 2.55/2.97 2.25/2.58 2.83/3.37 1929/1927 1928/1923 1930/1930

1C 1.79/2.44 1.42/2.02 2.14/2.89 1898/1910 1882/1896 1909/1918

N2 2A.1 4.45/4.61 4.07/3.98 4.89/5.24 1990/1989 1989/1984 1991/1993

2A.2 2.53/2.81 2.25/2.38 2.81/3.26 1974/1972 1971/1963 1976/1977

2A.3 2.96/3.19 2.66/2.73 3.26/3.68 1951/1954 1945/1937 1957/1965

2B 3.05/3.31 2.74/2.91 3.89/3.75 1956/1956 1955/1954 1957/1957

N3 3A 2.92/3.23 2.6/2.61 3.27/3.83 1954/1959 1944/1941 1963/1971

3B 2.67/2.96 2.39/2.43 3.04/3.47 1955/1950 1950/1933 1957/1959

3C 3.22/3.91 2.63/1.78 3.85/5.96 1955/1956 1949/1926 1961/1975

N4 4A 3.37/4.30 2.82/3.39 3.93/5.27 1964/1966 1962/1962 1967/1967

4B 3.78/4.42 3.09/2.75 4.5/5.98 1970/1970 1966/1956 1973/1978

N5 5A 2.88/3.63 2.47/2.92 3.27/4.32 1971/1972 1968/1965 1975/1976

5B 2.68/3.61 2.07/2.21 3.34/4.81 1953/1964 1941/1945 1963/1972

N6 6A 2.1/2.32 1.88/1.86 2.3/2.79 1960/1955 1956/1934 1963/1970

6B 2.69/3.08 2.39/2.55 2.97/3.63 1943/1940 1940/1920 1946/1952

N7 7A 3.8/4.87 3.33/4.00 4.33/5.73 1975/1975 1974/1972 1976/1977

7B 2.99/3.97 2.52/2.94 3.46/4.91 1892/1899 1882/1892 1901/1901

7C 2.65/3.13 1.08/1.90 3.88/4.43 1952/1955 1940/1952 1956/1956

N8 8A 1.54/2.31 1.36/1.93 1.73/2.71 1930/1956 1915/1941 1940/1963

8B 2/1.68 2/1.37 2/2.02 2/1954 2/1945 2/1961

8C 1.1/2.13 0.86/1.52 1.35/2.71 1921/1946 1904/1923 1937/1961

N9 9A 2.8/3.36 2.49/2.77 3.13/3.92 1960/1961 1957/1952 1962/1966

9B 2.75/3.32 2.19/2.41 3.39/4.21 1994/1995 1992/1992 1996/1996

9C 2/2.16 2/0.24 2/3.95 2/1948 2/1890 2/1977

B Yam88 2.30/2.47 1.99/2.08 2.62/2.85 1986/1986 1985/1982 1987/1988

Vic87 1.90/2.14 1.50/1.65 2.3/2.62 1985/1985 1983/1982 1987/1987

*Values calculated based upon the random local clock model/values calculated based upon the uncorrelated exponential relaxed clock model; Dash signs (-) indicate
missing data.
doi:10.1371/journal.pone.0038665.t002
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geographical locations, with a genetic distance around 0.2,

ranging from 0.117 to 0.349. These results are generally

consistent with previous findings [2,28,29], but our study relies

on a much larger dataset (focusing on the NA segment) and

illustrates more detailed evolutionary dynamics of the influenza

A NA lineages.

Classification and designation of the lineages and sublineages

within the influenza A virus are essential for studies of viral

evolution, ecology and epidemiology. However, how to accurately

identify an evolutionary lineage of influenza A viruses is

challenging. Whether the naming system will be accepted and

used by influenza researchers is even more challenging. To trace

the evolutionary change of highly pathogenic avian influenza

(HPAI) viruses, a hierarchical nomenclature system for HPAI

hemagglutinin clades and sub-clades has been implemented by the

WHO/OIE/FAO H5N1 Evolution Working Group and widely

adapted by the research community [30]. The work presented

here is one of the first steps toward the development of

a nomenclature system for influenza A virus lineages (at the

segment level) and genotypes (at the genome level). We will

incorporate the findings of lineages and genotypes into our

FluGenome database for the detection of newly emerging viral

lineages and genome reassortment, which will improve influenza

surveillance [31].

Figure 4. Bayesian inferences of random local clocks on influenza NA genes. A: H5N1 (1A.1), B: North American swine N1 (1B), C: Human
H1N1 (1C), D: H9N2 (2A.1), E: Equine N7 (7C), F: Yama88 influenza B NA (Yama88). Branch coloring indicates inferred rates of nucleotide substitution
from blue (slow) to red (fast). The scale bar indicates the number of years before the present.
doi:10.1371/journal.pone.0038665.g004

Table 3. Evidence of positive selection using the SLAC, FEL and IFEL methods with a significance level of 0.05.

Influenza Subtype
Lineages/
Sublineage

No. of
sequences SLAC FEL IFEL

dN/dS
(95% CI)

A N1 1A.1 1241 16, 46, 83, 313, 340, 365 8, 339, 434 8, 16,46, 76, 339 0.274 (0.262–0.286)

1A.2 263 460 20, 105, 460 20, 105, 454 0.202 (0.186–0.219)

1A.3 794 None 53 53, 388, 452 0.227 (0.206–0.249)

1A.4 80 None None 210 0.180 (0.163–0.197)

1A.5 228 None 449 95, 449 0.148 (0.135–0.162)

1B 139 46 46, 53, 75, 81, 339 46, 53, 339, 453 0.174 (0.158–0.192)

1C 1210 84, 222, 248 19, 84, 151, 222, 248, 319, 365 59, 222, 248, 344, 365 0.261 (0.249–0.274)

N2 2A.1 586 9, 43, 50, 141, 199, 356 20, 43, 141, 199, 356 20, 43, 141, 199, 356 0.252 (0.240–0.264)

2A.2 210 30 None 43 0.174 (0.162–0.186)

2A.3 328 356, 416 113, 356, 414, 416 356, 414, 416 0.218 (0.204–0.233)

2B 2169 5, 43, 56, 120, 126,
148, 151, 370, 434

5, 43, 44, 56, 120, 126, 147,
148, 151, 370, 434

43, 56, 127, 147, 267, 332,
358, 370, 392, 455

0.313 (0.301–0.326)

N3 3A 113 None 413, 432, 457 413 0.130 (0.115–0.146)

3B 120 None 413 52, 413 0.161 (0.145–0.178)

3C 9 None None None 0.092 (0.074–0.113)

N4 4A 39 None 74 None 0.081 (0.065–0.100)

4B 11 None None 78 0.062 (0.047–0.080)

N5 5A 68 None 30, 282 30, 282 0.140 (0.122–0.160)

5B 17 None None 30 0.078 (0.061–0.097)

N6 6A 206 None None 172 0.111 (0.100–0.123)

6B 45 None None None 0.114 (0.100–0.129)

N7 7A 90 None None None 0.153 (0.132–0.176)

7B 42 None 42 None 0.092 (0.079–0.107)

7C 10 None None None 0.135 (0.091–0.191)

N8 8A 253 265 265 265, 376 0.128 (0.118–0.138)

8B 95 None None None 0.281 (0.242–0.323)

8C 61 None 35, 41 None 0.129 (0.114–0.145)

N9 9A 76 None None None 0.095 (0.082–0.109)

9B 25 None None None 0.106 (0.081–0.136)

9C 9 None None None 0.068 (0.047–0.095)

B Yam88 565 42, 65, 248, 373 65, 248, 345, 373, 395 42, 65, 248, 373, 389, 436 0.259 (0.238–0.281)

Vic87 83 None 345 106, 345 0.257 (0.215–0.305)

Position relative to the start codon.
doi:10.1371/journal.pone.0038665.t003
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Substitution Rate Heterogeneity within Influenza NA
Lineages
It is notable that substitution rates are not the same across all

branches within a phylogenetic tree. The relaxed clock model was

developed to cope with this issue. An average rate across all

branches in the tree is estimated under relaxed clock model in

BEAST with 95% HPDs summarized from average rates, which

are estimated from the sampled trees [32]. The 95% HPDs thus

reflect the topological uncertainty among the sampled trees, but do

not show the rate variation across different branches within a tree.

In previous studies, the relaxed clock model was used to estimate

the substitution rate and 95% HPDs and the resulting values were

used for comparison [15,23,25,26]. In fact, such comparison is less

accurate. For example, if a phylogenetic tree is mixed with

branches of very high and low rates, it might result in an average

rate that is similar to that from another tree with branches of

a constant rate. We cannot simply conclude the two virus lineages

evolve at the same rate. Using the random local clock (RLC), we

Figure 5. The structures and positive selection sites of human influenza neuraminidase. A: Influenza A human N1 neuraminidase (1C) (A/
Brevig Mission/1/18 H1N1, 1918 ‘‘Spanish flu’’, PDB ID: 3B7E); B: Influenza A human N2 neuraminidase (2B) (A/Tokyo/3/67 H2N2, 1967, PDB ID: 1IVG);
C: Influenza B viral neuraminidase for Yam88 (B/Perth/211/2001, PDB ID: 3K36); D: Influenza B viral neuraminidase for Vic87 (B/Perth/211/2001, PDB ID:
3K36). The positive selection sites are denoted as green balls. Structural regions are denoted in different colors: yellow for alpha-helices, red for beta
sheets, and blue for loops.
doi:10.1371/journal.pone.0038665.g005
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not only computed the mean substitution rate and 95% HPDs but

also estimated rate heterogeneity among different branches of

a phylogenetic tree, which reflects evolutionary dynamics of

influenza viruses with a given lineage.

Evolutionary Dynamics of Human Influenza NA Lineages
This study demonstrated that human influenza viruses were

shown to have little geographical restriction, indicating that

human viruses were transmitted globally and probably rapidly as

well [29]. In addition, this study provides new insights into the

emergence time of the human pandemic influenza virus because of

the employment of the new random local clock model. This model

takes into account the rate variation among different branches

within lineage and has been considered superior to other models.

For the H1N1 human lineage (1C), which includes the sequences

from the 1918 Spanish Flu, the tMRCA under the random local

clock model was estimated to be 1898 (95% HPD: 1882–1909),

which is earlier than the years previously reported. Using the

uncorrelated exponential relaxed clock model, the tMRCA of

pandemic 1918 H1N1 viruses was estimated to be 1905–1918 [33]

and 1910–1915 [22].

Lineage 2B includes human influenza viruses isolated from two

different subtypes, H2N2 between 1957 and 1968 and H3N2 after

1968, which share the same N2 gene maintained in human

influenza virus after the antigenic shift from H2 to H3 occurred in

1968 [34]. The tMRCA of lineage 2B was estimated to be 1956,

which is six years later than the tMRCA of 1950 estimated by

Smith et al. (2009a), but further supporting the hypothesis that

emerging lineages circulate years prior to their initial detection in

humans. Furthermore, the human lineages have relatively high

non-synonymous to synonymous (dN/dS) ratios (1C: 0.263, 2B:

0.313, Yam88: 0.259, and Vic87: 0.257), suggesting strong

immune selection in viruses persistently circulating in humans [9].

In addition to the above discussed human lineages, pandemic

H1N1 2009 influenza viruses are believed to have arisen from

a reassortment between North American and Eurasian swine

lineages, and as expected, the pandemic H1N1 2009 viruses

grouped with the Eurasian swine lineage [35,36,37]. The sub-

stitution rate for NA genes of pandemic H1N1 2009, estimated

using sequences from the entire pandemic period (as of March

2011), was found to be very close to the substitution rate estimated

in the early outbreak period [35]. In addition, the dN/dS ratio of

the NA genes of pandemic H1N1 2009 was 0.226, which was

higher than the ratio of the closely related swine NA genes (0.100)

[35]. This increase could be attributed either to the adaptations of

pandemic H1N1 2009 viruses to humans or to intensive sampling

(more frequent mutations detected) [35]. Immune pressure from

a previously infected and/or vaccinated population may also

account for the differences observed.

Evolutionary Dynamics of Avian Influenza NA Lineages
Influenza viruses circulating in non-human species have evolved

in association with their various hosts on different continents for

extended periods of time [38]. Avian influenza viruses were usually

classified into Eurasian and North American lineages in the past,

which was attributed to confinement of birds to distinct flyways in

each hemisphere [39,40].This phylo-geographic pattern is evident

in the lineages designated for N4–N9 subtypes (Figure 6). We also

Figure 6. The evolutionary dynamics of influenza neuraminidase (NA) over time. The lineages from different hosts are colored, with the
emergence times of the lineages represented by the horizontal positions of squared boxes and the mean substitution rates depicted by the degree of
line thickness. Note that within 2A there are five swine clusters.
doi:10.1371/journal.pone.0038665.g006
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found that the viruses isolated from Oceania were grouped

together with Eurasian viruses. Therefore, we expanded our

geographic designation and used Eurasian/Oceanian to define

theses lineages. Avian lineages were found in all nine subtypes,

whereas the mammalian lineages occurred in only four subtypes,

providing support for the hypothesis that wild aquatic avian

viruses are considered the natural reservoir of all influenza viruses

(Figure 6) [2,41]. In addition, the avian lineages from N3 to N9

appeared to be under strong purifying selection pressures as

suggested by the low dN/dS ratios. Similar observations were also

described in a previous study [42].

The two subtype-specific avian sublineages, 1A.1 for H5N1 and

2A.1 for H9N2, are considered to have pandemic potential and

were found to evolve relatively faster compared with other avian

lineages from multiple subtypes (Table 2). In addition, these two

sublineages were found to be relatively young (23 years for H9N2

and 17 years for H5N1), indicating a more recent emergence likely

indicative of their adaptation from a wild bird reservoir to

domestic poultry and their ensuing establishment in poultry

populations. Together, the higher substitution rates and contem-

porary divergence of sublineages, 1A.1 (H5N1) and 2A.1 (H9N2)

may be attributable to the rapid geographical dissemination of

these viruses in wild birds and poultry, followed by the

establishment of endemicity in poultry-dense regions and consis-

tent transmission and outbreaks [25,43]. It will be interesting in

future studies to determine if sampling biases (over-sampling in the

case of H5N1 and H9N2) may also play a role in the higher

substitution rates and recent divergence times observed compared

to other avian influenza virus lineages. Nonetheless, it is important

to continue systematic surveillance of these high-risk viruses in

both birds and humans to better understand these processes.

Evolutionary Dynamics of Equine Influenza NA Lineages
Two lineages, H7N7 (7C) and H3N8 (8B), were revealed in

equine influenza viruses. The H7N7 equine influenza viruses have

not been detected since the late 1970s [44], whereas H3N8 was

first isolated in 1963 [45] and is still circulating in equine

populations throughout most of the world. Lineage 8B (H3N8) is

composed predominantly of equine viruses, but canine influenza

viruses are also found in this lineage. This observation is consistent

with the fact that equine influenza virus has crossed the species

barrier and become established as a respiratory pathogen of dogs

[46]. The equine influenza viruses share ancestors with avian

viruses in the same subtype, indicating their possible avian origin.

Evolutionary Dynamics of Swine Influenza NA Lineages
Two major swine virus groups, Eurasian (avian-like) swine

(1A.4) and North American swine (1B), were found within N1

(Figure 6). Our observation of geographic separation of swine

lineages agrees with previous findings [15]. Our tMRCA analysis

of the Eurasian (avian-like) swine lineage revealed that an avian

virus crossed the species boundary from birds to pigs in 1978,

which is seven years later than previously described [15] but just

one year earlier than the first detection of these viruses in 1979.

Similar dN/dS ratios were observed in both swine lineages,

suggesting comparable selection pressures occurred in both

lineages [35]. Interestingly, amino acid positions 46, 53, and 453

in North American swine (1B), which were found to be under

positive selection, are located in the T-cell antigenic regions, while

position 339 lies in the B-cell antigenic region [47], indicating

a strong immune selection occurred on these positions.

Complicated evolutionary dynamics were observed in lineage

2B. Within this major human lineage, five separate sub-clusters of

swine viruses occurred in North America and Eurasia, suggesting

that human-origin N2 genes were transmitted to swine in at least

five separate instances (Figures 2-B and 6). Between the 1970s and

1980s, human-origin H3N2 influenza viruses circulated in Eurasia

[48,49]. Reassortment events between human-origin H3N2 and

avian-like H1N1 swine influenza virus resulted in the emergence of

H3N2 viruses, with HA and NA from human viruses and all six

internal genes originally from birds [50]. These viruses eventually

superseded the former human-origin H3N2 viruses in swine

around 1984. In 1994, a further swine reassortant H1N2 virus was

identified in the United Kingdom [51]. Phylogenetic analyses

revealed that the HA gene of this virus was derived from a human-

like H1N1 virus, whereas the NA and internal genes were derived

from the European swine reassortant H3N2 [28].

In addition to the complexity found in Eurasian swine N2

viruses, similarly, in North America in 1998 there were outbreaks

of influenza observed in swine herds in Minnesota, Iowa, and

Texas. The outbreaks were caused by a triple-reassortant H3N2

virus which contained genes from human (HA, NA, and PB1),

swine (NS, NP, and M), and avian (PB2 and PA) influenza viruses

[52]. An additional important reassortment event in North

American swine resulted in an H1N2 reassortant between classical

H1N1 swine (contributing only HA) and H3N2 swine (contribut-

ing the other seven segments) [37]. These reassortment events,

coupled with interspecies transmission between swine and hu-

mans, have led to the complexity seen within lineage 2A.

In summary, we analyzed 14,328 influenza A and B NA

sequences and studied the evolutionary history and phylodynamics

of the influenza NA gene. The divergence of influenza NA into

influenza A and B NA occurred first, and nine NA subtypes

further diverged within influenza A, with two to three lineages

identified within each NA subtype. The analyses of substitution

rates, dN/dS ratio, selection sites and protein structures revealed

important associations between mutations and antiviral drug

resistance/vaccine escape. Further analyses of other influenza

segments are needed in order to obtain a comprehensive un-

derstanding of influenza virus evolution, which will facilitate

influenza surveillance and control.

Materials and Methods

Sequence Data
A total of 14,328 neuraminidase (NA) nucleotide sequences

longer than 1330 nts, excluding laboratory recombinant se-

quences, were downloaded from the Influenza Virus Resource at

NCBI [53]. Their host distributions are detailed in Table 4. A Perl

script (http://sysbio.harvard.edu) was used to remove identical

sequences, which resulted in 10,679 NA sequences, including

10,001 influenza A and 678 influenza B sequences. The influenza

A NA sequences were divided into nine datasets (one for each

subtype) that consist of 4146, 3754, 351, 85, 128, 488, 189, 684,

and 176 sequences respectively for N1–N9.

Recombination Test
Homologous gene recombination was identified using the 3SEQ

algorithm under RDP3 [54]. Ideally, all influenza sequences are

analyzed in a single run. However, because of computational

limitations to the programwhen a large data set is used,we examined

our dataset for gene recombination within each influenza A subtype

andwithin influenzaB.Sequenceswithmosaicrecombinationsignals

were identified using a cutoff p-value 0.05 [55].

The SeqMat program was used to collapse similar sequences

from the same location and the same year, which results in ,1500

representative sequences, respectively, for N1 and N2 [56]. For

other subtypes, we used all available sequences to detect
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recombination. Fourteen influenza A N1, 14 N2, two N3, one N4,

five N6, three N8, and one influenza B NA sequences were

identified to have mosaic recombination signals and thus were

excluded from the analyses. No mosaic recombination signals were

found in N5, N7 or N9.

Sequence Alignment and Phylogenetic Analysis
Influenza A and B NA sequences are remotely related with

around 40% nucleotide sequence similarity. We thus conducted

both protein and nucleotide sequence alignments using Expresso -

a program based upon protein structural information for

alignment and TranslatorX - a program referring to the

corresponding protein sequence alignment to align nucleotide

sequences, respectively [57–58]. The resulting alignment between

influenza A and B sequences was considered to be of good quality,

which assured the reliability of the downstream analysis (File S2).

MAFFT and MUSCLE were used to align sequences from each of

the nine influenza A NA subtypes and the influenza B NA

sequences, respectively [59,60]. The alignment results from

MAFFT and MUSCLE were compared and adjusted accordingly.

Phylogenetic analysis was conducted using the Maximum-likeli-

hood (ML) method in RAxML [61]. RAxML uses rapid algorithms

forbootstrapandmaximumlikelihoodsearchesandisconsideredone

of the fastest and most accurate phylogeny programs. Two hundred

independent inferences starting from random MP trees were

performed, and the treewith thehighest likelihood scorewas selected

as the representative. The GTRGAMMA model was employed to

correct the biases of multiple substitution and rate heterogeneity in

sequences. All the analyses were conducted on the supercomputing

clusters at the Holland Computing Center (http://hcc.unl.edu/

main/index.php). The trees were visualized and color-coded using

FigTree (version 1.3.1) (http://tree.bio.ed.ac.uk/software/figtree/)

todemonstrate tree topologiesandcorrespondinghosts, subtypesand

geographic locations.

Identification of Lineage and Sublineage
Lineages were determined based upon the topology of

phylogenetic trees and strong bootstrap support values (100

for influenza A and approximately 90 for influenza B). The

genetics distances between lineages were calculated using the

Kimura-2-Parameter (K2P) distance matric under MEGA 5.0

[62]. Additional information such as the distribution of viruses

in hosts and geographic regions were also considered in the

classification. The aim was to identify the lineages of clearly

related sequences, which might interest the virology-epidemiol-

ogy community and could be used for further evolutionary

dynamics analyses. The lineage and sublineage were named

according to the following notations: a single digit is used to

represent one of the nine influenza A NA subtypes and a letter

is used to represent a lineage. A sublineage is also represented

using a digit. A dot is used to separate a lineage and

a sublineage. For example, 1A.2 means N1 subtype, lineage

A, and sublineage 2. For influenza B, two lineages were

assigned and named following the conventions well-accepted by

the influenza research community. To make our lineage

assignment scheme justifiable and extensible, we use alphabetic

letters to represent lineages in the order of avian, swine, human,

and equine for hosts and in the order of the North America

followed by Eurasian/Oceanian in geography.

Substitution Rate and Time of Most Recent Common
Ancestor (tMRCA)
The substitution rate and the time of most recent common

ancestor (tMRCA) were estimated for each lineage/sublineage

using the Bayesian Markov Chain Monte Carlo (MCMC) method

available in the BEAST package [32]. Prior to the MCMC

analysis, the linear regression and residual analyses for each

lineage were performed using Path-O-Gen [63]; significant

outliers identified were then removed. To reduce excessive

computational load, we followed the common strategy that

achieves computer tractability while preserving the accuracy of

the estimates [64]. We wrote a Java program to select around 120

sequences from each lineage or sublineage, which represent viruses

sampled from different locations and at different time points. In all

cases, the data were analyzed under the GTR (General Time

Reversible) + 2 nucleotide substitution model, as this model was

consistently found to be the best by Modeltest [65].

Three clock models were compared statistically for each dataset

using a Bayes factor test in the Tracer program [66]: a strict clock,

an uncorrelated lognormal relaxed clock (UCLD) and an un-

correlated exponential relaxed clock (UCED) [67]. The UCED

model was found to provide the best fit for all lineages. In addition,

we used the newly developed random local clock model (RLC) that

takes into account the rate variation among different branches

within lineage by applying a series of local molecular clocks, each

extending over a subregion of the overall phylogeny. All estimates

also incorporated a different substitution rate for each codon

position and a Bayesian skyline coalescent prior [68]. For each

dataset, two independent Bayesian MCMC runs were conducted

for 30 million generations to achieve convergence, with un-

certainty in parameter estimates reflected in the 95% highest

probability density (HPD). The Maximum Clade Credibility

(MCC) tree across all plausible trees was then computed from

the BEAST trees using the TreeAnnotator program, with the first

10% of trees removed as burn-in.

Measurement of Selection Pressures
The ratio of non-synonymous (dN) to synonymous (dS) substitu-

tions per site (ratio dN/dS) were estimated using the single

likelihood ancestor counting (SLAC) method available in the

HYPHY package [69]. Positively selected codons were detected

using the single likelihood ancestor counting (SLAC), fixed effects

likelihood (FEL) and internal fixed effects likelihood (IFEL)

methods with a significance level of 0.05. In the SLAC method,

the nucleotide and codon model parameter estimates are used to

reconstruct the ancestral codon sequences at the internal nodes of

the tree. The single most likely ancestral sequences are then fixed

Table 4. Host distribution of neuraminidase (NA) sequences
in influenza A and B viruses.

Influenza Subtype Human Avian Swine Equine Others Total

A N1 3810 1853 243 0 50 5956

N2 3378 1215 258 0 81 4932

N3 1 412 4 0 26 443

N4 0 121 0 0 2 123

N5 0 141 0 0 0 141

N6 0 583 3 0 24 610

N7 0 219 1 11 4 235

N8 0 568 2 118 95 783

N9 0 192 0 0 2 194

B 911 0 0 0 0 911

doi:10.1371/journal.pone.0038665.t004
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as known variables, and applied to infer the expected number of

non-synonymous or synonymous substitutions that have occurred

along each branch, for each codon position. The FEL method is

based on maximum-likelihood estimates. The FEL method

estimates the ratio of non-synonymous to synonymous substitu-

tions on a site-by-site basis for the entire tree or only the interior

branches (IFEL). In all cases, dN/dS estimates were based on

Maximum-likelihood trees under the GTR + G substitution model.

Protein structures of template NAs used in structural analyses were

downloaded from the Protein Data Bank (www.pdb.org). Posi-

tively selected sites were mapped on the structure of the protein

using Molecular Operating Environment (MOE) [70].

Supporting Information

Figure S1 Maximum-likelihood (ML) tree of influenza A
N3 genes. Three lineages, denoted 3A, 3B and 3C, were

classified. The bootstrap values supporting the corresponding

lineages are shown on the major nodes. The scale bars indicate the

numbers of nucleotide substitutions per site.

(TIF)

Figure S2 Maximum-likelihood (ML) tree of influenza A
N4 genes. Two lineages, denoted 4A and 4B, were classified. The

bootstrap values supporting the corresponding lineages are shown

on the major nodes. The scale bars indicate the numbers of

nucleotide substitutions per site.

(TIF)

Figure S3 Maximum-likelihood (ML) tree of influenza A
N6 genes. Two lineages, denoted 6A and 6B, were classified. The

bootstrap values supporting the corresponding lineages are shown

on the major nodes. The scale bars indicate the number of

nucleotide substitutions per site.

(TIF)

Figure S4 Maximum-likelihood (ML) tree of influenza A
N7 genes. Three lineages, denoted 7A, 7B and 7C, were

classified. The bootstrap values supporting the corresponding

lineages are shown on the major nodes. The scale bars indicate the

number of nucleotide substitutions per site.

(TIF)

Figure S5 Maximum-likelihood (ML) tree of influenza A
N9 genes. Three lineages, denoted 9A, 9B and 9C, were

classified. The bootstrap values supporting the corresponding

lineages are shown on the major nodes. The scale bars indicate the

number of nucleotide substitutions per site.

(TIF)

Figure S6 The structure of 1A.1 influenza neuramini-
dase, with positive selection sites denoted as green balls.
(TIF)

Figure S7 The structure of 1A.2 influenza neuramini-
dase, with positive selection sites denoted as green balls.
(TIF)

Figure S8 The structure of 1A.3 influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S9 The structure of 1A.4 influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S10 The structure of 1A.5 influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S11 The structure of 1B influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S12 The structure of 2A.1 influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S13 The structure of 2A.3 influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S14 The structure of 5A influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S15 The structure of 6A influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Figure S16 The structure of 8A influenza neuramini-
dase, with positive selection sites denoted as green balls.

(TIF)

Table S1 The number of sequences of each lineage and
the number of outliers identified by residual analysis.
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File S1 The phylogenetic tree of influenza A and B
neuraminidase sequences.
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File S2 The alignment of influenza A and B neuramin-
idase sequences. The quality of the alignment is indicated by

different colors.

(DOCX)

Acknowledgments

We are grateful to the Holland Computing Center (HCC) at the University

of Nebraska-Lincoln (UNL) for the computing support. We specially thank

our UNL colleagues: David Swanson, Ashu Guru, and Jun Wang and our

UNO students and colleagues: Pavan Attaluri, Santosh Servisetti, Thaine

Rowley and Mohammad Shafiullah for their help. We particularly thank

the Academic Editor: Dr Dong-Yan Jin and four anonymous reviewers for

their helpful comments and constructive suggestions.

Author Contributions

Conceived and designed the experiments: GL ROD. Performed the

experiments: JX. Analyzed the data: JX CTD HZ PR. Wrote the paper:

JX GL ROD MCC CTD HZ PR.

References

1. Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza

patients. Lancet: 66–68.

2. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992)

Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179.

3. Nelson MI, Holmes EC (2007) The evolution of epidemic influenza. Nat Rev

Genet 8: 196–205.

4. Osterhaus AD, Rimmelzwaan GF, Martina BE, Bestebroer TM, Fouchier RA

(2000) Influenza B virus in seals. Science 288: 1051–1053.

5. Webster RG, Bean WJ, Jr. (1978) Genetics of influenza virus. Annu Rev Genet

12: 415–431.

6. Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl

Acad Sci U S A 90: 4171–4175.

Evolutionary Dynamics of Influenza Neuraminidase

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e38665



7. Holmes EC (2010) Evolution in health and medicine Sackler colloquium: The

comparative genomics of viral emergence. Proc Natl Acad Sci U S A 107 Suppl
1: 1742–1746.

8. Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, et al. (2005)

Large-scale sequencing of human influenza reveals the dynamic nature of viral
genome evolution. Nature 437: 1162–1166.

9. Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological
determinants of influenza evolution. Nature 422: 428–433.

10. Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann PA (1981)

Evidence for the natural transmission of influenza A virus from wild ducts to
swine and its potential importance for man. Bull World Health Organ 59: 75–

78.
11. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999) Predicting the

evolution of human influenza A. Science 286: 1921–1925.
12. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, et al.

(2004) Mapping the antigenic and genetic evolution of influenza virus. Science

305: 371–376.
13. Plotkin JB, Dushoff J, Levin SA (2002) Hemagglutinin sequence clusters and the

antigenic evolution of influenza A virus. Proc Natl Acad Sci U S A 99: 6263–
6268.

14. Schwartz B, Wortley P (2006) Mass vaccination for annual and pandemic

influenza. Curr Top Microbiol Immunol 304: 131–152.
15. Fourment M, Wood JT, Gibbs AJ, Gibbs MJ (2010) Evolutionary dynamics of

the N1 neuraminidases of the main lineages of influenza A viruses. Mol
Phylogenet Evol 56: 526–535.

16. Furuse Y, Suzuki A, Kamigaki T, Oshitani H (2009) Evolution of the M gene of
the influenza A virus in different host species: large-scale sequence analysis.

Virol J 6: 67.

17. Nerome K, Ishida M, Nakayama M (1976) Absence of neuraminidase from
influenza C virus. Arch Virol 50: 241–244.

18. Palese P, Compans RW (1976) Inhibition of influenza virus replication in tissue
culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA):

mechanism of action. J Gen Virol 33: 159–163.

19. Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable
the evolution of influenza oseltamivir resistance. Science 328: 1272–1275.

20. Rameix-Welti MA, Enouf V, Cuvelier F, Jeannin P, van der Werf S (2008)
Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses

provide insights for the emergence of natural resistance to oseltamivir. PLoS
Pathog 4: e1000103.

21. Chi XS, Bolar TV, Zhao P, Rappaport R, Cheng SM (2003) Cocirculation and

evolution of two lineages of influenza B viruses in europe and Israel in the 2001–
2002 season. J Clin Microbiol 41: 5770–5773.

22. Reid AH, Fanning TG, Janczewski TA, Taubenberger JK (2000) Character-
ization of the 1918 ‘‘Spanish’’ influenza virus neuraminidase gene. Proc Natl

Acad Sci U S A 97: 6785–6790.

23. Chen R, Holmes EC (2008) The evolutionary dynamics of human influenza B
virus. J Mol Evol 66: 655–663.

24. Xu X, Zhu X, Dwek RA, Stevens J, Wilson IA (2008) Structural
characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82:

10493–10501.
25. Vijaykrishna D, Bahl J, Riley S, Duan L, Zhang JX, et al. (2008) Evolutionary

dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog 4:

e1000161.
26. Chen R, Holmes EC (2006) Avian influenza virus exhibits rapid evolutionary

dynamics. Mol Biol Evol 23: 2336–2341.
27. Suzuki Y, Nei M (2002) Origin and evolution of influenza virus hemagglutinin

genes. Mol Biol Evol 19: 501–509.

28. Brown IH, Harris PA, McCauley JW, Alexander DJ (1998) Multiple genetic
reassortment of avian and human influenza A viruses in European pigs, resulting

in the emergence of an H1N2 virus of novel genotype. J Gen Virol 79 (Pt 12):
2947–2955.

29. Liu S, Ji K, Chen J, Tai D, Jiang W, et al. (2009) Panorama phylogenetic

diversity and distribution of Type A influenza virus. PLoS One 4: e5022.
30. Group WOFHNEW (2012) Continued evolution of highly pathogenic avian

influenza A (H5N1): updated nomenclature. Influenza Other Respi Viruses 6: 1–
5.

31. Lu G, Rowley T, Garten R, Donis RO (2007) FluGenome: a web tool for
genotyping influenza A virus. Nucleic Acids Res 35: W275–279.

32. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by

sampling trees. BMC Evol Biol 7: 214.
33. Smith GJ, Bahl J, Vijaykrishna D, Zhang J, Poon LL, et al. (2009) Dating the

emergence of pandemic influenza viruses. Proc Natl Acad Sci U S A 106:
11709–11712.

34. Guan Y, Vijaykrishna D, Bahl J, Zhu H, Wang J, et al. (2010) The emergence of

pandemic influenza viruses. Protein Cell 1: 9–13.
35. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, et al. (2009) Origins

and evolutionary genomics of the 2009 swine-origin H1N1 influenza A
epidemic. Nature 459: 1122–1125.

36. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, et al. (2009) Antigenic
and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses

circulating in humans. Science 325: 197–201.

37. Christman MC, Kedwaii A, Xu J, Donis RO, Lu G (2011) Pandemic (H1N1)
2009 virus revisited: An evolutionary retrospective. Infect Genet Evol.

38. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, et al. (2006)

Global patterns of influenza a virus in wild birds. Science 312: 384–388.
39. Macken CA, Webby RJ, Bruno WJ (2006) Genotype turnover by reassortment

of replication complex genes from avian influenza A virus. J Gen Virol 87: 2803–

2815.
40. Wahlgren J, Waldenstrom J, Sahlin S, Haemig PD, Fouchier RA, et al. (2008)

Gene segment reassortment between American and Asian lineages of avian
influenza virus from waterfowl in the Beringia area. Vector Borne Zoonotic Dis

8: 783–790.

41. Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of
influenza a viruses isolated from wild aquatic birds: ecology and emergence of

influenza a viruses. J Virol 78: 8771–8779.
42. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, et al. (2006) Large-scale

sequence analysis of avian influenza isolates. Science 311: 1576–1580.
43. Butt AM, Siddique S, Idrees M, Tong Y (2010) Avian influenza A (H9N2):

computational molecular analysis and phylogenetic characterization of viral

surface proteins isolated between 1997 and 2009 from the human population.
Virol J 7: 319.

44. Webster RG (1993) Are equine 1 influenza viruses still present in horses? Equine
Vet J 25: 537–538.

45. Waddell GH, Teigland MB, Sigel MM (1963) A New Influenza Virus Associated

with Equine Respiratory Disease. J Am Vet Med Assoc 143: 587–590.
46. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, et al. (2005)

Transmission of equine influenza virus to dogs. Science 310: 482–485.
47. Tamuri AU, Dos Reis M, Hay AJ, Goldstein RA (2009) Identifying changes in

selective constraints: host shifts in influenza. PLoS Comput Biol 5: e1000564.
48. Miwa Y, Piao FZ, Goto H, Noro S (1987) Isolation of human (H3N2) influenza

virus and prevalence of the virus-antibody in swine. Nippon Juigaku Zasshi 49:

1168–1170.
49. Tumova B, Stumpa A, Mensik J (1980) Surveillance of influenza in pig herds in

Czechoslovakia in 1974–1979. 2. Antibodies against influenza A (H3N2) and A
(H1N1) viruses. Zentralbl Veterinarmed B 27: 601–607.

50. Madec F, Kaiser C, Gourreau JM, Martinat-Botte F (1989) Pathologic

consequences of a severe influenza outbreak (swine virus A/H1N1) under
natural conditions in the non-immune sow at the beginning of pregnancy. Comp

Immunol Microbiol Infect Dis 12: 17–27.
51. Brown IH, Harris PA, Alexander DJ (1995) Serological studies of influenza

viruses in pigs in Great Britain 1991–2. Epidemiol Infect 114: 511–520.
52. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, et al. (2000)

Emergence of H3N2 reassortant influenza A viruses in North American pigs.

Vet Microbiol 74: 47–58.
53. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, et al. (2008) The

influenza virus resource at the National Center for Biotechnology Information.
J Virol 82: 596–601.

54. Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3:

a flexible and fast computer program for analyzing recombination. Bioinfor-
matics 26: 2462–2463.

55. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for
inferring mosaic structure in sequence triplets. Genetics 176: 1035–1047.

56. Attaluri PK, Christman MC, Chen Z, Lu G (2011) SeqMaT: A sequence
manipulation tool for phylogenetic analysis. Bioinformation 5: 400–401.

57. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast

and accurate multiple sequence alignment. J Mol Biol 302: 205–217.
58. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of

nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38
Suppl: W7–13.

59. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.
60. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences

with MAFFT. Methods Mol Biol 537: 39–64.
61. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for

maximum likelihood-based inference of large phylogenetic trees. Bioinformatics

21: 456–463.
62. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:

molecular evolutionary genetics analysis using maximum likelihood, evolution-
ary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

63. Drummond A, Pybus OG, Rambaut A (2003) Inference of viral evolutionary
rates from molecular sequences. Adv Parasitol 54: 331–358.

64. Felsenstein J (2006) Accuracy of coalescent likelihood estimates: do we need

more sites, more sequences, or more loci? Mol Biol Evol 23: 691–700.
65. Posada D (2003) Using MODELTEST and PAUP* to select a model of

nucleotide substitution. Curr Protoc Bioinformatics Chapter 6: Unit 6 5.
66. Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-

time Markov chain evolutionary models. Mol Biol Evol 18: 1001–1013.

67. Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics
and dating with confidence. PLoS Biol 4: e88.

68. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, et al. (2008)
The genomic and epidemiological dynamics of human influenza A virus. Nature

453: 615–619.
69. Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using

phylogenies. Bioinformatics 21: 676–679.

70. Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus
nucleoprotein forms oligomers and binds RNA. Nature 444: 1078–1082.

Evolutionary Dynamics of Influenza Neuraminidase

PLoS ONE | www.plosone.org 15 July 2012 | Volume 7 | Issue 7 | e38665


	Evolutionary History and Phylodynamics of Influenza A and B Neuraminidase (NA) Genes Inferred from Large- Scale Sequence Analyses
	Authors

	deb_pone.0038665 1..15

