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AM of Metals

https://www.cetim.fr/en

Powder Bed Fusion

Handling of open powder

Large quantities of material required



 Based on the Fused Deposition Modeling (FDM)

 FDMet was first introduced in the early 90s at 

the Rutgers University

 Patent of FDM expired in 2009, prices for FDM 

printers dropped from over 10,000 $ to less than 

1000 $

 Many open research questions

 Recent years research interest grows
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Fused Deposition of Metals

Agarwala, et al. 1996 International Solid 

Freeform Fabrication Symposium.



 Markforged, Desktop Metal, BASF

 Closed proprietary systems

 Limited materials available

 Development of own filaments

 Gain knowledge about all processes involved

 Freedom in material selection
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Fused Deposition of Metals

Ultrafuse 316LX filament, BASF
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Fused Deposition of Metals
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FDM 3D Printing

bq Hephestos 2 - 3D printer
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𝑄 = 𝑤 ∙ ℎ ∙ 𝑣

𝑃𝑚𝑎𝑥 = Fmax /𝐴

𝑤 ℎ

ሶ𝛾𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =
4 𝑄

𝜋 𝑅𝑛
3

𝜏 = η ∙ ሶ𝛾

Extrusion of Filaments
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𝑄 = 𝑤 ∙ ℎ ∙ 𝑣

𝑃𝑚𝑎𝑥 = 𝑭𝒎𝒂𝒙 /𝐴

𝑤 ℎ

ሶ𝛾𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 =
4 𝑄

𝜋 𝑅𝑛
3

𝜏 = 𝜼 ∙ ሶ𝛾

Extrusion of Filaments
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 Increasing stiffness

 Decreasing viscosity

 Increasing brittleness

Substitution of TPE with PE (low M)
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 Rheological behavior governed by particle–particle interactions

 Matrix viscosity affects the interaction times

FDMet Binder Composition
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FDMet Binder Composition

Yield stress:

 No deformation in the printing process

 Shape retention during thermal debinding
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Solvent Debinding

FM5 FM6 FM7 FM8 FM9 FM10

Effective backbone as a function of high M PE:
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Solvent Debinding

Before solvent debinding

After solvent debinding

 Removal of TPE, PE (low M), and 

stearic acid

 Cyclo-hexane at 60°C



In-situ environmental SEM investigation
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Thermal Debinding

Decomposition of the PE backbone between 340°C and 560°C

 H2 atmosphere

 P = 25 KPa

35x

20 µm20 µm
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Sintered Microstructure

100 µm

Inter layer porosity

 Sinter for 3h at 1200°C

 95% Ar 5%H2 atmosphere

Intra layer porosity

10 µm
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 Load and penetration depth are measured, which 

allows calculation of hardness and modulus

 iNano system from KLA with a NanoBlitz module, 

which allows >1 indent per second: 

~50,000 indents in one night! 

High Speed Nanoindentation Mapping

jeff.wheeler@mat.ethz.ch
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Indentation Mapping of Sintered 316L
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Indentation Mapping of Sintered 316L

Nanoindentation porosity:

15%

Optical porosity:

14%



 The binder system developed allows printing on low-cost 

FDM printers

 Optimization of the stiffness and viscosity enables a 

significant improvement of the printing resolution

 In-situ ESEM provides insights in the thermal debinding

process

 Nanoindentation mapping can be used for 

characterization of hardness, modulus, and porosity

Future work:

 New materials (shape-memory alloys)

 Multi-material

Conclusion
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