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Introduction

 In theory, AM promises a convenient route 
functionally graded materials (FGMs)

 In practice…
 In polymer AM, we still have trouble achieving 

bulk properties in homogeneous parts

 To realize FGMs, we tend to focus on process 
innovation (i.e. complex co-deposition systems)

 This makes the realization of high quality parts 
even harder and further limits materials choices



Introduction

 Much progress has been made in the area 
of direct ink write (DIW) AM of thermosets

 Can print a range of 
thermosets and 
(nano)composites

 Can align fillers via 
the application of a 
variety of fields

 Can realize excellent 
performance in the 
resultant materials

https://labs.wsu.edu/mpml/projects/

https://labs.wsu.edu/mpml/projects/


Introduction

 Recently, multi-material DIW has been 
convincingly demonstrated as well

Skylar-Scott, M.A., Mueller, J., Visser, C.W. et al. Voxelated soft matter via multimaterial multinozzle
3D printing. Nature 575, 330–335 (2019).

https://doi.org/10.1038/s41586-019-1736-8


Introduction

 The previous examples highlight process 
innovation in the field of thermoset AM
 Here, careful control of ink rheology enables 

these processes to work

 Variations in structure, composition and 
properties, while significant, remain bounded by 
process requirements

Q: Is there anything we can do on the 
materials side to provide additional 
freedom?



Proposition

 Process-lead innovation is sure to continue, 
with a host of exciting results anticipated

 Complementing such efforts would be the 
ability to tune local properties post-printing

 This may be achieved via dual-cure behavior
 Conventional solidification process enables 

formation of part

 Use of high energy radiation post-printing gives 
localized crosslinking

 Can be used alone or in tandem with AM



Example: Functionally 
Graded Adhesives (FGAs)

 Advantages of FGAs
 Stress can be distributed throughout the joint

 All of the adhesive contributes to joint strength

 Expectation is that joint is less flaw-sensitive as well

 Theory predicts 50+% increases in joint strength

 Confirmed experimentally (+25-60% in practice)

 Hard to make, unstable / inconsistent in practice

Eccentric load path

Stress concentration

Stress concentration

REMINDER: Stress distribution in a normal adhesive bond line



Example: Functionally 
Graded Adhesives (FGAs)

Adhesive application

Conventional (RT, thermal) curing

a)

b)

c)

High-energy radiation (γ, e-)

Radiation shielding

Functionally graded dual-cure adhesive

Radiation curing

 Easy to manufacture

 Stable, consistent properties

Dual-cure Approach



Extrapolating to 
Applications in AM

 For FGAs, only need 1- or 2D control of 
dose; for AM, would like full 3D control

 Luckily, this technology already exists:

https://scienceblog.cancerresearchuk.org/2017/07/31/imrt-bending-radiotherapy-beams-to-spare-healthy-cells/

https://scienceblog.cancerresearchuk.org/2017/07/31/imrt-bending-radiotherapy-beams-to-spare-healthy-cells/


Designing a dual cure 
thermoset

 High energy radiation can give the crosslinking we want –
but it can also cause degradation, which must be avoided

 Need base network with desirable properties, radiation resistance

 Need to be able to incorporate functional groups that favor 
radiation-induced crosslinking

 Need to be able to utilize in the context of an AM process

 Epoxy resins stand out

 Can be formulated for RT or thermal cure with different hardeners

 Well-known process characteristics and materials performance

 Demonstrated to possess excellent radiation resistance

 Many unsaturated resins, hardeners and modifiers are available 

 Materials class of choice for many DIW AM technologies



Proof-of-concept 
formulations

 Using DGEBA base resin

 Readily available

 Used in many adhesives

 Good baseline properties

 Two hardeners studied

 Elastomeric, RT-cured
formulation

 Rigid, thermally cured 
formulation
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Proof-of-concept 
formulations
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 Small samples cured then irradiated at various doses using 60Co γ-rays

 Hardness measured, converted to modulus via Mix & Giacomin model
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Proof-of-concept 
formulations

 Post-cure irradiation 
increases estimated 
modulus regardless 
of crosslinking 
chemistry, Tg

 Similar increases in 
all cases (+30% @ 
100 kGy)

 Minimal shrinkage 
observed (<0.15%)

 (For reference, this 
should reduce 
stress conc. by up 
to ~40% in an FGA)
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2nd generation dual cure 
epoxy formulations

OR

+

Flexible radiation sensitizer

Carboxy-terminated butadiene-nitrile (CTBN)
(15 wt%)
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(replaces ~⅓ of NMA)

 Samples cured, then irradiated at various doses using 60Co γ-rays

 Analyzed via FTIR, TGA, DSC, DMA, TMA & tensile testing vs. composition & dose (ongoing)
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2G dual cure epoxies:
Tensile testing
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 Sensitizers 
behave as 
expected prior to 
irradiation
 DBPA  E↑

 CTBN  E↓

 Irradiation 
effects are 
interesting



2G dual cure epoxies:
Tensile testing

0 250 500 750 1000 1250
1.5

2.0

2.5

3.0

3.5
Y

o
u

n
g

's
 M

o
d

u
lu

s
 (

G
P

a
)

Dose (kGy)

 DGEBA-NMA

 DGEBA-NMA+DBPA

 DGEBA-NMA+CTBN

 Sensitizers 
behave as 
expected prior to 
irradiation
 DBPA  E↑

 CTBN  E↓

 Irradiation 
effects are 
interesting
 E↑ in baseline 

system



2G dual cure epoxies:
Tensile testing
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2G dual cure epoxies:
Tensile testing

 Sensitizers 
behave as 
expected prior to 
irradiation
 DBPA  E↑

 CTBN  E↓

 Irradiation 
effects are 
interesting
 E↑ in baseline 

system

 DBPA addition 
stabilizes E(!)

 E↑ with CTBN

 Break stress, 
strain unaffected
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2G dual cure epoxies:
Crosslink density via DMA

 Tensile DMA performed 
vs. composition,
dose (1 Hz)

 Crosslink density (n) 
estimated as

𝑛 =
𝐸′ 𝑇𝛼 + 50℃

3𝑅𝑇

0 50 100 150 200

10

100

1000

 0 kGy

 50 kGy

 250 kGy

 500 kGy

 1250 kGy

S
to

ra
g

e
 M

o
d

u
lu

s
 (

M
P

a
)

Temperature (°C)



2G dual cure epoxies:
Crosslink density via DMA

 Tensile DMA performed 
vs. composition,
dose (1 Hz)

 Crosslink density (n) 
estimated as

𝑛 =
𝐸′ 𝑇𝛼 + 50℃

3𝑅𝑇

 Baseline system shows 
some crosslinking
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2G dual cure epoxies:
Crosslink density via DMA

 Tensile DMA performed 
vs. composition,
dose (1 Hz)

 Crosslink density (n) 
estimated as

𝑛 =
𝐸′ 𝑇𝛼 + 50℃

3𝑅𝑇

 Baseline system shows 
some crosslinking

 Addition of DBPA 
reduces n, increases 
sensitivity somewhat
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2G dual cure epoxies:
Crosslink density via DMA

 Tensile DMA performed 
vs. composition,
dose (1 Hz)

 Crosslink density (n) 
estimated as

𝑛 =
𝐸′ 𝑇𝛼 + 50℃

3𝑅𝑇

 Baseline system shows 
some crosslinking

 Addition of DBPA 
reduces n, increases 
sensitivity somewhat

 CTBN provides highest 
sensitivity, explaining 
larger modulus rise
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2G dual cure epoxies:
Glass transition via DMA

 Tα from E” peak 

glass transition

 DBPA, CTBN reduce 
Tα vs. baseline, but 
irradiation causes 
major increases

 Tα of baseline 
system is nearly 
unchanged(!)

 How can we 
understand various 
dose effects?
 Baseline: n,E↑; Tα~

 +DBPA: n,Tα↑; E~

 +CTBN: n,Tα,E↑
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2G dual cure epoxies:
Insights via Shibayama model

 Shibayama* shows 
that, for a range of 
thermosets,
Tg =  K1·log(K2·n)
 K1↓ with more restraint 

around crosslinks

 Log K2↑ with rigidity, 
interactions of chains 
between crosslinks

*Shibayama, K. Temperature Dependence of the Physical Properties 
of Crosslinked Polymers. Prog. Org. Coat. 3, 245-260 (1975).
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https://doi.org/10.1016/0300-9440(75)80009-9


2G dual cure epoxies:
Insights via Shibayama model

 Shibayama* shows 
that, for a range of 
thermosets,
Tg =  K1·log(K2·n)
 K1↓ with more restraint 

around crosslinks

 Log K2↑ with rigidity, 
interactions of chains 
between crosslinks

 In baseline, chain 
rigidity already high, 
crosslinking provides 
little added restraint

*Shibayama, K. Temperature Dependence of the Physical Properties 
of Crosslinked Polymers. Prog. Org. Coat. 3, 245-260 (1975).
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2G dual cure epoxies:
Insights via Shibayama model

 Shibayama* shows 
that, for a range of 
thermosets,
Tg =  K1·log(K2·n)
 K1↓ with more restraint 

around crosslinks

 Log K2↑ with rigidity, 
interactions of chains 
between crosslinks

 In baseline, chain 
rigidity already high, 
crosslinking provides 
little added restraint

 With DBPA & CTBN, 
more chain flexibility, 
crosslinking increases 
local restraint

*Shibayama, K. Temperature Dependence of the Physical Properties 
of Crosslinked Polymers. Prog. Org. Coat. 3, 245-260 (1975).
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2G dual cure epoxies:
Functionally graded specimens

Specimens are 
vacuum-sealed to 
minimize oxidation 
during exposure

Desired shielding 
(PA12+W) is 
formed and 
assembled

Specimens are 
mounted behind 

shielding (ex. 
half-shielded)

Assembly is sealed in 
“submersion can” prior 

to underwater γ-ray 
exposure with 60Co



2G dual cure epoxies:
Functionally graded specimens

 Mechanical testing of 
functionally graded 
specimens requires digital 
image correlation (DIC)

 Strain localization already 
observed at low strains

 Trend becomes more 
apparent at high strains

 Confirms the creation of a 
gradient in modulus!



Summary & Conclusions
 Significant process-lead innovations in AM may be complemented by 

additional post-printing control of materials properties in 3D
 Novel materials promise a path towards realization of such control

 Solidification via conventional means (crosslinking, cooling, etc.)
 Subsequent modulation of properties via crosslinking induced by 

precisely localized doses of high energy radiation (γ, e-, etc.)

 Dual-cure epoxies provide proof-of-concept of this approach
 Processed in an identical fashion to conventional epoxies
 Dosed with γ-rays to induce additional crosslinking

 Mechanical and thermal properties studied vs. dose
 Increases in modulus and / or Tα observed with increasing dose
 Shibayama model may help us to understand these changes

 Production of graded structures demonstrated via DIC
 Work ongoing, publication(s) coming soon!
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