### Kansas Agricultural Experiment Station Research Reports

Volume 6 Issue 4 Southeast Research and Extension Center Agricultural Research

Article 6

2020

## Timing of Side-Dress Applications of Nitrogen for Corn in Conventional and No-Till Systems

D. W. Sweeney Kansas State University, dsweeney@ksu.edu

D. Ruiz Diaz Kansas State University, ruizdiaz@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr



Part of the Agronomy and Crop Sciences Commons

### **Recommended Citation**

Sweeney, D. W. and Ruiz Diaz, D. (2020) "Timing of Side-Dress Applications of Nitrogen for Corn in Conventional and No-Till Systems," Kansas Agricultural Experiment Station Research Reports: Vol. 6: Iss. 4. https://doi.org/10.4148/2378-5977.7908

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2020 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.



### Timing of Side-Dress Applications of Nitrogen for Corn in Conventional and No-Till Systems

### **Abstract**

Corn yield and yield components were affected by tillage and nitrogen (N) side-dress application options in 2019. Average corn yields were 15% greater with conventional tillage than with no-till. Yields were improved by either splitting N rate between pre-plant and side-dress at the V10 growth stage or adding additional side-dress N as compared with applying 150 lb/a pre-plant.

### Keywords

nitrogen, timing, side-dress, corn, tillage

### **Creative Commons License**



This work is licensed under a Creative Commons Attribution 4.0 License.

### **Cover Page Footnote**

This work is supported by the U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project KS00-0104-HA.



# 2020 SEREC AGRICULTURAL RESEARCH

# Timing of Side-Dress Applications of Nitrogen for Corn in Conventional and No-Till Systems

D.W. Sweeney and D. Ruiz-Diaz<sup>1</sup>

### **Summary**

Corn yield and yield components were affected by tillage and nitrogen (N) side-dress application options in 2019. Average corn yields were 15% greater with conventional tillage than with no-till. Yields were improved by either splitting N rate between pre-plant and side-dress at the V10 growth stage or adding additional side-dress N as compared with applying 150 lb/a pre-plant.

### Introduction

Environmental conditions vary widely in the spring in southeastern Kansas. As a result, much of the N applied prior to corn planting may be lost before the time of maximum plant N uptake. Side-dress or split applications to provide N during rapid growth periods may improve N use efficiency while reducing potential losses to the environment. The objective of this study was to determine the effect of timing of side-dress N fertilization compared with pre-plant N applications for corn grown on a claypan soil.

### **Experimental Procedures**

The experiment was established in spring 2015 on a Parsons silt loam soil at the Parsons Unit of the Kansas State University Southeast Agricultural Research Center. The experiment was a split-plot arrangement of a randomized complete block design with four blocks (replications). Whole plot tillage treatments were conventional tillage (chisel, disk, and field cultivate) and no tillage. Sub-plot nitrogen treatments were six pre-plant/side-dress N application combinations that include:

- 1. A no-N control;
- 2. 150 lb N/a applied pre-plant;
- 3. 100 lb N/a applied pre-plant with 50 lb N/a applied at the V6 (six-leaf) growth stage;
- 4. 100 lb N/a applied pre-plant with 50 lb N/a applied at the V10 (ten-leaf) growth stage;
- 5. 150 lb N/a applied pre-plant with 50 lb N/a applied at the V6 growth stage; and
- 6. 150 lb N/a applied pre-plant with 50 lb N/a applied at the V10 growth stage.

<sup>&</sup>lt;sup>1</sup>Department of Agronomy, Kansas State University, Manhattan, KS.

#### 2020 SEREC AGRICULTURAL RESEARCH

The N source for all treatments was liquid urea-ammonium nitrate (28% N) fertilizer. Pre-plant N fertilizer was applied on March 13, 2019, side-dress N at V6 on June 3, 2019, and side-dress N at V10 on June 13, 2019, to appropriate plots. All N was broadcast applied with 7-stream pattern fertilizer nozzles. Corn was planted on April 11 and harvested on September 5, 2019.

### **Results and Discussion**

In 2019, average corn yielded 22 bu/a more with conventional tillage than with no-tillage, partially due to having a 9% greater established stand (Table 1). Adding N fertilizer more than tripled yields obtained in the no-N control. Splitting the N fertilizer to apply 100 lb N/a preplant followed by 50 lb N/a at the V10 growth stage improved yields by 15 bu/a more than all N applied pre-plant. Adding 50 lb N/a extra at the V6 or V10 growth stages to a 150 lb N/a preplant application did not improve yields more than that obtained with 150 lb N/a applied split pre-plant and side-dress at V10. These effects of N application timing on corn yield in 2019 appeared to be related to the combined responses in kernel weight, ears/plant, and kernels/ear.

### Acknowledgment

This work is supported by the U.S. Department of Agriculture National Institute of Food and Agriculture, Hatch project KS00-0104-HA.

### 2020 SEREC AGRICULTURAL RESEARCH

Table 1. Tillage and nitrogen (N) side-dress application effects on yield and yield components of corn in 2019

| Pononio or com m 20       |       |          |                  |            |             |
|---------------------------|-------|----------|------------------|------------|-------------|
| Treatment                 | Yield | Stand    | Kernel<br>weight | Ears/plant | Kernels/ear |
|                           | bu/a  | plants/a | mg               |            |             |
| Tillage                   |       |          |                  |            |             |
| Conventional <sup>1</sup> | 167   | 22,300   | 271              | 0.95       | 709         |
| No-till                   | 145   | 20,400   | 258              | 0.97       | 689         |
| LSD (0.10)                | 15    | 800      | NS               | NS         | NS          |
| $N 	ext{ timing}^2$       |       |          |                  |            |             |
| No-N control              | 54    | 21,900   | 205              | 0.84       | 371         |
| 150 PP                    | 164   | 21,600   | 260              | 0.99       | 752         |
| 100 PP/50 V6              | 166   | 21,600   | 273              | 0.99       | 724         |
| 100 PP/50 V10             | 179   | 22,200   | 273              | 0.98       | 768         |
| 150 PP/50 V6              | 187   | 21,000   | 287              | 0.99       | 801         |
| 150 PP/50 V10             | 186   | 21,000   | 289              | 1.00       | 778         |
| LSD (0.05)                | 9     | NS       | 15               | 0.05       | 52          |

<sup>&</sup>lt;sup>1</sup>Conventional tillage: chisel, disk, and field cultivate.

<sup>&</sup>lt;sup>2</sup>Nitrogen treatments:

Control = no N fertilizer.

 $<sup>150 \</sup>text{ PP} = 150 \text{ lb N/a}$  applied pre-plant with no side-dress N.

 $<sup>100 \</sup>text{ PP/}50 \text{ V6} = 100 \text{ lb N/a applied pre-plant with } 50 \text{ lb N/a side-dress applied at V6 (six-leaf) growth stage.}$ 

<sup>100</sup> PP/50 V10 = 100 lb N/a applied pre-plant with 50 lb N/a side-dress applied at V10 (ten-leaf) growth stage.

 $<sup>150 \</sup>text{ PP/}50 \text{ V6} = 150 \text{ lb N/a}$  applied pre-plant with 50 lb N/a side-dress applied at V6 growth stage.

 $<sup>150 \</sup>text{ PP/}50 \text{ V}10 = 150 \text{ lb N/a applied pre-plant with } 50 \text{ lb N/a side-dress applied at V}10 \text{ growth stage.}$