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INTRODUCTION RESULTS RESULTS

The Fast Fourier Transform is used to compute the Discrete Fourier
Transform (DFT) and its inverse efficiently. It is sufficient to quote “The
Fast Fourier Transform (FFT) is the most important numerical

The BDT is defined as 4,, = F,,C}, where F,, is the DFT matrix and C is
the type Il DCT matrix. The matrix A,, can be factored into the product of
sparse and orthogonal matrices for any n = 2 (t > 1);
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where €,(0) = €,(n) = \/_, €,(k) = 1for n = 2 is an even integer and V2 E
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factorizes the discrete transform matrices into the product of sparse ’ ’ k= With respect to complex addition (min) and real multiplication (max)
matrices. If the factorizations do not preserve orthogonality, the _ _
resulting algorithms can lead to interior numerical instability. Recursive BDT Algorithm Aq _gnal Flow GrapL

METHODOLOGY

The reduction and minimization of the number of analog-to-digital
converters (ADCs) is of paramount importance in array processing

receivers with applications in wireless communications, radar,
microwave imaging and radio astronomy. We propose a fast, exact, and
stable BDT algorithm via a novel matrix factorization technique in
connection to Chebyshev-like polynomials. The proposed BDT

algorithm is used to explore spectral analysis and thereafter to
minimize the number of ADCs in the design stage.

CONCLUSION

Results on the proposed project lead to:

»Sparse and Orthogonal /Unitary Factorization
»Recursive BDT Algorithm

»Reduction in Complexity from O(n*3) to O(n log n)
»Reduction in Number of ADCs

»Minimize Chip Area and Reduce Power Consumption

Input: n =2t(t > 1),n, = g,x € R" or C".

Steps:
If n = 2, then

120
y = [o 2] X
If n = 4, then
u:=H,x,
v := blkdiag (I, B )u
p = blkdiag (I, C}'")v

[q ]]::01 := blkdiag (In o Wn)p

r := blkdiag (In ,F,, )(a”,b")T
yi=D,T.

Output: y = 4, x
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a represents 2

a represents COS(%)

[ represents sin(g)




