Maximum Surface Area Polytopes Inscribed in the Sphere

Jessica Donahue, Longwood University (joint work with Dr. Steven Hoehner)
 Spring Student Showcase for Research and Creative Inquiry 2020

INTRODUCTION

The problem of determining the optimal placement of a given number of points on the sphere \mathbb{S}^{2} is a classic problem in geometry that has numerous applications to a wide variety of areas. In molecular science, the assumption of the valence-shell electron repulsion model is that the configuration of a given number of electron pairs in the valence shell of an atom is the one that maximizes the least distance between any pair (see, e.g., [5]). In Information Theory, the problem of determining optimal spherical codes involves optimizing some function of those points (see, e.g., [4]). In this paper, we determine the optimal placement of 5 vertices on the sphere so that the surface area of the convex hull of those points is maximized. This result proves a conjecture of Akkiraju [1] in the affirmative, and addresses a question of Kazakov [6] on the surface area entanglement measure in Quantum Information Theory.

MAIN Result

Consider a polytope P in \mathbb{R}^{3} that has v vertices, e edges and f facets, and that the vertices of P lie in the unit sphere \mathbb{S}^{2}. A special case of a result of Tóth [9, Thm. 2, p. 279] yields the inequality

$$
\begin{equation*}
S(P) \leq e \sin \frac{\pi f}{e}\left(1-\cot ^{2} \frac{\pi f}{2 e} \cot ^{2} \frac{\pi v}{2 e}\right)=: G(v, e, f) \tag{1}
\end{equation*}
$$

Thus, if $S(P)=G(v, e, f)$, then P must have maximum surface area among all polytopes inscribed in the ball with v vertices, e edges and f facets. In the case P_{4} is a simplex, $v=f=4$ and $e=6$ and thus

$$
S\left(P_{4}\right) \leq G(4,6,4)=6 \sin \frac{2 \pi}{3}\left(1-\cot ^{4} \frac{\pi}{3}\right)=\frac{8}{\sqrt{3}}=4.6188
$$

On the other hand, the regular simplex P_{4}^{*} has surface area $S\left(P_{4}^{*}\right)=8 / \sqrt{3}$. Thus, P_{4}^{*} has maximum surface area among all polytopes with 4 vertices. More generally, a result of Tanner [8] implies that in any dimension $n \geq 2$, the regular simplex maximizes surface area.

In the case of polytopes P_{6} with 6 vertices, then the possibilities for (v, e, f) are $(6,9,5),(6,10,6),(6,11,7)$ and $(6,12,8)$ (see, e.g., [3, Table II]). Checking cases, we find that $G(6,12,8)$ has the maximum value among the four possiblities. Hence,

$$
S\left(P_{6}\right) \leq G(6,12,8)=4 \sqrt{3}=6.9282
$$

An elementary computation shows that the triangular bipyramid B_{6}^{*} with vertices $\pm e_{1}, \pm e_{2}, \pm e_{3}$ also has surface area $4 \sqrt{3}$, and thus B_{6}^{*} is the optimal polytope with 6 vertices.

For the case of inscribed polytopes with 5 vertices, the answer seems to have been known for quite some time, at least numerically, but a proof was missing until now. Akkiraju [1, p. 753] asked for a proof that the surface area maximizer with 5 vertices is a bipyramid B_{5}^{*} with apexes at the north and south poles $\pm e_{3}$ and three vertices forming an equilateral triangle in the equator $\mathbb{S}^{2} \cap e_{3}^{\perp}$. In our main result, we provide an affirmative answer to this question.

It turns out that up to graph isomorphism, there are only two types of polytopes with 5 vertices: the 5-pyramid with $(v, e, f)=(5,8,5)$ and the 5 -bipyramid with $(v, e, f)=(5,9,6)$ (see, e.g., [3]). We have $G(5,9,6)>G(5,8,5)$ with $G(5,9,6)=\frac{9 \sqrt{3}}{2}\left(1-\frac{1}{3} \cot ^{2} \frac{5 \pi}{18}\right)=5.96495 \ldots$. However, it is easy to check that

$$
S\left(B_{5}^{*}\right)=3 \sqrt{15} / 2 \approx 5.809<G(5,9,6) .
$$

Thus, to prove that B_{5}^{*} is the optimal polytope, we will need a different argument. Our main result in [2] is the following.

Theorem 1. [2] Among all polytopes with 5 vertices chosen from the sphere \mathbb{S}^{2}, the bipyramid B_{5}^{*} with vertices $\pm e_{3}, e_{1},\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right),\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}, 0\right)$ has maximal surface area, with $S\left(B_{5}^{*}\right)=\frac{3 \sqrt{15}}{2}$.
The proof of Theorem 1 uses several applications of the method of partial variation of Polya [7] and Lagrange multipliers.

As a follow-up question, we investigate the following problem.
Problem 1. Determine the polytope inscribed in \mathbb{S}^{2} with 5 facets that maximizes surface area.

CONTACT INFORMATION

Jessica Donahue, Longwood University, jessica.donahue@live.longwood.edu Steven Hoehner, Longwood University, hoehnersd@longwood.edu

ACKNOWLEDGMENTS

We would like to thank the PRISM program for its generous support.

OPTIMAL POLYTOPES

For 4 vertices, the optimal polytope is a regular simplex.

For 5 vertices, our main result says that the optimal polytope is a bipyramid with an equilateral triangle at the equator and apexes at the north and south poles.

For 6 vertices, the optimal polytope is an octahedron with a square at the equator and apexes at the north and south poles.

REFERENCES

[1] Akkiraju, N. Approximating spheres and sphere patches. Computer Aided Geometric Design 15 (1998), 739-756.
[2] Donahue, J., Hoehner, S., and Li, B. The maximum surface area polytope with five vertices inscribed in a sphere. Preprint (2020).
[3] Federico, P. J. The number of polyhedra. Philips Res. Repts 30 (1975), 220-231.
[4] Hardin, R. H., Sloane, N. J. A., and Smith, W. D. Spherical Codes. In preparation.
[5] Hargittai, I., and Chamberland, B. The VSEPR model of molecular geometry. Computers \mathcal{E} Math. with Applications 12, 2 (1986), 1021-1038.
[6] Kazakov, M. The Structure of the Real Numerical Range and the Surface Area Quantum Entanglement Measure. Master's thesis, The University of Guelph, December 2018.
[7] Polya, G. Mathematics and Plausible Reasoning, Vol. I Induction and analogy in mathematics. Princeton University Press, 1954.
[8] TANNER, R. M. Some content maximizing properties of the regular simplex. Pacific Journal of Mathematics 52, 2 (1974), 611-616.
[9] TÓTH, L. F. Regular Figures. Pergamon Press, 1964.

