#### Engineering Conferences International

#### **ECI Digital Archives**

Innovative Materials For Additive Manufacturing (IMAM)

Proceedings

3-9-2019

#### New developments in dual cure epoxies

Daniel F. Schmidt

Weiqing Xia

Alessandro Cassano

Scott Stapleton

Sara Najafian

Follow this and additional works at: https://dc.engconfintl.org/imam

Innovative Materials for Additive Manufacturing 2020 Santa Ana Pueblo, NM, USA March 9<sup>th</sup>, 2020

#### New Developments in Dual Cure Epoxies

#### Weiqing Xia<sup>1</sup>, Sara Najafian<sup>2</sup>, Alessandro Cassano<sup>2</sup>, Scott Stapleton<sup>2</sup>, and <u>Daniel F. Schmidt<sup>1\*,3</sup></u>



<sup>1</sup>Department of Plastics Engineering <sup>2</sup>Department of Mechanical Engineering University of Massachusetts Lowell



\*Department of Materials Research and Technology, Luxembourg Institute of Science & Technology (since September 2017)  Formed from public research centers Lippmann and Tudor (2015)

LIST

LUXEMBOURG

INSTITUTE OF SCIENCE

AND TECHNOLOGY

- ~600 people (~75% researchers, 45 nationalities)
- 350 publications, 50 patent families
- Nearly 300 research projects (30% EU; ~11 M€ contract, ~15 M€ competitive, ~64 M€ total budget)



*"LIST is a Research and Technology Organization (RTO) active in the fields of materials, environment, and IT. Its mission is contribute to Luxembourg's reputation through targeted research and accelerate the country's socio-economic development."* 

#### LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY



"LIST is a Research and Technology Organization (RTO) active in the fields of materials, environment, and IT. Its mission is contribute to Luxembourg's reputation through targeted research and accelerate the country's socio-economic development."

#### **Introduction**

- In theory, AM promises a convenient route functionally graded materials (FGMs)
- In practice...
  - In polymer AM, we still have trouble achieving bulk properties in homogeneous parts
  - To realize FGMs, we tend to focus on process innovation (i.e. complex co-deposition systems)
  - This makes the realization of high quality parts even harder and further limits materials choices

#### **Introduction**

Much progress has been made in the area of direct ink write (DIW) AM of thermosets



https://labs.wsu.edu/mpml/projects/

- Can print a range of thermosets and (nano)composites
- Can align fillers via the application of a variety of fields
- Can realize excellent performance in the resultant materials



#### Recently, multi-material DIW has been convincingly demonstrated as well



Skylar-Scott, M.A., Mueller, J., Visser, C.W. *et al.* <u>Voxelated soft matter via multimaterial multinozzle</u> <u>3D printing</u>. *Nature* **575**, 330–335 (2019).

#### **Introduction**

- The previous examples highlight process innovation in the field of thermoset AM
  - Here, careful control of ink rheology enables these processes to work
  - Variations in structure, composition and properties, while significant, remain bounded by process requirements
- **Q:** Is there anything we can do on the materials side to provide additional freedom?

#### **Proposition**

- Process-lead innovation is sure to continue, with a host of exciting results anticipated
- Complementing such efforts would be the ability to tune local properties post-printing

This may be achieved via dual-cure behavior

- Conventional solidification process enables formation of part
- Use of high energy radiation post-printing gives localized crosslinking
- Can be used alone or in tandem with AM



**REMINDER: Stress distribution in a normal adhesive bond line** 

#### Advantages of FGAs

- Stress can be distributed throughout the joint
- <u>All</u> of the adhesive contributes to joint strength
- Expectation is that joint is less flaw-sensitive as well
- Theory predicts 50+% increases in joint strength
- Confirmed experimentally (+25-60% in practice)

Hard to make, unstable / inconsistent in practice



Conventional (RT, thermal) curing

Stable, consistent properties

# Extrapolating to Applications in AM

- For FGAs, only need 1- or 2D control of dose; for AM, would like full 3D control
- Luckily, this technology already exists:

INTENSITY MODULATED RADIOTHERAPY (IMRT) WHAT ARE THE BENEFITS?



https://scienceblog.cancerresearchuk.org/2017/07/31/imrt-bending-radiotherapy-beams-to-spare-healthy-cells/

# *Designing a dual cure thermoset*

- High energy radiation can give the crosslinking we want but it can also cause degradation, which must be avoided
  - Need base network with desirable properties, radiation resistance
  - Need to be able to incorporate functional groups that favor radiation-induced crosslinking
  - Need to be able to utilize in the context of an AM process
- Epoxy resins stand out
  - Can be formulated for RT or thermal cure with different hardeners
  - Well-known process characteristics and materials performance
  - Demonstrated to possess excellent radiation resistance
  - Many unsaturated resins, hardeners and modifiers are available
  - Materials class of choice for many DIW AM technologies

# Proof-of-concept formulations

- Using DGEBA base resin
  - Readily available
  - Used in many adhesives
  - Good baseline properties
- Two hardeners studied
  - Elastomeric, RT-cured formulation
  - Rigid, thermally cured formulation



Diglycidyl ether of bisphenol A (DGEBA)



## Proof-of-concept formulations

- Small samples cured then irradiated at various doses using  $^{60}$ Co  $\gamma$ -rays
- Hardness measured, converted to modulus via Mix & Giacomin model



# Proof-of-concept formulations

- Post-cure irradiation increases estimated modulus regardless of crosslinking chemistry, T<sub>q</sub>
- Similar increases in all cases (+30% @ 100 kGy)
- Minimal shrinkage observed (<0.15%)</li>
- (For reference, this should reduce stress conc. by up to ~40% in an FGA)



# 2<sup>nd</sup> generation dual cure epoxy formulations



+

+



- Samples cured, then irradiated at various doses using <sup>60</sup>Co γ-rays
- Analyzed via FTIR, TGA, DSC, DMA, TMA & tensile testing vs. composition & dose (ongoing)





- Sensitizers
  behave as
  expected prior to
  irradiation
  - DBPA  $\rightarrow$  E $\uparrow$
  - CTBN  $\rightarrow$  E $\downarrow$
- Irradiation effects are interesting
  - E↑ in baseline system
  - DBPA addition stabilizes E(!)



- Sensitizers
  behave as
  expected prior to
  irradiation
  - DBPA  $\rightarrow$  E $\uparrow$
  - CTBN  $\rightarrow$  E $\downarrow$
- Irradiation effects are interesting
  - E↑ in baseline system
  - DBPA addition stabilizes E(!)
  - E↑ with CTBN
- Break stress, strain unaffected



Tensile DMA performed vs. composition, 0 kGy dose (1 Hz) 50 kGy (MPa) 1000 100 Crosslink density (n) 250 kGy estimated as 500 kGy 1250 kGy  $\frac{E'(T_{\alpha} + 50^{\circ}\text{C})}{3RT}$ n = -Storage 10 100 50 150 200 0 Temperature (°C)

- Tensile DMA performed vs. composition, dose (1 Hz)
- Crosslink density (n) estimated as

$$n = \frac{E'(T_{\alpha} + 50^{\circ}\text{C})}{3RT}$$

 Baseline system shows some crosslinking



- Tensile DMA performed vs. composition, dose (1 Hz)
- Crosslink density (n) estimated as

$$n = \frac{E'(T_{\alpha} + 50^{\circ}\text{C})}{3RT}$$

- Baseline system shows some crosslinking
- Addition of DBPA reduces n, increases sensitivity somewhat



- Tensile DMA performed vs. composition, dose (1 Hz)
- Crosslink density (n) estimated as

$$n = \frac{E'(T_{\alpha} + 50^{\circ}\text{C})}{3RT}$$

- Baseline system shows some crosslinking
- Addition of DBPA reduces n, increases sensitivity somewhat
- CTBN provides highest sensitivity, explaining larger modulus rise



#### **2G dual cure epoxies:** Glass transition via DMA

- $T_a$  from E'' peak  $\rightarrow$  glass transition
- DBPA, CTBN reduce T<sub>a</sub> vs. baseline, but irradiation causes major increases
- T<sub>a</sub> of baseline system is nearly unchanged(!)
- How can we understand various dose effects?
  - Baseline: n,E $\uparrow$ ; T<sub>a</sub>~
  - +DBPA: n,T<sub>a</sub>↑; E~
  - +CTBN: n,T<sub>a</sub>,E↑



## 2G dual cure epoxies: Insights via Shibayama model



 $T_g = K_1 \cdot \log(K_2 \cdot n)$ 

- K<sub>1</sub>↓ with more restraint around crosslinks
- Log K<sub>2</sub>↑ with rigidity, interactions of chains between crosslinks



## 2G dual cure epoxies: Insights via Shibayama model

- Shibayama\* shows that, for a range of thermosets,
  - $T_g = K_1 \cdot \log(K_2 \cdot n)$ 
    - K<sub>1</sub>↓ with more restraint around crosslinks
    - Log K<sub>2</sub>↑ with rigidity, interactions of chains between crosslinks
- In baseline, chain rigidity already high, crosslinking provides little added restraint



## 2G dual cure epoxies: Insights via Shibayama model

- Shibayama\* shows that, for a range of thermosets,
  - $T_g = K_1 \cdot log(K_2 \cdot n)$ 
    - K<sub>1</sub>↓ with more restraint around crosslinks
    - Log K<sub>2</sub>↑ with rigidity, interactions of chains between crosslinks
- In baseline, chain rigidity already high, crosslinking provides little added restraint
- With DBPA & CTBN, more chain flexibility, crosslinking increases local restraint



#### **2G dual cure epoxies:** Functionally graded specimens









Specimens are vacuum-sealed to minimize oxidation during exposure Desired shielding (PA12+W) is formed and assembled

Specimens are mounted behind shielding (ex. half-shielded) Assembly is sealed in "submersion can" prior to underwater γ-ray exposure with <sup>60</sup>Co

## **2G dual cure epoxies:** Functionally graded specimens

- Mechanical testing of functionally graded specimens requires digital image correlation (DIC)
- Strain localization already observed at low strains
- Trend becomes more apparent at high strains
- Confirms the creation of a gradient in modulus!



#### THANK YOU FOR YOUR ATTENTION!

# Summary & Conclusions

- Significant process-lead innovations in AM may be complemented by additional post-printing control of materials properties in 3D
- Novel materials promise a path towards realization of such control
  - Solidification via conventional means (crosslinking, cooling, etc.)
  - Subsequent modulation of properties via crosslinking induced by precisely localized doses of high energy radiation (γ, e<sup>-</sup>, etc.)
- Dual-cure epoxies provide proof-of-concept of this approach
  - Processed in an identical fashion to conventional epoxies
  - Dosed with γ-rays to induce additional crosslinking
- Mechanical and thermal properties studied vs. dose
  - Increases in modulus and / or T<sub>a</sub> observed with increasing dose
  - Shibayama model may help us to understand these changes
- Production of graded structures demonstrated via DIC
- Work ongoing, publication(s) coming soon!



This material is based upon work supported by the National Science Foundation under <u>Award # CMMI-1663502</u>. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.