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Abstract

Epigenetic mechanisms may be important for a native species’ response to rapid environmental change. Red Imported Fire
Ants (Solenopsis invicta Santschi, 1916) were recently introduced to areas occupied by the Eastern Fence Lizard (Sceloporus
undulatus Bosc & Daudin, 1801). Behavioral, morphological and physiological phenotypes of the Eastern Fence Lizard have
changed following invasion, creating a natural biological system to investigate environmentally induced epigenetic
changes. We tested for variation in DNA methylation patterns in Eastern Fence Lizard populations associated with different
histories of invasion by Red Imported Fire Ants. At methylation sensitive amplified fragment length polymorphism loci, we
detected a higher diversity of methylation in Eastern Fence Lizard populations from Fire Ant uninvaded versus invaded
sites, and uninvaded sites had higher methylation. Our results suggest that invasive species may alter methylation frequen-
cies and the pattern of methylation among native individuals. While our data indicate a high level of intrinsic variability in
DNA methylation, DNA methylation at some genomic loci may underlie observed phenotypic changes in Eastern Fence
Lizard populations in response to invasion of Red Imported Fire Ants. This process may be important in facilitating adapta-
tion of native species to novel pressures imposed by a rapidly changing environment.
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Introduction

Environmental changes, such as those associated with invasive potential of populations to respond to future change. While in-
species, are occurring at increasing rates due to anthropogenic vasive species affect the ecology of native populations, we un-
activities [1-3]. Understanding the mechanisms underlying an derstand little about the processes by which native species
organism’s response to these changes is critical to assessing en- adapt to rapid environmental change and the long-term impli-
vironmental impacts on natural populations and predicting the cations of these adaptations [4].
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Molecular epigenetic mechanisms may be important for a
native species’ response to environmental changes, including
the presence of invasive species. Epigenetic mechanisms en-
compass changes in gene expression not caused by changes in
DNA sequence [5], and these changes can be induced within the
lifetime of an individual [6]. DNA methylation, the most com-
monly studied epigenetic mechanism [7], can vary among indi-
viduals and populations and in response to environmental
stressors [6, 8-10]. Furthermore, variation in DNA methylation
patterns can result in phenotypic changes that can be faithfully
transmitted to future generations [10-14]. As a result, epigenetic
modification of gene expression may enable organisms to re-
spond quickly to a changing environment [15] and produce off-
spring pre-adapted to the environment experienced by the
parents [16].

The environmental pressures imposed by invasive species
can provide natural experiments with which to examine mech-
anisms driving rapid phenotypic responses, including changes
in epigenetic variation [17]. The invasion of the Eastern Fence
Lizard’s (Sceloporus undulatus Bosc & Daudin, 1801) range by the
venomous Red Imported Fire Ant (Solenopsis invicta Santschi,
1916; hereafter Fire Ant) represents an excellent system to study
the adaptive potential of environmentally induced epigenetic
changes. The Fire Ant was introduced into the southeastern
United States in the 1930’s and quickly spread to 14 states [18,
19]. This venomous ant is able to prey upon organisms much
larger than itself, and can envenomate animals that eat it, cre-
ating strong novel selective pressures [18, 20-22].

Across almost half its range, the Eastern Fence Lizard is ex-
posed to Fire Ants, and the Fire Ant-invaded populations have
responded phenotypically in patterns that suggest both evolu-
tionary (cross-generational) and plastic (within lifetime) re-
sponses (T. R. Robbins et al. unpublished data; [23-26]). These
species use similar habitat [23, 27] and frequently encounter
one another in nature [24]. Fire Ants will attack Eastern Fence
Lizards, with as few as 12 ants able to kill an adult lizard in 1
min [27], and will envenomate Fence Lizards that eat them [20].
Multiple phenotypes of the Eastern Fence Lizard are altered
within areas invaded by Fire Ants. In Fire Ant-invaded areas,
Eastern Fence Lizards exhibit behavior that promotes escape
from Fire Ant attack: twitching to remove Fire Ants and fleeing
from the source of attack [24, 27]. Lizards from Fire Ant-invaded
sites also have longer hind limbs, a heritable trait that increases
the efficacy of this anti-predator behavior [27]. Furthermore,
Fence Lizards from invaded populations innately avoid eating
Fire Ants [25], have an elevated physiological response to stress
(plasma concentrations of the stress-relevant hormone, cortico-
sterone) in the presence of this invasive ant [27], and altered be-
havioral responses to increased levels of corticosterone if their
habitat has been invaded [29].

The objectives of the present study were to determine if
DNA methylation patterns differed between Eastern Fence
Lizard populations from Fire Ant-invaded versus uninvaded
areas and to determine if DNA methylation was correlated with
individual phenotypes. We show that variation in DNA methyl-
ation patterns may play an important role in driving the pheno-
typic responses of Eastern Fence Lizards to Fire Ant invasion,
providing insight into molecular mechanisms that may underlie
adaptation.

Results

We analysed 35 variable loci of 45 total loci scored at methyla-
tion sensitive amplified fragment length polymorphism (MS-

AFLP). Loci removed from the analysis were either not variable
or had <10% observed methylation. We detected a significantly
higher proportion of methylation in uninvaded sites (101 of 350
possible methylated sites) compared with invaded sites (65 of
350 possible methylated sites; z-score=2.92, P=0.002). A post
hoc test identified Locus-19 (P=0.04) and Locus-37 (P=0.04) as
contributing to this difference (Fig. 1). However, we did not de-
tect any significant relationships with mass or hind limb length
standardized by snout vent length (RHL/SVL), an adaptive phe-
notype of interest.

Epi-h ranged from 0.23 to 0.39 (Table 1). Epi-h was higher in
uninvaded sites compared with invaded sites (Table 1). There
was significant epigenetic differentiation among all loci
(®sT=0.07, P=0.03), which was driven by pairwise differences
between the uninvaded site SF and the invaded sites SD
(®sT=0.15, P=0.02) and BWR (®sr=0.12, P=0.03). However,
these comparisons were not significant after Bonferroni correc-
tion. Locus-by-locus AMOVA identified four loci that had the
highest contribution to differences in methylation frequency
among sites (Locus-06, ®st=0.50, P=0.03; Locus-19, ®s=0.64,
P=0.006; Locus-37, ®sr=0.36, P=0.06; Locus-38, ®st=0.38,
P=0.04; Fig. 1).

When comparing genetic variation using only Mspl, we ob-
served 34 variable loci of the 35 used for MS-AFLP analysis.
Haplotype diversity (h) ranged from 0.13 to 0.33. There was sig-
nificant genetic differentiation among all loci (®sy=0.12,
P=0.01). One pairwise comparison among sites (SD vs SF;
®s7=0.21, P=0.03) was significant, yet not significant after
Bonferroni correction. We failed to detect significant differences
in epigenetic differentiation among sites at all loci when redun-
dancy analysis (RDA) was used to investigate epigenetic varia-
tion while controlling for genetic variation.

Discussion

Currently, environmental epigenetic studies focus primarily on
plants [7]; however, there is a growing body of work that shows
DNA methylation has an important role in the ecology of verte-
brates [30, 31-34]. Our results reveal that epigenetic variation in
DNA methylation patterns can vary with the presence of an in-
vasive species. Some loci had among-site variation in methyla-
tion frequency that did not map with Fire Ant invasion status;
however, there was more DNA methylation in uninvaded than
in Red Imported Fire Ant-invaded sites (Fig. 1). These findings
suggest that invasion of Red Imported Fire Ants may disrupt
patterns of DNA methylation.
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Figure 1. proportion of methylation between invaded (gray) and uninvaded
(black) sites at the four loci with the largest contribution
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Our results detected greater epigenetic diversity than genetic
diversity at each site with a relatively low level of signal in DNA
methylation among sites. There was a pattern of greater meth-
ylation in uninvaded sites, and an uninvaded site had different
frequency of DNA methylation compared with two invaded
sites. Contrasting epigenetic variation with genetic variation
identified a comparison between an invaded and uninvaded
site that was epigenetically different yet not genetically differ-
ent. Yet, there was a comparison between an invaded and unin-
vaded site that differed both epigenetically and genetically. This
suggests that ecologically relevant differences in both epige-
netic and genetic data may exist among Eastern Fence Lizards
whose habitat has been invaded by Red Imported Fire Ants.
When comparing all markers, the RDA failed to detect signifi-
cant differences in epigenetic variation after controlling for ge-
netic variation. We believe this test was inhibited by a general
lack of power based on small observed effect sizes, not that it
indicates no epigenetic signal exists. This position is supported
by the presence of differences in epigenetic data not mirrored in
the genetic data, and that there was an overall pattern of greater
methylation in uninvaded sites.

While there were different patterns of DNA methylation be-
tween invaded and uninvaded sites, the data suggest that
there is a high level of intrinsic variability in DNA methylation
variation. It is possible that the relatively high level of intrinsic
variability coupled with low power of our study created noise
and low level of signal in our data. This noise is likely exacer-
bated by the anonymity of the genomic elements being
screened.

An important next step will be to directly determine if differ-
ent DNA methylation states are associated with the phenotypic
differences exhibited by Eastern Fence Lizard populations asso-
ciated with the invasion of Red Imported Fire Ants. Next-
generation sequencing-based techniques will be important in
addressing this question and in identifying what parts of the ge-
nome are differentially methylated and associated with differ-
ences in phenotype [7]. Previous studies indicate that the
behavioral, morphological and physiological adaptations of
Eastern Fence Lizards to Fire Ant invasion are influenced by
both cross-generational and within lifetime factors [23, 25, 27].
Change in epigenetic marks and epigenetic variation may pro-
vide an important process allowing rapid responses to novel en-
vironmental conditions. Common garden studies and
developmental experimental manipulation [6, 36, 37] will allow
more targeted investigation of environmentally induced DNA
methylation changes and their role in promoting rapid adaptive
phenotypic plasticity.

Table 1. sites from which Eastern Fence Lizard samples were ob-
tained, the status of invasion by the Red Imported Fire Ant at each
site (status), number of lizards sampled (n), and epigenetic diversity
(epi-h) at MS-AFLP binary multi-locus data and for the genetic haplo-
type diversity (h) at Mspl for geographic samples

Site (Abbreviation) Status N epi-h h

Solon Dixon Forestry Education Invaded 5 030 0.13
Center (SD)

Blackwater River State Forest (BWR) Invaded 5 023 022

Edgar Evins State Park (EE) Uninvaded 5 039 0.15

St. Francis National Forest (SF) Uninvaded 5 039 0.33

Total 20 033 021
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Methods

To determine if DNA methylation of Eastern Fence Lizards dif-
fered with the Fire Ant invasion status of a site, we compared
methylation frequencies among Eastern Fence Lizards from in-
vaded and uninvaded areas. We collected tissue samples (toe
clips) from Eastern Fence Lizards captured from two sites in-
vaded by Fire Ants (57-62 years ago; [35]): Solon Dixon Forestry
Education Center, Escambia County, AL (SD, N=5) and
Blackwater River State Forest, Okaloosa County, FL (BWR, N =6);
and two sites not yet invaded by fire ants; Edgar Evins State
Park, DeKalb County, TN (EE, N=5) and St. Francis National
Forest, Lee County, AR (SF, N=6) (Table 1). We characterized in-
dividual morphology by body mass (g), snout vent length (SVL;
cm), and hind limb length (RHL; cm). For comparisons with
methylation among individuals we standardized RHL with SVL
(as RHL/SVL) to focus on allometrically corrected variation in
limb length. All samples were stored in 95% ethanol until DNA
extraction with the Qiagen DNeasy Animal Tissue Kit (Qiagen,
Valencia, CA).

We performed MS-AFLP following [36] We modified the typi-
cal AFLP protocol by replacing Msel with Mspl and Hpall, meth-
ylation sensitive isoschizomeric enzymes that cut a CCGG
restriction site but have different sensitivities to cytosine meth-
ylation. Together, four different types of variation can be scored
see [38] Thus, if the MS-AFLP protocol is performed indepen-
dently for each enzyme for each individual, the resulting band-
ing pattern indicates the methylation state of a particular
restriction site.

We digested ~200 ng of DNA with 10U of restriction enzymes
(MsplI plus EcoRI and Hpall plus EcoRI) in a 20 ul reaction incu-
bated at 37°C for 3h (all enzymes New England Biolabs Ipswich,
MA). We then ligated double stranded adaptors to the digested
fragments with T4 DNA ligase (New England Biolabs Ipswich,
MA). We conducted preselective polymerase chain reaction
(PCR) with primers designed for the adaptors (Mspl/Hpall:
ATCATGAGTCCTGCTCGG; EcoRI: TACTGCGTACCAATTCA) at a
final volume of 25 ul. We then performed selective PCR using
primers with additional bases (Mspl/Hpall: ATCATGAGTCCTG
CTCGGTCAT, EcoRI: 6-FAM-TACTGCGTACCAATTCAGC and
HEX-TACTGCGTACCAATTCACG). We sent PCR products to the
Iowa State University DNA facility for fragment analysis. We
used PEAKSCANNER (Applied Biosystems Foster City, CA) to an-
alyse gel images and we scored band presence or absence
manually.

We scored all individuals at each enzyme combination and
identified the methylation state for each restriction site (locus).
We ran the protocol twice for two or three individuals to deter-
mine which restriction sites were reliably detected (we only pre-
sent reliable loci here). We adopted a conservative approach to
scoring the gel images as AFLP-type reactions can generate vari-
able banding among and within individuals. For a scored position
to be considered reliable, the bands had to be identical and clearly
distinguishable in each replicate of a given sample. Also, if subse-
quent reactions on additional samples generated inconsistent or
unclear bands, or bands occurred at highly variable intensities at
a locus, that locus was dropped from the analysis. For epigenetic
analysis, we generated data as two categories; methylated loci
(MS-AFLP Type II or Type III) or not methylated loci (MS-AFLP
Type I or Type IV) and constructed binary epi-haplotypes. For ge-
netic analysis, we used the results from the Mspl/EcoRI reactions.

To determine if presence of Fire Ants affected patterns of
DNA methylation in Eastern Fence Lizards, we used a z-test to
determine if the proportion of methylation differed between
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invaded and uninvaded sites; we then used a GLM in a post hoc
test to identify the loci that had the highest contribution to any
significant difference observed. We compared methylation state
at each locus with invasion status, mass, and RHL/SVL using
generalized linear models for binary distributions in R with
package BRGLM for bias reduction due to separation of data (i.e.
when treatments are near to or are one hundred percent
different).

We assessed epi-haplotype (epi-h) diversity of the binary
methylated/not methylated data to estimate diversity of DNA
methylation using GENALEX-6 [39]. We then estimated differen-
tiation of DNA methylation among samples by AMOVA using
GENALEX-6 to calculate ®gr over all loci, pairwise among sites,
and independently for each locus to identify outlier loci that
had different methylation patterns among sites. We used 9999
permutations to estimate statistical significance for all AMOVA
runs.

We assessed genetic variation among individuals using the
Mspl/EcoRI restriction enzyme data. We estimated haplotype
diversity (h) for each site, conducted AMOVA over all and pair-
wise among sites, and calculated genetic distances as the num-
ber of pairwise differences using GENALEX-6. We used RDA to
determine if significant differences observed in epigenetic dif-
ferentiation remained after controlling for the observed genetic
differentiation among sites using the online MASAME RDA app
for R (available at http://mb3is.megx.net/gustame/constrained-
analyses/rda last accessed 4/23/2016).
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