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INTRODUCTION

The Fast Fourier Transform is used to compute the Discrete Fourier
Transform (DFT) and its inverse efficiently. It is sufficient to quote “The
Fast Fourier Transform (FFT) is the most important numerical
algorithm of our lifetime”, by Gilbert Strang. Analogues of the DFT, such
as the Discrete Cosine Transform (DCT) and the Discrete Sine
Transform (DST) are the building blocks for the algorithms used in
image and video compression such as JPEG. Without exaggeration, we
can say that the FFT, DCT, and DST are the pillars of modern
multimedia signal processing and play crucial roles in increasing
throughput and decreasing integrated circuit complexity,
manufacturing cost, and power consumption. The Beam Digitization
Transform (BDT) is defined explicitly below;
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Two main techniques, namely polynomial arithmetic and matrix
factorization techniques, can be used to derive fast discrete transform
algorithms, which lead to the BDT algorithm. The polynomial
arithmetic technique uses a divide-and-conquer strategy to reduce the
degree of the polynomials. The matrix factorization technique directly
factorizes the discrete transform matrices into the product of sparse
matrices. If the factorizations do not preserve orthogonality, the
resulting algorithms can lead to interior numerical instability.

METHODOLOGY
The reduction and minimization of the number of analog-to-digital
converters (ADCs) is of paramount importance in array processing
receivers with applications in wireless communications, radar,
microwave imaging and radio astronomy. We propose a fast, exact, and
stable BDT algorithm via a novel matrix factorization technique in
connection to Chebyshev-like polynomials. The proposed BDT
algorithm is used to explore spectral analysis and thereafter to
minimize the number of ADCs in the design stage.

RESULTSRESULTS

The BDT is defined as 𝑨𝑛 = 𝑭𝒏𝑪𝒏
𝑰𝑰, where 𝑭𝒏 is the DFT matrix and 𝑪𝒏

𝑰𝑰 is
the type II DCT matrix. The matrix 𝑨𝑛 can be factored into the product of
sparse and orthogonal matrices for any 𝑛 = 2𝑡 𝑡 ≥ 1 ;
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Recursive BDT Algorithm

CONCLUSION
Results on the proposed project lead to:

➢Sparse and Orthogonal/Unitary Factorization

➢Recursive BDT Algorithm

➢Reduction in Complexity from O(n^3) to O(n log n)

➢Reduction in Number of ADCs

➢Minimize Chip Area and Reduce Power Consumption

Input: 𝑛 = 2𝑡 𝑡 ≥ 1 , 𝑛1 =
𝑛

2
, 𝑥 ∈ ℝ𝑛 or ℂ𝑛.

Steps: 
If 𝑛 = 2, then

𝑦 ≔
2 0
0 2

x.

If 𝑛 ≥ 4, then
𝑢 ≔ 𝐻𝑛𝑥,

𝑣 ≔ blkdiag 𝐼𝑛1 , 𝐵𝑛
𝑇 𝑢

𝑝 ≔ blkdiag 𝐼𝑛1 , 𝐶𝑛
𝐼𝐼𝐼 𝑣

𝑞𝑗 𝑗=0

𝑛−1
≔ blkdiag 𝐼𝑛1 ,𝑊𝑛 𝑝

𝑎 ≔ 𝐴 𝑞𝑗 𝑗=0

𝑛1−1
, 𝑛1 ,

𝑏 ≔ 𝐼𝑛1 𝑞𝑗 𝑗=𝑛1

𝑛

𝑟 ≔ blkdiag 𝐼𝑛1 , 𝐹𝑛1 (𝑎𝑇 , 𝑏𝑇)𝑇

y ≔ ෩𝐷𝑛𝑟.

Output: 𝑦 = 𝑨𝑛𝑥

Arithmetic Complexity
Real Input Complex Input
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The BDT algorithm costs O(n log n) operations as opposed to the 
brute-force calculation with O(n^3) operations.

3.0508 E5 ≤ Speed Improvement Factor ≤ 1.2433 E6
With respect to complex addition (min) and real multiplication (max)
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