Engineering Conferences International

ECI Digital Archives

Innovative Materials For Additive Manufacturing (IMAM)

Proceedings

3-11-2020

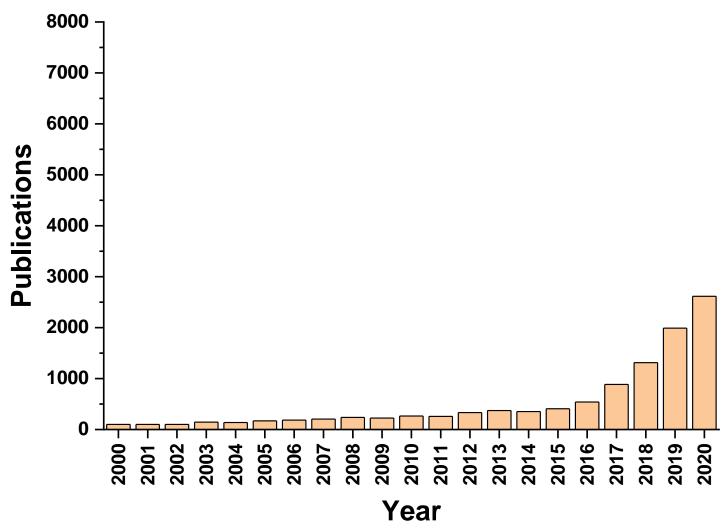
Perspectives on the future of additive manufacturing

Daniel F. Schmidt

Follow this and additional works at: https://dc.engconfintl.org/imam

Innovative Materials for Additive Manufacturing 2020 Santa Ana Pueblo, NM, USA March 11th, 2020

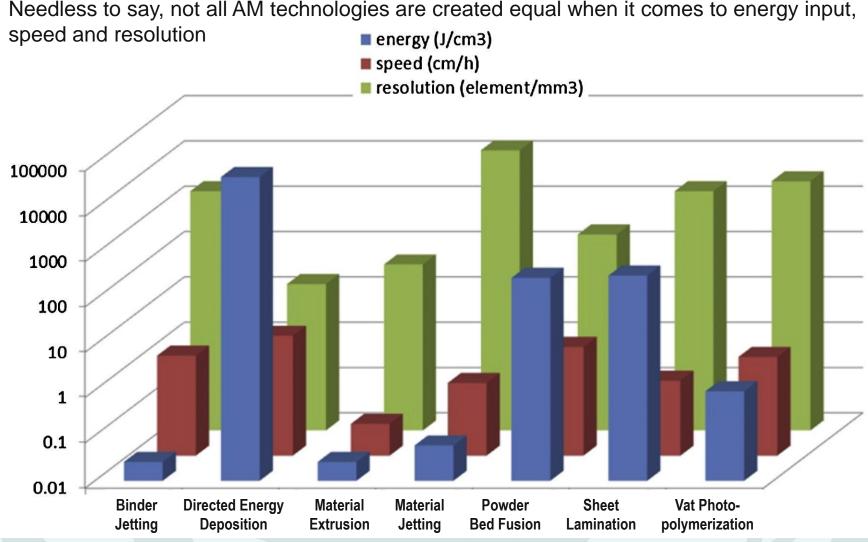
Perspectives on the future of additive manufacturing


Daniel F. Schmidt, PhD

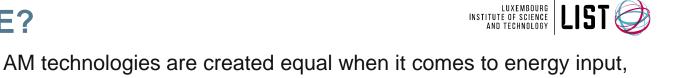
Group Leader, Green Polymers Group Functional Polymers Unit Department of Materials Research and Technology Luxembourg Institute of Science & Technology

 From the early days of "rapid prototyping" in the 1980s, there has been a massive increase in the attention paid to AM

From SciFinder search for "additive manufacturing" + "3D printing" + "rapid prototyping" (exact terms)

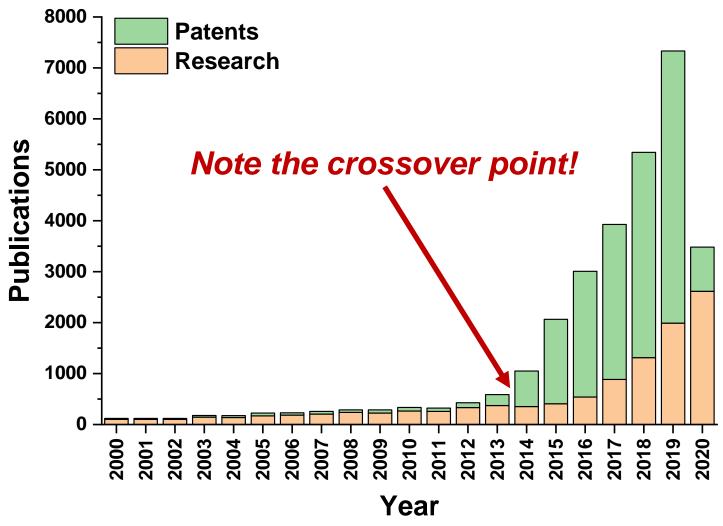

• As a result, AM techniques abound, and may now be applied to a wide range of materials (processes categorized according to ISO/ASTM 52900:2015)

Materials	Example materials	Process categories						
		Vat photo- polymer- ization	Material jetting	Binder jetting	Powder bed fusion	Material extrusion	Directed energy deposition	Sheet Iamination
Thermoset Polymers	Epoxies and acrylates	х	х					
Thermo- plastic polymers	Polyamide, ABS, PPSF		x	х	х	x		х
Wood	paper							х
Metals	Steel, Titanium alloys, Cobalt chromium			х	х		x	x
Industrial ceramic materials	Alumina, Zirconia, Silicone nitride	х		х	х			x
Structural ceramic materials	Cement, Foundry sand			x	x	x		
Note: Combinations of the above material classes, e.g. a composite, are possible								

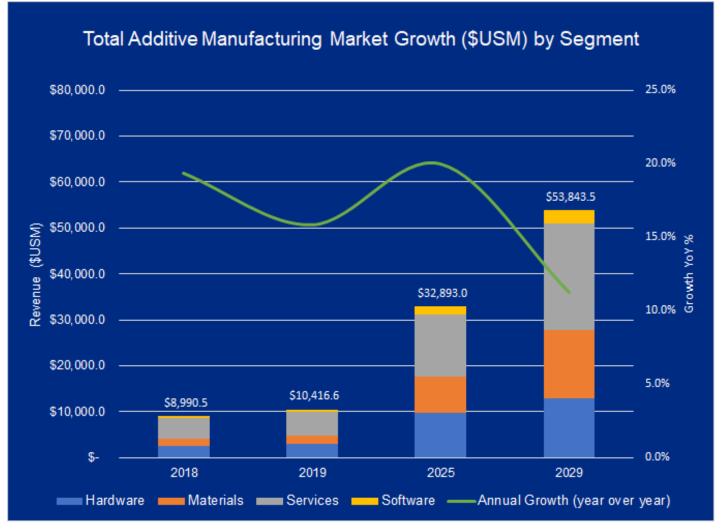

Thompson, M. K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R. I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. <u>Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints</u>. *CIRP Annals* **2016**, *65* (2), 737–760.

•

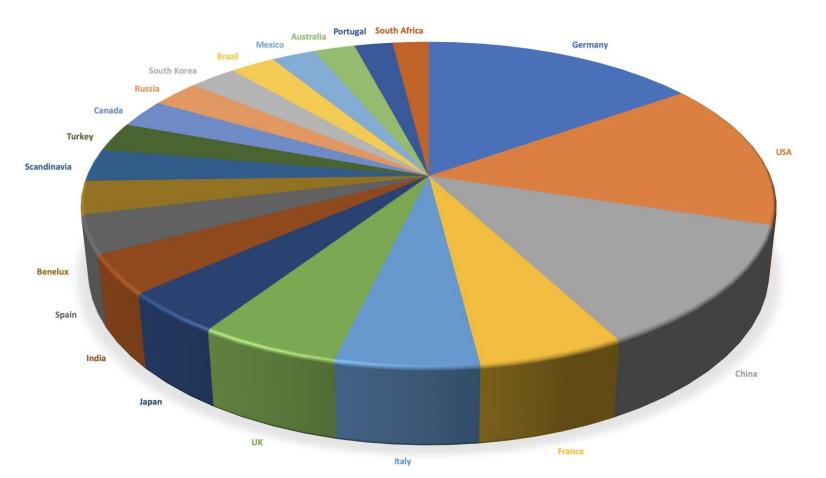
4



Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O'Donoghue, L.; Charitidis, C. <u>Additive Manufacturing:</u> <u>Scientific and Technological Challenges, Market Uptake and Opportunities</u>. *Materials Today* **2018**, *21* (1), 22–37.


 Industrial implementation has followed research activity and is now growing at an extremely rapid pace

From SciFinder search for "additive manufacturing" + "3D printing" + "rapid prototyping" (exact terms)

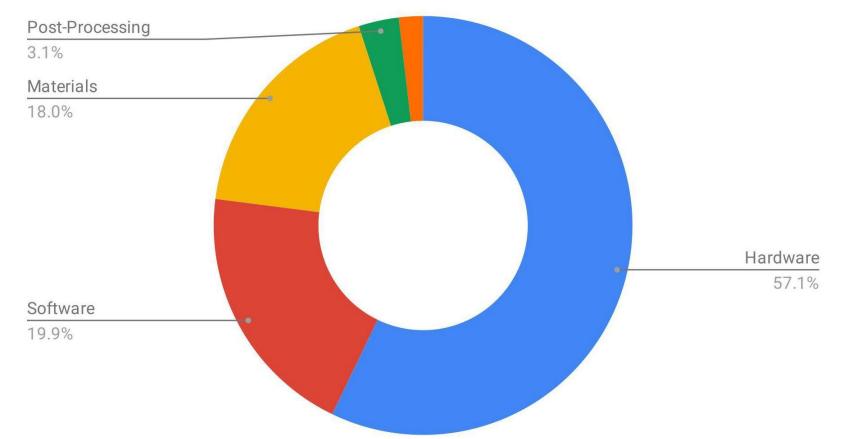

- This is reflected in the state of the AM market, with large growth predicted
- For context, global manufacturing market is ~\$12T so AM is only ~0.1%(!)

https://www.makepartsfast.com/2019-additive-manufacturing-market-growth-surpassed-10b-worldwide/

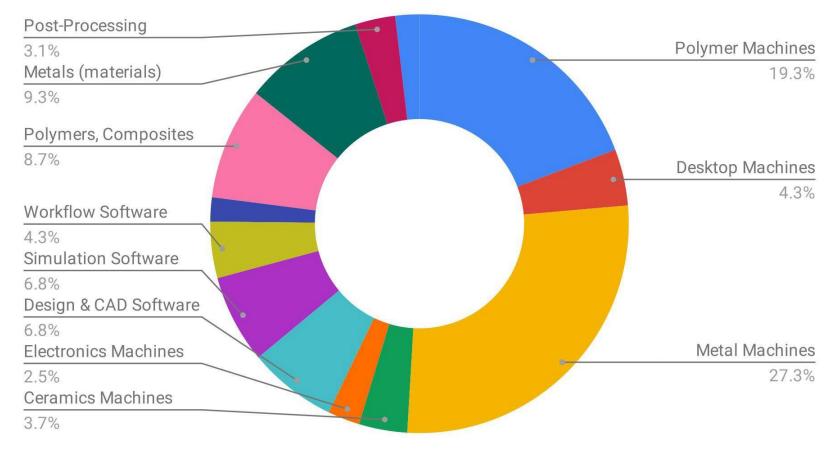
TOP 20 GLOBAL AM MARKETS BY GEOGRAPHIC AREA

Germany, the USA and China are currently the top three AM markets worldwide

https://www.3dprintingmedia.network/the-top-20-global-am-markets/



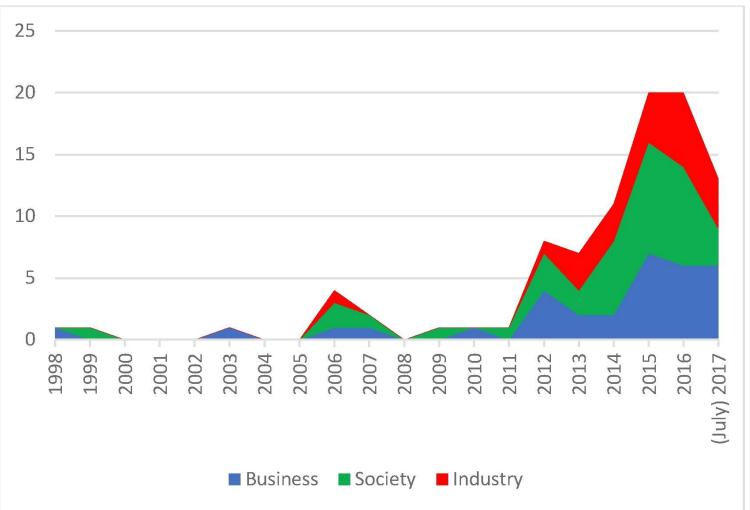
• A recent survey of the industrial 3D printing landscape identifies nearly 200 organizations



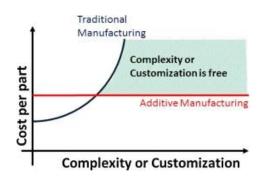
Most of these organizations are focused on hardware (that is, AM equipment)

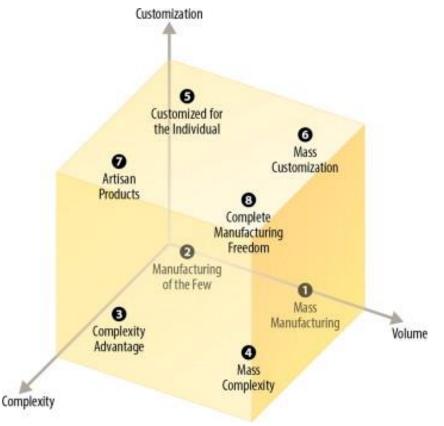
• Further breaking things down, machines for metal and polymer AM dominate

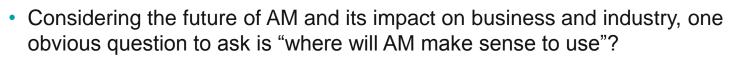
- As of April 2019, three 3D printing companies have reached **unicorn status** (meaning they have a valuation of over \$1 billion; 326 companies worldwide had such status at that time)
- All are hardware manufacturers (two polymer-focused, one metal-focused)



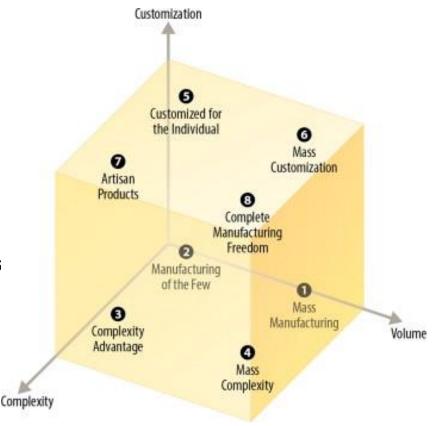
- Overall trends
 - Competition is increasing among metal 3D printers
 - Polymer 3D printing continues to mature
 - Software and automation are becoming increasingly important
 - Many collaborations, partnerships and acquisitions
- Materials trends
 - Polymers were the largest AM materials market segment in terms of revenue (\$5.5B polymer AM revenue in 2018)
 - Increasing focus on high performance polymers
 - Metal AM materials market saw strong growth five years running (42% in 2018)
 - Metal AM is particularly attractive when using metals that are costly to process via conventional methods (titanium for example)


 This has resulted in a growing body of interdisciplinary research focused on the impact of AM as well


Caviggioli, F.; Ughetto, E. <u>A Bibliometric Analysis of the Research Dealing with the Impact of Additive Manufacturing</u> on Industry, Business and Society. International Journal of Production Economics **2019**, *208*, 254–268.


- Considering the future of AM and its impact on business and industry, one obvious question to ask is "where will AM make sense to use"?
- This has been studied, and can be addressed by considering three factors:
 - Part complexity
 - The need for customization
 - Anticipated production volumes
- Regions 3-8 are most promising

- AM is competitive in region 2 only if costs / lead times are lower
- AM provides agility, so better to work in multiple regions


Conner, B. P.; Manogharan, G. P.; Martof, A. N.; Rodomsky, L. M.; Rodomsky, C. M.; Jordan, D. C.; Limperos, J. W. <u>Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services</u>. *Additive Manufacturing* **2014**, *1*–4, 64–76.

- This has been studied, and can be addressed by considering three factors:
 - Part complexity
 - The need for customization
 - Anticipated production volumes

Examples

- Region 1: Automotive panels
- Region 2: (where AM started)
- Region 3: Aerospace assemblies
- Region 4: Ti cups for hip implants
- Region 5: Personalization, repair
- Region 6: Invisalign® braces
- Region 7: Art, prosthetics, race car components
- Region 8: (the future?)

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

Conner, B. P.; Manogharan, G. P.; Martof, A. N.; Rodomsky, L. M.; Rodomsky, C. M.; Jordan, D. C.; Limperos, J. W. <u>Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services</u>. *Additive Manufacturing* **2014**, *1–4*, 64–76.

- Having covered a range of applications, the second question relates to the effects of the development and implementation of increasingly advanced AM
- This has been studied as well:

Contents lists available at ScienceDirect Technological Forecasting & Social Change

Technological Forecasting & Social Change 117 (2017) 84-97

Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030

Ruth Jiang^{a,*}, Robin Kleer^{a,b}, Frank T. Piller^a

^a RWTH Aachen University, Technology and Innovation Management Group, Kackertstr. 7, 52072 Aachen, Germany
^b Technical University of Berlin, Chair of Technology and Innovation Management, Straße des 17. Juni 135, 10623 Berlin, Germany

- The Delphi method is an interactive multi-stage forecasting method relying on experts to identify technical developments and trends
- The "Real-Time Delphi" method used in this work improves on the original (developed by the RAND Corporation in the 1950s-60s for strategic planning)
- Here, 65 experts \rightarrow 3510 quantitative estimates, 1172 qualitative comments
- From these results a "most probable" scenario for AM in 2030 was developed

Most probable scenario developed for AM in 2030

- Considering 18 projections evaluated across four categories
 - Production, supply chain, and localization (6)
 - Business models and competition (4)
 - Consumer and market trends (5)
 - Intellectual property (IP) and policy (3)
- Most probable future based on projections evaluated by the expert panel with the highest probability of occurrence in 2030 and sufficient consensus between the expert evaluations
- We can think of these as educated guesses or as indicators of what it is expected that the field should deliver
- Taken in this way, there are clear RD&I implications associated with each proposition / the relevant conclusion (some supplementary thoughts are provided here)

Most probable scenario for AM in 2030: Product Development

Proposition: In 2030, conventional measures of "time to market", "product life cycle" and "ramp-up" will have diminished as digital products are in continuous beta stage and are subjected to frequent design iterations and constant modifications.

Conclusion: In 2030, design and manufacturing of consumer products and less-critical industrial products will not be subject of conventional performance measures any longer as they will be modified in frequent iterations.

Top high-probability argument: Physical products will increasingly become like software-based services or apps. This development is especially likely in industries where design and style play an important role.

Implications (DS): Need agile systems, ways to reuse obsolete parts

Most probable scenario for AM in 2030: Product Attributes

Proposition: In 2030, manufacturing of spare parts will be divided into two systems: less critical parts will be produced locally via additive manufacturing, whereas critical parts will be made at specialist hubs with specific qualification/quality control skills, primarily using conventional manufacturing techniques.

Conclusion: In 2030, all (critical as well as non-critical) spare parts will be produced with additive manufacturing.

Top high-probability argument: There will be a trend towards local production of spare parts with additive manufacturing due to time- and moneysaving options (on-demand availability, logistics).

Implications (DS): Consistently high part quality will be essential here; still room to improve, especially with regard to polymers, in order to match bulk properties; keep an eye on fatigue!

Most probable scenario for AM in 2030: Product Attributes

Proposition: In 2030, a significant amount of additive manufacturingproduced products will consist of multi-materials and/or contain embedded electronics, enabling a broad range of applications.

Conclusion: In 2030, there will be multi-material products as industries and users pursue these strongly.

Top high-probability argument: This is what additive manufacturing is capable of and meant for and an inevitable development.

Implications (DS): Need to be able to integrate multiple classes of materials into AM-produced assemblies in a consistent, high quality fashion; must also address disassembly / reuse / recycling of such assemblies <u>now</u>, before unintentionally creating the next environmental crisis – "complexity is free" only addresses manufacture, <u>not</u> end-of-life

Most probable scenario for AM in 2030: Channels of Distribution

Proposition: In 2030, a significant number of consumers will utilize online databases (repositories) to purchase product designs or to freely access open-source designs for additive manufacturing printing purposes.

Conclusion: In 2030, enthusiasts, tinkerers, and new consumer generations will utilize additive manufacturing and use online databases to purchase designs due to broad availability of printers in job shops etc.

Top high-probability argument: This is already emerging and people already do this. With broad access to either consumer 3D printers or additive manufacturing services, the number will increase even more.

Implications (DS): Critical need for AM-oriented design tools, incl. design for end-of-life (plus hardware and materials to realize designs)

Most probable scenario for AM in 2030: Channels of Distribution

Proposition: In 2030, an important regulatory measure will be the regulation of additive manufacturing file-sharing platforms.

Conclusion: In 2030, governments will try to regulate file sharing platforms, but will not be effective in doing so. Firms will have to look for new sources of competitive advantage.

Top high-probability argument: If businesses should grow around additive manufacturing, there needs to be some sort of protection for design platforms.

Implications (DS): Individual designs will matter far less than the ability to generate such designs (AM-oriented design tools) and then realize them in practice (AM <u>systems</u> and compatible materials)

Most probable scenario for AM in 2030: After Market

Proposition: In 2030, the difficulty of defending conventional intellectual property for digital products will lead to a significantly larger use of novel forms of intellectual property like Creative Commons, open source.

Conclusion: In 2030, other forms of intellectual property will be necessary in order for additive manufacturing to be adopted in industries.

Top high-probability argument: The adoption of additive manufacturing requires non-conventional intellectual property. It is a necessary enabler for the digital manufacturing community and will move in the same direction as the music and film industry.

Implications (DS): ...more lawyers?

PERSPECTIVES ON AM: SUMMING UP...

- Pure research phase has passed, commercialization ongoing
- ~0.1% of overall manufacturing market, but growing fast
- Biggest markets are EU, USA and China
 - Hardware manufacturers dominate, esp. for metal, polymer
 - Metal AM is the most mature; polymer AM is getting there
 - Software, automation increasingly important
- AM utility classified vs. complexity, customization and volume
- "Most probable future" scenario for AM in 2030 presented
- Implications (DS): Need agile AM systems with improved part quality and multi-material capabilities, supported by AMspecific design tools; must consider end-of-life issues <u>now</u>

THANK YOU FOR YOUR ATTENTION!