

University of Kentucky UKnowledge

International Grassland Congress Proceedings

23rd International Grassland Congress

Cover Crops Alternatives for Sustainable Agriculture Systems in Uruguay

Walter Ayala INIA, Uruguay

José A. Terra INIA, Uruguay

Ethel Barrios INIA, Uruguay

Ignacio Macedo INIA, Uruguay

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the Plant Sciences Commons, and the Soil Science Commons

This document is available at https://uknowledge.uky.edu/igc/23/2-9-1/5

The 23rd International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015.

Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna

Published by Range Management Society of India

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

PaperID:409 Theme 2. Grassland production and utilization Sub-theme 2.9. Alternative uses for tropical and temperate grasslands

Cover crops alternatives for sustainable agriculture systems in Uruguay

Walter Ayala^{*}, Terra, José, Barrios, Ethel, Macedo, Ignacio

Instituto Nacional de Investigación Agropecuaria, Treinta y Tres, Uruguay *Corresponding author e-mail : wayala@tyt.inia.org.uy

Keywords: Biomass accumulation, Crop pasture rotation, Nitrogen balance, Soil conservation

Introduction

In Uruguay. the increase of cropland area during the last decade was based on rotation systems intensification and soybean expansion, achieving 1.321.000 ha (Souto, 2014). Diaz (2007) demonstrated the value of the ley-farming systems where the integration of livestock and crop production achieved benefits on sustainability. Despite the advantages of crop-pasture rotation systems (García Prechac et al., 2004), grain market prices and food demand resulted in pasture phase losses in rotation with crops. Recently, Livestock Agriculture and Fisheries Ministry implemented a national soil conservation plan, that regulates cropping rotation systems based on soil erosion estimations and other key soil quality indicators. Although, no-till was full adopted, climatic and soil conditions determine that soil must be cover by residues or vegetation all year to reduce erosion and degradation (Thorup-Kristensen et al., 2003). Cover crops contribute to protect soils during fallow periods. The 17% of total soybean area cultivated is in Eastern Uruguay, being soils with erosion risk, fertility, structure and drainage limitations. This paper evaluates cover crops adaptation, subsequent effects on soybean productivity, and estimations of nitrogen supply and extraction from cover crops and soybean, respectively.

Materials and Methods

The experiment was located at INIA Treinta y Tres, Uruguay, South America $(33^{\circ}15'59,5''S; 54^{\circ}29'50,94''W)$, 59 m of altitude, on a fine, mixed vertic Argiudoll (ARS-USDA classification) with a pH (water): 5.33, organic carbon: 3.35 g/kg, phosphorus using acid citric extractant: 8 µg P/g and potassium: 0.30 meq K/100 g and magnesium: 1.9 meq Mg/100 g in the first 5 cm depth. An old oversown pasture was used, with a high proportion of natural grasslands and low proportion of introduced legumes (*Trifolium repens, Lotus uliginosus*). A split-plot design with four replicates was used, being the main plots two cover crops sowing methods (oversown previous soybean harvest vs no-till after soybean harvest), being the subplots the cover crops options (96 m²). In spring, cover crops were sprayed with glyphosate and soybean crop established, repeating treatments at the same sequence to see cumulative effects.

Table 1. Species,	cultivars,	origin and	sowing	density ((kg/ha)	of cover crops.

Species	Cultivars	Origin	Sowing density	
Trifolium vesiculosum	Sagit	INIA-Uruguay	10	
Trifolium alexandrinum	INIA Calipso	INIA-Uruguay	18	
Trifolium subterraneum	Goulburn (2012)	PGG-Wrighston	10	
"	Bindoon (2013)	PGG-Wrighston	10	
Trifolium resupinatum	LE 90-33	INIA-Uruguay	8	
Vicia sativa	Barril	Fertiprado-Portugal	45	
Raphanus sativus	Brutus	Agritec-Euro Grass	14	
Raphanus sativus	Reset	Agritec-Euro Grass	14	
Raphanus sativus	CCS-779	USA	14	
Lolium multiflorum	INIA Cetus	INIA-Uruguay	15	
Avena strigosa	Calprose Azabache	Calprose-Uruguay	100	
Lupinus luteus	Cardiga	Fertiprado-Portugal	100	

The experiment started in spring 2011, with a soybean crop, following a cover crop-crop sequence over two years (Table 1). In 2012-2013, cover crops treatments (Table 1) were established on April 19 for oversown method except *Vicia* and *Raphanus sativus* CCS-779 that were established on April 26 and 30 respectively; no-till was made on May 9. In 2013-2014, the oversown treatments were established on April 10 and no-till treatments on June 13.

Soybean cultivars used where Don Mario 6.2 (2011-2012 and 2012-2013), and Don Mario IPRO5958 (2013-2014). In 2012-2013, soybean was sowed on December 28 and harvested on May 30; in 2013-2014 on December 1 and April 22, respectively.

Determinations included herbage accumulation, botanical composition, nitrogen content in forage and soybean grain production. The statistical analysis was made using the PROC-GLM procedures (SAS 9.2), being means separation performed by LSD method (p=0.05).

Results and Discussion

Cover crops production: In 2012-2013, herbage accumulation to September 25 did not showed differences between sowing methods, however there were significant differences between species (Table 2). Sowing method x species interaction was not significant. *Raphanus sativus* Brutus and *Oat* were the more productive, achieving more than 8 Mg DM/ha in 5,3 months.

Table 2. Cover crops herbage production (DM, kg/ha) and subsequent soybean grain production (Grain, kg/ha) evaluated.

Cover crops	Soybean	Cov		Soybean	
crops		00	Cover		
	crop	cro	crop		
Herbage production	Grain production	Herbage production		Grain production	
		Oversown	No-till		
8557 a	2690	3942 bcde	2304 fghij	2792	
6236 b	2537	4286 bc	2577 fghi	2967	
6194 b	2537	4020 bcd	2825 efgh	3077	
5381 bc	2742	4667 b	2101 fghij	2975	
8885 a	2750	4531 bc	2293 defg	2895	
2782 de	2743	2222 fghij	1462 ij	3147	
2508 e	2672	3397 cdef	1825 hij	3014	
3282 de	2614	1881 fghij	1360 ij	2886	
7581	2648	7281 a	2088 fghij	2813	
4246 cd	2803	2896 defgh	2346 fghij	3020	
2320 e	2569	2261 fghij	1908 fghij	3235	
2709 de	2509	1848 fghij	1608 ij	2903	
4996	2655	3621		2892	
4659	2648		2058	3062	
0.3188	0.9084	<0.0001		0.1005	
< 0.0001	0.3463	< 0.0001		0.3673	
0.6613	0.6398	<0.0	0001	0.9248	
	production 8557 a 6236 b 6194 b 5381 bc 8885 a 2782 de 2508 e 3282 de 7581 4246 cd 2320 e 2709 de 4996 4659 0.3188 <0.0001	productionproduction8557 a26906236 b25376194 b25375381 bc27428885 a27502782 de26123282 de2614758126484246 cd28032320 e25692709 de250949962655465926480.31880.9084<0.0001	productionproductionffert $production$ $production$ 8557 a26906236 b25374286 bc6194 b25374020 bcd5381 bc27424667 b8885 a27502782 de27432222 fghij2508 e26723397 cdef3282 de26141881 fghij758126482320 e25692261 fghij2709 de25091848 fghij499626553621465926480.31880.9084<0.0001	productionproductionproduction $production$ OversownNo-till8557 a26903942 bcde2304 fghij6236 b25374286 bc2577 fghi6194 b25374020 bcd2825 efgh5381 bc27424667 b2101 fghij8885 a27504531 bc2293 defg2782 de26723397 cdef1825 hij3282 de26141881 fghij1360 ij758126487281 a2088 fghij2320 e25692261 fghij1908 fghij2709 de25091848 fghij1608 ij4659264820580.31880.9084 <0.0001	

Note: *Lupinus luteus* was not included in 2012-2013 analysis. *Trifolium subterraneum* included cultivars Goulburn (2012-2013) and Bindoon (2013-2014). Different letters in columns shows differences between treatments (LSD 0.05).

In 2013-2014, herbage accumulation to October showed a significant interaction sowing method x species (p<0.0001) (Table 2). In average, differences between methods are associated with differences in sowing dates, as a consequence of climatic conditions that determined a delay in sowing date for no-till. *Lupinus luteus* showed high production in the oversown method compared with no-till, reinforcing the importance of an early sowing date. *Raphanus, Oat* and *Ryegrass* maintained a relevant performance. All species showed adequate establishment under oversown method. High autumn rainfall could affect no-till method, being more applied the oversown method based in a large sowing period and growing season, and lower cost.

Nitrogen balance: Nitrogen concentration (%) on the cover crops biomass was 1.63, 2.18, 1.92, 4.06, 3.24, 3.83, 3.24 3.54, 3.75 and 2.63 for *Rapahnus sativus, Lolium multiflorum, Avena strigosa, Trifolium vesiculosum, Vicia sativa, Trifolium resupinatum, Lupinus luteus, Trifolium alexandrinum, Trifolium subterraneum* and the control respectively. Subsequently, estimations of the nitrogen catched by cover crops biomass were 92, 96, 116, 105 and 55 kg/ha/yr of N for *Raphanus, Lolium, Oat, Legumes* and the control respectively. Nitrogen extraction by soybean grain was 211 kg/ha/yr of N. Considering, that N biological fixation in legumes cover crops and soybean represent 50-75% and 50% of absorbed N respectively, the N balance being neutral. On the other hand, N balance using other cover crops options is always

negative. Independently of N balance, the non legumes options of cover crops catch N, reducing leaching losses and give an early soil cover. Cover crops effects are further related to sowing date, considering that winter affect growth rate.

Soybean grain production: Soybean yield was not affected by sowing method of cover crops, species or their interactions in any case. The average yield was 2652 and 2977 kg/ha for the year 2012-2013 and 2013-2014 respectively (Table 2). So, the different cover crops did not showed benefits in subsequent crop productivity, despite that it can be attributed advantages in terms of nitrogen balance (legumes), improved soil structure (grasses) or improved drainage conditions (*Raphanus*).

Conclusion

- *Cover crops performance*: Oat, ryegrass, *Lupinus* and *Raphanus* showed the highest herbage production.
- *Sowing method* : Differences in herbage production only occur in the second year by delaying sowing date, that affected the productivity under no-till method.
- *Nitrogen balance*: Some legumes options allowed an acceptable soil cover and a neutral or positive N balance. Other cover crop alternatives showed a negative N balance.
- Soybean yield: Grain production was not affected, mainly based on a reduced cropping history.
- *Opportunities*: There are different cover crop alternatives to provide soil protection, storage carbon, catch nitrogen and improve physical properties, that can be analyzed in mixtures combining effects. There are opportunities to integrate agriculture with livestock-production for fattening lambs, having concern of potential effects of treading and soil compactation.

References

- Díaz, R., 2007. Ley-farming systems in temperate South America agriculture in Uruguay: a case study. In: *International Symposium on integrated crop livestock production*. Curitiba, Brasil, 20 p.
- García Préchac, F., O. Ernst, G.C. Siri-Prieto, J. A. Terra, 2004. Integrating no till in livestock/crop-pastures rotations in Uruguay. *Soil Tillage Research* 77: 1-13.
- Thorup-Kristensen, K., J. Magid. and L. Stoumann Jensen. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. *Advances in Agronomy* 79: 227-302.
- Souto, G., 2014. Oleaginosos y derivados. Situación y perspectivas. In Anuario 2014. *OPYPA: análisis sectorial y cadenas productivas , temas de política, estudios.* pp. 147-164.

Acknowledgement

To Agritec, Fertiprado, PGG-Wrighston and Erro.