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Classes of operators preserved by extensions or liftings

Jesús M. F. Castillo, Manuel González, and Antonio Mart́ınez-Abejón

Abstract. A standard way to obtain extensions (resp. liftings) of operators is by
making the so-called operations of push-out (resp. pull-back). In this paper we study
the preservation of some classes of operators associated with an operator ideal A under
push-out extensions or pull-back liftings. We show several examples of classical operator
ideals whose associated classes are preserved, we prove that the preservation of those
classes under push-out extension or pull-back lifting implies that the space ideal of A
satisfies the 3-space property, and we derive some results for A that are useful in the
study of commutative diagrams of operators.

1. Introduction

We study the preservation of some classes of operators under the canonical methods
of push-out and pull-back (PO and PB in short). We refer to Section 2 for unexplained
terminology. A germinal result was proved in [13, 14] showing that the tauberian op-
erators are preserved under PO-extensions and the cotauberian operators are preserved
under PB-liftings.

In Section 3 we prove several stability results under PO-extensions or PB-liftings for
the semigroups A+ and A− associated with an operator ideal A (see [1]). Some of these
results are valid for A injective or surjective. Moreover, if A+ is always preserved by
PO-extensions (i.e., it satisfies the 3S-PO property) or A− is always preserved by PB-
liftings (i.e., it satisfies the 3S-PB property), then the space ideal of A has the 3-space
property. Some concrete examples are provided by the semigroups A+ characterized in
terms of sequences in Proposition 8: A+ satisfies the 3S-PO property and its dual class
(A+)

d = (Ad)− satisfies the 3S-PB property.
In general, operator ideals are stable under PO-extensions or PB-liftings only if we

impose some additional conditions. This is what we do in Section 4 where we introduce
the 3S− property and the 3S+ property in terms of exact sequences.

Many operator ideals satisfy those restricted stability properties. For example, the
operator ideals K, W, R, U , C and WC, introduced in Subsection 3.1, satisfy the 3S+
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2 J.M.F. CASTILLO, M. GONZÁLEZ, AND A. MARTÍNEZ-ABEJÓN

property, their dual operator ideals satisfy the 3S− property, and the p-converging opera-
tors (1 ≤ p ≤ ∞) satisfy both properties.

To know that an operator ideal A satisfies one of the properties 3S− or 3S+ is useful
when studying complex situations in commutative diagrams. For example, let us consider
the push-out diagram in Proposition 14. It is shown in [11, Proposition 3.3] that the
operators qg, qj are strictly singular if and only if so are qi, qf ; and [7, Lemma 8] can be
restated by saying that the operator ideal of strictly singular operators satisfy the 3S−
property. We show that such results can be framed in a general study about the behavior
of operator ideals. We also show that the space ideal of A has the 3-space property when
A has one of the properties 3S− or 3S+.

Our notations are standard like those of [2] and [10]. An operator is a bounded linear
map acting between Banach spaces, and an embedding is an operator with continuous
inverse, not necessarily surjective. We denote by KerT and RanT the kernel and the
range of an operator T . The set of all operators acting from X into Y is denoted L(X,Y ),
given a class A of operators, its component in L(X,Y ) is A(X,Y ) := A ∩ L(X,Y ), and
we write A(X) instead of A(X,X). A sequence of operators

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

is an exact sequence if the kernel of each operator coincides with the range of the previous
one, that is, j is an embedding, q is surjective, and Ker q = Ran j.

2. Preliminaries and basic results

We review the push-out and pull-back constructions for a pair of operators when one
of them is either an embedding or a surjection.

Given T ∈ L(X,Y ) and an embedding J ∈ L(X,Z) then Δ := {(Tx,−Jx) : x ∈ X} is
a closed subspace of Y ⊕1 Z, and the push-out space PO(T, J) of the pair (T, J) is defined
as the quotient space PO(T, J) = (Y ⊕1 Z)/Δ. The operators J : Y → PO(T, J) and
T : Y → PO(T, J) defined as J(y) = (y, 0) + Δ and T (z) = (0, z) + Δ yield the following
commutative diagram which is called the PO-diagram of (T, J):

(1)

0 −−−−→ X
J−−−−→ Z

q−−−−→ Z/J(X) −−−−→ 0

T

⏐⏐�
⏐⏐�T

∥∥∥
0 −−−−→ Y

J−−−−→ PO(T, J)
p−−−−→ Z/J(X) −−−−→ 0

where q is the quotient map, and p
(
(y, z) + Δ

)
= z + J(X).

Since J is an embedding (Proposition 1), both rows in (1) are exact sequences, and T
can be regarded as an extension of T to the superspace Z, which we call the PO-extension
of T through J .

Similarly, given S ∈ L(Y,X) and a surjective operator Q ∈ L(Z,X), the pull-back
space of (S,Q) is defined as the space PB(S,Q) = {(y, z) ∈ Y ⊕∞ Z : Sy = Qz}. The
operators S : PB(S,Q) → Z and Q : PB(S,Q) → Y , given by S(y, z) = z and Q(y, z) = y
provide a commutative diagram which is called the PB-diagram of (S,Q):
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(2)

0 −−−−→ KerQ
i−−−−→ PB(S,Q)

Q−−−−→ Y −−−−→ 0∥∥∥ S

⏐⏐�
⏐⏐�S

0 −−−−→ KerQ
j−−−−→ Z

Q−−−−→ X −−−−→ 0

where j is the natural embedding, and i(z) = (0, z).
Since Q is surjective (Proposition 3), both rows in (2) are exact sequences, and S can

be regarded as a lifting of S to Z, which we call the PB-lifting of S by Q.

Sometimes we will simply write PO and PB instead of PO(T, J) and PB(S,Q).

The proof of the following result is not difficult.

Lemma 1. An operator T ∈ L(X,Y ) has closed range if and only if each bounded
sequence (xn)

∞
n=1 in X such that limTxn = 0 satisfies limn→∞ dist (xn,KerT ) = 0.

Next we show some properties of the PO-extensions and PB-liftings.

Proposition 1. In the PO-diagram (1), where J is an embedding, one has:

(i) J is an embedding;
(i) dimKerT = dimKerT ;
(ii) T has closed range if and only if so has T .

Proof. Statement (i) is proved in [10, Lemma 1.3.b], and (ii) is a consequence of
KerT = J

(
KerT

)
.

To prove (iii), we apply Lemma 1. Assume T has closed range and let (xn)
∞
n=1 be

a bounded sequence in X such that limTxn = 0. Thus limTJxn = 0, and therefore,
limdist (Jxn,KerT ) = 0. But J is an embedding and KerT = J(KerT ), hence also
limdist (xn,KerT ) = 0, which proves that T has closed range.

Conversely, assume T has closed range and let (zn)
∞
n=1 be a bounded sequence in Z

such that limT (zn) = 0. Then there exists a sequence (Txn,−Jxn)
∞
n=1 in Δ such that

lim(Txn, zn − Jxn) = 0. Since Txn → 0 and T has closed range, limdist (xn,KerT ) = 0.
Moreover KerT = J

(
KerT

)
and lim(zn − Jxn) = 0 means that limdist (zn,KerT ) = 0.

Hence the range of T is closed. �
The push-out and pull-back constructions satisfy the following relations.

Proposition 2 (Duality relations).

(a) Given T ∈ L(X,Y ) and an embedding J ∈ L(X,Z), the dual of the PO-diagram
of (T, J) can be identified with the PB-diagram of (T ∗, J∗).

(b) Given S ∈ L(Y,X) and a surjective operator Q ∈ L(Z,X), the dual of the PB-
diagram of (S,Q) can be identified with the PO-diagram of (S∗, Q∗).

Proof. (a) The operator J∗ is surjective with kernel J(X)⊥. Since PO(T, J) =
(Y ⊕1 Z)/Δ and Δ⊥ = PB(T ∗, J∗), we get PO(T, J)∗ ≡ PB(T ∗, J∗). Let (y∗, z∗) ∈
PB(T ∗, J∗) ≡ Δ⊥. For each z ∈ Z,

〈z, (T )∗(y∗, z∗)〉 = 〈Tz, (y∗, z∗)〉 = 〈(0, z) + Δ, (y∗, z∗)〉
= 〈z, z∗〉 = 〈z, (T ∗)(y∗, z∗)〉.
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Thus (T )∗ = (T ∗), and similarly we can prove (J )∗ = (J∗) and the remaining identifica-
tions.

(b) The operator Q∗ is an embedding and PB(S,Q)⊥ = {(S∗x∗,−Q∗x∗) : x∗ ∈ X∗}.
Indeed, it is easy to check that PB(S,Q) coincides with the annihilator ⊥{(S∗x∗,−Q∗x∗) :
x∗ ∈ X∗}. So the equality follows from the fact that {(S∗x∗,−Q∗x∗) : x∗ ∈ X∗} is a
weak∗-closed subspace of (Y ⊕∞ Z)∗. Thus PB(S,Q)∗ ≡ PO(S∗, Q∗).

To prove (S)∗ = (S∗), (Q)∗ = (Q∗) and the remaining identifications, we can proceed
as we did for part (a). �

Propositions 1 and 2 imply the next result.

Proposition 3. In the PB-diagram (2), where Q is surjective, one has:

(i) Q is surjective;

(ii) dimX/RanS = dimZ/RanS;
(iii) S has closed range if and only if so has S.

3. Semigroups associated with an operator ideal

In [12, Definition 6.1.1] (see also [1]), certain classes of operators, called semigroups,
were introduced, and it was proved that each operator ideal A has two associated semi-
groups A+ and A− whose components are defined as follows:

A+(X,Y ) := {T ∈ L(X,Y ) : S ∈ L(Z,X), TS ∈ A ⇒ S ∈ A},
A−(X,Y ) := {T ∈ L(X,Y ) : S ∈ L(Y, Z), ST ∈ A ⇒ S ∈ A}.

Among the basic properties of A+ and A− one has:

Proposition 4. [12, Propositions 6.1.8 and 6.1.14] Let A be an operator ideal, let
T ∈ L(X,Y ) and let S ∈ L(Y, Z).

(1) S, T ∈ A+ ⇒ ST ∈ A+ ⇒ T ∈ A+,
(2) S, T ∈ A− ⇒ ST ∈ A− ⇒ S ∈ A−.

Note that two different operator ideals A and B can have the same associated semi-
groups, say A+ = B+ (when A stands for the compact or the strictly singular operators,
A+ is the class of upper semi-Fredholm operators) or A− = B− (when A stands for
the compact or the strictly cosingular operators, A− is the class of lower semi-Fredholm
operators).

Recall that an operator ideal A is called injective if given S ∈ L(X,Y ) and an embed-
ding J ∈ L(Y, Z), JS ∈ A implies S ∈ A (i.e., all embeddings are in A+). The operator
ideal A is called surjective if given S ∈ L(X,Y ) and a surjective operator Q ∈ L(Z,X),
SQ ∈ A implies S ∈ A (i.e., all surjective operators are in A−).

Proposition 5. Let A be an operator ideal and consider T ∈ L(X,Y ) and an embed-
ding J ∈ L(X,Z).

(1) If A is surjective and T ∈ A− then T ∈ A−.
(2) If A is injective and TJ ∈ A− then T, J ∈ A−.
(3) If A is injective and T ∈ A+ then T ∈ A+.
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Proof. (1) Let S ∈ L(PO,W ) and suppose that ST ∈ A. Since T ∈ A− and
STJ = SJT ∈ A, we obtain SJ ∈ A. Let Q : Y ⊕1 Z → PO be the natural quotient map.
Then ST , SJ ∈ A and SQ(y, z) = SJy + STz, hence SQ ∈ A, thus S ∈ A because A is
surjective.

(2) Note that J T = TJ ∈ A− implies J ∈ A−. For the other part, let τ ∈ L(Y,W ),
suppose that τT ∈ A, and look at the diagram

X
T−−−−→ Y

τ−−−−→ W

J

⏐⏐�
⏐⏐�J

⏐⏐�J ′

Z −−−−→
T

PO −−−−→
τ ′

PO′

where PO′ = PO(τ, J) and τ ′ and J
′
are the corresponding extensions.

From TJ ∈ A− and J ′τT = τ ′TJ ∈ A we get τ ′ ∈ A, and thus J ′τ = τ ′J ∈ A. Since
J ′ is an embedding and A is injective, τ ∈ A. Thus, T ∈ A−.

(3) A injective implies J ∈ A+. Thus TJ = JT ∈ A+ which implies T ∈ A+. �

An argument dual to the one in the proof of Proposition 5 provides the following result.

Proposition 6. Let A be an operator ideal and consider S ∈ L(Y,X) and a surjective
operator Q ∈ L(Z,X).

(1) If A is injective and S ∈ A+ then S ∈ A+.
(2) If A is surjective and QS ∈ A+ then S, Q ∈ A+.
(3) If A is surjective and S ∈ A− then S ∈ A−.

Recall that a class of Banach spaces A satisfies the 3-space property if X is in A when
X contains a closed subspace Y such that Y,X/Y ∈ A. We refer to [10] for examples of
classes of Banach spaces satisfying or failing the 3-space property. Also the space ideal
Sp(A) associated with an operator ideal A is the class of all Banach spaces X such that
the identity IX belongs to A [21].

Note that X ∈ Sp(A) if and only if A(X,Y ) = A+(X,Y ) = L(X,Y ) for every Y , and
similarly Y ∈ Sp(A) if and only if A(X,Y ) = A−(X,Y ) = L(X,Y ) for every X.

Proposition 7. Let A be an operator ideal. Suppose that

(a) every PO-extension of an operator in A+ belongs to A+, or
(b) every PB-lifting of an operator in A− belongs to A−.

Then Sp(A) satisfies the 3-space property.

Proof. LetX be a Banach space with a closed subspace Y such that Y,X/Y ∈ Sp(A).
Let us denote by J and Q the embedding of Y into X and the quotient map from X onto
X/Y respectively.

(a) When every PO-extension of an operator in A+ belongs to A+, we consider the
PO-diagram of (0Y , J), where 0Y is the zero operator on Y . Thus PO = Y ⊕1 X/Y and
0Y x = (0, Qx).

We have 0Y ∈ A(X,PO) ∩ A+(X,PO) because PO ∈ Sp(A) and 0Y ∈ A+. Hence
X ∈ Sp(A).
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(b) When every PB-lifting of an operator in A− belongs to A−, we consider the PB-
diagram of (0X/Y , Q). Thus PB = X/Y ⊕∞ Y ∈ Sp(A) and 0X/Y (Qx, y) = y.

We have 0X/Y ∈ A(PB, X)∩A−(PB, X) because PB ∈ Sp(A) and 0X/Y ∈ A−. Hence

X ∈ Sp(A). �
Proposition 7 suggests to introduce the following properties:

Definition 1. Let A be an operator ideal.

(a) We say that A+ satisfies the 3S-PO property if every PO-extension of an operator
in A+ belongs to A+.

(b) We say that A− satisfies the 3S-PB property if every PB-lifting of an operator
in A− belongs to A−.

As we mentioned before, for different operator ideals A and B it may happen that
A+ = B+ or A− = B−. For this reason the notions introduced in Definition 1 cannot be
properly described as properties of the operator ideal.

3.1. Semigroups admitting a sequential characterization. Here we show sev-
eral concrete examples of semigroups A+ and A− for which the previous results in this
section are applicable.

We denote by K, W, R, U , C and WC the operator ideals of compact, weakly compact,
Rosenthal, unconditionally convergent, completely continuous, and weakly completely con-
tinuous operators (see [21] for their definitions). The corresponding semigroups A+ admit
a sequential characterization:

Proposition 8. [15], [1, Section 3.4] Let T ∈ L(X,Y ).

(a) T ∈ K+ if and only if each bounded sequence (xn) with (Txn) convergent has a
convergent subsequence.

(b) T ∈ R+ if and only if each bounded sequence (xn) with (Txn) weakly Cauchy has
a weakly Cauchy subsequence.

(c) T ∈ W+ if and only if each bounded sequence (xn) with (Txn) weakly convergent
has a weakly convergent subsequence.

(d) T ∈ U+ if and only if each w.u.C. series
∑

n xn with
∑

n Txn unconditionally
convergent is unconditionally convergent.

(e) T ∈ C+ if and only if each weakly Cauchy sequence (xn) with (Txn) convergent
is convergent.

(f) T ∈ WC+ if and only if each weakly Cauchy sequence (xn) with (Txn) weakly
convergent is weakly convergent.

The semigroups characterized in Proposition 8 were studied in [1, 4, 18, 20, 6, 16].
Also note that W+ is the class of tauberian operators and W− is the class of cotauberian
operators introduced in [18] and [22], respectively.

Given a class A of operators, its dual class Ad is defined by its components

Ad(X,Y ) := {T ∈ L(X,Y ) : T ∗ ∈ A}.
Observe that K = Kd, W = Wd, and that the dual class of an operator ideal is also an
operator ideal [21].
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Remark 1. Let A be one of the operator ideals K, W, R, U , C and WC. Then A is
injective and Ad surjective [21]. Moreover (Ad)− = (A+)

d [12, Section 3.5].

Theorem 1. Let A be one of the operator ideals K, W, R, U , C and WC. Then A+

satisfies the 3S-PO property and (Ad)− satisfies the 3S-PB property.

Proof. We begin with the result for A+, in which we have to consider separately
the following different cases. Recall that Δ is the closed subspace {(Tx,−Jx) : x ∈ X} of
Y ⊕1 Z.

Suppose T /∈ C+. Then Z contains a weakly Cauchy sequence (zn) with no convergent
subsequence such that (Tzn) is convergent. Thus there exists (y, z) ∈ Y ⊕1 Z such that
dist

(
(y, z − zn),Δ

) → 0. Hence, for every n, we can select (Txn,−Jxn) ∈ Δ such that

‖(y, z − zn)− (Txn,−Jxn)‖1 = ‖y − Txn‖+ ‖z − zn + Jxn‖ → 0.

Since ‖z − zn + Jxn‖ → 0, (xn) is a weakly Cauchy sequence having no convergent
subsequences, and since ‖y − Txn‖ → 0, (Txn) is convergent. Hence T /∈ C+.

Suppose T /∈ WC+. Then there exists a weakly Cauchy sequence (zn) in Z having
no weakly convergent subsequence and such that (Tzn) is weakly convergent. Since for
convex sets the norm closure and the weak closure coincide, we can find a sequence (wk)
of successive convex combinations of (zn) such that (wk) is weakly Cauchy and has no
weakly convergent subsequence, and (Twk) is convergent. Applying to (wk) the argument
we gave in the previous case we conclude that T /∈ WC+.

Suppose T /∈ R+. Following the proof of Theorem 1 in [15], there exists a sequence
(zn) in Z equivalent to the unit vector basis of �1 such that (Tzn) converges to 0. Thus
dist

(
(0,−zn),Δ

) → 0, and repeating the argument of the case of C+ (with (y, z) = (0, 0)
here) we obtain a sequence (xn) in X equivalent to the unit vector basis of �1 such that
(Txn) converges to 0. Hence T /∈ R+.

Suppose that T /∈ U+. Then there exists a sequence (zn) in Z equivalent to the unit
vector basis of c0 such that (Tzn) converges to 0, and the argument of the case of R+

allows us to conclude that T /∈ U+.

For W+ we can give a similar argument (a weakly convergent sequence admits a
sequence of successive convex blocks which is convergent). Moreover, since K+ is the class
of operators with closed range and finite dimensional kernel, we can apply Proposition 1.

The result for (Ad)− is a direct consequence of the result for A+, since (Ad)− = (A+)
d

and, by Proposition 2, we can identify the operators (T )∗ and (T ∗). Moreover, since K−
is the class of operators with closed range and finite codimensional range, this case is a
direct consequence of Proposition 3. �

4. Preservation of operator ideals by extension or lifting

We now consider operator ideals A such that, given an exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

satisfying some conditions and an operator T : X → W , to check that T ∈ A it is enough
to show that the restriction Tj is in A. Clearly this property is equivalent to j ∈ A−.
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We are also interested in operator ideals A for which, under some conditions on the exact
sequence, q ∈ A+. Equivalently, an operator S : W → X is in A when qS ∈ A.

The reason for the name of the following concept will be clear in Proposition 18.

Definition 2. We say that an operator ideal A satisfies the 3S− property if given an
exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

with q ∈ A, we have j ∈ A−.

The operator ideal K satisfies the 3S− property, but this is a trivial example because
q compact implies Z finite dimensional.

Proposition 9. The operator ideals W, Rd, Ud, Cd and WCd satisfy the 3S− property.

Proof. We consider an exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

and assume first that q ∈ W . Since W is surjective, Z  X/j(Y ) is reflexive. Hence
j ∈ W− by [12, Proposition 3.1.5], and W satisfies the 3S− property.

Let Ad denote Rd, Ud, Cd or WCd. Since Ad is also surjective, using the characteri-
zation of j ∈ (Ad)− given in [12, Proposition 3.5.12], we can apply the argument we used
for W. �

Proposition 10. An operator ideal A satisfies the 3S− property if and only if given
a commutative diagram

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

T

⏐⏐�
⏐⏐� ̂T

∥∥∥
0 −−−−→ Y ′ i−−−−→ X ′ p−−−−→ Z −−−−→ 0

whose rows are exact sequences, we have T̂ ∈ A when q and T belong to A.

Proof. Suppose that A satisfies the 3S− property and q, T ∈ A. Then j ∈ A− and

iT = T̂ j ∈ A, hence T̂ ∈ A.
For the converse implication, suppose that q ∈ A, and let τ ∈ L(X,E) such that

τj ∈ A. A look at the PO-diagram

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

τj

⏐⏐�
⏐⏐�τj

∥∥∥
0 −−−−→ E −−−−→

j
PO −−−−→ Z −−−−→ 0

shows that the hypothesis yields that τj ∈ A. The universal property of the push-out [5,
Section A.4.1] implies the existence of an operator α making a commutative diagram
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(3) Y
j ��

τj
��

X

τj
�� τ

��

E
j ��

id

��

PO
α

���
��

��
��

�

E

Therefore τ = ατj ∈ A, and we conclude j ∈ A−. �
Remark 2. The proof of Proposition 10 makes clear that in its statement it is enough

to consider the PO-diagrams described in Formula (1).

An operator T ∈ L(X,Y ) is strictly singular (denoted T ∈ SS) if no restriction of
T to an infinite dimensional subspace of X is an embedding; and T is strictly cosingular
(denoted T ∈ SC) if there is no infinite codimensional closed subspace N of Y such that
QNT is surjective, where QN : Y → Y/N is the quotient map. Both SS and SC are
operator ideals, SS is injective, not surjective, and SC is surjective, not injective [21].

Note also that the existence of an exact sequence

0 −−−−→ �2
j−−−−→ Z2

q−−−−→ �2 −−−−→ 0

with j strictly cosingular and q strictly singular was proved in [17, Theorem 6.4], and
other examples of such exact sequences can be found in [7].

The following result is a direct consequence of [7, Lemma 8] and Proposition 10.

Proposition 11. The operator ideal SS satisfies the 3S− property.

A Banach space X is called minimal if every infinite dimensional subspace of X con-
tains a subspace isomorphic to X . Example of minimal spaces are c0, �p (1 ≤ p < ∞) and
Tsirelson’s space T ∗. We refer to [8] for other examples of minimal spaces.

Definition 3. Let X be a minimal space. We say that T ∈ L(X,Y ) is X -singular if
there exists no subspace M of X isomorphic to X such that the restriction of T to M is
an isomorphism.

The arguments in the proof of [23, Proposition on p. 289] show that the X -singular
operators form an operator ideal, which we denote X -S. Clearly X -S is an injective opera-
tor ideal. Moreover �1-S = R, the Rosenthal operators, and c0-S = U , the unconditionally
converging operators [12, Proposition 3.5.4].

Proposition 12. Let X be a minimal Banach space. Then the operator ideal X -S
satisfies the 3S− property.

Proof. Suppose in the statement of Proposition 10 that T ∈ X -S but T̂ /∈ X -S.
Then there exists a subspace M of X isomorphic to X such that the restriction of T̂ to
M is an isomorphism.

From T ∈ X -S we derive that M ∩ j(Y ) is finite dimensional and M + j(Y ) is closed.
Otherwise, a standard perturbation argument would allow us to show that there exist a
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subspace N ofM isomorphic to X and a nuclear operatorK : X → X with ‖K‖ arbitrarily
small norm such that (I −K)(N) ⊂ j(Y ) and Tj an isomorphism on (I −K)(N), which
is not possible. And from M ∩ j(Y ) finite dimensional and M + j(Y ) closed we derive
q �∈ X -S, concluding the proof. �

We say that a sequence (xn) in a Banach space X is weakly p-summable (1 ≤ p < ∞)
when, for each f ∈ X∗,

∑∞
n=1 |f(xn)|p < ∞. We say that (xn) is weakly ∞-summable if it

is weakly null.

Definition 4. Let 1 ≤ p ≤ ∞. We say that an operator T ∈ L(X,Y ) is p-converging
if ‖Txn‖ → 0 for each weakly p-convergent sequence (xn) in X.

We denote by Cp the class of p-converging operators. Note that Cp (1 ≤ p ≤ ∞) is an
injective, non-surjective, operator ideal [9, Lemma 2], C∞ = C, the completely continuous
operators, and C1 = U , the unconditionally converging operators.

Proposition 13. For 1 ≤ p ≤ ∞, the operator ideal Cp satisfies the 3S− property.

Proof. Suppose in the statement of Proposition 10 that q, T ∈ Cp and let (xn) be

a weakly p-convergent sequence in X. It is enough to show that a subsequence of (T̂ xn)
converges in norm to 0.

Since q ∈ Cp we get ‖qxn‖ → 0, and passing to a subsequence we can pick yn ∈ Y so
that ‖xn − yn‖ ≤ 2−n. Thus (yn) is also weakly p-summable in Y , and T ∈ Cp implies

‖Tyn‖ → 0. Hence ‖T̂ xn‖ → 0. �
The choice A = SS in the following result yields [11, Proposition 3.3].

Proposition 14. Let A be an operator ideal satisfying the 3S− property. Consider
the following commutative diagram

0 0⏐⏐�
⏐⏐�

0 −−−−→ Y
f−−−−→ X

qf−−−−→ Z −−−−→ 0

j

⏐⏐�
⏐⏐�i ‖

0 −−−−→ X ′ g−−−−→ P
qg−−−−→ Z −−−−→ 0

qj

⏐⏐�
⏐⏐�qi

Z ′ = Z ′
⏐⏐�

⏐⏐�
0 0

whose rows and columns are exact sequences. Then qg, qj ∈ A if and only if qi, qf ∈ A.

Proof. Suppose qg, qj ∈ A. Then qf = iqg ∈ A. Moreover, by Proposition 10, we
have g, j ∈ A−. Then gj = if ∈ A−, hence i ∈ A− which implies qi ∈ A. The proof of
the converse implication is identical. �
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Next we consider a dual version of Definition 2.

Definition 5. We say that an operator ideal A satisfies the 3S+ property if given an
exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

with j ∈ A, we have q ∈ A+.

Again K is a trivial example of operator ideal satisfying the 3S+ property. The fol-
lowing results gives some other examples.

Proposition 15. The operator ideals W, R, U , C and WC satisfy the 3S+ property.

Proof. Let A denote W, R, U , C or WC. We consider an exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

and assume that j ∈ A. Since A is injective, we get Y ≡ ker q ∈ Sp(A), and applying the
characterizations of A+ in [12, Theorem 2.1.5 and Proposition 3.5.12], we get q ∈ A+. �

A dual version of the proof of Proposition 10 proves the following result and shows
that in its statement it is enough to consider the PB-diagrams described in Formula (2).

Proposition 16. An operator ideal A satisfies the 3S+ property if and only if, given
a commutative diagram

0 −−−−→ Y
i−−−−→ X ′ p−−−−→ Z ′ −−−−→ 0∥∥∥ ˜T

⏐⏐�
⏐⏐�T

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

whose rows are exact sequences, we have T̃ ∈ A when j and T belong to A.

Proposition 17. For 1 ≤ p ≤ ∞, the operator ideal Cp satisfies the 3S+ property.

Proof. We consider the commutative diagram in the statement of Proposition 16,
and assume that j, T ∈ Cp. Let (xn) be a weakly p-convergent sequence in X ′. It is

enough to show that a subsequence of (T̃ xn) converges in norm to 0.

Since qT̃ = Tp ∈ Cp, the sequence (qT̃xn) converges in norm to 0, and passing to a

subsequence we can pick yn ∈ Y so that ‖T̃ xn − jyn‖ ≤ 2−n. Thus (jyn), and also (yn),

are weakly p-summable, and j ∈ Cp implies ‖jyn‖ → 0. Hence ‖T̃ xn‖ → 0. �
It follows from Proposition 16 and [7, Lemma 10] that SC is a non-trivial example of

operator ideal which satisfies the 3S+ property.

Proposition 18. Let A be an operator ideal satisfying one of the properties 3S− or
3S+. Then Sp(A) satisfies the 3-space property.

Proof. Suppose that Sp(A) fails the 3-space property, take a Banach space X /∈
Sp(A) with a subspace M such that M,X/M ∈ Sp(A), and consider the exact sequence

0 −−−−→ M
j−−−−→ X

q−−−−→ X/M −−−−→ 0.
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Then j, q ∈ A because M,X/M ∈ Sp(A), but IX �∈ A. Thus j /∈ A− and q /∈ A+. Hence
A fails both the 3S− and the 3S+ properties. �

We can also state the following dual version of Proposition 14.

Proposition 19. Let A be an operator ideal satisfying the 3S+ property. Consider
the following commutative diagram

0 0
⏐⏐

⏐⏐

0 ←−−−− Z
qf←−−−− X

f←−−−− Y ←−−−− 0

qj


⏐⏐ qi


⏐⏐ ‖
0 ←−−−− X ′ qg←−−−− P

g←−−−− Y ←−−−− 0

j


⏐⏐ i


⏐⏐
Y ′ = Y ′

⏐⏐


⏐⏐
0 0

whose rows and columns are exact sequences. Then g, j ∈ A if and only if i, f ∈ A.

We leave the details of the proof to the interested reader.
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