



#### MAXIMUM SURFACE AREA POLYTOPES INSCRIBED IN THE SPHERE

JESSICA DONAHUE, LONGWOOD UNIVERSITY (joint work with Dr. Steven Hoehner)



Spring Student Showcase for Research and Creative Inquiry 2020

### INTRODUCTION

The problem of determining the optimal placement of a given number of points on the sphere  $S^2$  is a classic problem in geometry that has numerous applications to a wide variety of areas. In molecular science, the assumption of the valence-shell electron repulsion model is that the configuration of a given number of electron pairs in the valence shell of an atom is the one that maximizes the least distance between any pair (see, e.g., [5]). In Information Theory, the problem of determining optimal spherical codes involves optimizing some function of those points (see, e.g., [4]). In this paper, we determine the optimal placement of 5 vertices on the sphere so that the surface area of the convex hull of those points is maximized. This result proves a conjecture of Akkiraju [1] in the affirmative, and addresses a question of Kazakov [6] on the surface area entanglement measure in Quantum Information Theory.

## MAIN RESULT

## **OPTIMAL POLYTOPES**

(1)

Consider a polytope *P* in  $\mathbb{R}^3$  that has *v* vertices, *e* edges and *f* facets, and that the vertices of *P* lie in the unit sphere  $\mathbb{S}^2$ . A special case of a result of Tóth [9, Thm. 2, p. 279] yields the inequality

$$S(P) \le e \sin \frac{\pi f}{e} \left( 1 - \cot^2 \frac{\pi f}{2e} \cot^2 \frac{\pi v}{2e} \right) =: G(v, e, f).$$

Thus, if S(P) = G(v, e, f), then *P* must have maximum surface area among all polytopes inscribed in the ball with *v* vertices, *e* edges and *f* facets. In the case  $P_4$  is a simplex, v = f = 4 and e = 6 and thus

$$S(P_4) \le G(4, 6, 4) = 6 \sin \frac{2\pi}{3} \left( 1 - \cot^4 \frac{\pi}{3} \right) = \frac{8}{\sqrt{3}} = 4.6188 \dots$$

On the other hand, the regular simplex  $P_4^*$  has surface area  $S(P_4^*) = 8/\sqrt{3}$ . Thus,  $P_4^*$  has maximum surface area among all polytopes with 4 vertices. More generally, a result of Tanner [8] implies that in any dimension  $n \ge 2$ , the regular simplex maximizes surface area.

In the case of polytopes  $P_6$  with 6 vertices, then the possibilities for (v, e, f) are (6,9,5), (6,10,6), (6,11,7) and (6,12,8) (see, e.g., [3, Table II]). Checking cases, we find that G(6,12,8) has the maximum value among the four possiblities. Hence,

 $S(P_6) \le G(6, 12, 8) = 4\sqrt{3} = 6.9282\dots$ 

For 4 vertices, the optimal polytope is a regular simplex.



For 5 vertices, our main result says that the optimal polytope is a bipyramid with an equilateral triangle at the equator and apexes at the north and south poles.



An elementary computation shows that the triangular bipyramid  $B_6^*$  with vertices  $\pm e_1, \pm e_2, \pm e_3$  also has surface area  $4\sqrt{3}$ , and thus  $B_6^*$  is the optimal polytope with 6 vertices. For the case of inscribed polytopes with 5 vertices, the answer seems to have been known

for quite some time, at least numerically, but a proof was missing until now. Akkiraju [1, p. 753] asked for a proof that the surface area maximizer with 5 vertices is a bipyramid  $B_5^*$  with apexes at the north and south poles  $\pm e_3$  and three vertices forming an equilateral triangle in the equator  $\mathbb{S}^2 \cap e_3^{\perp}$ . In our main result, we provide an affirmative answer to this question.

It turns out that up to graph isomorphism, there are only two types of polytopes with 5 vertices: the 5-pyramid with (v, e, f) = (5, 8, 5) and the 5-bipyramid with (v, e, f) = (5, 9, 6) (see, e.g., [3]). We have G(5, 9, 6) > G(5, 8, 5) with  $G(5, 9, 6) = \frac{9\sqrt{3}}{2}(1 - \frac{1}{3}\cot^2\frac{5\pi}{18}) = 5.96495\ldots$  However, it is easy to check that

 $S(B_5^*) = 3\sqrt{15}/2 \approx 5.809 < G(5,9,6).$ 

Thus, to prove that  $B_5^*$  is the optimal polytope, we will need a different argument. Our main result in [2] is the following.

**Theorem 1.** [2] Among all polytopes with 5 vertices chosen from the sphere  $\mathbb{S}^2$ , the bipyramid  $B_5^*$  with vertices  $\pm e_3, e_1, (-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0), (-\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$  has maximal surface area, with  $S(B_5^*) = \frac{3\sqrt{15}}{2}$ .

The proof of Theorem 1 uses several applications of the method of partial variation of Polya

For 6 vertices, the optimal polytope is an octahedron with a square at the equator and apexes at the north and south poles.



#### References

- [1] AKKIRAJU, N. Approximating spheres and sphere patches. *Computer Aided Geometric Design 15* (1998), 739–756.
- [2] DONAHUE, J., HOEHNER, S., AND LI, B. The maximum surface area polytope with five vertices inscribed in a sphere. *Preprint* (2020).
- [3] FEDERICO, P. J. The number of polyhedra. *Philips Res. Repts 30* (1975), 220–231.
- [4] HARDIN, R. H., SLOANE, N. J. A., AND SMITH,

[7] and Lagrange multipliers.

As a follow-up question, we investigate the following problem.

**Problem 1.** Determine the polytope inscribed in  $\mathbb{S}^2$  with 5 facets that maximizes surface area.

# **CONTACT INFORMATION**

Jessica Donahue, Longwood University, jessica.donahue@live.longwood.edu Steven Hoehner, Longwood University, hoehnersd@longwood.edu

#### ACKNOWLEDGMENTS

We would like to thank the PRISM program for its generous support.

W. D. Spherical Codes. In preparation.

[5] HARGITTAI, I., AND CHAMBERLAND, B. The VSEPR model of molecular geometry. *Computers & Math. with Applications 12*, 2 (1986), 1021–1038.

[6] KAZAKOV, M. The Structure of the Real Numerical Range and the Surface Area Quantum Entanglement Measure. Master's thesis, The University of Guelph, December 2018.

[7] POLYA, G. Mathematics and Plausible Reasoning, Vol. I Induction and analogy in mathematics. Princeton University Press, 1954.

[8] TANNER, R. M. Some content maximizing properties of the regular simplex. *Pacific Journal of Mathematics* 52, 2 (1974), 611–616.

[9] TÓTH, L. F. Regular Figures. Pergamon Press, 1964.