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Twin Solutions of Even Order Boundary Value Problems for

Ordinary Differential Equations and Finite Difference Equations

Xun Sun

ABSTRACT

The Avery-Henderson fixed-point theorem is first applied to obtain the

existence of at least two positive solutions for the boundary value problem

(−1)ny(2n) = f(y), n = 1, 2, 3 · · · and t ∈ [0, 1],

with boundary conditions y(2k)(0) = 0

y(2k+1)(1) = 0 for k = 0, 1, 2 · · · , n− 1.

This theorem is subsequently used to obtain the existence of at least two

positive solutions for the dynamic boundary value problem

(−1)n∆(2n)u(k)g(u(k)), n = 1, 2, 3 · · · and k ∈ {0, · · ·N},

with boundary conditions ∆(2k)u(0) = 0

∆(2k+1)u(N + 1) = 0 for k = 0, 1, 2 · · · , n− 1.
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1. Introduction

Green’s functions are well-known mathematical tools which are impor-

tant in the theory of boundary-value problems. They are also mathematical

characterizations of important physical concepts. The Green’s functions

can be introduced in both mathematical and physical ways, but it might be

more lively and easier to understand if they are developed via their physical

counterparts. In this part, the Green’s function will be derived from the

following model, which can also be found in C. Ray Wylie, Mcgraw’s book

Differential Equations, see [19].

In the model, suppose that we have a perfectly flexible elastic string whose

length is l after stretched under tension T . We also have two assumptions:

firstly, we assume that the string tolerances a distributed load per unit length

w(x) where the weight of the string itself is included; furthermore, we also

suppose that the deflections after loaded are all perpendicular to the original

position of the string and all the forces are in the same plane. So for two

different values of x in [0, l], the forces on the portion of the string between

different two points are all the same with or without the string deflecting.

For any tiny part of the string, we have the forces shown in Figure (2). Since

the deflected string is in equilibrium state, both of the net horizontal and

the vertical force on the tiny part should be zero. So we have

F1 cosα1 = F2 cosα2

F2 sinα2 = F1 sinα1 − w(x)∆x



6

from the first equation, we know that the horizontal component force in

the string is a constant, and because the deflections are so small, we can

further assume that the constant horizontal component is the same as the

tension T in the string before loaded. Then, we can plug

F1 = T
cosα1

and F2 = T
cosα2

into the second equation. After simplifying, we

have

(1) tanα2 = tanα1 −
w(x)∆x

T
.

From Fig.2, we know that tanα1 is the slope of the deflection curve at the

point x and tanα2 is the slope of the deflection curve at the point x+ ∆x.
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Then, we can rewrite equation (1) as

y′(x+ ∆x)− y′(x)
∆x

= −w(x)
T

.

As ∆x→ 0, we have the differential equation

(2) Ty′′ = −w(x),

satisfied by the curve of the string.

Now we turn to the deflection of the string, bearing a concentrated but not

a distributed load. Equation (2) implies that y′′ is zero at all points of the

string without distributed load. Hence, from y′′ = 0 we know that y is a

linear function, so we can consider that the deflection curve of the string

with load P consists of two linear sections, one is horizontal and the other

one is vertical, see Fig.3. As discussed before, we have F1 cosα1 = F2 cosα2 = T

F1 sinα1 + F2 sinα2 = −P
.
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From above, the equation

tanα1 + tanα2 =
−P
T

implies −−δs + −δ
l−s = −P

T and so, δ = P (l−s)s
T l , where δ denotes the vertical

distance from the load to the wall that is distance s from the origin.

Suppose the deflection δ is known, it is not difficult to find the deflection

of the string at any point x with similar triangles. The results are

(3) y =


P (l−s)x

T l if 0 ≤ x ≤ s
P (l−x)s

T l if s ≤ x ≤ l
.

When P is a unit load, which means P = 1, G(x, s) could be used as a new

name for the corresponding function y(x, s) defined by (3). Obviously, we

can find that G(x, s) is the same if you swap the two variables x and s; that

is,

G(x, s) = G(s, x).

G(x, s) is generally mentioned as an influence function because it de-

scribes the influence at any point x of the string on which there is a unit

load concentrated at the point s.

Actually, we can find G(x, s) even though we do not solve equation (2).

To do this, we first divide the interval [0, l] into n small subintervals by the

points s0 = 0, s1 = l
n , s2 = 2l

n , . . . , sn = l with ∆si = si − si−1 ; and let εi

be an arbitrary point in ∆si. Here we have another assumption that we let

the portion of the distributed load acting on the subinterval ∆si, which is

w(εi)∆si, be concentrated at the point s = εi. Then the deflection at each
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point x by this load is

[w(εi)∆si]G(x, εi).

We can obtain the sum

n∑
i=1

w(εi)G(x, s)∆si,

if we add up all the deflections at the point x, which together approximate

the actual distributed load. As ∆si → 0, the deflection at an arbitrary point

x is

(4) y(x) =
∫ t

0
w(εi)G(x, s)ds.

Thus, once the function G(x, s) is known, we can find the deflection for any

piecewise distributed load by the integral (4).

As we discussed above, the influence function

G(x, s) =


(l−s)x
T l 0 ≤ x ≤ s

(l−x)s
T l s ≤ x ≤ l

,

corresponding to the differential equation Ty′′ = −w(x) is symmetric for x

and s. There are some other properties of G(x, s). Firstly, it is easy to see

that G(x, s) satisfies the boundary conditions of the problem at the point

x = 0 and x = l; secondly, it is not difficulty to verify that G(x, s) is

continuous for x on the interval [0, l]. From the expression of G(x, s), it is

obvious except at the point x = s, where we need to figure out both the left
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and right limits of G(x, s). The limits

lim
x→s−

(l − s)x
T l

=
(l − s)s
T l

and

lim
x→s+

(l − x)s
T l

=
(l − s)s
T l

are both equal to G(s, s). On the other hand, G′(x, s) has a jump of − 1
T

at x = s. This is a point of discontinuity. To verify this, first we notice

that G(x, s) is differentiable for the whole interval [0, l] except at x = s.

Therefore, we check that

lim
x→s−

Gx(x, s) = lim
x→s−

l − s
T l

=
l − s
T l

and

lim
x→s+

Gx(x, s) = lim
x→s+

− s

T l
= − s

T l

So, their difference is

− s

T l
− l − s

T l
= − 1

T
.

Finally, we note that G(x, s) satisfies the homogeneous differential equation

Ty′′ = 0 at all point of the interval [0, l] and Gxx(x, s) does not exist because

Gx(x, s) is discontinuous at that point.

Actually, we can call any function that satisfies all the properties we dis-

cussed above the Green’s function for the associated differential equation

with boundary conditions. Now we will give the definition of the Green’s

function.

Definition 1.1. For a differential equation

a0(x)y′′ + a1(x)y′ + a2(x)y = 0
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with the homogeneous boundary conditions α1y(a) = α2y
′(a),

β1y(b) = β2y
′(b), where at least one of α1, α2 is not zero and at least one of

β1, β2 is not zero. A function G(x, s) with the property that

1. G(x, s) satisfies the differential equation for a ≤ x ≤ s and for s ≤ x ≤ b,

2. G(x, s) satisfies the boundary condition of the associated problem, that

is α1G(a, s) = α2Gx(a, s), β1G(b, s) = β2Gx(b, s) for a ≤ s ≤ b,

3. G(x, s) is continuous function of x for a ≤ x ≤ b,

4. Gx(s, x) is continuous for a ≤ x < s and for s < x ≤ b but has a step

discontinuity of magnitude − 1
a0(s) at x = s,

is called the Green’s function of the problem defined by the given differ-

ential equation with its boundary conditions.
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2. The Green’s Functions for Even Ordered Problems

In this section, we will discussed the Green’s function for some even order

problems. For the second order problem,

(−1)y′′ = f(y), t ∈ [0, 1] where f(y) > 0

with boundary condition y(0) = 0, y′(1) = 0, the associated Green’s func-

tion of

(−1)y′′ = 0

satisfying the above boundary conditions is

G2(t, s) =

 t if 0 ≤ t ≤ s ≤ 1

s if 0 ≤ s ≤ t ≤ 1
.

Now, for the fourth order differential equation

(5) (−1)2y′′′′ = f(y), t ∈ [0, 1] where f(y) > 0

with the boundary conditions

(6)

 y(0) = y′′(0) = 0

y′(1) = y′′′(1) = 0
,

the associated Green’s function of

(7) (−1)2y′′′′ = 0

satisfying (6) is

G4(t, s) =

 −
t3

6 −
s2t
2 + ts if 0 ≤ t ≤ s ≤ 1

− s3

6 −
st2

2 + ts if 0 ≤ s ≤ t ≤ 1
.
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Now, we derive the Green’s function for the even order problems.

Theorem 2.1. For the 2nth order differential equation

(8) (−1)ny(2n)(t) + f(y) = 0, n = 1, 2, 3 · · · t ∈ [0, 1],

with boundary conditions

(9)

 y(2k)(0) = 0

y(2k+1)(1) = 0 for k = 0, 1, 2, · · · , n− 1
,

the Green’s function of

(−1)ny(2n) = 0

satisfying the above conditions is

G2n(t, s) =
∫ 1

0
G2(t, w)G2n−2(w, s)dw.

Proof. Firstly, we will prove that the associated Green’s functions of

(−1)ny(2n) = f(y), n = 1, 2, 3 · · ·

satisfies

G2n(t, s) =
∫ 1

0
G2(t, w)G2n−2(w, s)dw

Suppose G2(t, s) is the Green’s function of −y′′(t) = 0 satisfying

y(0) = y′(1) = 0. Then

−y′′(t) = g implies y(t) =
∫ 1

0
G2(t, s)g(s) ds.
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Therefore, if

y
′′′′

(t) = g that is (y
′′
)
′′

= g

then y
′′
(t) = −

∫ 1

0
G2(t, s)g(s) ds = −H(t)

so that y(t) =
∫ 1

0
G2(t, w)H(w) dw

=
∫ 1

0
G2(t, w)

{∫ 1

0
G2(w, s)g(s) ds

}
dw

=
∫ 1

0

∫ 1

0
G2(t, w)G2(w, s)g(s) ds dw

=
∫ 1

0

{∫ 1

0
G2(t, w)G2(w, s) dw

}
g(s) ds

=
∫ 1

0
G4(t, s)g(s) ds

where

G4(t, s) =
∫ 1

0
G2(t, w)G2(w, s) dw.

By definition of G2(t, s),

G4(t, s) =
∫ 1

0
G2(t, w)G2(w, s) dw

implies G
′′
4(t, s) = −G2(t, s),

which implies that y
′′

satisfies the boundary conditions of the 2nd order

problem, i.e.; y(0) = 0, y′(1) = 0.

Likewise, G4(t, s) satisfies the boundary conditions (6) so that y(t) satisfies
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the boundary conditions

y(0) = 0,

y′(1) = 0,

y′′(0) = 0,

y′′′(1) = 0.

So, G4(t, s) is the Green’s function for the equation

(−1)2y
′′′′

(t) = 0

with boundary conditions

y(0) = 0,

y′(1) = 0,

y′′(0) = 0,

y′′′(1) = 0.

Also,

(−1)3y(6)(t) = g(t)
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implies that

−(y′′)(4)(t) = g(t).

So we know that − y′′(t) =
∫ 1

0
G4(t, s)g(s) ds = H(t)

so that y(t) =
∫ 1

0
G2(t, w)H(w) dw

=
∫ 1

0
G2(t, w)

∫ 1

0
G4(w, s)g(s) ds dw

=
∫ 1

0

{∫ 1

0
G2(t, w)G4(w, s)g(s) dw

}
ds

=
∫ 1

0
G6(t, s)g(s) ds

where

(10) G6(t, s) =
∫ 1

0
G2(t, w)G4(w, s)g(s) dw.

By definition of G2(w, s) ,(9) implies

G
′′
6(t, s) = −G4(t, s)

which means that y
′′

satisfies the boundary conditions above, that is,

y(0) = 0,

y′(1) = 0,

y′′(0) = 0,

y′′′(1) = 0.
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Also, G
′′
6(t, s) satisfies the boundary conditions for the 6th order differential

equation so that y(t) satisfies the boundary conditions

y(0) = 0,

y′(1) = 0,

y′′(0) = 0,

y′′′(1) = 0,

y′′′′(0) = 0,

y(5)(1) = 0.

Continuing in this way, we find out that

(11) G2n(t, s) =
∫ 1

0
G2(t, w)G2n−2(w, s) dw n ∈ N

is the Green’s function for

(−1)ny2n(t) = 0, n ∈ N

with boundary conditions

 y(2k) = 0

y(2k+1) = 0, k = 0, 1, 2, · · · , n− 1
.

�

The following theorem gives the bound of G2n which will be used in

Chapter 3.
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Theorem 2.2. For 1
2 ≤ t ≤ 1 and 0 ≤ s ≤ 1,

3n−1

24n−3
s ≤ G2n(t, s) ≤ 1.

Proof. We will prove this with induction and we will prove that G2n(t, s) ≥ 0

first. For n = 1, we know that

G2(t, s) =

 t if 0 ≤ t ≤ s ≤ 1

s if 0 ≤ s ≤ t ≤ 1
,

so G2(t, s) ≥ 0 and from Theorem 1.2,

G4(t, s) =
∫ 1

0
G2(t, w)G2(w, s) dw.

Obviously, G4 ≥ 0, Similarly,

G6(t, s) =
∫ 1

0
G2(t, w)G4(w, s) dw ≥ 0,

continuing in this way, we know that for all n,

G2n(t, s) ≥ 0.

For n = 1, it is obvious that

1
2
s ≤ G2(t, s) ≤ G2(s, s) = s ≤ 1.

Suppose that for n = k,

3k−1

24k−3
s ≤ G2k(t, s) ≤ 1
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is also true. Then for n = k + 1, from the previous part,

G2k+2(t, s) =
∫ 1

0
G2(t, w)G2k(w, s) dw

≥
∫ 1

1
2

1
2
w

3k−1

24k−3
s dw

=
1
2

3k−1

24k−3
s

∫ 1

1
2

w dw

=
3k

24k+1
s,

For the second inequality, we need to prove that G2n(s, s) ≤ 1, for n ∈ N.

When n = 1, G2(s, s) = s ≤ 1. Suppose for n = k, G2k(s, s) ≤ 1 is also true.

Then, for n = k + 1, since G2(s, s) ≤ 1 and G2k(s, s) = 1,

G2k+2(s, s) =
∫ 1

0
G2(s, w)G2k(w, s) dw ≤

∫ 1

0
1 · 1 dw =

∫ 1

0
1 dw ≤ 1,

which is also true. So, finally we have

3n−1

24n−3
G2n(s, s) ≤ G2n(t, s) ≤ 1,

for 1
2 ≤ t ≤ 1 and 0 ≤ s ≤ 1. �
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3. Background Definitions and a Twin Fixed-point Theorem

In this section, we will provide some background materials from the theory

of cones in Banach spaces, and we will use a twin-fixed point theorem for a

cone preserving operator.

Definition 3.1. Let (B, ‖·‖) be a real Banach space. A nonempty, closed,

convex set ρ ⊂ B is said to be a cone provided the following are satisfied

(a) if y ∈ ρ and λ ≥ 0, then λy ∈ ρ

(b) if y ∈ ρ and −y ∈ ρ, then y = 0.

For every cone in B, we define

x ≤ y if and only if y − x ∈ ρ.

Definition 3.2. Given a cone ρ in real Banach space B, a functional ψ :

ρ→ R is said to be non-decreasing on ρ, if ψ(x) ≤ ψ(y), for all x, y ∈ ρ with

x ≤ y.

Definition 3.3. Given a nonnegative continuous functional γ on a cone ρ

of a real Banach space B, we define for each d > 0, the set

ρ(γ, d) = {x ∈ ρ|γ(x) < d}.

Next, we are going to introduce a fixed-point theorem due to Avery and

Henderson to discuss the multiple positive solutions of the 2nth order dif-

ferential equation. The method requires that we determine whether the

differential problems with boundary conditions after transformed by the op-

erator A satisfy Avery and Henderson’s Fixed Point Theorem. If it does,

then we can say that the boundary value problems have at least two positive

solutions because the fixed points are the solutions.
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Theorem 3.4. (Avery-Henderson Fixed Point Theorem [1]) Let ρ be a cone

in a real Banach space B. Let α and γ be nondecreasing, nonnegative,

continuous functionals on ρ, and let θ be a nonnegative continuous functional

on ρ with θ(0) = 0 such that, for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x) and ‖x‖ ≤Mγ(x),

for all x ∈ ρ(γ, c). Suppose there exist a completely continuous operator

A : ρ(γ, c)→ ρ and 0 < a < b < c such that

θ(λx) ≤ λθ(x), for 0 ≤ λ ≤ 1 and x ∈ ∂ρ(θ, b),

and

(i) γ(Ax) > c, for all x ∈ ∂ρ(γ, c);

(ii) θ(Ax) < b, for all x ∈ ∂ρ(θ, b);

(iii) ρ(α, a) 6= ∅, and α(Ax) > a, for all x ∈ ∂ρ(α, a).

Then A has at least two fixed points x1 and x2 belonging to ρ(γ, c) such that a < α(x1), with θ(x1) < b

b < θ(x2), with γ(x2) < c
.
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4. Twin Positive Solutions of Even Order Differential

Equations with Boundary Conditions

In this section, we will apply Theorem 2.4 to establish the existence of

twin positive solutions of (8). Suppose G(2n)(t, s) is the Green’s function for

(−1)ny(2n) = 0. satisfying the boundary condition (9). As we discussed in

Theorem (1.3), for
1
2
≤ t ≤ 1, 0 ≤ s ≤ 1,

the Green’s function for (8)(9) satisfies

3n−1

24n−3
s ≤ G2n(t, s) ≤ 1.

Next, let the Banach space B = C[0, 1] be endowed with the norm

‖y‖ = max
0≤t≤1

{y(t)}, and choose the cone ρ ⊂ B defined by

ρ = {y ∈ B | y′′ < 0, y′ ≥ 0 and y ≥ 0 on [0, 1]}.

We fix
1
2
< r < 1,

and define the nonnegative, nondecreasing, continuous functionals, γ, θ, and α,

by

γ(y) = min
1
2
≤t≤r

y(t) = y(
1
2

),

θ(y) = max
0≤t≤ 1

2

y(t) = y(
1
2

),

α(y) = max
0≤t≤r

y(t) = y(r).

We know that, for each y ∈ ρ,

(12) γ(y) = θ(y) ≤ α(y).
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In addition, for each y ∈ ρ, we have γ(y) = y(1
2) ≥ 1

2y(1) = 1
2‖y‖. Thus,

(13) ‖y‖ ≤ 2γ(y), for all y ∈ ρ.

Finally, we also observe that,

(14) θ(λy) = λθ(y), 0 ≤ λ ≤ 1 and y ∈ ∂ρ(θ, b).

Now, we state growth conditions on f so that (8), (9) has at least two

positive solutions.

Theorem 4.1. Let 0 < a < 3n−1r2

24n−2 b <
3n−1r2

24n−1 c, and suppose that f satisfies

the following conditions:

(A) f(w) > 24n
3n c if c ≤ w ≤ 2c,

(B) f(w) < b if 0 ≤ w ≤ 2b,

(C) f(w) > 24n−2

3n−1r2
a if 0 ≤ w ≤ a.

Then, the boundary value problem (8) has at least two positive solutions, x1

and x2, such that

a < max
0≤t≤r

x1(t), with max
0≤t≤ 1

2

x1(t) < b,

b < max
0≤t≤ 1

2

x2(t), with min
1
2
≤t≤r

x2(t) < c.

Proof. We begin the proof by defining the completely continuous integral

operator A : B → B by

Ax(t) =
∫ 1

0
G2n(t, s)f(x(s)) ds, x ∈ B, 0 ≤ t ≤ 1.

It is well known that the solution of (8),(9) is the fixed points of A and

conversely. We will show that the conditions of Theorem 2.4 are satisfied.
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First, let x ∈ ρ(γ, c). By the nonnegativity of f and G2n, for 0 < t < 1,

Ax(t) =
∫ 1

0
G2n(t, s)f(x(s)) ds ≥ 0.

In addition, (Ax)′′ = −f(x(t)) ≤ 0. This implies (Ax)(t) is concave down

on [0, 1], and also (Ax)′ is nonincreasing. Since G2n(t, s) satisfies boundary

conditions of (9), we know that (Ax)′(1) = 0, and so (Ax)′(t) ≥ 0 on [0, 1].

Consequently, Ax ∈ ρ. We conclude A : ρ(γ, c)→ ρ.

Now, we turn to property (i) in Theorem 2.4. Choose x ∈ ∂ρ(γ, c), then

we have γ(x) = min
1
2
≤t≤r

x(t) = x(1
2) = c. Since x ∈ ρ, x(t) ≥ c, 1

2 ≤ t ≤ 1.

Because ‖x‖ ≤ 2γ(x) = 2c, we have

c ≤ x(t) ≤ 2c,
1
2
≤ t ≤ 1.

As a consequence of condition (A),

f(x(s)) >
24n

3n
c,

1
2
≤ s ≤ 1.

Also, Ax ∈ ρ, so

γ(Ax) = Ax(
1
2

)

=
∫ 1

0
G2n(

1
2
, s)f(x(s))ds

≥
∫ 1

1
2

G2n(
1
2
, s)f(x(s))ds.
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From Theorem 1.3

γ(Ax) ≥
∫ 1

1
2

3n−1

24n−3
sf(x(s))ds

>
24n

3n
c

3n−1

24n−3

∫ 1

1
2

sds

= c.

So (i) of Theorem 2.4 is satisfied.

Next, we will address (ii) of Theorem 2.4. We choose x ∈ ∂ρ(θ, b). Then

θ(x) = max
0≤t≤ 1

2

x(t) = x(1
2) = b. This implies 0 ≤ x(t) ≤ b, 0 ≤ t ≤ 1

2 , and

since x ∈ ρ, we also have b ≤ x(t) ≤ ‖x‖ = x(1), 1
2 ≤ t ≤ 1. Moreover,

‖x‖ ≤ 2γ(x) ≤ 2θ(x) = 2b, so,

0 ≤ x(t) ≤ 2b, 0 ≤ t ≤ 1.

From condition (B), we have f(x(s)) < b, 0 ≤ s ≤ 1 and so

θ(Ax) = Ax(
1
2

)

=
∫ 1

0
G(

1
2
, s)f(x(s))ds

< b

∫ 1

0
G(

1
2
, s)ds

≤ b ·
∫ 1

0
1ds = b · 1 = b.

Hence, (ii) of Theorem 2.4 holds. For the final part, we turn to (iii) of

Theorem 2.4. We define y(t) = a
2 , for all 0 ≤ t ≤ 1, then

α(y) = a
2 < a, and ρ(α, a) 6= ∅ We now choose x ∈ ∂ρ(α, a), which means
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α(x) = max
0≤t≤r

x(l) = x(r) = a. This implies

0 ≤ x(t) ≤ a, 0 ≤ t ≤ r

From assumption (C),

f(x(s)) >
24n−2

3n−1r2
a, 0 ≤ s ≤ r.

Then, the same as before, Ax ∈ ρ, and so

α(Ax) = (Ax)(r)

=
∫ 1

0
G2n(r, s)f(x(s))ds

≥
∫ r

0
G2n(r, s)f(x(s))ds

>
24n−2

3n−1r2
a

∫ r

0

3n−1

24n−3
sds

=
24n−2

3n−1r2
a

3n−1

24n−3

∫ r

0
sds

=
24n−2

3n−1r2
a

3n−1

24n−3
(
r2

2
)

= a.

Thus, (iii) of Theorem 2.4 is satisfied. Hence, there are at least two fixed

points of A which are positive solution belonging to ρ(γ, c), of the 2nth order

boundary value problem such that

a < α(x1), with θ(x1) < b

and

b < θ(x2), with γ(x2) < c.

�
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5. Background of Definitions and Theorems for Time Scale

In this section, I would introduce some definitions and theorems on time

scale introduced from Bohner, Martin and Peterson, Allen’s book Dynamic

Equations on Time Scales Birkhauser, Boston, [2].

A time scale is an arbitrary non-empty closed subset of the real numbers. It

is usually denoted by T. Thus R,Z,N,N0 are some examples of time scales.

But Q,R − Q {irrationals} ,C and (0, 1) ,i.e., the rational numbers, the

irrational numbers, the complex numbers, and the open interval between 0

and 1, are not time scales. We move through the time scale using forward

and backward jump operators. The gaps in the time scale are measured by

a function µ, defined in terms of forward jump operator, σ.

Definition 5.1. Forward jump operator Let T be a time scale, for t ∈ T.

we define :

Forward jump operator : An operator σ : T→ T, by

σ(t) := inf {s ∈ T : s > t}

Backward jump operator : An operator ρ : T→ T, by

ρ(t) := sup {s ∈ T : s < t}

Note 1: If σ(t) > t, we say that t is right − scattered, while if ρ(t) < t we

say that t is left−scattered. The points which are both right-scattered and

left-scattered are called isolated.

Note 2 : If t < sup T and σ(t) = t, then t is called right-dense.

Note 3 : If t > inf T and ρ(t) = t, then t is called left-dense.

The forward jump operator defined on t, σ(t), is not always equal to t. The
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difference between σ(t) and t is called graininess.

Definition 5.2. The Graininess of a time scale, T, µ : T→ [0,∞) is defined

by µ(t) = σ(t)− t for all t ∈ T.

Note 4: If T has a left-scattered maximum m, then Tk = T − {m} .

Otherwise Tk = T. That is,

Tk =


T− (ρ(sup T), supT] if supT <∞

T if sup T =∞.

Note 5: Let f : T→ R be a function, then we define the function, fσ : T→

R, by fσ(t) = f(σ(t)) for all t ∈ T, i.e., fσ = f ◦ σ.

Using σ we define the delta derivative of a function f in a natural way.

Definition 5.3. Differentiation: Assume f : Tk → R is a function and let

t ∈ Tk. Then we define f4(t) to be the number(provided it exists) with the

property that given any ε > 0 there exists a neighborhood U = (t−δ, t+δ)∩T

of t for some δ > 0 such that

|[f(σ(t))− f(s)]− f4(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U

where f4(t) is called delta derivative of f at t.

Using the limit definition, assume f : T→ R is continuous and let t ∈ Tk.

Then we define

f4(t) = lim
s→t

f(σ(t))− f(s)
σ(t)− s

,

provided the limits exist.

We will introduce the delta derivative f4 for a function f defined on T. It

is expressed as
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(i) f4 = f ′ (is the usual derivative) if T = R and

(ii) f4 = 4f (is the forward difference operator) if T = Z.

Theorem 5.4. Assume f : T → R is a function and let t ∈ Tk. Then we

have the following.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If t is right scattered and f is continuous at t, then f is differentiable

at t with

f4(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right- dense, then f is differentiable at t iff the limit

lim
s→ t

f(t)− f(s)
t− s

exists as a finite number. In this case

f4(t) = lim
s→ t

f(t)− f(s)
t− s

.

(iv) If f is differentiable at t,then

f(σ(t)) = f(t) + µ(t)f4(t).

Now we introduce the most powerful fundamentals of derivatives: the

sum rule, product rule, quotient rule and the transformation of the sigma

function in terms of original function and its derivative.

Theorem 5.5. Assume f , g: T→ R are differentiable at t ∈ Tk. Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)4(t) = f4(t) + g4(t).
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(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)4(t) = αf4(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)4(t) = f4(t)g(t) + f(σ(t))g4(t)

= f(t)g4(t) + f4(t)g(σ(t)).

(iv) If f(t)f(σ(t)) 6= 0, then 1
f is differentiable at t with

{
1
f

}4
(t) =

−f4(t)
f(t)f(σ(t))

(v) If g(t)g(σ(t)) 6= 0 then f
g is differentiable at t and

{
f

g

}
(t) =

f4(t)g(t)− f(t)g4(t)
g(t)g(σ(t))

In addition to the differentiability we need couple of more conditions for

integrability of the function.

Definition 5.6. A function f : T→ R is called regulated, provided its right-

sided limits exists(finite) at all right-dense points in T and its left-sided limits

exists(finite) at all left-dense points in T. The set of such function is denoted

by R.

Definition 5.7. A function f : T → R is called rd − continuous provided

it is continuous at right-dense points in T and its left-sided limits exist at

left-dense points in T. It is denoted by

Crd = Crd(T) = Crd(T,R).
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Definition 5.8. A continuous function f : T→ R is called pre-differentiable

in the region of differentiation D, provided D ⊂ Tk, Tk − D is countable

and contains no right-scattered elements of T, and f is differentiable at each

each t ∈ D.

Definition 5.9. Assume f : T → T is regulated function. Any function F

is called a pre− antiderivative of f if F4(t) = f(t).

Theorem 5.10. Existence of Pre-Antiderivative Let f be regulated. Then

there exists a function F which is pre-differentiable with region of differen-

tiation D such that F4(t) = f(t) holds for all t ∈ D.

The indefinite integral of a regulated function f is given by∫
f(t)4t = F (t) + C

where C is an arbitrary constant and F is a pre-antiderivative of f . We

define the Cauchy integral by∫ s

r
f(t)4t = F (s)− F (r)

for all r, s ∈ T.

Definition 5.11. A function F : T → R is called an antiderivative of

f : T→ R provided

F4(t) = f(t) holds for all t ∈ Tk.

TABLE : Time scale derivative and Antiderivative for T = R or T =

Z
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Time T symbol R Z

Backward jump operator ρ(t) t t− 1

Forward jump operator σ(t) t t+ 1

Graininess µ(t) 0 1

Derivative f4(t) f ′(t) 4f(t)

Integral
∫ b
a f(t)4t

∫ b
a f(t)dt

b−1∑
t=a

f(t)(if a < b)

Rd-continuous f continuous f any f

Theorem 5.12. If f ∈ Crd and t ∈ Tk, then∫ σ(t)

t
f(τ)4τ = µ(t)f(t).

Some fundamental laws of integration are summarized in the following

theorem including two laws of integration by parts.

Theorem 5.13. If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b
a (f(t) + g(t))4t =

∫ b
a f(t)4t+

∫ b
a g(t)4t;

(ii)
∫ b
a (αf)(t)4t = α

∫ b
a f(t)4t;

(iii)
∫ b
a f(t)4t = −

∫ a
b f(t)4t;

(iv)
∫ b
a f(t)4t =

∫ c
a f(t)4t+

∫ b
c f(t)4t

(v)
∫ b
a f(σ(t))g(t)4t = (fg)(b)− (fg)(a)−

∫ b
a f
4(t)g(t)4t;

(vi)
∫ b
a f(t)g4(t)4t = (fg)(b)− (fg)(a)−

∫ b
a f
4(t)g(σ(t))4t;

(vii)
∫ a
a f(t)4t = 0

(viii) If |f(t)| ≤ g(t) on [a, b), then |
∫ b
a f(t)4t| ≤

∫ b
a g(t)4t;

(ix) If f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b
a f(t)4t ≥ 0.

The interesting part of time scale calculus is that the integration can also

be performed if the domain of the function is a subset of the integers. Thus

integration of any function depends upon the domain of the function.
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Theorem 5.14. Let a, b, c ∈ T and f ∈ Crd.

(i) If T = R, ∫ b

a
f(t)4t =

∫ b

a
f(t)dt

where the integral on the right is the usual Riemann integral from calculus.

(ii) If [a,b] consists of only isolated points, then

∫ b

a
f(t)4t =



∑
t∈[a,b)

µ(t)f(t) if a < b

0 if a=b

−
∑

t∈[b,a)

µ(t)f(t) if a > b.

(iii) If T = Z, then

∫ b

a
f(t)4t =



b−1∑
t=a

f(t) if a < b

0 if a=b

−
a−1∑
t=b

f(t) if a > b.

Now we have gone through some basic definitions and theorems on time

scale which will be refered to in this thesis. In the next section, we will use

the integral on time scale when T = Z.
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6. Twin Positive Solutions of Even Order Difference Equation

with Boundary Conditions

In this section, by applying Theorem 2.4, we will prove that the following

dynamic equations

(15) ∆(2n)u(k) + g(u(k)) = 0, n = 1, 2, 3 · · · k ∈ {0, · · ·N}

with boundary conditions

(16)

 ∆(2k)u(0) = 0

∆(2k+1)u(N + 1) = 0 for k = 0, 1, 2 · · · , n− 1

has twin solutions. For n = 1, the associated Green’s function H2(k, l) is

H2(k, l) =

 k, k ∈ {0, 1, 2 · · · , l}

l + 1, k ∈ {l + 1 · · · , N + 2}.

For the 2nth order difference equation, the Green’s function is

H2n+2 =
∫ N

0
H2(k,w)H2n(w, s)∆w.

To find out the range of H2n(k, l), we set

h = [
N + 2n

2
], which denote the integer part of

N + 2n
2

,

then we can get the following theorem.

Theorem 6.1. For l = {0, 1, 2, · · · , N}, the Green’s function of (15), (16)

satisfies

H2n(k, l) ≤ (l + 1)(
N2 + 3N + 2

2
)n−1 for k = {0, 1, 2 · · · , N + 2n},

H2n(k, l) ≥ l + 1

2

[(h+N + 2)(N − h+ 1)]n−1

4n−1
for k = {h · · · , N + 2n}.
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Proof. We will prove the first inequality in the statement of the theorem by

induction. First, for n = 1,

H2(k, l) =

 k, k ∈ {0, 1, 2 · · · , l}

l + 1, k ∈ {l + 1 · · · , N + 2}.

H2(k, l) =

 k ≤ l < l + 1 when k ∈ {0, 1, 2, · · · , l}

l + 1 ≤ l + 1 when k ∈ {l + 1, l + 2, · · · , N + 2}
.

So it is verified.

Suppose that for n = m is also true. Then for n = m+ 1,

H2m+2(k, l) =
∫ N

0
H2(k,w)H2m(w, l)∆w

≤
∫ N

0
(w + 1)(l + 1)(

N2 + 3N + 2
2

)m−1∆w

= (l + 1)(
N2 + 3N + 2

2
)m−1

∫ N

0
(w + 1)∆w

= (l + 1)(
N2 + 3N + 2

2
)m−1

N∑
w=0

w + 1

= (l + 1)(
N2 + 3N + 2

2
)m−1(

N2 + 3N + 2
2

)

= (l + 1)(
N2 + 3N + 2

2
)m.

So, the inequality is also true for n = m+ 1. That is

H2n(k, l) ≤ (l+1)(N
2+3N+2

2 )n−1 for k = {0, 1, 2 · · · , N+2n}, l = {0, 1, 2, · · · , N}

holds. For the second inequality, for n = 1, obviously it is true. Suppose for
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n = m it is also true, Then for n = m+ 1,

H2m+2(k, l) =
∫ N

0
H2(k,w)H2m(w, l)∆w

≥
∫ N

h
H2(k,w)H2m(w, l)∆w

≥
∫ N

h

w + 1
2

l + 1
2

[(h+N + 2)(N − h+ 1)]m−1

4m−1
∆w

=
l + 1

2
[(h+N + 2)(N − h+ 1)]m−1

4m−1

∫ N

h

w + 1
2

∆w

=
l + 1

2
[(h+N + 2)(N − h+ 1)]m−1

4m−1

(N + h+ 2)(N − h+ 1)
4

=
l + 1

2
[(h+N + 2)(N − h+ 1)]m

4m
.

So, the inequality is also true for n = m+ 1 Therefore, we have

H2n(k, l) ≥ l + 1
2

[
(h+N + 2)(N − h+ 1)

4
]n−1 for k = {h · · · , N + 2n}, l = {0, 1, 2, · · · , N}.

The theorem is proved. �

Next, let the Banach Space B = {v : {0, · · · , N + 2n} → R} be endowed

with the norm ‖v‖ = max
k∈{0,··· ,N+2n}

|v(k)|, and choose the cone ρ ⊂ B defined

by

ρ = {v ∈ B | v(k) ≥ 0, v∆(k) ≥ 0 on {0, 1, · · · , N+2n}, and ∆2v(k) ≤ 0, k ∈ {0, · · · , N}}

For v ∈ ρ,

v(k) ≥ 1
2
‖v‖ =

1
2
v(N + 2n), for k ∈ {h, · · · , N + 2n}.

Also, for the remainder of this section, fix an integer r with

h < r < N + 2n− 1,
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and define the nonnegative, nondecreasing, continuous functionals, γ, θ,

and α on ρ, by

γ(v) = min
k∈{h,··· ,r}

v(k) = v(h),

θ(v) = max
k∈{0,··· ,h}

v(k) = v(h) and

α(v) = max
k∈{0,··· ,r}

v(k) = v(r).

We observe that, for each v ∈ ρ,

γ(v) = θ(v) ≤ α(v).

In addition, for each v ∈ ρ, γ(v) ≥ 1
2v(N + 2n) = 1

2‖v‖, so that

‖v‖ ≤ 2γ(v), for all v ∈ ρ.

Finally, we again have

θ(λv) = λθ(v), 0 ≤ λ ≤ 1 and v ∈ ∂ρ(θ, b).

As in the Section 4, we now will put growth condition on g such that (15)

and (16) has at least two positive solutions belonging to the cone ρ.

Theorem 6.2. Let 0 < a < [(h+N+2)(N−h+1)]n+1(r+1)(r+2)
[2(N2+3N+2)]n

b < [(h+N+2)(N−h+1)]n+1(r+1)(r+2)
2[2(N2+3N+2)]

c,

and suppose that g satisfies the following conditions:

(A) g(w) > [
4

(h+N + 2)(N − h+ 1)
]nc, if c ≤ w ≤ 2c,

(B) g(w) < (
2

N2 + 3N + 2
)nb, if 0 ≤ w ≤ 2b,

(C) g(w) > [
4

(h+N + 2)(N − h+ 1)
]n−1 4

(r + 1)(r + 2)
a, if 0 ≤ w ≤ a.
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Then, the dynamic equation (15) and (16) has at least two positive solutions,

u1 and u2, such that

a < max
k∈{0,1,··· ,r}

u1(k), with max
k∈{0,··· ,h}

u1(k) < b,

b < max
k∈{0,1,··· ,h}

u2(k), with min
k∈{h,··· ,r}

u2(k) < c.

Proof. Define the operator A : B → B by

Au(k) =
∫ N

0
H2n(k, l)g(u(l))∆k

From Theorem 5.3, it follows that

Au(k) =
N∑
l=0

H2n(k, l)g(u(l)), u ∈ B, k ∈ {0, · · · , N + 2n}

So, A is completely continuous, and it is well known that u ∈ B is a solution

of (11) if and only if u is a fixed point of A. Now we will show that the

conditions of Theorem 2.4 hold with respect to A. If we choose u ∈ ρ(γ, c),

then Au(k) =
∑N

t=0H(k, l)g(u(l)) ≥ 0 on {0, · · · , N + 2n}, in addition,

∆2(Au) = −g(u(k)) ≤ 0, and so ∆(Au) is nonincreasing on

{0, · · · , N + 2n− 1}. Thus, Au(k) is nondecreasing on {0, · · · , N + 2n}. In

addition, (Au)(0) = 0, and so (Au)(0) ≥ 0. Hence, we know that Au ∈ ρ,

so A : ρ(γ, c)→ ρ.

For (i) of Theorem 2.4, we choose u ∈ ∂ρ(γ, c). Then,

γ(u) = min
k∈h,··· ,r

u(k) = u(h) = c. This implies u(k) ≥ c, k ∈ {h, · · · , N + 2n}.

And because

‖u‖ ≤ 2γ(u) = 2c, we have

c ≤ u(k) ≤ 2c, k ∈ {h, · · · , N + 2n}.
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For condition (A),

g(u(l)) > [
4

(h+N + 2)(N − h+ 1)
]nc, l ∈ {h, · · · , N + 2}

Since Au ∈ ρ, we have

γ(Au) = (Au)(h)

=
N∑
l=0

H2n(h, l)g(u(l))

≥
N∑
l=h

H2n(h, l)g(u(l))

> [
4

(h+N + 2)(N − h+ 1)
]nc[

(h+N + 2)(N − h+ 1)
4

]n−1 ·

N∑
l=h

l + 1
2

= [
4

(h+N + 2)(N − h+ 1)
]nc[

(h+N + 2)(N − h+ 1)
4

]n−1

(h+N + 2)(N − h+ 1)
4

= [
4

(h+N + 2)(N − h+ 1)
]nc[

(h+N + 2)(N − h+ 1)
4

]n

= c.

Thus, part (i) of Theorem 2.4 is satisfied. To verify (ii) of Theorem 2.4 is

satisfied, we choose u ∈ ∂ρ(θ, b). Then, θ(u) = max
k∈{0,··· ,h}

u(k) = u(h) = b.

So 0 ≤ u(k) ≤ b, k ∈ {0, · · · , h}, and since u ∈ ρ, it follows that b ≤ u(k) ≤

‖u‖ = u(N + 2n), k ∈ {h + 1, · · · , N + 2n}. Recall that ‖u‖ ≤ 2γ(u) ≤

2θ(u) = 2b. So,

0 ≤ u(k) ≤ 2b, k ∈ {0, · · · , N + 2n}.
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From condition (B),

g(u(l)) < (
2

N2 + 3N + 2
)nb, l ∈ 0, · · · , N.

Then,

θ(Au) = (Au)(h)

=
N∑
l=0

H2n(h, l)g(u(l))

< (
2

N2 + 3N + 2
)nb

N∑
l=0

H2n(h, l)

< (
2

N2 + 3N + 2
)nb

N∑
l=0

(l + 1)(
N2 + 3N + 2

2
)n−1

= (
2

N2 + 3N + 2
)nb(

N2 + 3N + 2
2

)n−1
N∑
l=0

(l + 1)

= (
2

N2 + 3N + 2
)nb(

N2 + 3N + 2
2

)n−1N
2 + 3N + 2

2

= (
2

N2 + 3N + 2
)nb(

N2 + 3N + 2
2

)n

= b.

In particular, (ii) of Theorem 2.4 is satisfied.

Now we turn to (iii) of Theorem 2.4. We observe that v(k) = a, a2 ∈ ρ(α, a),

so ρ(α, a) 6= ∅. Let u ∈ ∂ρ(α, a). Then α(u) = max
k∈{0,··· ,r}

u(k) = u(r) = a. So

0 ≤ u(k) ≤ a, k ∈ {0, · · · , r}.

Using hypothesis (C), we have

g(u(l)) > [
4

(h+N + 2)(N − h+ 1)
]n−1 4

(r + 1)(r + 2)
a, l ∈ {0, · · · , r}

from which we obtain
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α(Au) = (Au)(r)

=

N∑
l=0

H2n(r, l)g(u(l))

≥
r∑

l=0

H2n(r, l)g(u(l))

> [
4

(h+N + 2)(N − h+ 1)
]n−1 4

(r + 1)(r + 2)
a

r∑
l=0

H2n(r, l)

= [
4

(h+N + 2)(N − h+ 1)
]n−1 4

(r + 1)(r + 2)
a[

(h+N + 2)(N − h+ 1)

4
]n−1

r∑
l=0

l + 1

2

= [
4

(h+N + 2)(N − h+ 1)
]n−1 4

(r + 1)(r + 2)
a[

(h+N + 2)(N − h+ 1)

4
]n−1 (r + 1)(r + 2)

4

= a.

So, part(iii) of Theorem 2.4 holds. Thus the dynamic equation (14)(15)

has at least two positive solutions, u1 and u2, such that

a < max
k∈{0,1,··· ,r}

u1(k), with max
k∈{0,··· ,h}

u1(k) < b

b < max
k∈{0,1,··· ,h}

u2(k), with min
k∈{h,··· ,r}

u2(k) < c.

The proof is completed. �
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