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INTRODUCTION

The problem of determining the optimal placement of a given number of points on the sphere S2 is a classic problem in geometry that has
numerous applications to a wide variety of areas. In molecular science, the assumption of the valence-shell electron repulsion model is that the
configuration of a given number of electron pairs in the valence shell of an atom is the one that maximizes the least distance between any pair
(see, e.g., [5]). In Information Theory, the problem of determining optimal spherical codes involves optimizing some function of those points
(see, e.g., [4]). In this paper, we determine the optimal placement of 5 vertices on the sphere so that the surface area of the convex hull of those
points is maximized. This result proves a conjecture of Akkiraju [1] in the affirmative, and addresses a question of Kazakov [6] on the surface
area entanglement measure in Quantum Information Theory.

OPTIMAL POLYTOPES
For 4 vertices, the optimal polytope is a reg-
ular simplex.

For 5 vertices, our main result says that
the optimal polytope is a bipyramid with
an equilateral triangle at the equator and
apexes at the north and south poles.

For 6 vertices, the optimal polytope is an oc-
tahedron with a square at the equator and
apexes at the north and south poles.

MAIN RESULT

Consider a polytope P in R3 that has v vertices, e edges and f facets, and that the vertices of
P lie in the unit sphere S2. A special case of a result of Tóth [9, Thm. 2, p. 279] yields the
inequality
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Thus, if S(P ) = G(v, e, f), then P must have maximum surface area among all polytopes
inscribed in the ball with v vertices, e edges and f facets. In the case P4 is a simplex, v = f = 4
and e = 6 and thus

S(P4) ≤ G(4, 6, 4) = 6 sin
2π
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On the other hand, the regular simplex P ∗4 has surface area S(P ∗4 ) = 8/
√
3. Thus, P ∗4 has

maximum surface area among all polytopes with 4 vertices. More generally, a result of Tanner
[8] implies that in any dimension n ≥ 2, the regular simplex maximizes surface area.

In the case of polytopes P6 with 6 vertices, then the possibilities for (v, e, f) are
(6, 9, 5), (6, 10, 6), (6, 11, 7) and (6, 12, 8) (see, e.g., [3, Table II]). Checking cases, we find that
G(6, 12, 8) has the maximum value among the four possiblities. Hence,

S(P6) ≤ G(6, 12, 8) = 4
√
3 = 6.9282 . . . .

An elementary computation shows that the triangular bipyramid B∗6 with vertices
±e1,±e2,±e3 also has surface area 4

√
3, and thus B∗6 is the optimal polytope with 6 vertices.

For the case of inscribed polytopes with 5 vertices, the answer seems to have been known
for quite some time, at least numerically, but a proof was missing until now. Akkiraju [1, p.
753] asked for a proof that the surface area maximizer with 5 vertices is a bipyramid B∗5 with
apexes at the north and south poles ±e3 and three vertices forming an equilateral triangle in
the equator S2 ∩ e⊥3 . In our main result, we provide an affirmative answer to this question.

It turns out that up to graph isomorphism, there are only two types of polytopes with 5
vertices: the 5-pyramid with (v, e, f) = (5, 8, 5) and the 5-bipyramid with (v, e, f) = (5, 9, 6)

(see, e.g., [3]). We haveG(5, 9, 6) > G(5, 8, 5) withG(5, 9, 6) = 9
√
3
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However, it is easy to check that

S(B∗5) = 3
√
15/2 ≈ 5.809 < G(5, 9, 6).

Thus, to prove that B∗5 is the optimal polytope, we will need a different argument. Our main
result in [2] is the following.

Theorem 1. [2] Among all polytopes with 5 vertices chosen from the sphere S2, the bipyramid B∗5
with vertices ±e3, e1, (− 1

2 ,
√
3
2 , 0), (−

1
2 ,−

√
3
2 , 0) has maximal surface area, with S(B∗5) =

3
√
15
2 .

The proof of Theorem 1 uses several applications of the method of partial variation of Polya
[7] and Lagrange multipliers.

As a follow-up question, we investigate the following problem.

Problem 1. Determine the polytope inscribed in S2 with 5 facets that maximizes surface area.
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