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Variable Shape Parameter Strategies in Radial Basis

Function Methods

Derek Sturgill

ABSTRACT

The Radial Basis Function (RBF) method is an important tool in

the interpolation of multidimensional scattered data. The method has

several important properties. One is the ability to handle sparse and

scattered data points. Another property is its ability to interpolate

in more than one dimension. Furthermore, the Radial Basis Function

method provides phenomenal accuracy which has made it very pop-

ular in many fields. Some examples of applications using the RBF

method are numerical solutions to partial differential equations, image

processing, and cartography. This thesis involves researching Radial

Basis Functions using different shape parameter strategies. First, we

introduce the Radial Basis Function method by stating its history and

development in Chapter 1. Second, we explain how Radial Basis Func-

tions work in Chapter 2. Chapter 3 compares RBF interpolation to

polynomial interpolation. Chapters 4 and 5 introduce the idea of vari-

able shape parameters. In these chapters we compare and analyze the

variable shape parameters in one and two dimensions. In Chapter 6, we

introduce the challenges in interpolations due to errors in boundary re-

gions. Here, we try to reduce the error using different shape parameter
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strategies. Chapter 7 lists the conclusions resulting from the research.

Throughout the thesis we use some abbreviations and acronyms,

they are listed below in the Table 1.

Term Meaning

ε Shape parameter
φ(r) Radial Basis Function or RBF
κ, kappa, or κ(B) Condition number of the system matrix
κC Condition number of the system matrix for a constant ε

κE Condition number of the system matrix for an exponential ε

κL Condition number of the system matrix for a linear ε

κR Condition number of the system matrix for a random ε

εAverage Average value for the shape, ε

εMax Maximum value for the variable shape for ε

εMin Minimum value for the variable shape for ε

GA Gaussian RBF
IMQ Inverse multiquadric RBF
IQ Inverse quadratic RBF
LI Linear RBF
MQ Multiquadratic RBF
TPS Thin Plate Spline RBF

Table 1: Abbreviations and Acronyms.

The following notes are highlighted, in order to clarify how things

are stated in the thesis:

Note: Matlab does not display scientific notation as we are

used to seeing. For example, 1.2×102 is written by Matlab to be 1.2e2.

Please be aware of this throughout the thesis. This different form of

scientific notation is very common in numerical analysis papers. Do

not mistake e to be e ≈ 2.71828183.

Note: Starting at chapter 3, the reader will see the words
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εMin, εMax, and εAverage. εMin, εMax, and εAverage correspond

to the value associated with the shape parameter in the MQ RBF.

The Multiquadric Radial Basis function does not use c as the shape

parameter, but ε. The reader will see this notation (ε) in Table 3 that

displays different radial basis functions.
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1 Introduction to Radial Basis Functions

The Radial Basis Function approximation method is a generalized re-

finement of the multiquadric (MQ) method developed by R. L. Hardy

in 1968, [18]. Hardy developed the multiquadric method for solving a

problem in cartography. He needed a “satisfactory” continuous func-

tion, that given points few and far between could construct a topo-

graphic map with low errors. For example, he could use this method

to draw a map of a rocky cliff side and guarantee its accuracy when

compared to the true form. Why we used the term “satisfactory” was

because it best approximated the function that could provide an ex-

act fit of the data values. The method reproduced such abnormalities

as valleys, drainage areas, hilltops, and cliffs. When Hardy started

the creation of the multiquadric method, a skilled topographer would

ultimately rely on his/her perspective to accurately decide how the

surface should look like [19], even though there were available analyt-

ical methods that could determine the slope of the surface from one

point to another. This reliance on perspective could lead to two very

skilled topographers to envision and create two very different maps from

the same data. The multiquadric method is an unbiased, automated

method which could produce such a graph with very few errors.

The development of the multiquadric method was not used for to-

pographic maps alone. The multiquadric method used in conjunction

with analytic geometry and calculus to determine such things as vol-
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umes of earth, valleys, mountaintops, and the distance along a curved

line [18], [19].

The development of the topographic surface functions involved many

types of interpolation functions. The first functions used polynomial

interpolation and Fourier methods, although they were discovered to be

unsatisfactory. Each method was found to have different faults. Poly-

nomial interpolation was unsatisfactory because given few data points

the method was unable to accurately represent the rapid variations in

the topographic surface [18]. Fourier interpolation, also, had a prob-

lem with few data points. It was discovered that the Fourier series

given few data points created a function that tended to oscillate too

much between the data points [18]. Given these problems with limited

data points, there was another problem with matrix singularity. In-

terpolation with the Fourier series and polynomials could be singular

using Haar’s Theorem. The Least-squares methods based on polyno-

mial and Fourier series were also investigated for a topographic surface

construction. It was later found out that the Least-squares method did

not accurately provide a good fit of the data [18].

The collapse of the Fourier and polynomial series and the Least-

squares methods for satisfactory functions that could represent a topo-

graphical surface helped lead Hardy to a new method which met the

needs and surpassed the short comings of the other methods. Through

trial and error, Hardy eventually discovered the multiquadric method.

The first step Hardy took was to investigate a one dimensional

2
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Figure 1: The figure on the left is sin(πx), the figure on the right is the
representation of sin(πx) using the Multiquadric RBF method.

problem. Hardy wanted to create a satisfactory function that could

represent a topographical curve. While studying this problem, Hardy

discovered the data could be satisfactory represented by a piecewise

linear interpolating function [19]. He proposed that given a set of n

distinct scattered data points {xj}n
j=1 and corresponding measurements

{fj}n
j=1, that the form of the interpolating function should look like:

s(x) =
n

∑

j=1

λj |x− xj |, (1)

where the λj’s are determined by the interpolation conditions; i.e.

s(xj) = fj, j = 1, 2, 3, . . . , n. Geometrically, this is interpolating the

data by a linear combination of n translates of the absolute value func-

tion |x|, given that the vertex of |x| is centered at one of the data

points.

Hardy soon recognized the interpolating function, (1), accurately

modeled a cliff. However, it did not find hilltops (maximums) and
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valleys (minimums) since the function had a jump in the first deriva-

tive at each source point. Hardy figured out that this problem could

be solved by removing the absolute value basis function in equation

number (1) and replacing it with a function that is continuously dif-

ferentiable. Hardy’s function was
√
c2 + x2, where c is an arbitrary

non-zero constant [19]. The new interpolation method became

s(x) =

n
∑

j=1

λj

√

c2 + (x− xj)2, (2)

where again, the λj’s are determined by the interpolation conditions.

Note that for the above function, (2), if c 6= 0 this results in a con-

tinuously differentiable interpolant. However, if c = 0 function (2)

is equivalent to the interpolating function (1). Relatively speaking,

the same geometric interpretation held for the new method. The new

method did not use the absolute value basis function; but instead, it

uses a linear combination of translates of the hyperbolic basis function.

Hardy discovered the new method (2) could provide an accurate il-

lustration of the topographic region, and the methods of calculus could

be used. Using this new method, Hardy found the maximum and in-

flection points of the topographic region.

Hardy applied the new method to more than a one dimensional

space. Note that the absolute value of the difference between two one-

dimensional space is the Euclidean distance between the two points;

for example, |x − xj | =
√

(x− xj)2. Now he needed to create a in-

4



terpolating function of the form (2) to work in two dimensions. What

Hardy created was an interpolating function based on translates of the

Euclidean distance function in two dimensions. Hence, given n distinct

scattered data points {xj , yj}n
j=1 and corresponding topographic mea-

surements {fj}n
j=1 for  = 1, 2, 3, . . . , n, Hardy proposed the following

interpolation function

s(x, y) =

n
∑

j=1

λj

√

(x− xj)2 + (y − yj)2, (3)

where the λj’s are again determined by interpolation; i.e. s(xj , yj) = fj

for  = 1, 2, 3, . . . , n . Geometrically speaking, this method relates to

interpolating the data by a linear combination of n number translates

of a cone. To be exact φ(r) =
√

x2 + y2. Also as previously described

in one dimension, the vertex of each cone is centered at one of the

data points. Again, Hardy ran into the same problem as his one-

dimensional interpolating function. The problem was that function (3)

suffered from being a piecewise continuous. He was unable to find a

simple fix for this problem. Hardy proposed using a linear combination

circular hyperboloid basis functions (rotated hyperbola basis functions
√
c2 + x2 translated to be centered at each source point). The new

form of (3) is

s(x, y) =
n

∑

j=1

λj

√

c2 + (x− xj)2 + (y − yj)2. (4)
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We can apply the techniques in multivariable calculus for determining

properties of the topographic surface, if c 6= 0.

Hardy discovered that the new function, (4), was an excellent method

for approximating topographical information from sparse data points.

Unlike the Fourier series, the new function did not suffer from large

oscillations. Also, the function alleviated the problem associated with

the polynomial series method (i.e. the polynomial series was unable to

account for rapid variations of the topographical surface) [18]. Hardy

named this new technique the “multiquadric method”, because he con-

sidered the key features of this method to be a “superpositioning of

quadric surfaces” [19].

Hardy first developed the the multiquadric method (4) only for

solving two dimensional interpolation problems. He then realized he

could extend the method to include interpolation for more than two

dimensions. The RBF method, (4), depends on its Euclidean distance

of the point (x, y) from its center (xj, yj). We could extend (4) to three

dimensions by creating a basis function that depends on the Euclidean

distance of the point (x, y, z) from its center (xj , yj, zj). We can con-

tinue this “trend” to interpolate in any dimension. This lead to the

following definition of the general multiquadric method for interpola-

tion in any dimension:

Definition 1 “The Multiquadric(MQ) method”-Given a set of n

distinct data points {xj}n
j=1 in Rd where each x = x1 + x2 + . . . + xd,

6



and corresponding data values {fj}n
j=1, the multiquadric interpolant of

the distinct data points is given by the function,

s(x) =

n
∑

j=1

λj

√

c2 + ||x− xj ||2 (5)

where || · || represents the Euclidean norm. The expansion coefficients,

λj , are determined from the interpolation conditions s(xj) = fj, j =

1, 2, 3, . . . , n, which leads to the following linear, symmetric system:

[B][λ] = [f ] (6)

where the entries of matrix B are given by the functions

bjk =
√

c2 + ||xj − xk||2

.

After the publication of Hardy’s paper [18], researchers of many

different fields began using the multiquadric method. The MQ method

is very successful in the fields of geology, geophysics, hydrology, geodesy

photogrammetry and other fields [19]. There have been advances in

fault classification in transmission lines and aero-engine designs using

RBF’s in references [1, 28]. Radial Basis Functions have also been used

to estimate radiation and electromagnetic field problems in references

[27, 30]. RBF’s are found in the construction industry as well [2, 31, 40].

A very important advancement in the field of the multiquadric
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method was done in 1974 by Richard Franke [14]. In this study, Franke

compared a variety of methods that could be used for interpolating two

dimensional scattered data. Franke compared 32 methods to see how

they approximated 6 different test functions that were sampled on 3

different density levels [15]. The 6 different test functions Franke used

generated surfaces for the comparison and were given the titles: “expo-

nential test”, “cliff test”, “gentle test”, “steep test”, “saddle test”, and

“sphere test” [19]. The density levels included 25, 33, and 100 scat-

tered data points on the 6 different test functions. The Multiquadric

method provided the best approximations for 13 of 18 test, and was

second best 3 times for the rest [15]. Table 2 shows a few results of

Frank’s experiment [15].

Method Sensitivity Complexity Accuracy Visual

Duchon’s TPS N A A A
Franke’s Method- 3 C D B B
Franke’s Method- TPS C D B+ B+

Hardy’s Multiquadrics B A A A
Hardy’s Reciprocal MQ B A A A
Modified Linear Shepard C B C C

Table 2: Franke’s Test of Interpolation Methods.

Though Franke provided numerical evidence that the MQ method

was efficient for interpolation, he did not provide any mathematical

foundation for it. It had not been shown that the method was uniquely

solvable. Franke could not provide a sufficient proof that the matrix

B in (6) was nonsingular. He could only show that the matrix B was
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non-singular through extensive numerical experiments.

Later in 1986, Micchelli [29] provided a proof of Franke’s conjec-

ture. Micchelli provided sufficient conditions that could guarantee the

nonsingularity of the method when other basis functions were used.

For example, Micchelli’s results guaranteed nonsingularity of Hardy

and Göpfert basis functions [20]. Göpfert basis function is defined as

(c2 +‖x‖)−1
2 . Also Duchon’s basis functions [8]: ‖x‖2 log ‖x‖ and ‖x‖3,

fit Micchelli’s conditions superbly.

Fifteen years after Hardy created the idea of fitting multidimen-

sional scattered data with a linear combination of translates of the

basis function
√

c2 + ‖x‖2, Micchelli showed that the method was un-

conditionally nonsingular, and given certain conditions that the system

matrix resulting from any RBF could be guaranteed to be nonsingular.

Therefore, the multiquadric method was chosen to be the specific ex-

ample from a variety of basis functions. The principle behind a more

general method was to use translates of one basis functions that was

dependent on the Euclidean distance from its center in order to create a

multidimensional interpolant. Given this dependence, it implied that

the function is “radial” symmetric about its center. Hence, became

known as “radial basis functions” and this method became known as

the RBF method [32].
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1.1 Radial Basis Function Method

As we have stated before, the RBF method is one of the important

tools for the interpolation of sparse, scattered, data points in multi-

dimensions. Using this method, we have the ability to approximate

an underlining function, and it has become very popular in a diversity

of fields. In this thesis we used a “simple” form of the Radial Basis

Function. By “simple” we mean the method is not augment with poly-

nomials. Let it be known, that otherwise stated that x represents xj in

Rd where d is a positive integer, || · || represents the Euclidean norm,

and fj is a scalar value.

Definition 2 “Simple RBF Method”- Given a set of n distinct

data points {xj}n
j=1 and corresponding data values {fj}n

j=1, the simple

Radial Basis Function interpolant is produced by,

s(x) =
n

∑

j=1

λjφ(‖x− xj‖) (7)

where φ(‖x−xj‖) = φ(r), r ≥ 0, is a radial function. λj , the expansion

coefficients, are determined by the interpolant conditions s(xj) = fj for

j = 1, 2, 3, . . . , n. The above produces the symmetric linear system,

[B][λ] = [f ]. (8)

The entries in matrix B are given by the formula bij = φ(‖xi − xj‖).
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Micchelli [29] gave adequate conditions for φ(r) in (7) to ensure that

the matrix B in (8) would be nonsingular; therefore, the Radial Basis

Function method is uniquely solvable. Some examples of Radial Basis

Functions are listed in Table 3 and Figure 2.

Name of RBF Abbreviations φ(r), r ≥ 0 Smoothness

Gaussian GA e−(εr)2 Infinite
Generalized Multiquadric GMQ (1 + (εr)2)β Infinite
Inverse Multiquadric IMQ 1√

1+(εr)2
Infinite

Inverse Quadratic IQ 1
1+(εr)2

Infinite

Multiquadric MQ
√

1 + (εr)2 Infinite

Cubic CU r3 Piecewise
Linear LI r Piecewise
Monomial MN r2k−1 Piecewise
Thin Plate Spline TPS r2 log(r) Piecewise

Table 3: Radial Basis Function Table.

The variable ε in the infinitely smooth Radial Basis Functions is

known as the shape parameter, which as it suggests, controls the shape

of the functions. In the experiments and thesis, ε, is a non-zero real

value. Notice how the Multiquadric differ from Hardy’s definition (5),

we have replaced c with 1
ε
. The replacement of c with 1

ε
has become

common in recent years [36].

Now we discuss the conditions for φ(r) that would guarantee the

matrix B in (5) to be non-singular. The conditions are attributed

to Schoenberg [37] in 1938. Micchelli later showed that Schoenberg’s

conditions could be relaxed to include many more functions.

11



0 0.5 1 1.5 2
1

1.5

2

2.5

r

f(
r)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

r

f(
r)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r

f(
r)

Figure 2: Graphs of some Radial Basis Functions (left to right: MQ, LI,
GA) with ε = 1.

Theorem 1 Schoenberg [37]- If ψ(r) = φ(
√
r) is completely mono-

tone but not constant on [0,∞), then for any set of n distinct points

{xj}n
j=1, the n× n matrix B with entries bij = φ(‖xi − xj‖) is positive

definite and thus non-singular.

Definition 3 “Completely Monotone Function”- A function ψ,

it is defined to be completely monotone on [0,∞) if the following con-

ditions hold,

(1) ψ ∈ C[0,∞)
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(2) ψ ∈ C∞(0,∞)

(3) (−1)lψl(r) ≥ 0 for r > 0 and l = 0, 1, 2, 3, . . .

Later on Micchelli [29] extended Schoenberg’s theorem.

Theorem 2 Micchelli [29]- Let ψ(r) = φ(
√
r) ∈ C[0,∞), ψ(r) > 0

for r > 0, and ψ′(r) be completely monotone but not constant on

(0,∞). Then for any set of n distinct points {xj}n
j=1, the n×n matrix

B with entries bij = φ(‖xi − xj‖) is non-singular. Furthermore, for

n ≥ 2, the matrix B has n − 1 negative eigenvalues and one positive

eigenvalue.

Next we explore the Multiquadric radial basis function to see if it fits

Micchelli’s theorem above. For the Multiquadric radial basis function

ψ(r) = φ(
√
r) is defined to be

√

1 + (εr)2 for r ≥ 0. Since r is defined

to be greater than or equal to zero, we write the above equation to be

ψ(r) =
√

1 + ε2r.

ψ(r) =
√

1 + ε2r

ψ′(r) =
ε2

2
√

1 + ε2r

ψ(2)(r) =
−ε4

4(1 + ε2r)
2
3

ψ(3)(r) =
3ε6

8(1 + ε2r)
5
2

... =
...
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ψ(ℓ)(r) =
Γ(ℓ− 1

2
)ε2ℓ(−1)ℓ−1

2
√
π(1 + ε2r)ℓ− 1

2

for ℓ = 1, 2, 3, . . .

and thus we have,

(−1)lψl(r) =
Γ(ℓ− 1

2
)ε2ℓ

2
√
π(1 + ε2r)ℓ− 1

2

for ℓ = 1, 2, 3, . . . [34]

The Gamma function, Γ, is non-negative since it is a generalization of

factorials to the non-integer values. Hence, ψ′(r) is completely mono-

tone and fits Theorem 2 of Micchelli. Thus the MQ system matrix

is invertible. Likewise, the above can be shown for the IQ and IMQ

basis functions. For the IQ and IMQ basis functions ψ(r) = e−(ε2r) and

ψ(r) = 1
1+ε2r

respectively thus,

ψ(r) = e−(ε2r) ψ(r) = 1
1+ε2r

ψ′(r) = −ε2e−(ε2r) ψ′(r) = −ε2

(1+ε2r)2

ψ(2)(r) = ε4e−(ε2r) ψ(2)(r) = 2ε4

(1+ε2r)3

ψ(3)(r) = −ε6e−(ε2r) ψ(3)(r) = −6ε6

(1+ε2r)4

ψ(4)(r) = ε8e−(ε2r) ψ(4)(r) = 24ε8

(1+ε2r)5

... =
...

... =
...

ψ(ℓ)(r) = ε(2ℓ)e−(ε2r)(−1)ℓ ψ(ℓ)(r) = (−1)ℓε(2ℓ)(ℓ!)

(1+ε2r)(ℓ+1)

for ℓ = 0 , 1 , 2 , 3 , . . .

and thus we have,

(−1)ℓψ(ℓ)(r) = ε2(ℓ)e−(ε2r) (−1)ℓψ(ℓ)(r) = ε2(ℓ)(ℓ!)

(1+ε2r)(ℓ+1)

14



We see that for the IQ and IMQ basis functions, the above quantities

are greater than or equal to 0 for ℓ = 0, 1, 2, 3, . . .Applying Micchelli’s

theorem, we see that the IQ and IMQ system matrices are invertible.

In conclusion, Theorems 1 and 2 state the needed conditions which

guarantees that the “simple” Radial Basis Function method is uniquely

solvable. In this thesis we use the Multiquadric method, unless we have

have stated otherwise.
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2 How Radial Basis Function Approximation works

2.1 Radial Basis Function Interpolation

First, we rephrase the definition of the Multiquadric Interpolation.

Definition 4 “Multiquadric Interpolation of Scattered Data”-

Given scattered data (xj , fj) for j = 1, 2, 3, . . . , n and where xj ∈ Rd

and fj ∈ R, find an infinitely differentiable function, s(x), such that

s(xj) = fj for j = 1, 2, 3, . . . , n [35]

The MQ method produces the function s(x) by using linear combi-

nations of translations of one of the infinitely differentiable functions

φ(r). Given a set of centers xc
1, x

c
2, x

c
3, . . . , x

c
n in Rd, the MQ interpolant

takes the form of

s(x) =

n
∑

j=1

λjφ(‖x− xc
j‖2, ε) (9)

where

r = ‖x‖2 =
√

x2
1 + x2

2 + x2
3 + · · · + x2

d. (10)

The expansion coefficents λj ’s are determined by the interpolation con-

dition

s(xj) = fj for j = 1, 2, 3 . . . , n (11)

at a set of nodes that usually coincide with the centers, xc
1, x

c
2, x

c
3, . . . , x

c
n.
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After applying the interpolation conditions we have the following

linear system,

Bλ = f (12)

where again the λ’s need to be determined. Matrix B in (12) is an

n × n matrix with entries, (Note: For simplicity reasons in the later

Matlab code and further text n is now referred to as N.)

bij = φ(‖xc
i − xc

j‖2) where i, j = 1, 2, 3, . . . , N (13)

The N × N matrix B is called the interpolation matrix or the sys-

tem matrix [35]. The bij entries of the system matrix are made up of

functions which approximate the space evaluated between the center

locations. To evaluate the interpolant at M number of points, xi, we

use (9) to create aM×N evaluation matrix. The evaluation matrix [35]

is denoted by H . The matrix H contains elements of form

hij = φ(‖xi − xc
j‖2) where i = 1, . . . ,M and j = 1, . . . , N. (14)

The interpolant evaluated a M number of points is,

fapproximate = HB−1fexact = Hλ. (15)

To better understand the MQ RBF method, we explore it through

some examples. The Matlab code used to produce the result for Ex-

amples 1 and 2 is listed in Listing 1. For Example 2, we only modified
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the code from Example 1.

Listing 1: InterpolationExample1Dimensional.m
� �

%MQ RBF i n t e r p o l a t i o n .

%Modi f i ed ve r s i on o f Dr . Scott Sarra code

%Can be f u r the r modi f i ed to meet d i f f e r e n t requi rements below

c l ea r , home

xc = [ 0 ; 0 . 5 ; 1] ;% vector o f c en t e r s

x = [ 0 ; 1/5 ; 2/5 ; 3/5 ; 4/5 ; 1] ;% vector o f eva luat i on po ints

xp = l i n s p a c e (0 ,1) ;% 100 evenly spaced po ints f o r 0 to 1

f = exp ( s i n ( p i ∗xc ) ) ;

fExact = exp ( s i n ( p i ∗x ) ) ;

shape = 3;% shape parameter

B = systemMatrix ( xc , shape );% c r e a t e s system matrix

H = eva luat i onMatr ix ( xc , x , shape );% c r e a t e s eva luat i on matr ic

lambda = B\ f ;% s o l v e s f o r lambda

fApprox = H∗ lambda;% approximation o f the true f unc t i on

format long , format compact

pointWiseErrors = abs ( fApprox − fExact)% er r o r c a l c u l a t i o n

fApproximation = fApprox% l i s t the va lues o f the approximate

% func t i on

fExactTrue = fExact% l i s t exact f unc t i on va lues

format % r e s e t the formats to de f au l t

%p l o t t i n g i s below

p l o t (xp , exp ( s i n ( p i ∗xp ) ) , ’ g ’ , xc , f , ’ r ∗ ’ , x , fApprox , ’ ko ’ )

x l abe l ’ x ’ , y l abe l ’ f ( x ) ’
� �
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Example 1 MQ RBF Interpolation: Let f(x) = esin(πx) be the

function that we are interpolating. We interpolate f(x) on the interval

[0, 1] using the center locations: xc
1 = 0, xc

2 = .5, xc
3 = 1. We evaluate

the interpolant at the following points: x1 = 0, x2 = 1
5
, x3 = 2

5
, x4 =

3
5
, x5 = 4

5
, x6 = 1. The shape parameter is taken to be 3.

From here we need to determine the unknown RBF expansion coef-

ficients denoted λ, the system matrix B, and the evaluation matrix H .

Here, f = [f(xc
1) f(xc

2) f(xc
3)]

T = [f(0) f(.5) f(1)]T = [0 2.25 4]T .

The 3 × 3 system matrix was [35],

B =











φ(‖xc
1 − xc

1‖2) φ(‖xc
1 − xc

2‖2) φ(‖xc
1 − xc

3‖2)

φ(‖xc
2 − xc

1‖2) φ(‖xc
2 − xc

2‖2) φ(‖xc
2 − xc

3‖2)

φ(‖xc
3 − xc

1‖2) φ(‖xc
3 − xc

2‖2) φ(‖xc
3 − xc

3‖2)











After we have obtained B, we can solve the expansion coefficients λ

and get λ = [1.668483972787157 − 3.297522687714909

1.668483972787156]T . After we found the expansion coefficients, we

need to form the evaluation matrix . For this example, H is a 6 × 3

matrix of the form below [35].

19



H =































φ(‖x1 − xc
1‖2) φ(‖x1 − xc

2‖2) φ(‖x1 − xc
3‖2)

φ(‖x2 − xc
1‖2) φ(‖x2 − xc

2‖2) φ(‖x2 − xc
3‖2)

φ(‖x3 − xc
1‖2) φ(‖x3 − xc

2‖2) φ(‖x3 − xc
3‖2)

φ(‖x4 − xc
1‖2) φ(‖x4 − xc

2‖2) φ(‖x4 − xc
3‖2)

φ(‖x5 − xc
1‖2) φ(‖x5 − xc

2‖2) φ(‖x5 − xc
3‖2)

φ(‖x6 − xc
1‖2) φ(‖x6 − xc

2‖2) φ(‖x6 − xc
3‖2)































After we form H , we will evaluate the interpolant as Hλ. Output from

this example is listed in Table 4.
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1
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f(
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Figure 3: Graph of Example 1. The red asterisks are the exact function value
at the center locations, the open black circles are the approximate function
values at the evaluation points, and the green line is f(x) = esin(πx) where
x ∈ [0, 1].

Clearly the numerical evidence listed in Table 4 and the Graph 3,

using the MQ RBF to interpolate f(x) = esin(πx) was a satisfactory

choice. The highest point-wise error was 4.7468e−2 and the lowest
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f(x)exact f(x)approximate Point-wise errors

1.000000000000000 1.000000000000002 0.000000000000002
1.799997457304433 1.847465233053820 0.047467775749387
2.588442947332867 2.599159299556487 0.010716352223620
2.588442947332867 2.599159299556487 0.010716352223620
1.799997457304434 1.847465233053819 0.047467775749386
1.000000000000000 1.000000000000002 0.000000000000002

Table 4: Data of MQ RBF Interpolation Example 2.1.1.

point-wise error was 2e−15 for the given six evaluation points. We see

from Table 4 that the error in the approximation for the first and last

point is zero. The reason is that the first and last center and evaluation

points coincide. From the interpolation conditions s(xc
i) = f(xi) should

be exact. We try another example of interpolating with the MQ RBF

to further understand the mechanics of its use.

Example 2 MQ RBF Interpolation: Let f(x) = x2 +2x+1 be the

function that we are interpolating. We interpolate f(x) on the interval

[−1, 1] using the center locations: xc
1 = −1, xc

2 = −1
3
, xc

3 = 1
3
, xc

4 = 1.

We evaluate the interpolant at the following points: x1 = −1, x2 =

−1
2
, x3 = 0, x4 = 1

2
, x5 = 1. The shape parameter, ε, is again taken

to be 3.

We have

f = [f(xc
1)f(xc

2)f(xc
3)f(xc

4)]
T = [f(−1)f(−1

3
)f(

1

3
)f(1)]T = [0

4

9

16

9
4]T

, and the 4 × 4 system matrix, B, is
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B =



















1 2.23606797749979 4.12310562561766 6.08276253029822

2.23606797749979 1 2.23606797749979 4.12310562561766

4.12310562561766 2.23606797749979 1 2.23606797749979

6.08276253029822 4.12310562561766 2.23606797749979 1



















After we have obtained B, we solve for the expansion coefficients λ in

equation (12). Solving equation (12) for λ, we have

λ = [0.48 0.1351 0.4184 − 0.4122]T

. After creating the system matrix and solving for the expansion co-

efficients, our next step is to create the evaluation matrix H . H for

this example was a 5×4 matrix. The numerical form of the evaluation

matrix is,

H =

























1 2.23606797749979 4.12310562561766 6.08276253029822

1.80277563773199 1.11803398874990 2.69258240356725 4.60977222864644

3.16227766016838 1.41421356237310 1.41421356237310 3.16227766016838

4.60977222864644 2.69258240356725 1.11803398874990 1.80277563773199

6.08276253029822 4.12310562561766 2.23606797749979 1

























After we have formed H , we interpolate the given function. The

approximation of the function is simply Hλ. Data for this interpolation

is in Table 5.

Again we see that using a MQ RBF interpolant to interpolate

f(x) = x2 +2x+1 where x ∈ [−1, 1] produced very satisfactory results.

The smallest point-wise error is 0 at xc and the largest is approximately
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Figure 4: Graph of Example 2. The red asterisks are the exact function value
at the center locations, the open black circles are the approximate function
values at the evaluation points, and the green line is f(x) = x2 + 2x + 1
where x ∈ [−1, 1].

f(x)exact f(x)approximate Point-wise errors

0 0 0
0.25 0.242842685092608 0.007157314907392
1 0.997116820836758 0.002883179163242

2.25 2.301027980537274 0.051027980537274
4 3.999999999999999 0.000000000000001

Table 5: Data of MQ RBF Interpolation Example 2.1.2.

0.05103. Notice in Graph 4 that if the center locations and the eval-

uation points did not directly coincide that this did not drastically

increase the point-wise errors. However, if all the evaluation points

and center points coincide the point-wise error is 0.

2.2 Properties of the System Matrix

For the solution to exist in equation (15), the system matrix B must

be invertible. Micchelli [29], provided a theorem that guarantees that
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B is invertible. The theorem and justification of MQ system matrix

being invertible is in Section 1.1.

2.3 Shape Parameter ε

The shape parameter, ε, in the MQ RBF is not a variable that can be

selected arbitrarily. The shape parameter is crucial to the interpolation

of a given function. There are consequences one needs to consider when

choosing a shape parameter. A large shape parameter results in a well

conditioned system matrix; however, the approximation using the RBF

is poor. If one chooses to use a small shape parameter this results in

a very accurate RBF approximation, but now the system matrix is

ill-conditioned. Using a large shape parameter produces accuracy in

approximations that is very similar to local methods such as the cubic

spline and the finite difference methods [35]. If the shape parameter

becomes too small the ill-conditioned matrix causes errors in floating

point arithmetic, which results in very poor accuracy. This trade-

off between accuracy and conditioning is known as the uncertainty

principle [35].

Definition 5 “flat limit”- The term, flat limit, describes the limit as

the shape parameter approaches 0 [35].

The “flat limit” RBF approximation has been shown to be equiva-

lent to global polynomial approximation in one dimension and higher

dimensions [35]. In global polynomial methods the interpolation sites
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must be chosen carefully, because it results in ill-conditioning of the

system matrix and the Runge Phenomenon [13]. If the center locations

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4

x

f(
x)

The Runge Phenomenon in Polynomial Interpolation

 

 

approximation
f(x)

Figure 5: An example of the Runge phenomenon. For low number of cen-
ters(N) we see an oscillation in the approximation of f(x).

coincide with the “carefully” chosen interpolation sites, then it can be

said that the two methods are equivalent. Given this fact, the MQ

methods are considered to be a generalized global polynomial meth-

ods. The “flat limit” is well known and there is much information

[5, 7] concerning it, however this cannot be said about ε > 0. Shape

parameters that are greater than zero produce much more versatile

interpolants than global polynomial methods [35]. These versatile in-

terpolation methods have many new features, which are not completely

understood. For this reason, research is very active in the RBF area.
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2.4 Condition Number and The Uncertainty Principle

Definition 6 ”Uncertainty Principle- Phrase used to describe the

fact that a RBF approximant can not at the same time be accurate

and well conditioned.

In a perfect world we would want the condition number to be small,

but many times this is very unlikely. Even the best written numerical

algorithms will have difficulty approximating an ill-conditioned prob-

lem. Errors in input data or in the early stages of a computation may

make the interpolation error grow uncontrollably.

The condition number in the 2-norm of a linear system Bλ = f is

defined as follows,

κ(B) = ‖B‖2‖B−1‖2 =
σmax

σmin

(16)

where σ denotes the singular values of B. The system matrix in the

MQ method is symmetric, hence σ = |λ| and all eigenvalues λ are real.

By Micchelli [29]; we know there exists N − 1 negative eigenvalues and

1 positive eigenvalues for N ≥ 2.

26



3 Comparison of Interpolation

3.1 RBF and Polynomial Interpolation Comparison

Let us start with an example involving Matlab, so we can further un-

derstand polynomial interpolation.

Example 3 Polynomial Interpolation: Use a global polynomial to

interpolate the function f(x) = 1
1+25x2 , where x ∈ [−1, 1]. Here we use

the Matlab code polyInter.m where it requires the inputs N and M .

N represents the number of centers and M is number of evenly spaced

evaluation points. The open blue circles represent M in Figure 6.

Figure 6 shows the exact value of f(x), displayed by the red line.

The polynomial interpolation of f(x) is the blue line. The number of

centers are 20 and the number of evaluation points are 50.

−1 −0.5 0 0.5 1
−1

0
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2

3

4
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Figure 6: Polynomial interpolation of f(x) = 1
1+25x2 .
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From Figure 6 we see that polynomial interpolation does an accept-

able job interpolating f(x) for −1
2

≤ x ≤ 1
2
. However, it can be seen

that as the interpolant moves away from the center, problems occur.

The oscillation of values toward the ends of the interval is known as the

Runge Phenomenon [13, 26]. This oscillations of values is seen in Fig-

ure 5. There are several papers written about the Runge phenomenon

in which they try to reduce the error in interpolation. In [26], the au-

thor suggests the use of Padé-Gegenbauer interpolants to resolve the

oscillations.

There is also the Gibbs Phenomenon [12, 23] where the interpolant

values oscillate when the underlying function is discontinuous. The

Gibbs Phenomenon is seen in Figure 7. It has been found that there

are many different ways to alleviate the Gibbs phenomenon [6, 17], such

as Gegenbauer Reconstruction and filtering. One example of filtering

is the Filtered Chebyshev Approximation.

Next we try the MQ Radial Basis Function for interpolating the

function f(x) = 1
1+25x2 as seen in Figure 8. Again, the blue line rep-

resents the MQ interpolation of f(x) with the open blue circles repre-

senting N number of centers. The red line is the exact value of f(x).

In Figure 8, we see that the Runge Phenomenon has disappeared.

Below is Table 6 displaying the point-wise errors, the condition number

of the system matrix, and different constant shape parameters. Table 6

is to further justify the MQ’s ability to interpolate f(x).
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Figure 7: Interpolation of a step function, displaying the Gibbs Phe-
nomenon.
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Figure 8: MQ RBF interpolation of f(x) = 1
1+25x2 , ε = 15.

Definition 7 “Maximum Error”- Let f(x) be the function that one

is interpolating. Let g(x) be the approximation of f(x) produced by

interpolation. Then the Maximum (Max) Error is defined as ‖g(x) −

f(x)‖∞ in g and f at any x.
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Maximum Error κ(B) ε

0.0356 7.3062e13 1
0.0124 1.1991e3 15
0.0452 3.1329e2 150
0.0535 2.7893e2 1500

Table 6: Data of MQ interpolant of Figure 8.

Maximum Error κ(B)

7.6368 2.7224e8

Table 7: Data of Polynomial interpolant of Figure 6.

We conclude from Figure 8 and Table 6 that the MQ RBF inter-

polant produced better accuracy over that of a polynomial interpo-

lation, in certain situations and is less susceptible to the Runge and

Gibbs phenomenon.
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4 Shape Parameter Strategies

In this chapter we apply numerical comparisons of the variable shape

parameter to that of the constant shape parameter. The conclusions

of the “best” shape parameter are drawn from numerical experiments.

First we introduce the constant shape parameter, then follow it with the

comparisons of the different variable shape parameters. The variable

shape parameter strategy uses a different shape value at each of the

centers. In Micchelli’s Theorem 2, B being invertible applied only to

the constant shape. It is conjectured that it is impossible to prove

similar results in the more general setting of variable shape parameter.

Despite firm theoretical underpinning, there are numerous results from

a large collection of applications [4, 22, 24, 25] indicating advantages in

using variable shape parameter strategies. For this reason, we preform

numerical trials to justify our conclusions.

4.1 Constant Shape

Many scientists and mathematicians use the constant shape parameter

for interpolation of data [14, 16, 18, 21]. There are many methods for

choosing the “best” value of the shape parameter. The most obvious

one is the brute force method. In the brute force method, one plots ε

vs. the |error|, and then picks ε with least average |error|. Some other

methods for finding the optimal constant shape parameter were pro-

duced by Hardy [18], Franke [14], and the leave-one-out cross-validation
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(LOOCV) [16] algorithm referenced in [33]. The first two formulas for

a good ε are defined below. Note, see the introduction to the thesis for

refreshment of notation used.

Definition 8 “Hardy’s c” -

c = .815d given d =
1

N

N
∑

i=1

di (17)

where di is the distance from the ith center to the nearest neighbor and

N is the number of centers.

Definition 9 ”Franke’s c”-

c =
1.25D√
N

(18)

where D is the diameter of the smallest circle encompassing all the

center locations and N is the number of centers.

Many other people have tried to construct a satisfactory formula for

the shape parameter in MQ interpolation as noted in [9, 38]. When cre-

ating an “optimal” shape parameter, one must combat the uncertainty

principle. The goal of a shape parameter formula is for the interpolant

to provide good accuracy with not too high of a condition number.
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4.2 Why a Variable Shape Parameter

Theoretically speaking, the MQ RBF with a constant shape parameter

is very hard to explain. When the theory is established for radial basis

functions, a constant shape parameter was used. If one uses a variable

shape parameter, the complexity of theory becomes extremely difficult

to explain. In [4] there are somewhat restrictive sufficient conditions

that show the system matrix B is non-singular with a variable shape

parameter. One positive aspect of a variable shape parameter is that

it creates distinct entries in the RBF matrices which lead to lower

condition numbers [39]. The downside to a variable shape parameter is

that it caused B to be nonsymmetric. Recall that if one uses a constant

shape parameter, the system matrix B will be symmetric. There are

additional papers that used the variable shape parameter if one would

like to further explore this subject [4, 22, 24, 25].

4.3 Variable Linear Shape

The variable linear shape is a 1 × N matrix that contains shape pa-

rameters generated by the formula,

εj = εmin + (
εmax − εmin

N − 1
)j, for j = 0, 1, . . . , N − 1 (19)

where εmin, εmax, and N are given in the script. The Matlab code used

to generate the variable linear shape parameters is in Listing 2.
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Listing 2: LinearVariableShapeFunction.m
� �

%retu rn s shape parameters in a 1xN matrix

f unc t i on c = LinearVar iableShapeFunction (eMax , eMin ,N)

%c r e a t e s a 1xN matrix o f shape parameters

c = eMin + (( eMax−eMin )/(N−1 ) ) .∗ ( 0 :N−1);
� �

A graph of (19) with the following constraints: εMax=40, εMin=1,

and N = 20 is shown in Figure 9.
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Figure 9: Plot of (19) with εMax=40, εMin=1, and N = 20.

Now we compare MQ radial basis interpolating with a constant and

variable linear shape parameter. We use (19) to generate the shape pa-

rameters. The function for interpolation is f(x) = esin(πx). We use a

modified version of the Matlab code stationaryInterpolationFP.m

in Listing 5, with εMax=7.6 and εMin=2.1. Figure 10 displays the ab-

solute value of the point-wise error of interpolation for constant shape

parameter of 3 and the variable linear shape parameter. Like in Fig-

ure 18, the blue line represents the variable shape parameter, and the

red line represents the constant shape parameter. Additional informa-
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tion from the example is in Table 8.
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Figure 10: Plot of point-wise errors for a constant shape and variable linear
shape parameter for the interpolation of f(x) = esin(πx).

ε κ(B) Maximum Error Avg. of |error|
Constant(3) 1.3856 × 1019 4.1471 × 10−10 1.185 × 10−10

Variable Linear 1.5776 × 1019 1.9557 × 10−9 2.433 × 10−10

Table 8: Data of constant vs. variable linear shape parameter.

Unlike the interpolation using the variable random shape param-

eter, the interpolation using the constant shape parameter achieved

better results. In Table 10, we noted that interpolating using the con-

stant shape parameter of 3 lead to a lower measure in error. The trend

of increased error near the boundaries of the interval is more noticeable

in Figure 10 than in Figure 18.

We now change to a different function and discuss the interpolation

of it using a MQ RBF with a constant shape parameter and a variable

linear shape parameter. The new function for interpolation is g(x) =
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x2+2x+1, a quadratic function. Again we use stationary interpolation

from the modified Matlab script stationaryInterpolationFP.m in

Listing 5. The values in the script have the same M and N like the

previous interpolation of f(x) = esin(πx). However, the values of εMin

and εMax have changed. The values are εMin is 3.1 and εMax is 7.45.

In Figure 11, the absolute values of the point-wise errors are shown.

Table 9 displays data representing interpolation of g(x) = x2 + 2x+ 1.

Again, the blue line represents the interpolation with a variable linear

shape parameter and the red line represents the interpolation using a

constant shape parameter.
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Figure 11: Pot of point-wise errors for a constant shape and variable linear
shape parameter for the interpolation of g(x) = x2 + 2x + 1.

ε κ(B) Maximum Error Avg. of |error|
Constant(3) 1.3857e19 9.8922e−9 2.501e−9

Variable Linear 1.1497e19 5.5578e−8 3.3352e−9

Table 9: Data of constant vs. variable linear shape parameter 2.
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In conclusion, we validated that interpolating with a constant shape

parameter yielded better results than with a variable linear shape pa-

rameter.

So far, we have compared the variable linear shape parameter to a

constant shape using stationary interpolation. We have looked at the

graph of the absolute values of the point-wise errors and other data

to conclude which shape parameter, constant or variable linear, is the

best choice.

Now we need to determine if the variable linear shape parameter is

the better choice in non-stationary interpolation. We use a modified

version of the Matlab program nonStationaryInterpolationFP.m

in Listing 6. Recall that in non-stationary interpolation N is allowed

to vary while ε remains constant. For this example, N took on the

values of 10 to 250 in intervals of 10. The values of εMin and εMax for

variable linear shape generator (19) are 1.9909 and 9, respectivley. We

interpolate f(x) = esin(πx) on the interval [-1,1]. Figure 12 displays the

absolute values of the point-wise errors. The blue line refers to |error|

in the interpolation using the variable linear shape parameter. The red

line refers to |error| in the interpolation using a constant shape pa-

rameter. Table 12 contains more information about this interpolation

using a constant and variable linear shape parameter.

Using a variable linear shape parameter in the non-stationary in-

terpolation of f(x) = esin(πx) did not reduce the errors when compared

to a constant shape parameter. Using a constant shape parameter did
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Figure 12: Plot of point-wise errors for a constant shape and variable linear
shape parameter for the non-stationary interpolation of f(x) = esin(πx).

ε κ(B) Maximum Error Avg. of |error|
Constant(5) 1.8771e19 2.8068e−8 5.597e−9

Variable Linear 1.6078e19 4.5933e−8 1.168e−8

Table 10: Data of constant vs. variable linear shape parameter in non-
stationary interpolation.

reduce the maximum error approximately one half the value of the vari-

able linear shape parameter. The constant shape parameter also had

the least absolute average of error.

4.4 Exponentially Varying Shape

The exponentially varying shape is a 1×N matrix that contains shape

parameters generated by the formula,

εj =

[

ε2
min(

ε2
max

ε2
min

)
j−1
N−1

]1/2

, for j = 1, 2, . . . , N (20)
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where εmin, εmax, and N are given in the script. The Matlab code used

to generate the exponentially varying shape parameters is in Listing 3.

Listing 3: expShapeFunction.m� �

%retu rn s shape parameters in a 1xN matrix

f unc t i on c = expShapeFunction (eMax , eMin ,N)

%c r e a t e s a 1xN matrix o f shape paramters

c = eMin ˆ2 .∗ ( eMaxˆ2 eMin ˆ 2 ) . ˆ ( ( ( 1 :N)−1)/(N−1 ) ) . ˆ (1/2 ) ;
� �

Next we show a plot of (20) with the following constraints: εMax=40,

εMin=1, and N = 20 in Figure 13.

0 5 10 15 20
0

5

10

15

20

25

30

35

40

x

sh
ap

e

Figure 13: Plot of (20) with εMax=40, εMin=1, and N = 20.

Now we compare, as we have in previous sections, interpolating

f(x) = esin(πx) using a MQ radial basis function with constant shape

parameter and a variable shape parameter. This variable shape pa-

rameter is exponential and produced by equation (20). The values for

N , M , εMax, and εMin are 100, 198, 7.6, and 2.1, respectively. The

program we use to produce Figure 14 and Table 11 is again a modi-
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fied version of stationaryInterpolationFP.m. The constant shape

parameter is set to 3.
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Figure 14: Plot of point-wise errors for a constant shape and exponentially
varying shape parameter for the interpolation of f(x) = esin(πx).

ε κ(B) Maximum Error Avg. of |error|
Constant(3) 1.3856e19 4.1471e−10 1.185e−10

Exponentially Varying 1.2481e19 8.4253e−6 6.685e−8

Table 11: Information of constant vs. exponentially varying shape parame-
ter.

Changing the constant shape parameter to an exponentially varying

shape parameter did not reduce the interpolant error. The constant

shape parameter of 3 is clearly the best. Also, note how the absolute

error increases as one moves away from the center of the interval. This

problem is more severe with the exponentially varying shape parameter

than the constant shape parameter.

Now we change the function that we are interpolating. The function

is g(x) = x2 + 2x+ 1, where x ∈ [0, 1]. For this interpolation, we use a
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modified version of the Matlab script stationaryInterpolationFP.m.

The constant shape parameter is 3. We use the exponentially varying

shape parameters produced by equation (20) with εMin equal to 2.7

and εMax equal to 7.999. Figure 15 shows the absolute point-wise

errors in interpolation using a constant shape parameter, the red line,

and the exponentially varying shape parameter, the blue line. Table 12

shows further information from this example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

x

|e
rr

or
s|

Figure 15: Plot of point-wise errors for a constant shape and exponentially
varying shape parameter for the interpolation of g(x) = x2 + 2x + 1.

ε κ(B) Maximum Error Avg. of |error|
Constant(3) 1.3857e19 9.8922e−9 2.501e−9

Exponentially Varying 1.8413e19 4.3185e−6 3.818e−8

Table 12: Information of constant versus exponentially varying shape pa-
rameter 2.

As we have previously seen in the interpolation of f(x) = esin(πx),

using a constant shape parameter in the MQ RBF interpolation yielded
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the best results.

We will compare a constant shape parameter to that of an ex-

ponentially varying shape parameter in non-stationary interpolation.

Non-stationary interpolation was explained in Section 4.2. For this in-

terpolation we use M = 198, a constant shape parameter of 5, and

N varying from 10 to 250 in intervals of 10. We use non-stationary

interpolation on function f(x) = esin(πx) where x ∈ [−1, 1]. The script

we use is a modified version of nonStationaryInterpolationFP.m

Matlab file.

Graph 16 depicts the absolute values of the point-wise error for the

different non-stationary interpolation. The blue line corresponds to

the exponentially varying shape parameter. The red line corresponds

to the constant shape parameter. Table 13 lists further details from

the example. We used the values of 1.9595 and 9 for εMin and εMax,

respectively in (20).

ε κ(B) Maximum Error Avg. of |error|
Constant(5) 1.8771e19 2.8068e−8 5.957e−9

Exponentially Varying 1.4885e19 9.6342e−7 2.237e−8

Table 13: Information of constant vs. exponentially non-stationary.

In conclusion of the non-stationary interpolation of f(x) = esin(πx),

we documented that the constant shape parameter has once again

yielded better results than an exponentially varying shape parameter.

Using the constant shape parameter produced less maximum error and

had a lower absolute mean error. Even if we reduced the error in inter-
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Figure 16: Plot of point-wise errors for a constant shape and exponen-
tially varying shape parameter for the non-stationary interpolation of f(x) =
esin(πx).

polation near the boundaries, the constant shape parameter would still

interpolate with fewer errors. This is illustrated in Figure 16, where the

absolute values of the point-wise errors using a exponentially varying

shape (blue line) lies in general above point-wise errors for a constant

shape non-stationary interpolation (red line).

4.5 Variable Random Shape

The variable random shape is a 1 × N matrix that contains shape

parameters generated by the formula,

εj = ǫmin + (εmax − εmin)rand(1, N) (21)

where εmin, εmax, and N are given in the script in Listing 4. The

rand(1,N) command is a Matlab function that creates a 1×N matrix

of randomly generated numbers from a unit interval.
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Listing 4: randomVariableShapeFunction.m� �

%retu rn s shape parameters in a 1xN matrix

f unc t i on c = RandomVariableShapeFunction(eMax , eMin ,N)

%c r e a t e s a 1xN matrix o f shape parameters

%rand (x , y ) i s a random number generator cr eated by Matlab

c = eMin + (eMax−eMin ) . ∗ rand (1 ,N) ;
� �

In Figure 17 the graph of (21) with the following constraints: εMax=40,

εMin=1, and N = 20.
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Figure 17: Graph of (21) with εMax=40, εMin=1, and N = 20.

Now we compare the random variable shape parameters in a MQ

radial basis function interpolant to that of a constant shape parameter.

In order to compare the two interpolants, we need to make sure the

condition number of the system matrix is relatively close. The condi-

tion number of the system matrix is noted as kappa or κ(B). We use

stationary interpolation where N , the number of centers, and M , the

number of evaluation points are fixed. For this comparison we use the

Matlab program stationaryInterpolationFP.m, found in Listing 5.
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Figure 18: Plot of point-wise errors for a constant shape and variable random
shape parameter for the interpolation of f(x) = esin(πx).

The function being interpolated is f(x) = esin(πx), where x ∈ [0, 1].

For this comparison we have chosen a constant shape parameter of 3,

and variable random shape parameter generated by (21) with εMax=7.6

and εMin=2.1. Note: When we use stationary interpolation the values

for M and N will be 198 and 100, unless otherwise noted. Figure 18

shows the point-wise errors in the approximation of f(x) = esin(πx)

using both a constant shape parameter and a variable random shape

parameter. The blue line in Figure 18 represents the point-wise er-

rors for the variable random shape parameter. The red line represents

the point-wise errors for the constant shape parameter. Data from the

example is shown in Table 14.

We see from the data that interpolating with a variable random

shape parameter does a far better job, than using a constant shape

parameter. In Table 14, the variable random shape parameter had a
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ε κ(B) Maximum Error Average of |error|
Constant(3) 1.3857 × 1019 4.1471 × 10−10 1.185 × 10−10

Variable Random 1.6287 × 1019 8.8574 × 10−13 1.731 × 10−13

Table 14: Data of constant vs. variable random shape parameter.

lower value in both the maximum error and the mean of the absolute

error. Also, notice as one moves away from the center of the interval

that the error increases. This is a common problem in interpolating

with a radial basis function, because errors occurr more frequently

near the bounds [3, 10, 11]. This problem is more evident in further

interpolations that we explore in more detail in Chapter 6.

As we have seen previously, using a variable random shape parame-

ter for the MQ radial basis function delivered better accuracy in inter-

polating f(x) = esin(πx) than using a constant shape parameter. Now

we experiment with a different function. The function we interpolate is

a quadratic and given by g(x) = x2+2x+1. We use stationary interpo-

lation with εMax=7.6 and εMin=2.7 . The Matlab program we use is

a modified version of stationaryInterpolationFP.m. The constant

shape parameter is 3. Note: It was difficult to obtain relatively close

condition numbers for the two system matrices since the variable ran-

dom shape parameters is generated by equation (21), which contains

a random number generator. Therefore, we had to run the program

quite a few times to obtain a κ(B) that was relatively close to the con-

dition number of the system matrix with a constant shape parameter.

If the κ(B)’s of the two different system matrix were not the same, our
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Figure 19: Plot of point-wise errors for a constant shape and variable random
shape parameter for the interpolation of g(x) = x2 + 2x + 1.

comparison of shape parameter strategies would be flawed. It would be

“numerically insignificant” to compare the shape parameter strategies

if their κ(B)’s were different. Figure 19 shows the absolute point-wise

errors of the interpolation. The red line represents the MQ RBF in-

terpolant with a constant shape parameter. The blue line represents

the MQ RBF interpolant with the variable random shape parameter.

Data of Figure 19 is shown in Table 15.

ε Kappa Maximum Error Average of |error|
Constant(3) 1.3856e19 9.8921e−9 2.501e−9

Variable Random 1.6958e19 3.2751e−12 3.574e−13

Table 15: Data of figure 19.

In conclusion, interpolating g(x) = x2 + 2x + 1 using a MQ RBF

with a variable random shape parameter produced less error than using

a constant shape parameter.

So far we have explored stationary interpolation with the MQ RBF
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with a constant and variable shape parameter. Next we explore non-

stationary interpolation with a constant and variable shape parameters,

and discuss the results. The Matlab code we use is nonStationary-

InterpolationFP.m in Listing 6. The first function for interpolation

is f(x) = esin(πx) where x ∈ [−1, 1]. In non-stationary interpolation N ,

the number of centers, does not stay constant. In nonStationaryIn-

terpolationFP.m, N takes on the value of 10 to 250 in intervals of 10.

The value of M stayed the same, and the constant shape parameter is

set at 3. The algorithm, nonStationaryInterpolationFP.m, can be

found in Listing 6.

Figure 20 represents the absolute values of the point-wise errors for

the non-stationary interpolation of the function, f(x) = esin(πx) where

x ∈ [−1, 1]. The blue line represents the random variable shape param-

eter and the red line represents the constant shape parameter. Here

the constant shape parameter is 5. Note: We have changed the shape

parameter from 3 to 5 as in the previous interpolations. The reason for

this was to reduce the condition number of the system matrix. Table 16

displays more information about the example.

ε Kappa Maximum Error Average of |error|
Constant(5) 1.8771e19 2.8068e−8 5.9570e−9

Variable Random 1.9105e19 2.7276e−12 4.2190e−13

Table 16: Data of constant versus variable random shape parameter using
non-stationary interpolation.

Just as before in stationary interpolation of f(x) = esin(πx), we had
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Figure 20: Plot of point-wise errors for a constant shape and variable random
shape parameter for the non-stationary interpolation of f(x) = esin(πx).

to run the program several times to compare interpolations. The values

we use for the variable random shape generator (21) were εMax=9 and

εMin=2. As before for stationary interpolation, using a variable ran-

dom shape parameter yielded far better accuracy in the non-stationary

interpolation of f(x) = esin(πx). We see in Table 16 that using a vari-

able random shape parameter decreased both the maximum |error|

and the average of the absolute point-wise errors.

4.6 Best Shape Parameters on Different Functions in 1D?

In this section, we experiment numerically to find out what type of

shape parameters works best with different functions. As stated be-

fore, given the complexity of variable shape parameter these results

are based on numerical data and not proofs. This subsection is bro-

ken down further for each function as we compare shape parameter
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strategies. While working with these functions, we use different val-

ues of (M,N). We produced graphs that plot the max |error| against

the average values of εMin and εMax denoted CAverage. We provided

some numerical results to further justify our conclusions. The numeri-

cal results include the following: κ(B), the average of the max |error|

over the range of CAverage, M , and N . For the comparison in one

dimension, we use the Matlab code errorLoop.m. This code is found

in Listing 7.

4.6.1 Sinusoid function

For the first comparison we use a smooth geometric function. The

function is f(x) = sin(πx) where x ∈ [−1, 1]. We collect the data

values for the tables at z=50 points. The values of εMin and εMax

are 2 and 4. We increment εMin and εMax by .05. The comparison is

run for different values of M and N . Recall that, M is the number of

evaluation points and N is the number of centers. The values of (M,N)

are (15,9), (33,20), (198,100), and (300,250). One might ask why there

exist such an “odd” pairing of M and N . The reason is that we do

not want the evaluation points and center locations to coincide with

each other. If the evaluation points and center locations do coincide,

the error in interpolation would be zero. Figure 21 displays the |error|

versus the average shape parameter.

It is clearly documented in the bottom two images of Figure 21,

that interpolating a sinusoid function using a variable shape parameter
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Figure 21: A comparison of shape parameters involving interpolating the
function,f(x) = sin(πx) with different values of (M,N). Top left: (15,9),
Top Right: (33,20), Bottom Left: (198,100), Bottom Right: (300,250).

with large (M,N) (M ≥ 198 and N ≥ 100) provides the best accuracy.

Listed in Table 17 we see that using M = 300 and N = 250, the MQ

RBF had κ(B) = 1.7475e19 and an average |error| of 4.9043e−12. In

conclusion, using a variable random shape parameter with a MQ RBF

to interpolate sin(πx) produced better results than the other shape

parameter strategies with M,N large. However, if one uses low values
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Name of Data (M,N) = (15, 9) (M,N) = (33, 20) (M,N) = (198, 100) (M,N) = (300, 250)

κC 2.9789e2 2.5829e4 3.1282e15 1.5259e19

avg. |error| for κC 0.0282 0.0032 3.5135e−7 4.5595e−8

κE 3.5613e2 4.4916e4 1.4584e17 3.6191e19

avg. |error| for κE 0.0336 0.0053 1.8222e−6 1.5149e−6

κL 3.4479e2 4.2059e4 1.1121e17 3.2177e19

avg. |error| for κL 0.0337 0.0053 1.3515e−6 9.901e−8

κR 2.8447e2 2.2516e4 5.9495e15 1.7475e19

avg. |error| for κR 0.0316 0.013 5.7665e−9 4.9043e−12

Table 17: Numerical results from sin(πx).

of M and N , the constant shape parameter is the best choice. This

choice of using low values of M and N is ill-advised.

Next, we increase the peaks and valleys of sin(πx), to see if our con-

clusion held above. Let f(x) = sin(4πx), f(x) is shown in Figure 22,

where x ∈ [−1, 1]. Note: The only thing that was different from the

previous comparison of f(x) = sin(πx) is that the function has now

changed to f(x) = sin(4πx). Everything else stays the same. For a

more concise comparison of the shape parameter strategies, we only

provide their plots of the |error| vs. average shape in Figure 23 for

different values of (M,N) and the data involving (M,N) = (300, 250).

Name of Data Trial (M,N) = (300, 250)

κR 2.2119e19

avg. |error| for κR 1.59e−7

Table 18: Numerical information of Figure 23, case (M,N) = (300, 250).

For the 300 evaluation points and 250 centers, the best accuracy

overall was achieved using a variable random shape parameter. With

the other three cases of (M,N) the constant shape in Listing 7 worked

52



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f(
x)

f(x) = sin(4πx)

Figure 22: The function, f(x) = sin(4πx) where x ∈ [−1, 1].

the best. Data of the interpolation for (M,N) = (300, 250) is shown in

Table 18. Thus we can conclude from Figure 23 and Table 23, that for

(M,N) large the random shape parameter yielded the best results.

For the last comparison involving a sinusoid function we multiply

π by 1
4
, and then compare the different shape strategies with (M,N)

varying. Let f(x) = sin(1
4
π) where x ∈ [−1, 1]. We mainly use graphs

of |error| vs. εAvgerage to reinforce our conclusions of the most accu-

rate shape strategy to use. The graphs of the varying (M,N) values

are shown in Figure 24. Also, data from the largest (M,N) graph is in

Table 19 for reference.

Name of Data Trial (M,N) = (300, 250)

κR 1.5137e19

avg. |error| for κR 6.3397e−13

Table 19: Numerical information of Figure 24, case (M,N)=(300,250).

The best accuracy for the interpolation of f(x) = sin(1
4
π) where
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Figure 23: A comparison of shape parameters interpolating f(x) = sin(4πx)
for different values of M and N .

x ∈ [−1, 1] is provided by the variable random shape with the M = 300

and N = 200. The approximation of f(x) has a mean absolute error

of 6.3397e−13 and κR = 1.5137e19. The constant shape parameter

did produce better accuracy than the exponential, linear, or random

shape parameter when (M,N) was small (i.e.(15,9) and (33,20)). The

variable exponential and linear shape parameter did not provide the

lowest absolute error in any of the cases (M,N).
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Figure 24: A comparison of shape parameters interpolating f(x) = sin(1
4πx)

for different values of M and N.

In conclusion of the subsection, we have found that a variable ran-

dom parameter provided the least absolute error when interpolating a

sinusoid graph.

4.6.2 Constant function

Several researchers have reported that the RBF method has difficulty

accurately approximating flat functions [24]. For the second test, we
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use a constant function to see which shape parameter and values of

(M,N) produce the least absolute error. We iterate (M,N) as in

the previous subsubsection. The constant function for interpolation

is f(x) = 1. The interpolation is on the interval [-1,1]. Figure 25 dis-

plays the graphs of the |error| vs. the average shape for various values

of (M,N). Table 20 contains the data of each of the graphs listed in

Figure 25.
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Figure 25: A comparison of shape parameters interpolating f(x) = 1 for
different values of M and N.
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Name of Data (M,N) = (15, 9) (M,N) = (33, 20) (M,N) = (198, 100) (M,N) = (300, 250)

κC 2.9789e2 2.5829e4 3.1282e15 1.5259e19

avg. |error| for κC 0.0072 8.6203e−4 8.394e−8 3.9805e−8

κE 3.5613e2 4.4916e4 1.4584e17 3.6191e19

avg. |error| for κE 0.008 0.0013 4.903e−7 4.1709e−7

κL 3.448e2 4.2059e4 1.1121e17 3.2177e19

avg. |error| for κL 0.008 0.0013 3.3835e−7 2.7828e−8

κR 3.0565e2 2.7032e4 9.3258e15 1.1787e19

avg. |error| for κR 0.0077 0.0012 7.7322e−10 6.1279e−13

Table 20: Numerical information from Figure 25.

From Table 20 and Figure 25, we conclude that using a constant

shape parameter for (M,N) equalling (15,9) and (33,20) yielded the

least average |error| for interpolation of a constant function. How-

ever, interpolating a function on a given set of data requires a more

stringent bound on error than 0.0072 or 8.6203e−4. To achieve better

accuracy, we need to increase the number of evaluation points and cen-

ter locations in our RBF interpolation. One sees in Table 20 that once

(M,N) is increased to (198,100) and (300,250) interpolating the con-

stant function with a variable random shape parameter produced the

best results. The best reduced average |error| is achieved by setting

(M,N) to (300,250) producing an average |error| of 6.1279e−13 with a

condition number of 1.1787e19.

4.6.3 Polynomial

We have already documented in the two previous subsubsections that

using a variable random shape parameter combined with different num-

ber of evaluation points and center locations that we can achieve a
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relatively close approximation to the function. Now we look further

into this concept and experiment with a polynomial. The polynomial

for interpolation is f(x) = x2 + 2x + 1 where x ∈ [−1, 1]. Again like

the previous comparisons, we use different shape parameter strategies

combined with different pairs of (M,N). The error analysis of the dif-

ferent cases of (M,N) are in Figure 26, while the information of this

figure is in Table 21.
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Figure 26: A comparison of shape parameters interpolating f(x) = x2 +
2x + 1 for different values of M and N.
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Name of Data (M,N) = (15, 9) (M,N) = (33, 20) (M,N) = (198, 100) (M,N) = (300, 250)

κC 2.9789e2 2.5829e4 3.1282e15 1.5259e19

avg. |error| for κC 0.0217 0.0026 3.2978e−7 7.4456e−8

κE 3.5613e2 4.4916e4 1.4584e17 3.6191e19

avg. |error| for κE 0.0253 0.004 1.6498e−6 1.5149e−6

κL 3.4479e2 4.2059e4 1.1121e17 3.2177e19

avg. |error| for κL 0.0253 0.004 1.1542e−6 9.7714e−8

κR 3.0564e2 2.7032e4 1.7331e16 1.7288e19

avg. |error| for κR 0.022 0.0036 5.03978e−9 1.4695e−11

Table 21: Numerical information from Figure 26.

We conclude from Figure 26 and Table 21, involving a large num-

ber of centers (here N ≥ 100) that interpolating a polynomial with

a random variable shape parameter produces the least error. When a

system matrix becomes ill-conditioned, we also documented that us-

ing a variable random shape parameter produces the highest accuracy.

Note: When (M,N) were low the constant shape parameter produced

the best accuracy, but when we increased (M,N) large the random

variable shape parameter produced the best accuracy. Using RBF

interpolation with a variable random shape parameter to interpolate

f(x) = x2 + 2x + 1 where x ∈ [−1, 1] produced an average absolute

error of 1.4695e−11 with κR = 1.7288e19. This high of κR, signals that

B is ill-conditioned.

4.6.4 -Arctan function

In this test, we use the function f(x) = − arctan(5(x + 1
2
)) where

x ∈ [−1, 1] to determine which is the best shape parameter to use with

different values of (M,N). The graphs of the |error| vs. the average
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shape are shown in Figure 27, while the data for the different case of

(M,N) is in Table 22.

Note: The data in Table 22, and hereafter in this section is shown

approximated for space issues for the thesis.
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Figure 27: A comparison of shape parameters interpolating f(x) =
− arctan(5(x + 1

2)) for different values of M and N.

Again, we see the same trend as the previous comparisons of shape

parameter strategies. For large (M,N) and an ill-conditioned system

matrix, the variable random shape parameter yields the best interpo-
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Name of Data (M,N) = (15, 9) (M,N) = (33, 20) (M,N) = (198, 100) (M,N) = (300, 250)

κC 2.9788e2 2.5828e4 3.1282e15 1.5259e19

avg. |error| for κC 0.0467 6.3121e−4 2.9658e−8 5.4636e−9

κE 3.5613e2 4.4916e4 1.4584e17 3.6191e19

avg. |error| for κE 0.0454 8.0134e−4 1.0065e−7 1.3112e−6

κL 3.4479e2 4.2058e4 1.1121e17 3.2177e19

avg. |error| for κL 0.04578 7.8647e−4 4.7891e−8 4.669e−8

κR 3.0564e2 2.9473e4 1.5986e16 1.8768e19

avg. |error| for κR 0.0467007 0.0016 5.4167e−9 4.7801e−11

Table 22: Numerical information from Figure 27.

lation of the inverse trigonometric function f(x) = − arctan(5(x+ 1
2
)).

For 300 evaluation points and 250 center locations, the variable random

shape parameter produce an average |error| of 4.7801e−11.

4.6.5 Exponential function

Next, we experiment with an exponential function to see which shape

parameter combined with different number of evaluation points and

center locations produces the most accurate interpolation. The expo-

nential function for interpolation is f(x) = esin(πx) where x ∈ [−1, 1].

Figure 28 displays the |error| vs. the average shape for the four differ-

ent cases of (M,N) and each shape parameter strategy. The condition

number and the average |error| for the cases is in Table 23.

We see something very different in this comparison than the pre-

vious comparisons. Note: The previous comparisons for low values

of (M,N)≤(33,20), the constant shape parameter produce the best in-

terpolation. However, in this test this is not true. For low values of

(M,N), the linear shape parameter is the best choice for interpolating
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Figure 28: A comparison of shape parameters interpolating f(x) = expsin(πx)

for different values of M and N.

Name of Data (M,N) = (15, 9) (M,N) = (33, 20) (M,N) = (198, 100) (M,N) = (300, 250)

κC 297.8863 2.5829e4 3.1282e15 1.5259e19

avg. |error| for κC 0.0415 0.0047 5.6040e−7 1.6125e−7

κE 356.1310 4.4916e4 1.4584e17 3.6191e19

avg. |error| for κE 0.0354 0.0042 2.0448e−6 1.0591e−6

κL 344.7936 4.2059e4 1.1121e17 3.2177e19

avg. |error| for κL 0.0355 0.0042 1.1023e−6 1.2881e−11

κR 304.0434 2.6946e4 2.2868e16 1.4529e19

avg. |error| for κR 0.0426 0.0065 7.1573e−9 1.2881e−11

Table 23: Numerical information from Figure 28.
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f(x) = esin(πx) on the interval [−1, 1]. For large (M,N) our theory

of the variable random shape parameter still held for interpolating

f(x). Note: The system matrix is ill-conditioned. Given 300 evalu-

ation points and 250 center locations, we achieve an accuracy with an

average |error| of 1.2881e−11

The next function we test with different shape parameters and val-

ues of (M,N) is f(x) = sin(50πx)e(−100(x− 1
2
)2) where x ∈ [0, 1]. The

graph of f(x) is shown in Figure 29. We follow the same procedure as

the previous comparison on this function. Figure 30 displays the dif-

ferent cases for the number of evaluation points and center locations.

The data for the last three cases of (M,N) is seen in Table 24.
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Figure 29: Graph of f(x) = sin(50πx)e(−100(x− 1
2
)2) where x ∈ [0, 1].

Therefore, we conclude from Table 24 and Figure 30 for large num-

ber of evaluation points and center locations, the variable random shape
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Name of Data (M,N) = (198, 100) (M,N) = (398, 300) (M,N) = (1000, 800)

avg. κC 2.5437e19 1.1407e20 2.7877e20

avg. |error| for κC 12.1602 13.43 48.58
avg. κE 1.1255e02 1.5182e20 2.8245e20

avg. |error| for κE 66.1601 65.9403 8.3406e2

avg. κL 1.9813e20 4.1849e19 5.4340e20

avg. |error| for κL 80.5482 4.6426e2 57.5255
avg. κR 6.1702e19 5.61251e19 2.1939e20

avg. |error| for κR 37.2348 0.2323 0.1995

Table 24: Numerical information from Figure 30.

parameter is the best choice when interpolating

f(x) = sin(50πx)e(−100(x− 1
2
)2).

We notice as the system matrix becomes more and more ill-conditioned,

the value of using the variable random shape parameter for interpola-

tion became more apparent.
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Figure 30: A comparison of shape parameters interpolating f(x) =

sin(50πx)e(−100(x− 1
2
)2) where x ∈ [0, 1] for different values of M and N.
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5 Shape Parameter Strategies in 2 Dimensions

5.1 Introduction

We have already seen by numerical examples that choosing the “op-

timal” shape parameter strategy does indeed affect the accuracy of

interpolating various functions. In the next subsection we apply the

different shape parameter strategies to an interpolation problem in two

dimensions. The different shape parameter strategies that we compare

are the following: constant, variable exponential, variable linear, and

variable random. We use the generators for each different variable

shape parameter in Listings 2, 4, and 3. Recall, as in Chapter 4, in

order for judgement to be unbiased, it is imperative that the condition

numbers of each shape parameter strategy be as close to one another as

possible. After we obtain sufficiently close condition numbers for each

shape parameter strategy, we evaluate them mainly for the smallest

average of the |errors| in interpolation. We, also, record the minimum

and maximum error that each shape parameter strategy produces.

5.2 Franke Function

The Franke Function was created by Richard Franke for comparing dif-

ferent methods of interpolation over different surfaces [14]. The Franke

Function can be described as a surface consisting of two Gaussian peaks

and one Gaussian valley, where the surface slopes toward the first quad-

rant. The Franke function is seen in Figures 31 and 32. The definition
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of the function is listed below.

Definition 10 “Franke (bivariate test) Function”- Given data in

the form of (x,y), the function returns the sum of the four exponentials.

The function is defined as,

f(x, y) =
3

4
e−((9x−2)2+(9y−2)2)/4 +

3

4
e−((9x+1)2/49−(9y+1)/10)

+
1

2
e−((9x−7)2+(9y−3)2/4) − 1

5
e−((9x−4)2−(9y−7)2) (22)
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Figure 31: Some side views of the Franke Function.

For this test in two dimensions, we use the Franke Function. Matlab

has a built in function for the Franke Function. The function call

for Matlab, version R2008a, is franke(x,y), where x and y are same

size matrices. The Matlab script we use for exploring which shape

parameter strategy is the sufficient is in Listing 9. The data for each
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Figure 32: The top view of the Franke Function.

RBF interpolation with each different shape parameter is in Table 25.

Type of ε (εMin,εMax) κ(B) Mean |error| Max |error| Min |error|
Constant ε = 3 1.1059e16 2.8099e−7 9.2320e−6 2.2500e−10

Variable Exponential (2.7,9) 1.4293e16 2.3028e−5 7.5861e−4 3.7478e−10

Variable Linear (2.7,6.36) 1.1054e16 1.3494e−5 3.2138e−4 6.2487e−9

Variable Random (2,7) 1.1361e16 9.1431e−5 0.00377 4.5203e−8

Table 25: Numerical information from the interpolation of the Franke Func-
tion with different shape strategies.

We see from Table 25 that using a constant shape parameter to

interpret the Franke Function produce the best results. The constant

shape parameter of ε = 3 has the least average |error| and least maxi-

mum |error|. Also, the constant shape parameter has the most desir-

able minimum |error| of all the shape parameter strategies. Thus, we

conclude that the constant shape is the best choice when interpolating

the Franke Function.
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5.3 Exponential function
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Figure 33: The top and side views for f(x, y) = exy where x ∈ [0, 1] and y ∈
[0, 1].

In this subsection we numerically determine which shape parameter

strategy is the best use when interpolating an exponential function. In

this comparison we vary the number of evaluation points and centers to

see which shape parameter strategy is the best. The two dimensional

function for interpolation is f(x, y) = exy where x ∈ [0, 1] and y ∈

[0, 1]. The graph of f(x, y) is seen in Figure 33.

The data we gather from the numerical experiments is shown in a

variety of different ways. Tables 26, 27, and 28 display the condition

number of the system matrix, the average |error|, and (M,N) for each

of the different shape parameter strategies. Figure 34 is the plot of

the maximum error that occurs for each shape parameter strategy for

an average value shape parameter. That is, the average value of ε
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denoted by εavg. = εMin
εMax

. The Matlab code that produced Figure 34 is

very similar to Listing 7, so we do not include the Matlab code in this

thesis. However, we include the Matlab code used for data collection

of Tables 26, 27, and 28. The code is in Listing 8.

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.1271e14 8.6064e−5 1.5832e−6

Exponential(7,2.5) 1.9477e14 0.0023 2.6131e−5

Linear(7,2.462) 1.1124e14 0.0023 2.6939e−5

Random(7,2.2) 1.5586e14 0.0096 2.0058e−4

Table 26: Numerical information from the interpolation of f(x, y) = exy for
(M,N) = (25, 19).

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.2090e20 2.1704e−6 3.1507e−8

Exponential(7,2.5) 1.6779e20 6.8161e−5 3.9212e−7

Linear(7,2.3) 1.0630e20 9.9538e−5 4.7203e−7

Random(7,2.3) 1.5193e20 7.3561e−7 4.3251e−9

Table 27: Numerical information from the interpolation of f(x, y) = exy for
(M,N) = (50, 38).

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 4.1930e20 1.9986e−6 1.9521e−8

Exponential(8,2.3) 3.5305e20 6.7571e−5 2.6674e−7

Linear(8,2.2) 3.5978e20 5.8040e−4 1.5083e−6

Random(7,2.3) 4.4497e20 5.1810e−7 1.6963e−9

Table 28: Numerical information from the interpolation of f(x, y) = exy for
(M,N) = (100, 76).

We deduce from Tables 27 and 28 and Figure 34 for (M,N) large

((M,N) ≥ (50, 38)) that the variable random shape parameter strategy

produce the least |error| and minimized the maximum error. Also note,

when the system matrix becomes severely ill-conditioned that the ran-
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Figure 34: This graphs plots the εavg. vs. the maximum |error| for interpo-
lation of f(x, y) = exy with different shape parameter strategies.

dom shape produces the best interpolation. Therefore, we conclude the

random variable shape parameter is the best choice when interpolating

(N large) for an exponential function.

5.4 Polynomial Function

Next we compare the variable shape parameter strategies in another

two dimensional function. The function that we use in this test is the

polynomial function f(x, y) = x2 + y3 where x ∈ [0, 1] and y ∈ [0, 1].

For this test we proceed as follows: first, we only compare a small and

large case of (M,N); and secondly, we will plot the large case of (M,N)

Figure 34. The first part of the test is supported by Tables 29 and 30,

while the second part by Figure 36. For Tables 29 and 30, the constant

shape parameter ε = 3 is used and (M,N) equal to (25,19) and (50,38).

The data for the tables is produced by the code in Listing 8.
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Figure 35: The top and side views for f(x, y) = x2 + y3 where x ∈
[0, 1] and y ∈ [0, 1].

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.1271e14 8.6064e−5 1.5832e−6

Exponential(7,2.56) 1.1501e14 0.0012 1.6796e−5

Linear(7,2.46) 1.1312e14 0.0013 1.8511e−5

Random(7.1,2) 1.0867e14 3.1223e−4 6.1470e−6

Table 29: Numerical information from the interpolation of f(x, y) = x2 +y3

for (M,N) = (25, 19).

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.2090e20 1.3693e−6 1.9353e−8

Exponential(7,2.1) 1.1824e20 5.7170e−5 5.8625e−7

Linear(7,2.3) 1.0630e20 3.8094e−5 1.7803e−7

Random(7,2.3) 3.6073e20 2.0069e−7 1.1799e−9

Table 30: Numerical information from the interpolation of f(x, y) = x2 +y3

for (M,N) = (50, 38).

We conclude from Table 30 and Figure 36 that as (M,N) gets larger,

the variable random shape parameter produces the best accuracy and

has the least maximum error. We also note as the system matrix
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Figure 36: This graphs plots the εavg. vs. the maximum |error| for interpo-
lation of f(x, y) = x2 + y3 with different shape parameter strategies.

Shape Parameter Strategy κ(B) Avg. |error|
Constant 1.031e+016 4.1611e-006
Exponential 1.5136e20 4.1702e−5

Linear 7.9902e19 1.2059e−4

Random 2.8001e19 8.6921e−7

Table 31: Information from Figure 36.

becomes ill-conditioned, using the variable random shape parameter to

interpolate produces the best results.

5.5 Sinusoidal Function

The next two dimensional function we compare different shape pa-

rameter strategies is a sinusoidal function. The function is defined

by f(x, y) = sin(.25πx) + sin(eπy) where (x, y) ∈ [0, 1]. We use this

sinusoidal function for comparison of shape parameter since it varies

drastically in elevation throughout the Figure 37. The value of the
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Figure 37: The top and side views for f(x, y) = sin(.25πx)+sin(eπy) where
x ∈ [0, 1] and y ∈ [0, 1].

constant shape parameter is 3, and the values of (M,N) are as fol-

lows: (25,19), (50,38), and (60,47). The data from the interpolations

of f(x, y) for different values of (M,N) are shown in Tables 32, 33

and 34. We also interpret Figure 38 to further determine which shape

parameter is the best for this type of function. Data of this figure is in

Table 35.

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.1271e14 3.3138 0.0443
Exponential(7,2.56) 1.1501e14 2.5836 0.0452
Linear(7,2.459) 1.1416e14 2.5296 0.0454
Random(8,2) 2.4488e14 25.3314 0.3589

Table 32: Numerical information from the interpolation of f(x, y) =
sin(.25πx) + sin(eπy) for (M,N) = (25, 19).

We conclude from Tables 34 and 35 and Figure 38, that for large

number of centers, the variable random shape parameter is the best
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Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.2090e20 0.4250 0.0047
Exponential(7,2.1) 1.1824e20 2.3759 0.0197
Linear(7,1.7) 1.7760e20 54.9480 0.2341
Random(7,1.7) 1.0781e20 7.3745 0.0494

Table 33: Numerical information from the interpolation of f(x, y) =
sin(.25πx) + sin(eπy) for (M,N) = (50, 38).

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 6.334e20 1.9277 0.0251
Exponential(7,2) 6.0793e20 567.7671 4.7354
Linear(7,1.7) 1.8723e20 21.1374 0.1017
Random(7,1.7) 3.1530e20 0.3000 0.0014

Table 34: Numerical information from the interpolation of f(x, y) =
sin(.25πx) + sin(eπy) for (M,N) = (60, 47).
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Figure 38: This graphs plots the εavg. vs. the maximum |error| for interpo-
lation of f(x, y) = sin(.25πx)+sin(eπy) for (M,N) = (60, 47) with different
shape parameter strategies.

choice when interpolating this sinusoidal function.
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Shape Parameter Strategy κ(B) Avg. |error|
Constant 1.746802547574497e+020 0.084361074062004
Exponential 2.127456115364558e+020 0.371312591642159
Linear 1.977274000119941e+020 2.462959991315436
Random 4.872398891594948e+020 0.086761541572835

Table 35: Information from Figure 38.

5.6 Constant function

The last function we use to test shape parameters in two dimensions

is the constant function. The function is f(x, y) = 1 where (x, y) ∈

[0, 1]. We first show the type of shape parameter, condition number,

maximum |error|, and average |error| for different values of M and N .

This data is shown in the tables below. Next, we will plot the |error|

versus the average shape for the last case of M and N in Figure 39.

Figure 39 is used to reinforce our conclusion of which shape parameter

is the best in this comparison. The constant shape parameter value

ε = 3 is used. The values for εMin and εMax is in the tables below.

Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.1271e14 1.8491e−5 4.1921e−7
Exponential(8,2.545) 1.1231e14 5.1664e−4 7.9732e−6

Linear(8,2.4294) 1.0974e14 5.0566e−4 7.9263e−6

Random(7.5,2) 1.2386e14 8.8182e−5 1.6024e−6

Table 36: Numerical information from the interpolation of f(x, y) = 1 for
(M,N) = (25, 19).

Documentation from Tables 37, 38 and Figure 39, we see that for

large (M,N) and an ill-conditioned system matrix support that the

variable random shape parameter produces the best results.
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Shape(εMin,εMax) κ(B) Max |error| Avg. |error|
Constant, ε = 3 1.2090e20 4.1590e−7 6.1654e−9

Exponential(7.5,2.1) 1.6962e20 1.9169e−6 1.4117e−8

Linear(8,2.4294) 1.8831e20 6.4694e−7 3.2763e−9

Random(7.5,2) 3.0109e20 1.9573e−9 1.3109e−11

Table 37: Numerical information from the interpolation of f(x, y) = 1 for
(M,N) = (50, 38).

4.4 4.6 4.8 5 5.2
10

−10

10
−8

10
−6

10
−4

10
−2

average shape

m
ax

 |e
rr

or
|

(M,N) = (50,38 )

 

 
Constant
Exponential
Linear
Random

Figure 39: Plots of the εavg. vs. the maximum |error| for interpolation of
f(x, y) = 1 for (M,N) = (50, 38) with different shape parameter strategies.

Shape Parameter Strategy κ(B) Avg. |error|
Constant 2.94371e17 4.01982e−7

Exponential 1.9282e20 1.7579e−5

Linear 1.0749e20 6.8759e−6

Random 4.8545e20 6.03334e−9

Table 38: Information from Figure 39.

5.7 Conclusions of 2-D Interpolation

We conclude from the previous subsections that when interpolating a

two dimensional function involving large number of centers and an ill-

conditioned system matrix that the variable random shape parameter
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produces the best results. It is documented, numerically, that when the

variable random shape parameter is not the best choice one can only

increase the number of centers to alleviate this situation. In conjunc-

tion with the Franke Function, the author suggests a drastic increase

in the number of evaluation points and centers to make the variable

random shape the best choice.
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6 Reducing Errors Near Boundaries

6.1 Introduction to Boundary Error

The Radial Basis Function approximation method is a “satisfactory”

method to interpolate sparse and scattered data. As we look back in

Chapter 4, we see that the MQ RBF method displays very low point-

wise errors in the center of the interval; however, near the boundaries

the errors were larger. Techniques for reducing boundary errors are

relatively new. There is some research that addresses the boundary

error issue to date [3, 10, 11]. In reference [10] the authors suggests

many intriguing methods. Some methods that were suggested in their

papers were the following: adding polynomial terms to RBF expansion,

Super Not-a-Knot (modified version of Not-a-Knot), boundary treat-

ment, and clustering the center locations close to the boundary. In

reference [11], the authors suggest initiating a series of conditions that

are imposed on the interpolation that connect the initial and boundary

data. It has been shown in [36] that clustering the center locations too

much near the boundaries will reduce the accuracy of the interpolation

in the interior of the region.

In this section we apply a variable mixed shape parameter strategy

with the goal of reducing errors in boundary regions.
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6.2 Variable Random Numerical Trial 1

In our first numerical trial, we experiment with using a variable shape

parameter on a percentage of the area near the endpoints of the interval

with a constant shape in between. We compare this new shape param-

eter strategy to that of a constant shape parameter and a variable

random shape parameter. We look for a reduction of the point-wise

errors near the boundary of the interval. After the initial trial, we in-

troduce different percentages of boundary region coverage to see if we

can improve on the reduction of error.

The first function we try to reduce boundary errors is f(x) =

−arctan(5(x+ 1
2
)). The constant shape parameter that is used through-

out this section is, ε=5. We use the MQ method to interpolate f(x)

with N = 100 centers and M = 198 evaluation points. First, we use a

variable random shape parameter on 30 percentage of the interval near

the left and right boundaries. Thus, 60 shape parameters are generated

by (21) and the rest will be constant.

The Figure 40 shows the absolute values of the point-wise errors of

interpolation of f(x). The red line corresponds to the constant shape

interpolation, while the blue line corresponds to the mixed shape pa-

rameter. The values for εMin and εMax are 3 and 8. Table 39 displays

further information about the experiment. The table also includes dif-

ferent values for the percentage of the interval that contains the random

shape parameter.

From Table 39 and Figure 40, we see that if we use the variable
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Figure 40: Reducing boundary errors with a mixed random shape parameter
for f(x) = −arctan(5(x + 1

2)).

ε Percent of Interval Kappa Maximum Error Average of |error|
5 NA 4.1018e16 5.1080e−8 3.5241e−10

Mixed(3, 10), ε = 5 1th left and right 3.9266e16 1.3845e−8 1.6086e−10

Mixed(3, 10), ε = 5 2.5th left and right 3.9624e16 2.9097e−8 1.8812e−10

Mixed(3, 8), ε = 5 5th left and right 4.2044e16 3.4125e−9 2.5308e−11

Mixed(3, 10), ε = 5 10th left and right 3.1834e16 2.1704e−9 2.4132e−11

Mixed(3, 8), ε = 5 20th left and right 3.4507e16 6.8518e−9 5.8918e−11

Mixed(3, 10), ε = 5 30th left and right 5.3094e16 7.9814e−11 8.4109e−13

Mixed(3, 10), ε = 5 40th left and right 4.2543e16 1.124e−9 6.8183e−12

Mixed(3, 10), ε = 5 45th left and right 4.5402e16 2.0075e−9 1.5204e−11

Mixed(3, 10), ε = 5 47.25th left and right 4.0309e16 8.51e−10 9.2456e−12

“Full” Random(3, 10) 100th 4.5402e16 2.0075e−9 1.5204e−11

Table 39: Decreasing boundary errors using a mixed random shape param-
eter numerical experiment 1.

random shape parameter on the 30th left and right percent of the in-

terval we are able to reduce the maximum error and reduce the average

|error| the best. Notice, that using a “full” variable random shape to

interpolant f(x) did reduce the maximal and average |error| compared

to that of the constant shape parameter. Also, it didn’t do as well as

the mixed variable shape parameter.
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6.3 Variable Random Numerical Trial 2

The next experiment involves the same procedure as in the subsection

Variable Random Numerical Trial 1. The function that we try

to reduce boundary errors is f(x) = esin(4πx) on the interval [-1,1].

We use the constant shape parameter, ε = 3. Since we used (21) to

generate the different shape parameter, the values of εMin and εMax

did change from trial to trial. We could not keep εMin and εMax

the same throughout the mixed shape parameter, since we needed to

keep the condition numbers of each system matrix relatively close. The

different values for εMin and εMax are in Table 40.

Figure 41 shows the absolute values of the point-wise errors of the

interpolation. The red line corresponds to the constant shape param-

eter, and the blue line is the mixed random shape parameter. In Fig-

ure 41, the constant shape is ε = 3 and the percentage mixed random

shape parameter that contained a random variable shape parameter

was 10 percent left and 10 percent right. The number of centers, N ,

and the number of evaluation points, M , did not change from the

previous experiment. Table 40 displays additional experiments with

different percentages of the interval covered with the variable random

shape parameter. For this numerical trial, the values of εMin and εMax

are closer to the constant shape parameter, than in that of Variable

Random Numerical Experiment 1.

In Table 40, we illustrate yet again that the mixed variable/random

shape strategy has the best accuracy. Here, the 40th percentage left
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Figure 41: Reducing boundary errors with a mixed random shape parameter
for f(x) = esin(4πx).

ε Percent of Interval Kappa Max Error Avg. of |error|
3 NA 1.8927e19 2.9805e−5 5.8462e−6

Mixed(2, 5), ε = 3 10th left and right 1.9146e19 4.1908e−6 5.0504e−8

Mixed(2, 6), ε = 3 20th left and right 1.9041e19 5.0003e−6 4.6138e−8

Mixed(2, 7), ε = 3 30th left and right 1.8276e19 2.8276e−5 2.9871e−7

Mixed(2, 7), ε = 3 40th left and right 1.7791e19 1.2502e−6 1.6056e−8

Mixed(2, 7), ε = 3 45th left and right 1.7791e19 1.2501e−6 1.6056e−8

Mixed(2, 7), ε = 3 47.5th left and right 1.8276e19 2.8276e−5 2.9871e−7

Full Random(2, 7) 100th 1.7650e19 1.1344e−4 8.0002e−7

Table 40: Decreasing boundary errors us a mixed random shape parameter
Numerical Trial 2.

and right mixed random variable shape parameter produced the least

average and maximal |error|.

6.4 Conclusions

We see in the two numerical experiments that using a mixed random/-

constant shape parameter did significantly better than either of the

variable random or constant shape parameter alone. We see that given

large number of centers and evaluation points that the variable random
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shape parameter produced the best approximation for a function given

evenly spaced centers. Now we have an “insight” into what this obscure

shape parameter strategy can accomplish. In future research, we will

further investigate reducing boundary errors with a mixed random/-

constant shape parameter for evenly and not evenly spaced centers.
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7 Conclusions

We found in many cases where using a variable shape parameter did

produce a better interpolation than using a constant shape parame-

ter. In Chapter 3, we introduced the MQ RBF. We illustrated the

MQ RBF produced better results than using polynomial interpolation.

Chapter 4 introduced us to the topic of variable shape parameters. The

first section of Chapter 4, we demonstrated for all the different shape

parameter strategies, the variable random shape parameter produced

the best accuracy. The second part of Chapter 4, we further solidi-

fied the idea of the variable random shape parameter by comparing it

with different shape parameter strategies involving different functions.

Chapter 4 concluded with the idea of using the variable random shape

parameter for large (M,N) and evenly spaced evaluation points pro-

duced the best results when interpolating data or a function. The next

chapter, we expanded the idea of shape parameter into two dimensions.

In this chapter, the variable random shape parameter again produced

the best interpolation of all comparisons, but one. For that one compar-

ison, the author suggested a drastic increase in the number of centers

and evaluation points, resulting in the variable random shape parame-

ter to be the best choice. The last chapter, Chapter 6, we explored the

topic of reducing boundary errors. We concluded from Chapter 6 with

the idea of using a mixed variable random shape parameter reduced

boundary error in interpolation. We saw from Sections 6.2 and 6.3
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that the variable mixed random shape reduced boundary errors, com-

pared to the interpolations using a constant or variable random shape

parameter. From this thesis one concluded from numerical trials, the

concept of a variable random shape parameter to interpolate data with

(M,N) large is the best choice over other shape parameter strategies.

The author would like to further explore the topic of variable shape

strategies where the number of centers and evaluation points are not

evenly spaced. The author suggests using the variable random shape

for differentiation of functions might produce better accuracy than a

constant shape parameter. The topic of using variable shapes is a

excellent tool for interpolation that needs to be further explored by

others, as well as this author.
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Matlab Code

This appendix is devoted to the Matlab code that was used in this

thesis. The code will be ordered by their listing number. We removed

some of the listings in the main body of the thesis in order to make the

reading flow better.

Listing 5: stationaryInterpolationFP.m algorithm
� �

%gene r a l Matlab code f o r the s ta t i ona r y i n t e r p o l a t i o n

%can be modi f i ed to produce given r e s u l t

N = −−;%N stands f o r c en t e r s

M = −−;%M stands f o r number o f eva luat i on point

xc = l i n s p a c e (0 , 1 ,N) ’ ;% c r e a t e s N number o f equal spaced po ints

x = l i n s p a c e (0 , 1 ,M) ’ ;% between 0 and 1

CMax = −−;%CMax and CMin dec l ar ed f o r va r i ab l e shape parameters

CMin = −−;

%−−Declare your f unc t i on f o r i n t e r p o l a t i n g and c a l l the de s i r e d shape

%−−f unc t i on

f = exp ( s i n ( p i ∗xc ));% de f i n e f unc t i on f o r i n t e r p o l a t i n g

fExact = exp ( s i n ( p i ∗x ));% f o r e r r o r an a l y s i s

shape = −−%c a l l the de s i r ed va r i ab l e shape f unc t i on

%−−Reshape the given shape matrix above so i t can be used in the system

%−−and eva luat i on matrix

shapetemp1 = reshape shape matrix f o r system matrix

shapetemp2 = reshape shape matrix f o r eva luat i on matrix

%−−Create system and eva luat i on matr i ces and then i n t e r p o l a t e

B = systemMatrix ( xc , shapetemp1 ) ;

H = eva luat i onMatr ix ( xc , x , shapetemp2 ) ;
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lambda = B\ f ;

fApprox = H∗ lambda ;

%−−Repeat the above p r oc e s s o f r e shap ing your constant shape parameter ,

%−−c r ea t e the system and eva luat i on matr ices , and then s o l v e

%−−From here you could p l o t e r r o r bounds , p l o t fApprox vs fExact , f i nd

%−−point−wise e r r o r s , and so f o r th
� �

Listing 6: nonStationaryInterpolationFP.m algorithm
� �

% Name of f i l e : nonStat i onaryInterpo l at i onFP .m

% Used f o r non−s t a t i ona r y i n t e r p o l a t i o n o f a given f unc t i on with the

% MQ RBF as the i n t e r po l an t .

% Can be modi f i ed to g ive de s i r ed r e s u l t s .

% This i s the GENERAL algor i thm .

M = −−;%Declare your de s i r ed number o f eva luat i on po ints

x = l i n s p a c e (−1 ,1 ,M) ’ ;% column vector o f M evenly spaced po ints

%eva luat i on po ints from −1 to 1

n = 10:10:250;% This d i f f e r s from s ta t i ona r y i n t e r p o l a t i o n . Here

%n takes on the va lues o f 10 to 250 in i n t e r v a l s

%of 10 , f o r use o f N l a t e r . N r ep r e s en t s the number

%of c en t e r s

CMin = −−;%CMin and Cmax va lues used f o r the va r i ab l e shape

CMax = −−;%parameter

%−−Declare the f unc t i on you wish to i n t e r p o l a t e in terms o f x

fExact = −−;%Declared your exact f unc t i on in terms o f x

%−−Create f o r loop , from i=1 to i=l ength (n ) . This s e c t i o n i s used f o r

%−−the va r i ab l e shape parameter i n t e r p o l a t i o n . The i n t e r p o l a t i o n us ing

%−−a constant shape i s l i s t e d below

f o r i = 1 : l ength (n)

N = n( i );% i th element o f the row vector n
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shape = −−;%c a l l d e s i r ed va r i ab l e shape generator

xc = l i n s p a c e (−1 ,1 ,N) ’ ;% column vector o f N evenly spaced po ints

%from −1 to 1

f = −−;%Just fExact now in terms o f xc

%−−Reshape the given shape matrix above , so i t can used in the system

%−−matrix and eva luat i on matrix

shapetemp1 = reshape shape matrix f o r system matrix

shapetemp2 = reshape shape matrix f o r eva luat i on matrix

%−−Create system and eva luat i on matr i ces and then s o l v e

B = systemMatrix ( xc , shapetemp1 ) ;

H = eva luat i onMatr i c ( xc , x , shapetemp2 ) ;

lambda = B\ f ;

fApprox = H∗ lambda ;

−−END OF FOR LOOP−−

%−−Now use a constant shape parameter . Need to use another f o r loop

%−−from i=1 to i=l ength (n)

shapeConstant = −−;%constant shape parameter

f o r i = 1 : l ength (n)

N = n( i );% i th element o f the row vector n

xc = l i n s p a c e (−1 ,1 ,N) ’ ;% column vector o f N evenly spaced po ints

%from −1 to 1

f = −−;%Just fExact now in terms o f xc

%−−Create system and eva luat i on matr i ces and then s o l v e

B Constant = systemMatrix ( xc , shapeConstant ) ;

H Constant = eva luat i onMatr ix ( xc , x , shapeConstant ) ;

lambda = B Constant \ f ;

fApprox Constant = H Constant∗ lambda ;

−−END OF FOR LOOP−−
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%−−From here you could p l o t e r r o r bounds , p l o t fApprox vs fExact , f i nd

%−−point−wise e r r o r s , and so f o r th
� �

Listing 7: errorLoop.m
� �

% For e r r o r an a l y s i s o f shape parameters .

% co l o r exp lanat i on : blue i s constant , exponent i a l i s cyan ,

% green i s l i n ea r , and random i s red in the graph

% named : er rorLoop

% Input : M, N, CMin , CMax, I t te rateLower , and I t t e r a t eH i ghe r

% Output : Average e r r o r f o r the d i f f e r e n t shape parameters , cond i t i on

% numbers , and p l o t s | e r r o r | vs the average shape .

% This f unc t i on d i s p l ay s the e r r o r an a l y s i s f o r the d i f f e n t shape

% parameter s t r a t e g i e s .

f unc t i on errorLoop ( z , M, N, CMin , CMax, IterateLower , I t e r a t eH i ghe r )

warning o f f ;

format long ;

%p r e a l l o c a t i n g space f o r the e r r o r matr i ces below .

shapeAvg = ones ( [ 1 , z ] ) ;

maxErrorConstant = ones ( [ 1 , z ] ) ;

maxErrorExponential = ones ( [ 1 , z ] ) ;

maxErrorLinear = ones ( [ 1 , z ] ) ;

maxErrorRandom = ones ( [ 1 , z ] ) ;

%l i n s p a c e d i v i d e s the i n t e r v a l [ −1 ,1 ] i n to x amount o f evenly spaces

%numbers

xc = l i n s p a c e (−1 ,1 ,N) ’ ;

x = l i n s p a c e (−1 ,1 ,M) ’ ;

f = −−%Declare your f unc t i on in terms o f xc

fExact = −−%Declare your f unc t i on in terms o f x
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f o r j = 1 : z

%CAverage i s used f o r p l o t t i n g the e r r o r s and as the value o f the

%constant shape parameter

CAverage = (CMin + CMax)/2 ;

shapeAvg ( j ) = CAverage ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%| FOR CONSTANT INTERPOLATION

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

shapeConstant=ones ( [ 1 N] ) . ∗ CAverage ;

ctemp1 = shapeConstant ;

ctemp2=shapeConstant ;

cstarConstant=repmat ( ctemp1 ,N, 1 ) ;

B Constant = systemMatrix ( xc , cstarConstant ) ;

cstar2Constant=repmat ( ctemp2 ,M, 1 ) ;

H Constant = eva luat i onMatr ix ( xc , x , cstar2Constant ) ;

lambda = B Constant\ f ;

fApprox Constant = H Constant∗ lambda ;

%s to r e the e r r o r in an array

maxErrorConstant ( j ) = norm( fApprox Constant − fExact , i n f ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%| FOR EXPONENTIAL INTERPOLATION

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

shapeExponentia l = expShapeFunction (CMax,CMin ,N) ;

ctemp3 = shapeExponentia l ;

ctemp4 = shapeExponentia l ;

c s t a r 3=repmat ( ctemp3 ,N, 1 ) ;

B Exponential = systemMatrix ( xc , c s t a r 3 ) ;

c s t a r 4=repmat ( ctemp4 ,M, 1 ) ;

H = eva luat i onMatr ix ( xc , x , c s t a r 4 ) ;

lambda = B Exponential \ f ;
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fApprox Exponentia l = H∗ lambda ;

%s to r e the e r r o r in an array

maxErrorExponential ( j ) = norm( fApprox Exponentia l − fExact , i n f ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%| FOR LINEAR INTERPOLATION

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

shapeLinear = LinearVar iableShapeFunction (CMax,CMin ,N) ;

ctemp5 = shapeLinear ;

ctemp6 = shapeLinear ;

c s t a r 5=repmat ( ctemp5 ,N, 1 ) ;

B Linear = systemMatrix ( xc , c s t a r 5 ) ;

c s t a r 6=repmat ( ctemp6 ,M, 1 ) ;

H = eva luat i onMatr ix ( xc , x , c s t a r 6 ) ;

lambda = B Linear \ f ;

fApprox Linear = H∗ lambda ;

%s to r e the e r r o r in an array

maxErrorLinear( j ) = norm( fApprox Linear − fExact , i n f ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%| FOR RANDOM INTERPOLATION

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

shapeRandom = RandomVariableShapeFunction (CMax,CMin ,N) ;

ctemp7 = shapeRandom ;

ctemp8 = shapeRandom ;

c s ta r 7 = repmat ( ctemp7 ,N, 1 ) ;

B Random = systemMatrix ( xc , c s t a r 7 ) ;

c s t a r 8 = repmat ( ctemp8 ,M, 1 ) ;

H = eva luat i onMatr ix ( xc , x , c s t a r 8 ) ;

lambda = B Random\ f ;

fApprox Random = H∗ lambda ;

%s to r e the e r r o r in an array

maxErrorRandom ( j ) = norm( fApprox Random − fExact , i n f ) ;
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

CMin = CMin + IterateLower ;

CMax = CMax + It e r a t eH i ghe r ;

end

%c a l l d e s i r ed f unc t i on s
� �

Listing 8: stationary interpolation in 2-dimensions
� �

f unc t i on s tat i onaryInterpo l at i on2dFPFunct i on (M,N, CMax, CMin , shapeC ,

ansr , c a l l )

warning o f f

format compact

%Matlab code f o r s t a t i ona r y i n t e r p o l a t i o n in 2−dimens ions

%invo l v i ng d i f f e r e n t shape parameter s t r a t e g i e s

%For center l o ca t i on s , need N, i n t e r v a l [ 0 , 1 ]

[ xc , yc ] = meshgrid ( l i n s p a c e (0 , 1 ,N) , l i n s p a c e (0 , 1 ,N) ) ;

xc = reshape ( xc ,Nˆ2 , 1 ) ;

yc = reshape ( yc ,Nˆ2 , 1 ) ;

NStar = l ength ( xc );% could use yc i n s t ead

%For eva luat i on points , Need M, i n t e r v a l [ 0 , 1 ]

[ x , y ] = meshgrid ( l i n s p a c e (0 , 1 ,M) , l i n s p a c e (0 , 1 ,M) ) ;

x = reshape (x ,Mˆ2 , 1 ) ;

y = reshape (y ,Mˆ2 , 1 ) ;

MStar = length (x);% could use y i n s t ead

%Declare f and FExact in terms o f eva luat i on po ints and

%center s−−

f = −−;
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fExact = −−;

%de f i n e r f o r the center l o c a t i o n s and eva luat i on po ints

%so one can use the d e f i n i t i o n o f the MQRBF

o = ones (1 , l ength ( xc ) ) ;

r B = sq r t ( ( xc∗o − ( xc∗o ) ’ ) . ˆ 2 + ( yc∗o − ( yc∗o ) ’ ) . ˆ 2 ) ;

r H = sq r t ( ( x∗ ones (1 , NStar ) − ones (MStar , 1 )∗ xc ’ ) . ˆ 2 + . . .

( y∗ ones (1 , NStar ) − ones (MStar , 1 )∗ yc ’ ) . ˆ 2 ) ;

%D i f f e r e n t va r i ab l e shape parameters−−−−−−−−−−−−−−−−−−−−−−−−−

i f ansr == 2

i f c a l l ==1

shape = expShapeFunction (CMax,CMin , NStar );% exponent i a l

end

i f c a l l ==2

shape = LinearVar iableShapeFunction (CMax,CMin , NStar );% l i n e a r

end

i f c a l l ==3

shape = RandomVariableShapeFunction (CMax,CMin , NStar );% random

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ansr == 1

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%| FOR CONSTANT INTERPOLATION

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c = ones ( [ 1 NStar ] ) . ∗ shapeC ;

ctemp = c ;

c = repmat ( ctemp , NStar , 1 ) ;

B = mqRbf ( r B , c ) ; % system matrix

lambda = B\ f ; % expans ion c o e f f i c i e n t s

c = repmat ( ctemp , MStar , 1 ) ;

H = mqRbf ( r H , c ) ; % eva luat i on matrix
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fApprox = H∗ lambda ; % func t i on approximated

ConditionConstant = cond (B) % kappa

pointWiseErrorsConstant = abs ( fApprox − fExact ) ;

MaxErrorConstant = norm( fApprox − fExact )

pointWiseErrorsMeanConstant = mean( pointWiseErrorsConstant )

end

i f ansr == 2

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%For the varying shape parameter

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c = shape ;

ctemp = c ;

c = repmat ( ctemp , NStar , 1 ) ;

B = mqRbf ( r B , c ) ; % system matrix

lambda = B\ f ; % expans ion coedd i c i en t s

c = repmat ( ctemp , MStar , 1 ) ;

H = mqRbf ( r H , c ) ; % system matrix

fApprox = H∗ lambda ; % func t i on approximated

Condi t i onVar i abl e = cond (B) % kappa

po intWiseEr ror sVar ib le = abs ( fApprox − fExact ) ;

MaxErrorVariable = norm( fApprox − fExact )

pointWiseErrorsMeanVariable = mean( po intWiseEr ror sVar ib le )

end

warning on

end
� �

Listing 9: 2-D error analysis of interpolations
� �

%Descr ipt i on : I n t e r p o l a t e s the data from Franke Function . The center

%l o c a t i o n s and eva luat i on po ints load from txt f i l e s . This f i l e i s used

%f o r my t h e s i s o f va r i ab l e shape parameters .
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%Input : 1 . ) CMax i s used f o r shape parameter g ene r a to r s

% 2 . ) CMin i s used f o r shape parameter g ene r a to r s

% 3 . ) Ca l l i s a number that c a l l s the c o r r e c t shape parameter

% generator

% 4 . ) ShapeC de s i gna t e s the value o f the constant shape

% parameter

%Output : 1 . ) max and min | e r r o r | o f i n t e r p o l a t i o n

% 2 . ) average | e r r o r | o f i n t e r p o l a t i o n

% 3 . ) kappa o f the system matrix

f unc t i on interpolat ionExample2dFunct ion (CMin , CMax, Cal l , ShapeC)

format long , format compact

warning o f f

%load the c en t e r s and eva luat i on po ints from the text f i l e s below

xc = dlmread ( ’ f rankeProblemCenters . txt ’ , ’ ’ ) ; %load cen t e r s

[N, n ] = s i z e ( xc ) ; %need N(number o f c en t e r s ) f o r l a t e r use

x = dlmread ( ’ f rankeProblemEvaluationPoints . txt ’ , ’ ’ ) ;

%load eva luat i on po ints

[M, n ] = s i z e ( x ) ; %need M(number o f eva l . po ints ) f o r l a t e r use

f = frankeFunction ( xc ( : , 1 ) , xc ( : , 2 ) ) ; %pass x and y va lues

fExact = frankeFunction (x ( : , 1 ) , x ( : , 2 ) ) ;

%Exact f unc t i on used in e r r o r an a l y s i s

%er r o r checking−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( ShapeC<=0)

e r r o r ( ’The constant shape parameter must be g r ea t e r than 1 ! ’ ) ;

end ;

i f (CMax<1 | | CMin<1 )

e r r o r ( ’CMax and CMin must be g r ea t e r or equal to 1 . ’ ) ; end ;

i f ( Ca l l==1)

b = expShapeFunction (CMax,CMin ,N) ; end ;
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%cr e a t e s exponen t i a l l y varying shape parameter

i f ( Ca l l==2)

b = LinearVar iableShapeFunction (CMax,CMin ,N) ; end ;

%c r e a t e s va r i ab l e random shape parameter

i f ( Ca l l==3)

b = RandomVariableShapeFunction (CMax,CMin ,N) ; end ;

%c r e a t e s va r i ab l e random shape parameter

i f ( Cal l >3 | | Call <1)

e r r o r ( ’ Ca l l must be the number 1 , 2 , or 3 ’ ) ; end ;

%end of e r r o r checking−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%For the d i f f e r e n t shape parameter i n t e r po l a t i on −−−−−−−−−−−−−−−−−−−−−−

ctemp = b ;

c s ta rVar i ab l e = repmat ( ctemp ,N, 1 ) ;

B V = systemMatrix2d ( xc , c s t a rVar i ab l e ) ; %system matrix f o r va r i ab l e

%shape

c s ta r 2Var i ab l e = repmat ( ctemp ,M, 1 ) ;

H V = evaluationMatr ix2d ( xc , x , c s t a r 2Var i ab l e ) ; %eva luat i on matrix

%f o r va r i ab l e shape

kappa Var iable = cond (B V) %The cond i t i on number f o r the va r i ab l e

%shape system matrix

lambda V = B V\ f ; %expans ion c o e f f i c i e n t s

fApprox V = H V∗ lambda V ; %Approximation o f f us ing the

%var i ab l e shape

maxError V = norm( fApprox V − fExact , i n f ) %i n f i n i t y norm

%to f i nd max

minError V = min ( abs ( fApprox V − fExact ) )

pointWiseErrors VAverage = mean( abs ( fApprox V − fExact ) )
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%max V = max( abs ( fApprox V − fExact ) ) Same as maxError V

%End of i n t e r po l a t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%For the constant shape i n t e r po l a t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

shapeConstant = ones ( [ 1 N] ) . ∗ ShapeC ;

ctemp1 = shapeConstant ;

cstarConstant = repmat ( ctemp1 ,N, 1 ) ;

B C = systemMatrix2d ( xc , cstarConstant ) ; %system matrix f o r constant

%shape

cstar2Constant = repmat ( ctemp1 ,M, 1 ) ;

H C = evaluationMatr ix2d ( xc , x , cstar2Constant ) ; %eva luat i on matrix

%f o r constant shape

kappa Constant = cond (B C) %The cond i t i on number f o r the constant

%shape system matrix .

lambda C = B C\ f ; %expans ion c o e f f i c i e n t s

fApprox C = H C∗ lambda C ; %Approximation o f f us ing the constant

%shape

maxError C = norm( fApprox C − fExact , i n f )

%i n f i n i t y norm to f i nd max e r r o r f o r constant shape

minError C = min ( abs ( fApprox C − fExact ) )

pointWiseErrors CAverage = mean( abs ( fApprox C − fExact ) )

%End of constant shape i n t e r po l a t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

warning on

end
� �

98



References

[1] Application of RBF and SOFM Neural Networks on Vibration

Fault Diagnosis for Aero-engines, chapter Advances in Neural Net-

works, pages 414 – 419. Lecture Notes in Computer Science.

Springer Berlin /Heidelberg, 2006. 1

[2] P. Baiz and M. Aliabadi. Local buckling of thin-walled struc-

tures by the boundary element method. Engineering Analysis with

Boundary Elements, 33:302 313, 2009. 1

[3] F. Bernal. Meshless Methods for Elliptic and Free-Boundary Prob-

lems. PhD thesis, University of Carlos III De Madrid, 2008. 4.5,

6.1

[4] M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpo-

lation by basis functions of different scales and shapes. Calcolo,

41(2):77 – 87, 2004. 4, 4.2

[5] M. D. Buhmann. Limits of radial basis function interpolants. Com-

munications on Pure and Applied Analysis, 6(4):569 – 585, 2007.

2.3

[6] D. Higgs C. L. Bresten, S. Gottlieb and J.-H. Jung. Recovery

of high order accuracy in radial basis function approximation for

discontinuous problems. Preprint submitted to Elsevier Science,

September 2008. 3.1

99



[7] T. A. Driscoll and B. Fornberg. Interpolation in the limitof increas-

ingly flat radial basis functions. Comput. Math. Appl., 43:413 –

422, 2002. 2.3

[8] J. Duchon. Constructive Theory of Functions of Several Vari-

ables, pages 85 – 100. Lecture Notes in Mathematics. Springer

Berlin/Heidelberg, 1977. 1

[9] T. A. Foley. Near optimal parameter selection for multiquadratic

interpolation. Journal of Applied Science and Computation, 1:54

– 69, 1994. 4.1

[10] B. Fornberg, T. Driscoll, G. Wright, and R. Charles. Obeserva-

tions on the behavior of the radial basis function approximations

near boundaries. Computers and Mathematics with Applications,

43:473 – 490, 2002. 4.5, 6.1

[11] B. Fornberg and N. Flyer. Accurate numerical resolution of tran-

sients in intial-boundary value problems for the heat equation.

Journal of Computational Physics, 184:526–539, 2003. 4.5, 6.1

[12] B. Fornberg and N. Flyer. The gibbs phenomenon for radial basis

functions. Sampling Theory in Signal and Imaging Processing,

2008. 3.1

[13] B. Fornberg and J. Zuev. The runge phenonmenon and spatially

variable shape parameters in rbf interpolations. Computers and

Mathematics with Applications, 54:379 – 398, 2007. 2.3, 3.1

100



[14] R. Franke. A Critical Comparison of Some Methods for Interpo-

lation of Scattered Data. PhD thesis, Naval Postgraduate School

Monterey, California, 1979. 1, 4.1, 5.2

[15] R. Franke. Scattered data interpolation: Tests of some methods.

Mathematics of Computation, 38(157):181 – 200, 1982. 1

[16] S. Geisser. The predictive sample reuse method with applications.

Journal of the American Statistical Association, 70(350):320 – 328,

1975. 4.1

[17] D. Gottlieb and C.-W. Shu. On the gibbs phenomenon and its

resolution. SIAM Review, 39:644 – 668, 1997. 3.1

[18] R. L. Hardy. Multiquadric equations of topography and other

irregular surfaces. Journal of Geophysical Research, 76(8):1905 –

1915, 1971. 1, 1, 1, 4.1

[19] R. L. Hardy. Theory and applications of the multiquadric-

biharmonic method: 20 years of discovery. Computers and Math-

ematics with Applications, 19(8):163 – 208, 1990. 1, 1, 1, 1, 1
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