Engineering Conferences International

ECI Digital Archives

Innovative Materials For Additive Manufacturing (IMAM)

Proceedings

3-12-2019

Additive manufacturing of stainless steel via fused deposition

Marius Wagner

Tutu Sebastian

Frank Clemens

Jeffrey Wheeler

Ralph Spolenak

Follow this and additional works at: https://dc.engconfintl.org/imam

Additive Manufacturing of Stainless Steel via Fused Deposition

Marius Wagner¹, Tutu Sebastian², Frank Clemens², Jeffrey Wheeler¹, Zhu-Jun Wang³, Marc Willinger³, and Ralph Spolenak¹

¹ Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Switzerland

² High performance ceramics, Empa, Switzerland

³ ScopeM, Department of Materials, ETH Zurich, Switzerland

Scope

AM of Metals

Powder Bed Fusion

https://www.cetim.fr/en

Handling of open powder

Large quantities of material required

Fused Deposition of Metals

- Based on the Fused Deposition Modeling (FDM)
- FDMet was first introduced in the early 90s at the Rutgers University

 Patent of FDM expired in 2009, prices for FDM printers dropped from over 10,000 \$ to less than 1000 \$

- Many open research questions
 - Recent years research interest grows

Agarwala, et al. 1996 International Solid Freeform Fabrication Symposium.

Fused Deposition of Metals

- Markforged, Desktop Metal, BASF
 - Closed proprietary systems
 - Limited materials available

Ultrafuse 316LX filament, BASF

- Development of own filaments
 - Gain knowledge about all processes involved
 - Freedom in material selection

Fused Deposition of Metals

FDM 3D Printing

bq Hephestos 2 - 3D printer

Extrusion of Filaments

Extrusion of Filaments

Substitution of TPE with PE (low M)

- Increasing stiffness
- Decreasing viscosity
- Increasing brittleness

- Rheological behavior governed by particle-particle interactions
- Matrix viscosity affects the interaction times

Yield stress:

- No deformation in the printing process
- Shape retention during thermal debinding

Solvent Debinding

Effective backbone as a function of high M PE:

Solvent Debinding

- Removal of TPE, PE (low M), and stearic acid
- Cyclo-hexane at 60°C

Before solvent debinding

After solvent debinding

Thermal Debinding

In-situ environmental SEM investigation

Decomposition of the PE backbone between 340°C and 560°C

- H2 atmosphere
- P = 25 KPa

Sintered Microstructure

- Sinter for 3h at 1200°C
- 95% Ar 5%H₂ atmosphere

High Speed Nanoindentation Mapping

- Load and penetration depth are measured, which allows calculation of hardness and modulus
- iNano system from KLA with a NanoBlitz module, which allows >1 indent per second: ~50,000 indents in one night!

Indentation Mapping of Sintered 316L

0 L

Hardness (GPa) Modulus (GPa) -250 -200 Y Position (µm) Y Position (µm) 80 -6 -5 -150 -3 -100 -50 n X Position (µm) X Position (µm) -125 - 100 Hardness (GPa) Counts -75 - 50

n

Modulus (GPa)

Indentation Mapping of Sintered 316L

Nanoindentation porosity: 15%

Optical porosity: 14%

Conclusion

- The binder system developed allows printing on low-cost FDM printers
- Optimization of the stiffness and viscosity enables a significant improvement of the printing resolution
- In-situ ESEM provides insights in the thermal debinding process
- Nanoindentation mapping can be used for characterization of hardness, modulus, and porosity

Future work:

- New materials (shape-memory alloys)
- Multi-material

Scope

Contributors:

Thomas Schweizer Fabio Krogh Jona Engel Micha Calvo Christian Wegmann Beatrice Wegmann

Tobias Rantze Zeyu Ma Jonas Bosshard Rabea Ganz Anja Rusch Alexandra Walser Luis Rozas

Thank You

Funding: Strategic Focus Area Advanced Manufacturing

