Engineering Conferences International

ECI Digital Archives

Innovative Materials For Additive Manufacturing (IMAM)

Proceedings

3-12-2020

Metal additive manufacturing and powder metallurgy

Joseph Tunick Strauss *HJE Company, Inc.*

Tom Pelletiers *Kymera International*

Follow this and additional works at: https://dc.engconfintl.org/imam

Recommended Citation

Joseph Tunick Strauss and Tom Pelletiers, "Metal additive manufacturing and powder metallurgy" in "Innovative Materials For Additive Manufacturing (IMAM)", Daniel Schmidt, Luxembourg Institute of Science and Technology, Luxembourg Nikhil Gupta, New York University, USA Chua Chee Kai, NTU, Singapore Brett G. Compton, University of Tennessee, USA Eds, ECI Symposium Series, (2020). https://dc.engconfintl.org/imam/4

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Innovative Materials For Additive Manufacturing (IMAM) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

IMAM Conference, 2020 New Mexico

Metal Additive Manufacturing and Powder Metallurgy

Joseph Tunick Strauss

HJE Company, Inc. Queensbury, NY

> Presented by: Tom Pelletiers Kymera International

- Introduction History: Rapid Prototyping to Additive Manufacturing
 - Present: Additive Manufacturing & PM
- II Types of AM using Metal Powders
- III Powder Production and Requirements for Additive Manufacturing
- **IV** AM & PM: Compete or Compliment?
- V Summary

Rapid Prototyping Terminology:

 Rapid Prototyping (RP) Rapid Manufacturing (RM) Stereolithography (SLA) Free-form Fabrication (FFF) Additive Fabrication (AF) (AL) Additive Layering Direct Digital Manufacturing (DDM) 3D Printing (3DP) Additive Manufacturing (AM)

1960's - 1970's:

- **CNC**: Computer Numerical Control: Computer controlled machine motion:
- CAD: Computer Aided Design: Graphics (2D, 3D) Design analysis, properties

- **CAM**: Computer Aided Manufacturing: Enabled machine tool path/motion (CNC) directly from the computer model.
- Photopolymers
- High energy lasers (affordable)
- Inkjet printers

1980's:

- **CAD**: 3D solid manipulation:
 - .stl file format: Defines surfaces only.
 - Enabled layering process.

Rapid Prototyping combines all of the above technologies:

 CAD representation of the part 3D solid model, <u>sliced into layers</u>.

2) **Easily manipulated build material** (liquid, powder) to be distributed layer by layer (slice by slice).

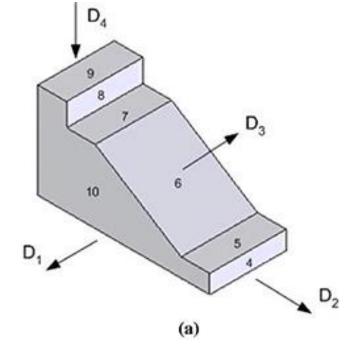
3) **Precision scanning** to fix the build material High energy laser CNC (motion control for laser) 1980's:

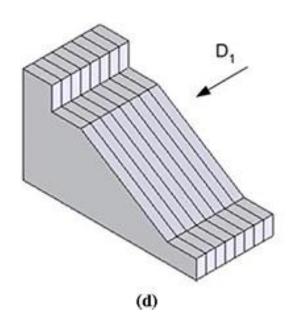
•Stereolithography, SLA (Charles Hull)

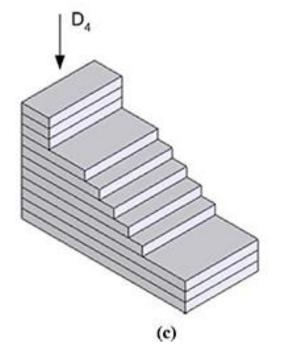
• UV laser and photopolymer (now Vat Photopolymerization)

•Selective Laser Sintering, SLS (Carl Deckard)

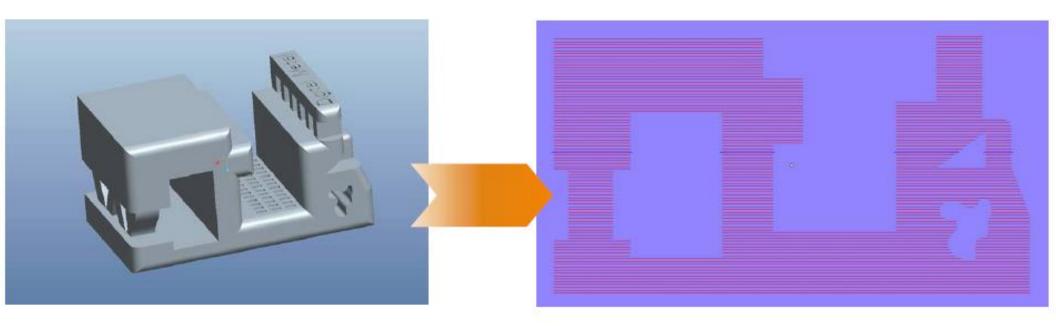
 Laser and polymer powder (now Lasering Sintering Powder Bed Fusion)


•Fused Deposition Modeling, FDM (Scott Crump)


• Extruded polymer from filament (now Material Extrusion)


Rapid Prototyping

- Buildup of a part layer by adding material layer by layer
- "Additive" rather than "Subtractive"



Arthur Fiedler By Ralph Helmick

Layering a CAD (.stl) file:

Design and fabrication opportunities

- No specific tooling: flexible process
- Freedom of design
- Complexity for free
- Mass customization

"DESIGN-BASED MANUFACTURING PROCESS"

Design not limited by current manufacturing technology's limitations and constraints.

Rapid "**Prototyping**":

Fabrication of a REPRESENTATION of a part; a **model**.

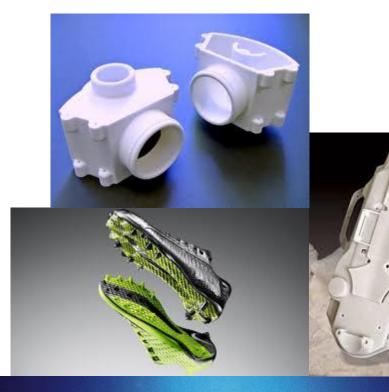
Compromises in:

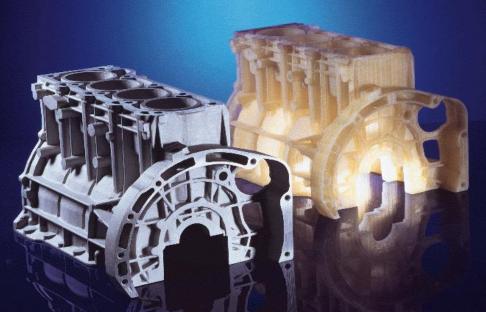
- Material
- Tolerances
- Dimensions
- Surface finish

Summary of Early RP (1986-1990's):

- Tolerances: Unusably wide
- Surface finish: Very poor
- Material cost: Prohibitively expensive
- Material properties: Substandard (and plastic...)
- Equipment: Expensive and unreliable

Rapid Prototyping — "Additive Manufacturing"




- Improved machines
- Improved processes
- Improved materials
- Improved tolerances, repeatability
- Real parts, not just prototypes

Additive Manufacturing Powder Metallurgy

Additive Manufacturing Powder Metallurgy

- Improved machines
- Improved processes
- Improved materials: METAL
- Improved tolerances, repeatability
- Real METAL parts, not just plastics!

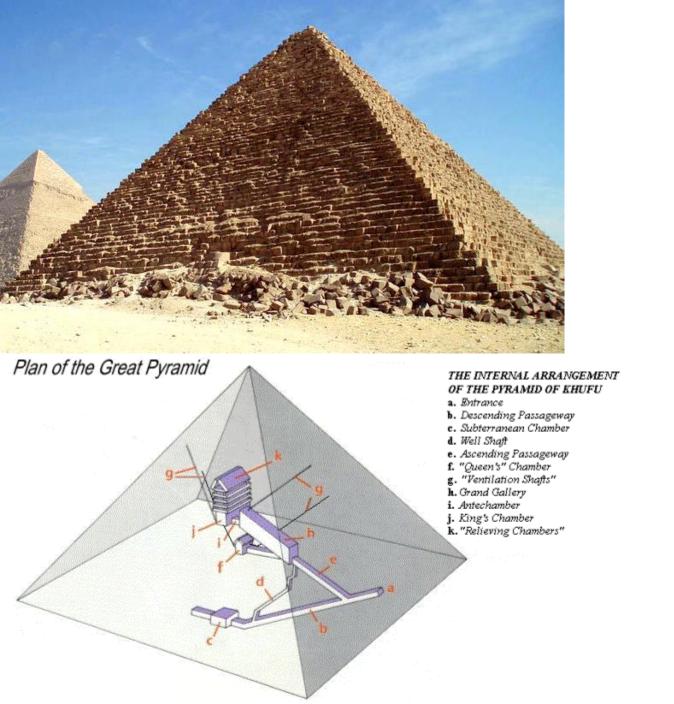
Additive Manufacturing & Powder Metallurgy:

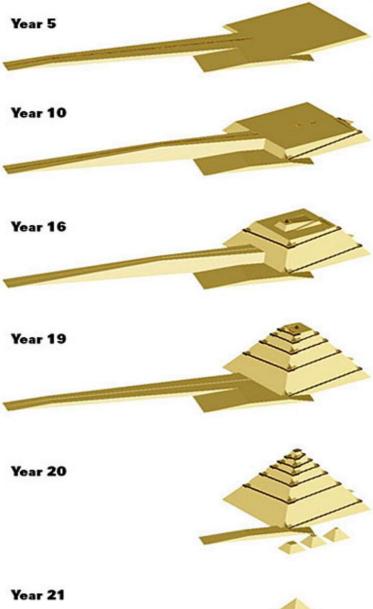
- Metal additive manufacturing uses metal powder as the "easily manipulated material" to make parts.
- Powder Metallurgy is the use of metal powder to make parts.

Additive Manufacturing & Powder Metallurgy:

- Metal additive manufacturing uses metal powder as the "easily manipulated material" to make parts.
- Powder Metallurgy is the use of metal powder to make parts.
- Additive Manufacturing is a Powder Metallurgy technology!

I Introduction and Present




Additive Manufacturing:

Is it really new?

13,000 BC!!

Iron Pillar of Delhi, India 400 CE (AD)

- Layer by layer build
- Sponge iron powder
- Precision hammered

<u>Available METAL Additive Manufacturing technologies:</u>

- 1) Laser Sintering (L-PBF)*
- 2) Electron Beam Melting (E-PBF)*
- 3) Directed Energy Deposition (DED)
- 4) Cold Spray
- 5) Binder Jetting (BJ)*
- 6) Material Extrusion (ME)
- 7) Material Jetting (MJ)
- 8) Vat Photopolymerization

* Powder Bed process RED: not a fusion process BOLD FACE: New in 2018

II Types of AM using metal powders **2014-2016**

1. Laser Sintering/Laser Melting (powder bed):

Essentially laser melting of the powder layer

~9 Equipment manufacturers world-wide

- Concept Laser, Germany *
- EOS, German/Finland *
- Phenix, France/US (3D Systems) *
- Realizer, Germany *
- Renishaw, UK *
- SLM, Germany *
- Farsoon, China
- Inss Tek, Korea
- Wuhan Binhu, China

* major equipment manufacturers

Laser Powder Bed Fusion Systems

~9 Equipment manufacturers world-wide 2014-2016

- Concept Laser, GE Germany*
- EOS, German/Finland *
- Phenix, France/US (3D Systems)*
- Realizer/DMG Mori, Germany/Japan*
- Renishaw, UK *
- SLM, Germany *
- Farsoon, China*
- Inss Tek, Korea
- Wuhan Binhu, China
- * major equipment manufacturers

2017

Additive Industries, Netherlands

Addup, France

Aurora, Australia

DDM, USA

OR Laser, Germany

Sodick (hybrid), UK

Trump, Germany

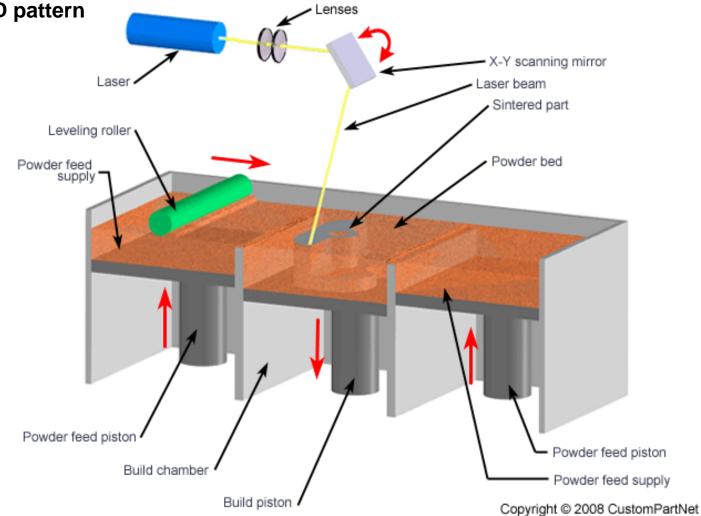
Xact Metal, US

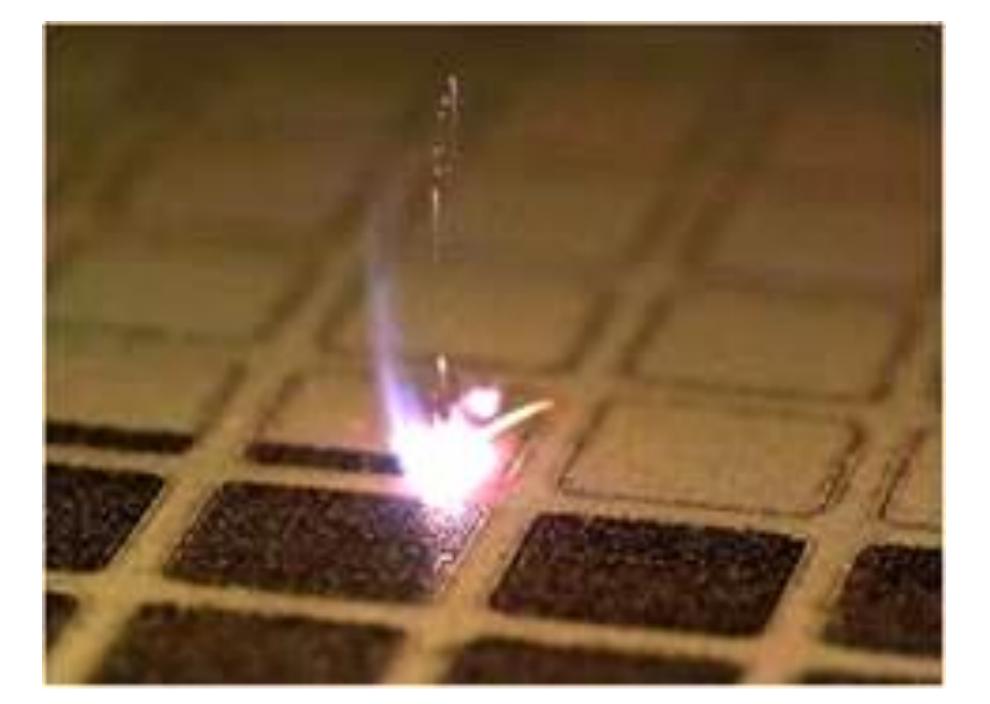
Asian companies too numerous to count.

Xact Metal

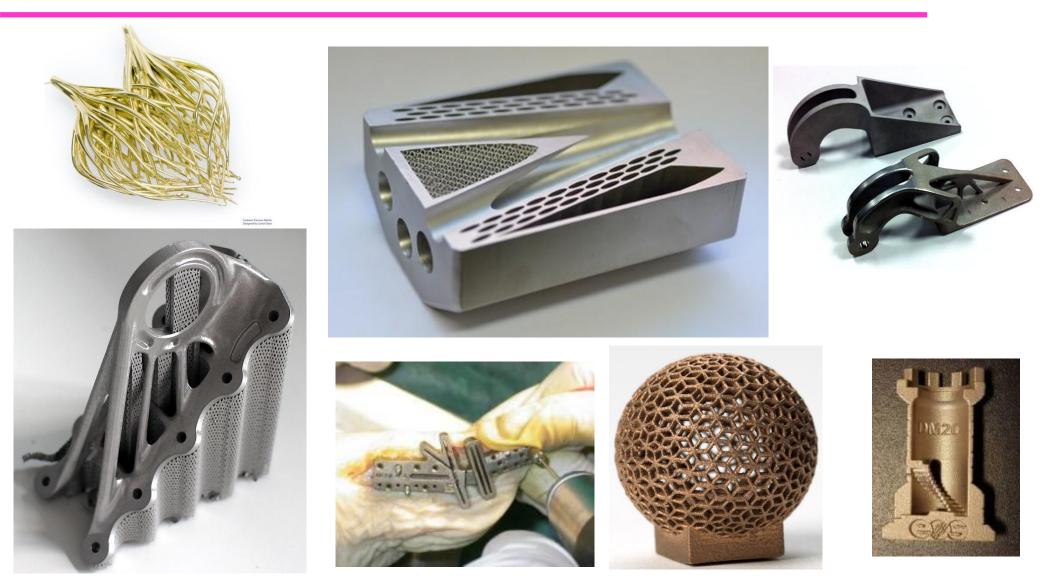
State College, PA

TIM SIMPSON ADVISOR


JUAN MARIO GOMEZ


CHIEF EXECUTIVE OFFICER

Laser Sintering


Laser Powder Bed Fusion

- Metal powder spread into layers
- Laser scanned, melting 2D pattern
- Repeat

Metal Parts via Laser Sintering

Laser Sintered Metal Parts IN PRODUCTION

Co-Cr dental parts

GE Leap Fuel Nozzle

Tooling

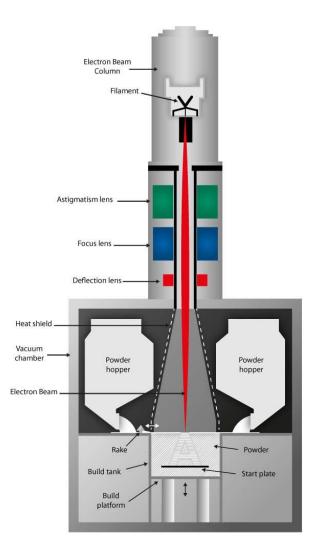
"Design" Objects

• EOSINT M 280/290

- All-round system for DirectMetal and DirectSteel materials
- Build volume 250 x 250 x 325 mm*
- Yb fiber laser, 200 Watt (400 optional)

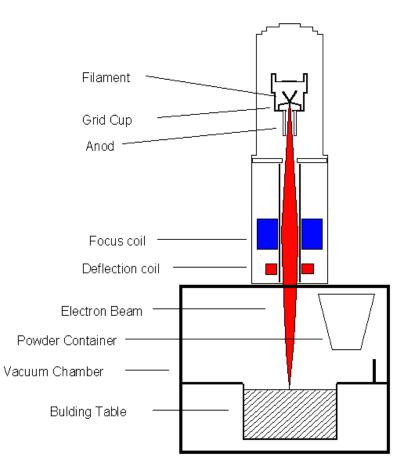
• EOSINT M 400

- Top-end system for DirectMetal, DirectSteel, largest system
- Build volume 400 x 400 x 400 mm*
- Yb fibre laser, 1000 Watt
- Precious M 080
 - For precious metal alloys
 - Yb 100 watt laser, small focus spot
 - Cassette build chamber



2. Electron Beam Melting (E-PBF):

Uses an electron beam to melt the powder layer


Only 1 Equipment manufacture

- Arcam, Sweden
 - Now owned by GE

Electron Beam Melting (E-PBF)

- Electrons are emitted from a filament which is heated to >2500° C.
- The electrons are accelerated through the anode to half the speed of light.
- A magnetic field lens brings the beam into focus.
- Another magnetic field controls the deflection of the beam.
- When the electrons hit the powder kinetic energy is transformed to heat.
- The heat melts the metal powder.
- Faster build rates than laser
- Poorer resolution/surface finish than laser
- Operates in vacuum: very clean

Electron Beam Melting (EBM) Arcam

Materials (Qualified)

- -Titanium Alloys
 - L Ti6Al4V
 - ^L Pure
- Steel Alloys
 - ^L Arcam Low Alloy 200
 - ^L Arcam Tool Steel

Materials (R&D)

- Inconel 620
- Inconel 625
- Inconel 718
- Berylium
- Aluminium-Berylium
- -MMC's
- Stainless Steel 316L
- Gradient Materials

EBM parts: Titanium (Ti-6AI-4V)

EBM parts: Titanium

Titanium acetabular cups

3. Direct Energy Deposition (DED) :

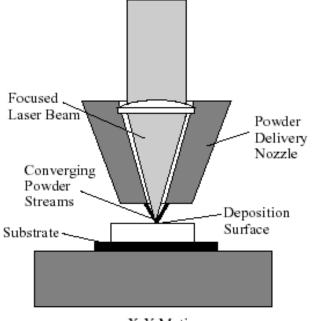
Essentially a precision thermal sprayer or laser cladding operation.

Six equipment manufacturers world-wide (?)

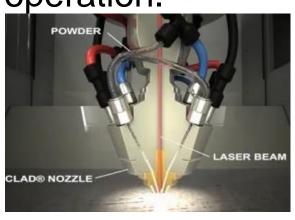
- Optomec, USA: LENS
 - (Laser Engineered Net Shaping) License from Sandia National Lab
- DM3D Technology, LLC., USA: DMD (Direct Metal Deposition)
- Trumpf (Germany)
- Aurora (Australia)
- BeAM (France)
- Laserline (Germany)

4. Direct Energy Deposition (DED) :

Essentially a precision laser cladding operation.


LENSTM System Nd:YAG Laser 650W to 3kW lasers 4 Powder Nozzles 5-axis laser wrist 2+ powder feeders

Low:


- Detail
- Surface finish
- Resolution

But:

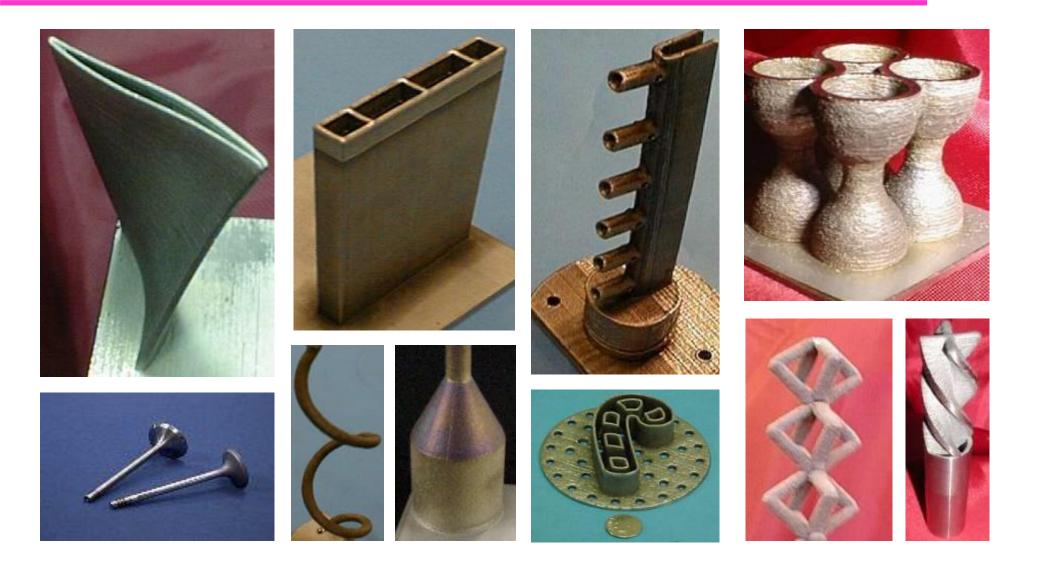
- Not confined to one plane
- Switch/mix materials

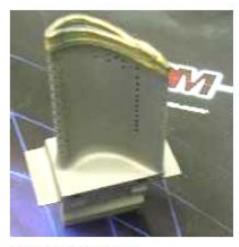
LENS[™] is a registered trademark of Sandia National Labs and Sandia Corporation

LENSTM Systems

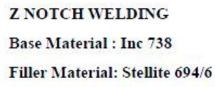
Environmentally Controlled Chamber

Motion Control to within 0.001"


Part Fabrication or Repair



LENSTM Example Parts

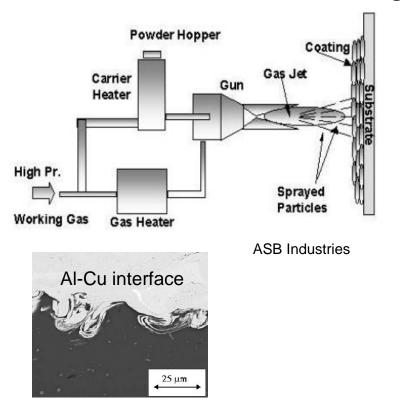

LPF for Repairs (DM3D Technology)

SQUEELER TIP RESTORATION

Base Material : Rene 77 SX Filler Material: Inc 625/617 Deposition speed: 400mm/min

Rebuild Flanges Filler Material: IN625

KNIFE EDGE BUILDUP Base Material : Inc 738 Filler Material: Inc 625/617 Deposition speed: 400 mm/min


Hybrid AM Systems

Combination of CNC machining and LENS

- LENS become another "tool in the turret"
- Additive and subtractive machining

4) Cold Spray: Kinetic impact of metal particles on substrate. Bulk deposition, requires machining but FAST! Large parts, not near net shape.

- SPEE3D: Australia: "Guided" Cold Spray only.
- Hermle Hybrid: Germany: CS + CNC machining.

SPEE3D

Hermle Hybrid

5. Binder Jetting:

- Powder bed method
- Inkjet head deposits binder on powder layer
- Part subsequently debound and sintered
 - **Digital Metal**, Sweden (Höganäs) Equipment and Toll processing
 - **Exone, USA** Equipment manufacturer, toll processing
 - Desktop Metals, USA Equipment manufacturer
 - GE Additive, USA Equipment manufacturers (?)
 - HP, USA Equipment manufacturer
 - 3DEO, USA Hybrid print/machine, toll services

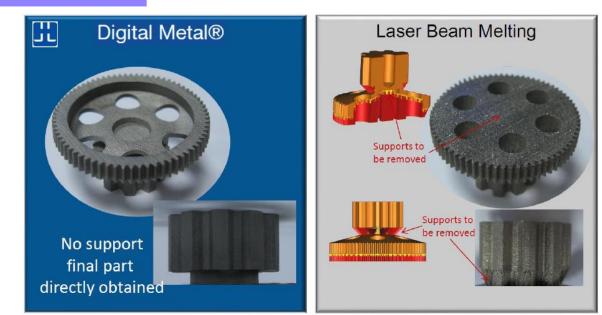
Binder Jetting

Printer

Piston

- Powder bed method
 - Inkjet head deposits binder on powder layer
 - Part subsequently debound and sintered
- Faster than laser or E-beam

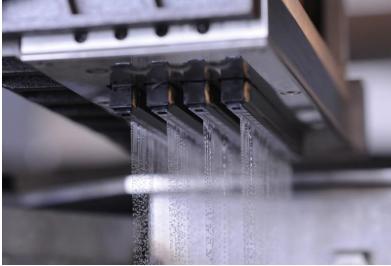
Powder delivery


system

Print box

No supports are needed during printing

Powder bed


Digital Metal (Höganäs))

5. Binder Jetting:

- Printed parts are metal powder and polymer:
 - Essentially a MIM part.
 - Uses MIM-grade powder
 - Subsequently debound and sintered
 - Much lower binder content:
 - Faster debind cycle
 - Can be integrated with sintering cycle
 - Parts on the same scale as MIM parts.

Selective Inkjet Binding/Binder Jetting

Part Shrinkage (before and after sintering, 12-20% linear shrinkage across the industry, 14-17% typical)

Selective Inkjet Binding/Binder Jetting

Digital Metal (Höganäs))

6. Material Extrusion (ME)

Fused Deposition Modeling (FDM):

- 1998 S. Crump: Stratasys
 - Extruded polymer filament
- Think "MAKERBOT"

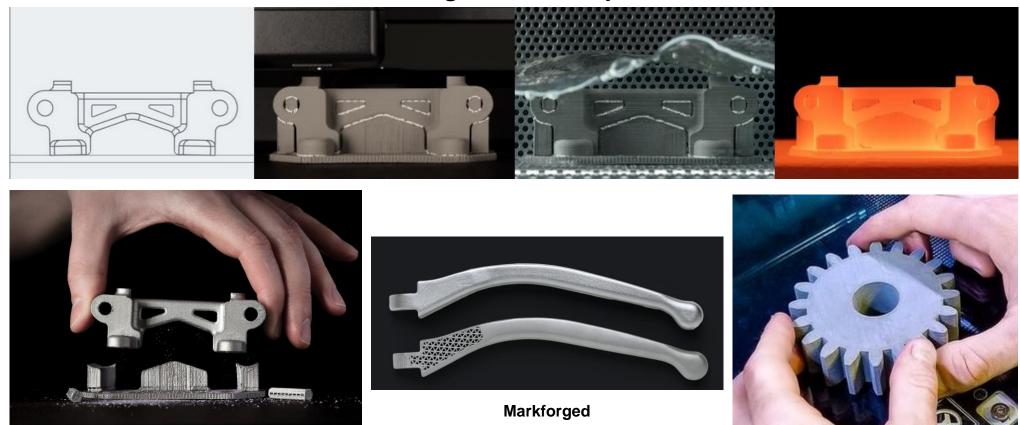
3D Systems Cube

Stratasys

5. Material extrusion

- Direct deposit a metal-filled polymer (MIM feedstock).
- Conventional debind and sinter.
- Turn-key systems commercially available.
- Metal-filled filament available from 3rd party (BASF).
- Parts larger than conventional MIM parts.

Desktop Metals

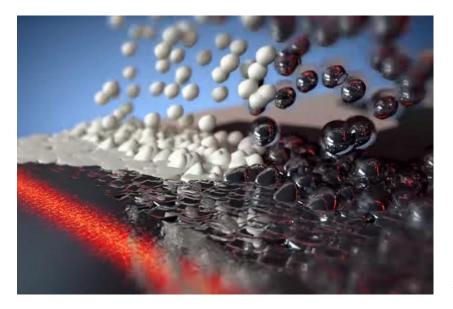


Markforged

Rapidia

Material Extrusion

Parts larger than MIM parts


Desktop Metals Ceramic Release Layer Rapidia

6) Metal Jetting: Build material directly applied through inkjet head.

• Xjet (Israel): Metal powder filled ink.

6) Material Jetting: Build material directly deposited through an inkjet head.

- Metal powder filled ink.
- Debinding and sintering required.
- Parts MIM scale and smaller.

7) Vat Photopolymerization:

Manufacturing Guide

UV curing of a metal-loaded photopolymer. UV laser or DLP (Digital Light Processing)

Print, debind, sinter

Highly complex, MIM size and smaller.

7) Vat Photopolymerization:

Admatec

Lithoz

AM and PM: General Comparison

Process	Small production numbers	Geometric complexity	Productivity (build speed)	Surface finish	Resolution	Part size, Large/ Small	Material selection
Press and Sinter		0	++++	+++		++/+++	++
MIM		++	++++	+++	++	0/+++	+++
Laser Sintering	+++	+++	0	-	+	+++/+++	+++
E-Beam Melting	+++	+++	++		-	+++/+	+++
Direct E. Dep.	+++	+	+++			+++++/	+++
Binder Jetting	++	+++	++	++	++	0/+++	++
Material Extr.	++	++	+++	+		++/0	++
Material Jetting	++	+++		+++	+++	/++++	
Vat Photopolymerization	++	+++	-	+++	++	0/+++	
Cold Spray	+++		+++++			+++++/	0

Format from Digital Metal

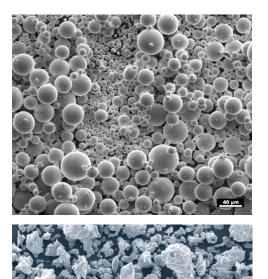
III Powder Production and Requirements for Additive Manufacturing

Powder Production

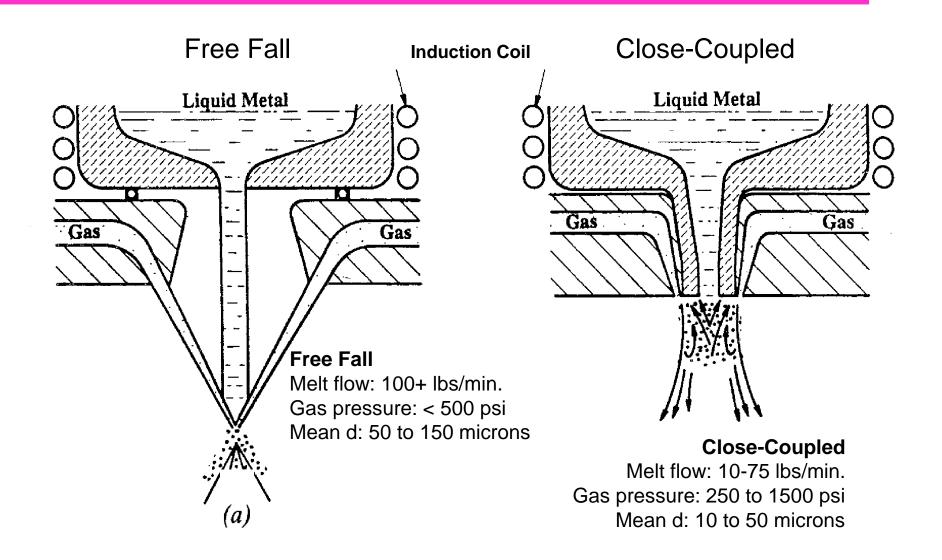
✓ <u>Atomization</u>

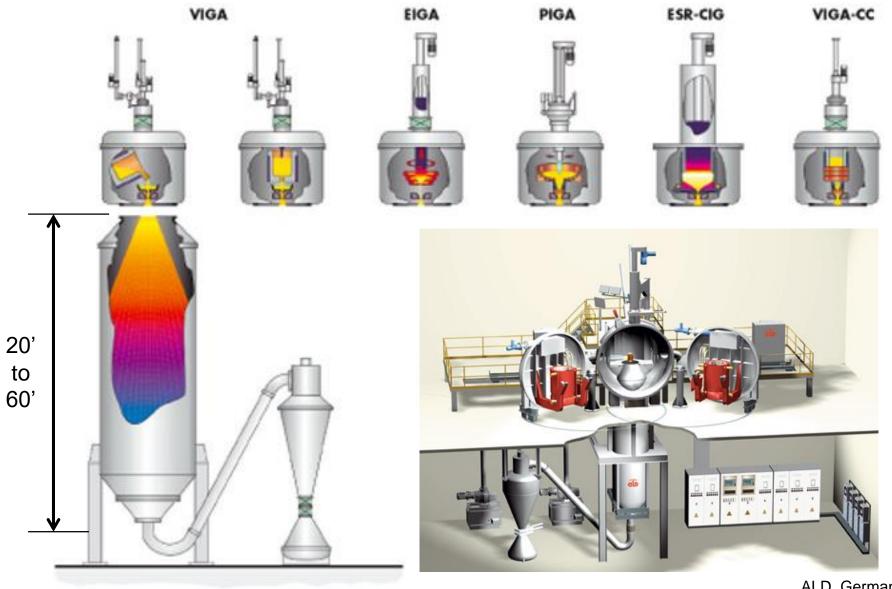
- Chemical, reduction
- Carbonyl process
- Oxide reduction
- Electrolytic, precipitation
- Mechanical

III Powder Production and Requirements for Additive Manufacturing


Powder Production ✓ <u>Atomization</u>

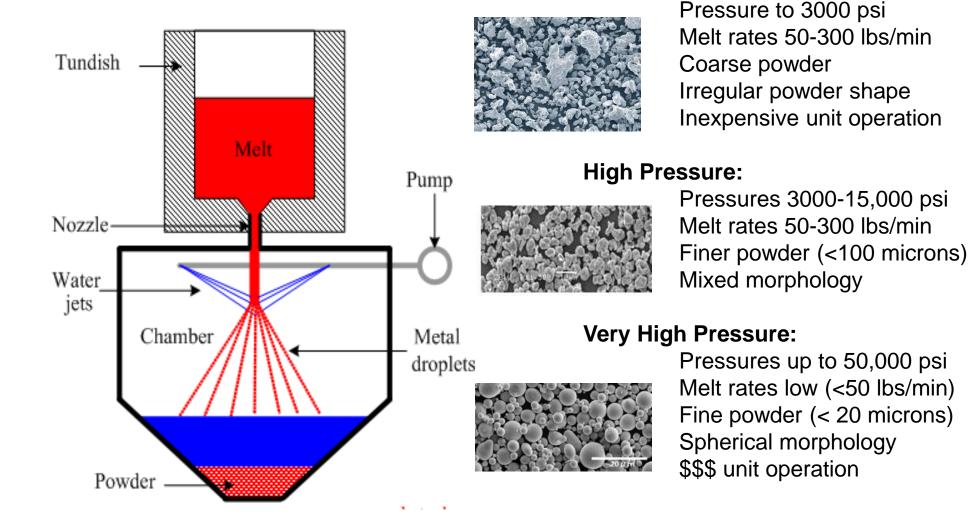
Atomization: The disintegration of a molten material into droplets.


Powder production by **Atomization**:


Disintegration of liquid by a second fluid

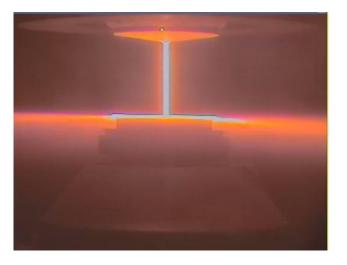
- Inert Gas Atomization: Spherical powder particles Good "flowability" (Most times)
- Water Atomization: Irregular powder particles Poor "flowability" (Most times)

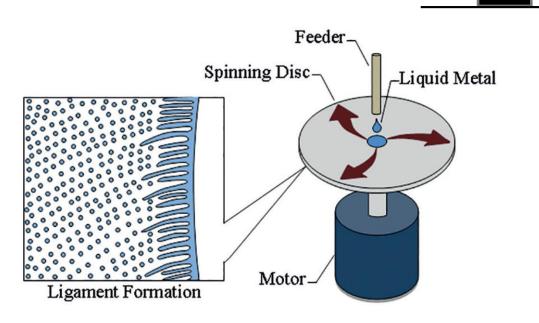
Gas Atomization Configurations



ALD, Germany

Water atomization

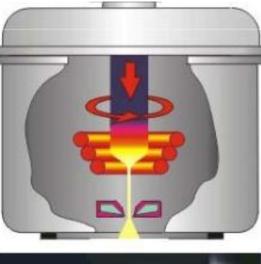




Spinning Disk Atomization (centrifugal)

Powder: very spherical, low satellite content Powder size: Very narrow distribution Powder: Coarse to fine.

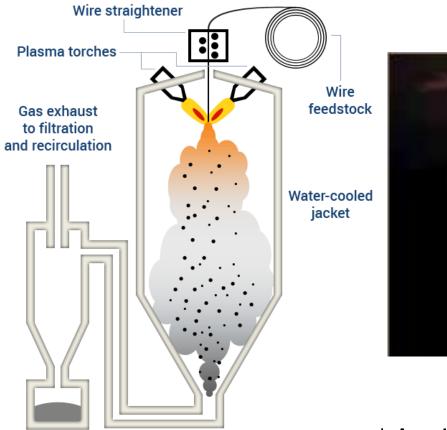
Alloys via <u>Bulk</u> Melt Atomization:


• Fe alloys:

- Low alloy steels (4140, etc.)
- Tool steels (T15, D2, M2, etc.)
- Stainless steels (316:, 17-4PH, 430, 440, etc.)
- Binaries with Co, Ni, and Si
- Ni-based Superalloys
 - 625, 718, Rene's, etc.
- Cobalt alloys
 - Co-Cr-Mo (F75's)
- Copper and alloys
- Precious metals and alloys
- Aluminum, magnesium, and alloys
- Titanium and alloys (limited)

Non-bulk melt atomization processes

EIGA*

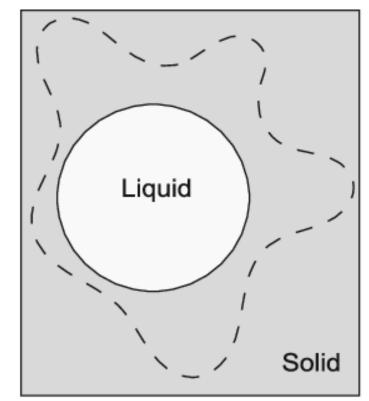

- Any material in rod (cast ingot) form
 - Ti, Mo/Ta/W
- No crucible or refractory contact
- Low production rates (1 kg/min)
- Low yield of fines

Plasma Atomization of Titanium* Wire

AP&C/Arcam

* Applies to any material in wire form.

Plasma **Spheroidization** of HDH* Titanium**

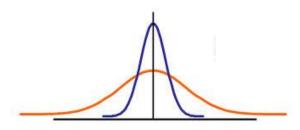


Why is having a melt phase important for AM?

Particle Morphology: Spherical powders flow best.

- Melt phase: liquid with surface energy/tension
- Spherical shape minimizes surface energy
- Spherical powder: lower SSA* & interparticle friction.
- Most AM powders have evolved from a melt phase.

* SSA= Specific Surface Area (area/mass)


<u>All</u> additive manufacturing methods rely on:

 An easily manipulated material (powder).
 Material to be transported and dispensed with precision and repeatability.

FLOWABILITY!!!!! Especially important for PBF

Transport and dispense powder with precision and repeatability.

- Particle morphology: Shape
- **Particle size: d**, (mean particle size)
- Particle size distribution

FLOWABILITY:

Particle size and size distribution

Size (**d**): Specific Surface area (SSA) Interparticle friction

As $\overline{\mathbf{d}} \downarrow$ SSA and friction \uparrow and flowability \downarrow

Distribution: Particle packing efficiency (PE)

As distribution widens PE [↑] and flowability

Powder Flow tests:

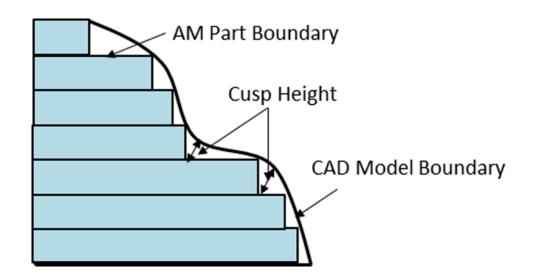
Mass Flow rate: Hall test: ASTM B214, MPIF 03 Carney test: ASTM B964

Volume Flow rate: Arnold test: ASTM B855

Tap to Apparent Density ratio: Hausner or Carr

Torque Rheometry: Texture Technologies (US) Freeman Technology (UK)

Angle of Repose: Grantools (BE)


Mercury Scientific (US)

What powder size is right for AM?

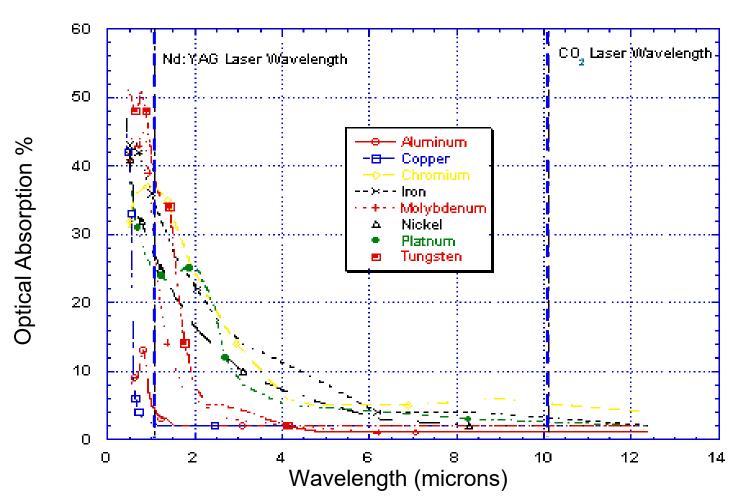
AM Z axis resolution:

Minimize build layer thickness

- Minimize particle size
- Narrow particle size distribution

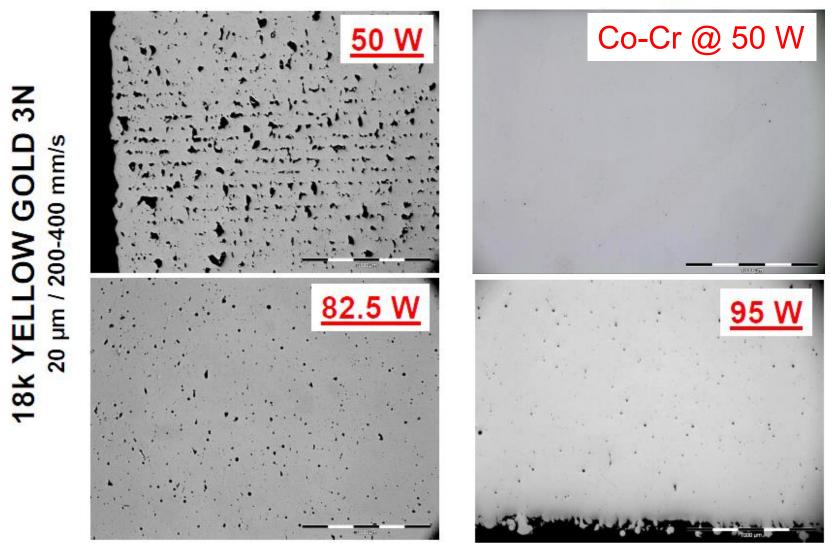
What powder size is right for AM?

- Energy coupling
- Charging effects (e-beam)
- Vaporization
- Sintering
- Material Jetting/Vat Photopolymerization

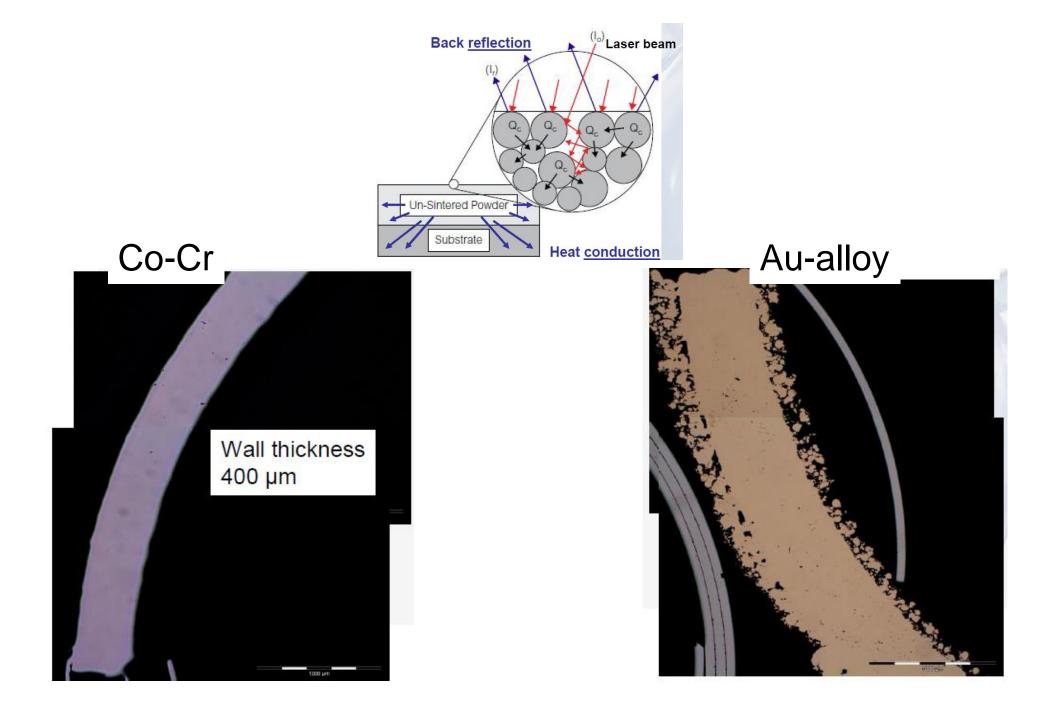

Metallurgical considerations?

Conventional PM processes:

- Sintering response: temperature, time
- Reactivity: environment, furnace atmosphere


Metal Additive Manufacturing:

- Sintering response: temperature, time
- Reactivity: environment, machine atmosphere
- Laser absorption
- Thermal conductivity



Optical Absorption vs. Wavelength

Porosity : Influence of laser power

Material	Thermal Conductivity, W/m-K		
Ag	420		
Au	315		
Cu	401		
Co-Cr-Mo (F75)	13		
316 stainless steel	21		
Ti (Ti alloy)	20		
Ti alloyed	6		

Powder Requirements for Additive Manufacturing

Process	Particle size range, microns	Preferred particle morphology	
Press and Sinter	20-150	Irregular	
МІМ	< 30	Primarily spherical	
Laser Melting	15-60	Spherical	
E-Beam Melting	50-150	Spherical	
Direct E. Dep.	30-150	Spherical	
Binder Jetting	<30	Spherical	
Material Extr.	<30	Primarily spherical	
Material Jetting	< 5	Either	
Vat Polymerization	< 10	Either	
Cold Spray	10-100	Primarily spherical	

Particle size range is approximate and will depend on:

- Specific
 equipment
- Alloy
- Layer thickness
- "Sinterability"

Why do AM powders cost so much?

Why do AM powders cost so much?

AM applications are still small wrt other PM or thermal spray markets.

Market size

Total AM market for metal powder =

??% of atomized metal powder for PM and thermal spray

$$\% = 100 * \frac{AM}{PM+TS}$$

Market size

Total AM market for metal powder =

<1 % of atomized metal powder for PM and thermal spray

$$\% = 100 * \frac{AM}{PM+TS}$$

Why do AM powders cost so much?

- Metal powder used for AM comes from the existing PM and Thermal Spray industries
- Need to compare to other similar powders:

Application 316 stainless steel	Particle size, Microns	Production Method	Relative Cost	Quantity, Lbs./month per customer	# of Customers
Press & Sinter	-175	H ₂ 0	1	Tonnage	Many
HIP	-500	Gas	1.5	Tonnage	Many
МІМ	-30	Gas	3	1000+	Many
Thermal Spray	-106/+45 -53/+20	Gas	5-8	100-1000	Many
Filter	-25	H ₂ 0	8-10	100's	Few
AM Laser Powder Bed from manufacturer	-45/+10	Gas	8-10	100's	Few
AM Laser Powder Bed From OEM	-45/+10	Gas	10-20	100	Few

- Powder prices as production volumes
- Powder prices with fewer processing steps: Equipment, time
 - material, scrap

Will AM replace: Machine shops? Casting houses? Press and sinter PM? MIM?

Can these new AM technologies replace existing manufacturing technologies:

- Without manufacturing infrastructure?
- Without manufacturing experience?
- With a bucket of powder and a push of a button?

Traditional Powder Metallurgy processes:

Press and sinter:

- Production > 10,000 parts (economy of scale)
- High tolerance, 0.001 "/" possible
- High productivity (low unit cost)
- Controlled porosity, density (85% to 90%)
- Excellent surface finish
- Some anisotropy
- High tooling costs requires high production numbers
- Geometrical Limitations:
 - Axis-symmetric
 - No undercuts
 - No off-axis attributes
 - L/D <5

Traditional Powder Metallurgy processes:

MIM:

- Complex Shapes
- High density metal parts (> 95%)
- Economy of Scale (high productivity)
- Good tolerance, .003 "/" possible, .005-.008 "/" typ.
- Good to excellent surface finish
- Isotropic properties
- Competes with investment casting and discrete machining
- High tooling costs requires high production numbers
- Complexity costs \$\$ and there are limitations
- Long lead times

Traditional Powder Metallurgy processes:

Press and sinter and MIM:

- Developed and mature industries
- Many sources: equipment, parts producers
- Working processes
- Material standards capable of meeting industrial qualifications
- Product quality independent of processing equipment
- Economical for large production numbers
- Geometries limited or costly

Metal Additive Manufacturing

- New and exciting
- Speed to market
- Flexible designs, unique designs/features
- High level of complexity with no extra cost
- No tooling (?)
- High density parts
- Economy (?) at low production numbers

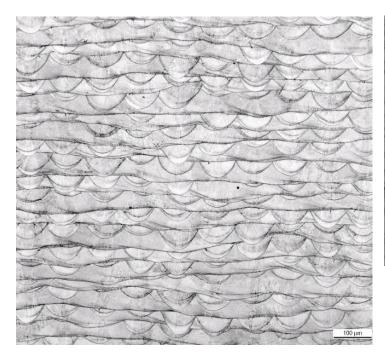
Metal Additive Manufacturing

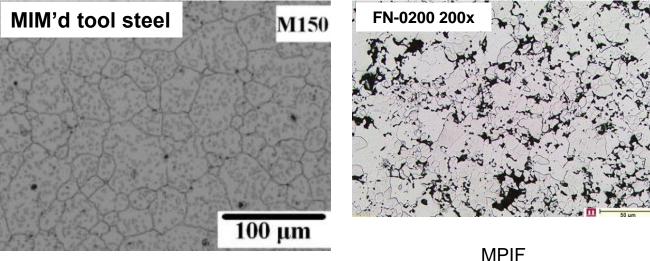
- Cost: Equipment, maintenance
- Cost: Material
- Cost: Build time
- Surface finish
- Tolerance
- Minimum detail size
- Material standards, specifications, qualifications

Metal Additive Manufacturing (laser processing)

- Cost: Equipment, maintenance: \$250K-\$800K + 10% annual maintenance
- Cost: Material: 3 to10 X (wrt MIM powder), lower utilization rate
- Cost: Build time: < 0.006 in³/min (0.1 cm³/min) (< 1 g/min 316 SS)
- Surface finish: 600/300 Ra (µin) orientation and material dependent
- Tolerance: +/- 0.005" for first inch,
- Minimum detail size: 0.006"/0.015"
- Material standards, specifications, qualifications
- Not that rapid, not a net shape part

Rapid? Must remove support structure!

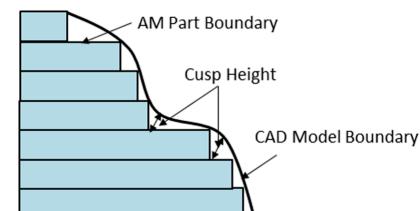

AM is NOT A NET SHAPE METHOD!!!


- Surface finishing (blasting/peening/polishing)
- Remove build structure
- Machining of critical attributes:
 - Holes
 - Threads
 - Sealing surfaces
 - Mold/Tool surfaces
 - Flat areas

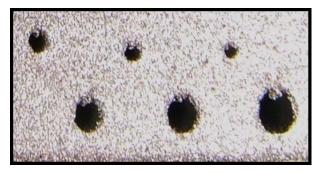
Microstructures: SLS "Weld" vs. PM

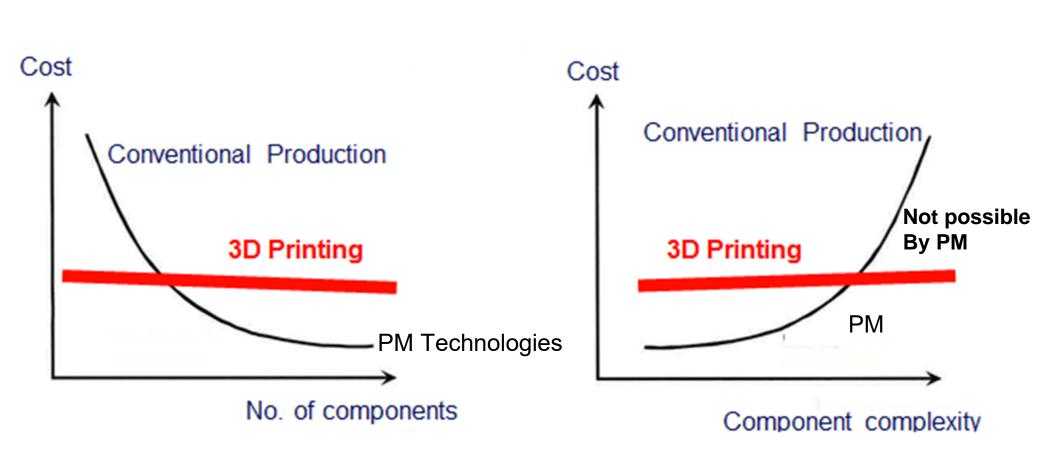
SLS F75 (Co-Cr-Mo)

Effect of Sintering Parameters and Powder Characteristics on the Performance of Metal-Injection-Molded SKD11 Parts Huan–Xi Chen, You–Tern Tsai, and Kuan–Hong Lin


MPIF

Macro-etched


AM: Critical limitations


Attribute-orientation relationships

- Overhangs/Support
- Surface finish
- Holes, internal cavities
- Macro effects:
 - Residual stress
 - Curling/warping
 - Contraction

- Additive manufacturing should not be used to compete with existing technologies to make the same part. AM cannot compete on a cost basis for the same part.
- AM must be used to make parts that exiting technologies cannot make. The high cost of AM can be only be justified by unique design attributes and life cycle benefits.

AM Metal Parts IN PRODUCTION

Tooling

GE Leap

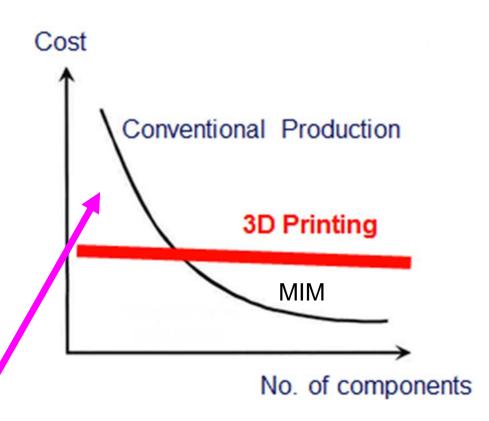
- Design attributes
- Life cycle benefits

"Design" Objects

Osseointegration

One-offs with unlimited budgets

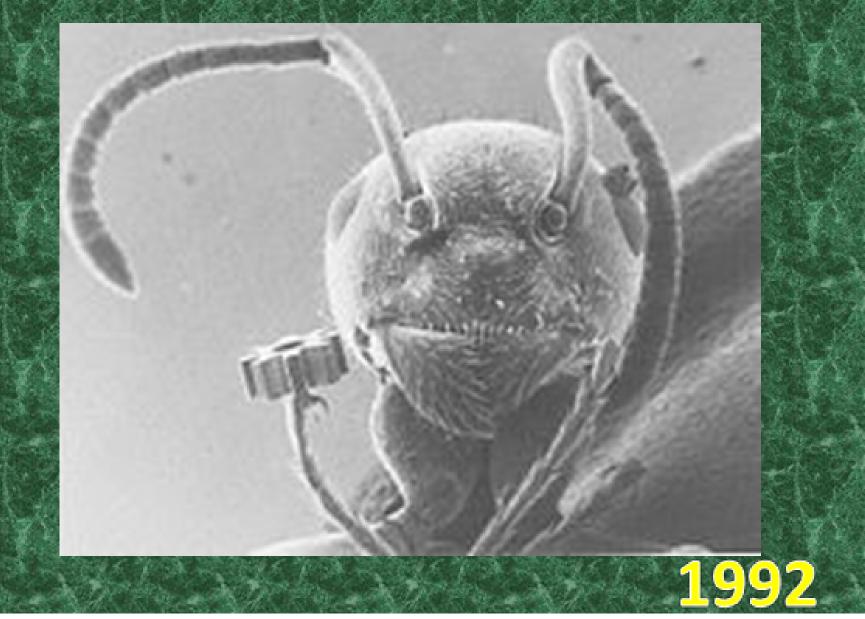
Additive Manufacturing will not compete or replace PM. AM is a new addition to PM as; MIM was new to PM 20 years ago.


Binder Jetting, Material Extrusion, Material Jetting and Vat Photopolymerization can provide material equivalent to MIM and can compliment and extend MIM capabilities.

So what about:

Binder Jetting Material Extruding Material Jetting Metal Vat Photopolymerization?

Debind and Sinter:


- Leverage existing technology and knowledge base as MIM.
- Produce similar material wrt density and microstructure.
- Fill in production volumes below MIM's economic feasibility limit.

V Summary

- Additive Manufacturing is a Powder Metallurgy technology-although it did not originate within the PM community. AM shares PM's powder sources and many PM powder challenges and benefits.
- 2) Additive Manufacturing is capable of unique attributes and economies not possible with traditional manufacturing methods.
- 3) At present Additive Manufacturing growth will be by leveraging its ability to provide unique attributes and economies not by competition with existing technologies.
- Metal AM technologies are continually improving and new metal AM technologies are being developed to further broaden the metal AM manufacturing environment.
- 5) Binder jetting, material extrusion, material jetting, and metal vat photopolymerization use MIM post processing and offer a unique addition to MIM in attributes and production volumes.

Micro MIM

Additive Manufacturing Powder Metallurgy

Questions?