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First-in-Human Studies of
MW01-6-189WH, a Brain-Penetrant,
Antineuroinflammatory Small-Molecule
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Tolerability, Pharmacokinetic, and
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Kevin Watt7, Shruti Raja6,8, Saktimayee M. Roy9, D.Martin Watterson9,
and Jeffrey T.Guptill6,7,8

Abstract

MW01-6-189WH (MW189) is a novel central nervous system–penetrant small-molecule drug candidate that selectively
attenuates stressor-induced proinflammatory cytokine overproduction and is efficacious in intracerebral hemorrhage
and traumatic brain injury animal models.We report first-in-human, randomized, double-blind, placebo-controlled phase
1 studies to evaluate the safety, tolerability, and pharmacokinetics (PK) of single and multiple ascending intravenous
doses of MW189 in healthy adult volunteers. MW189 was safe and well tolerated in single and multiple doses up to
0.25 mg/kg, with no clinically significant concerns. The most common drug-related treatment-emergent adverse event
was infusion-site reactions, likely related to drug solution acidity. No clinically concerning changes were seen in vital
signs, electrocardiograms, physical or neurological examinations, or safety laboratory results. PK analysis showed dose-
proportional increases in plasma concentrations of MW189 after single or multiple doses, with approximately linear
kinetics and no significant drug accumulation. Steady state was achieved by dose 3 for all dosing cohorts.A pilot pharma-
codynamic study administering low-dose endotoxin to induce a systemic inflammatory response was done to evaluate
the effects of a single intravenous dose of MW189 on plasma cytokine levels.MW189 treatment resulted in lower levels
of the proinflammatory cytokine TNF-α and higher levels of the anti-inflammatory cytokine IL-10 compared with placebo
treatment. The outcomes are consistent with the pharmacological mechanism of MW189.Overall, the safety profile, PK
properties, and pharmacodynamic effect support further development of MW189 for patients with acute brain injury.
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Acute brain injuries resulting from trauma or cere-
brovascular injury, such as traumatic brain injury (TBI)
and intracerebral hemorrhage (ICH), are major med-
ical problems that cause considerable mortality and
morbidity.1-3 In addition to damage from the initial in-
sult, downstream pathophysiological events can result
in further brain injury and lead to increased risk of
longer-term neurologic complications.4-8 A key down-
stream injury response occurring within the relevant
injury-to-treatment time window is a dysregulated in-
flammatory response in the brain (neuroinflammation).
A specific aspect of neuroinflammation, injury-induced
proinflammatory cytokine overproduction from abnor-
mally activated glia, has been linked to subsequent neu-
rological damage and cognitive deficits following acute
brain injuries.9-11 In both animalmodels and human pa-
tients, acute brain injury induces a robust increase in
cytokine levels in the brain that occurs in the first sev-
eral hours to days after insult and then subsides. This
acute proinflammatory cytokine surge is a key contrib-
utor to subsequent cerebral edema, long-term neuronal
dysfunction, and cognitive impairment. This mechanis-
tic linkage and the attractive therapeutic time window
of hours to days postinsult provide a rational thera-
peutic target for intervention in the acute care setting.
Injury-induced dysregulated glial activation is a criti-
cal convergence point for diverse central nervous system
(CNS) insults that can compromise neuronal survival,
and excessive glial activation is a major factor con-
tributing to undesirable outcomes following acute brain
injury. However, despite advances in our understand-
ing of these cellular and molecular neuroinflammatory
mechanisms underlying adverse neuronal sequelae fol-
lowing injury, approved therapeutics that target this
pathological process are lacking. Although there have
been significant advances in the medical management
of patients with acute brain injuries, there is a clear and
urgent need for interventions that improve neurologic
recovery and outcomes.

To address this medical need, we developed12

a CNS-penetrant small-molecule drug candidate,
MW01-6-189WH, hereafter called MW189. MW189
was developed as a selective suppressor of injury-
and disease-induced glial proinflammatory cytokine
overproduction associated with destructive glial in-
flammation/synaptic dysfunction cycles, and their
long-term neurotoxic effects. A discovery approach
based on the classic functional screening paradigm13-16

was used to generate hits for medicinal chemistry
optimization. The platform’s early go–no go decision
tree called for novel compounds possessing chemical
and pharmacological properties to qualify for later de-
velopment. Compounds were prioritized for the ability
to restore dysregulated neuroinflammatory pathways
back toward homeostasis without suppressing basal

physiological cytokine levels at efficacious doses. For
CNS discovery, attention was also paid at the front end
on risk reduction features such as stability, blood-brain
barrier penetrance, avoidance of cytochrome P450
liabilities, and potential for safety.17,18 Several candi-
dates emerged from the platform, including MW189
and a close structural analogue MW01-2-151SRM
(MW151).12 A summary of MW189 properties is
shown in Supplemental Table S1.

MW189 is efficacious in vivo in animal models of
acute brain injury, in which upregulation of proinflam-
matory molecules is implicated in disease progression,
including TBI and ICH.13 For example, MW189 ad-
ministered postinjury inmousemodels of TBI and ICH
reduced injury-induced microglial activation and neu-
ronal degeneration, as well as vestibular and cognitive
deficits and edema.13 MW189 was effective at low doses
(1 mg/kg), even when the initial dose was delayed un-
til 6 hours after injury, demonstrating its feasibility to
be used clinically during relevant injury-to-trauma cen-
ter treatment time windows. By attenuating the inflam-
matory responses of overstimulated glia, MW189 may
limit the pathological progression and neurocognitive
dysfunction that complicate a variety of CNS distur-
bances. In addition, MW189’s selective attenuation of
upregulated biosynthetic processes such as proinflam-
matory cytokine production allows the potential of an
extended pharmacodynamic (PD) effect compared to
the time course of detectable drug levels. For example,
acute administration of MW189 to injured mice dur-
ing a limited time coincident with increasing cytokine
production (hours to days postinjury) leads to improve-
ments in neurologic end points evidenced weeks later,
long after drug levels are undetectable.19

Based on these results, MW189 was taken forward
into further preclinical safety and toxicology studies.
Because critical care and severely injured emergency
patients are not generally treated orally, an intra-
venous formulation of MW189 was developed based
on the proposed route of administration to be used
in clinical studies. Preclinical safety pharmacology
and toxicology studies done with MW189 showed
no treatment-related adverse effects (Supplemental
Table S1). Specifically, the safety pharmacology studies
showed no adverse effects on vital organ systems (rat
CNS, dog cardiovascular/respiratory). In a standard
battery of tests for genotoxicity, MW189 was found
to be neither mutagenic nor clastogenic. In repeated
dose toxicology studies of twice-daily intravenous
dosing in rats and dogs for 14 days or once-daily
oral dosing in rats and dogs for 28 days, MW189 was
well tolerated with no obvious adverse effect levels
at the highest doses tested. Importantly, considering
the anticipated pharmacological effect of MW189,
no alteration in standard immunological parameters
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(hematology/blood cell counts, organ weights, macro-
and microscopic evaluation of lymphoid and related
tissues, etc.) was observed with repeat dosing.

Based on the pharmacologic properties, preclinical
efficacy, and safety and toxicology profile of MW189,
the decision was made to further develop MW189
for treatment of human acute brain injuries. We re-
port here first-in-human studies of MW189 in healthy
adult volunteers. This represents the first evaluation
of the safety, tolerability, and pharmacokinetics (PK)
in humans in both single-ascending-dose (SAD) and
multiple-ascending-dose (MAD) phase 1 studies. We
also report the results of a pilot phase 1 study to eval-
uate the PD effects of MW189 on endotoxin-induced
changes in blood cytokine levels in healthy volunteers.
The results suggest engagement of pharmacological
mechanism in humans, and provide support for further
studies of MW189 for acute brain injury indications.

Methods
All protocols were approved by the US Food and Drug
Administration under an investigational new drug
application and by the responsible institutional review
board (IRB). The responsible IRB for the SADwas As-
pire IRB (La Mesa, California), for the MAD study it
was Duke University Health System IRB, for the endo-
toxin study it was Copernicus IRB (Research Triangle
Park, North Carolina) followed by an administrative
review by Duke University Health System IRB. The
clinical research organization for the SAD study was
the Parexel International Early Phase Clinical Unit,
Baltimore, Maryland, and for theMAD and endotoxin
studies it was the Duke Early Phase Clinical Research
Unit, Duke University, Durham, North Carolina. All
subjects were informed of the nature and purpose
of the study, and their written informed consent was
obtained before any study-related procedures were
performed. Studies were conducted in accordance with
the principles set forth in the Declaration of Helsinki,
the International Conference on Harmonization Tri-
partite Guidance on Good Clinical Practice, and the
requirements of the Health Insurance Portability and
Accountability Act of 1996, privacy regulations, and
other applicable regulatory requirements including 21
Code of Federal Regulations 312.

Name and Description of Investigational Product
MW189 (Figure 1), 6-phenyl-4-(pyridin-4-yl)-3-(4-
(pyrimidin-2-yl)piperazin-1-yl)pyridazine, has an
empirical formula of C23H21N7 and a molecular
weight of 395.47. The MW189 drug substance is a
hydrochloride hydrate that is a light yellow to orange
powder that is soluble in water. The drug product is a
sterile concentrated solution in 0.9% sodium chloride

Figure 1. Chemical structure of MW189. 6-Phenyl-4-(pyridin-
4-yl)-3-(4-(pyrimidin-2-yl)piperazin-1-yl)pyridazine (CAS
#886208-76-0) has an empirical formula of C23H21N7 and a
molecular weight of 395.47.

(2.5 mg base/mL; pH, 2.4) that is diluted with saline
prior to intravenous administration at pH > 3.0.

Eligibility Criteria
Phase 1 SAD and MAD. Healthy male and female sub-

jects aged 18 to 50 years with weight > 50 kg were el-
igible for the study. Volunteers were required to have
adequate peripheral forearm vein access, not be preg-
nant or lactating, and agree to abstinence and accept-
able contraceptive measures or have evidence of prior
surgical sterilization, no prescription medication (ex-
cept contraception) or over-the-counter medications or
herbal/vitamin supplements (except acetaminophen �
1 g/day and stable nonglucocorticoid treatment of sea-
sonal allergies) in the 7 days prior to study entry, no
use of nicotine-containing products during the study,
no current or recent (within 12 months) history of alco-
hol or drug abuse, no history of recent blood donation
within 30 days of consenting or plasma donationwithin
60 days of consenting, and no previous participation in
a clinical trial of an immunosuppressive drug or an in-
vestigational drug within 6 months of the study. Volun-
teers with significant medical or psychiatric illness by
history, examination, or clinical laboratory testing that
would influence study results or preclude informed con-
sent and study compliance were excluded.
Phase 1 Endotoxin Study. Healthy male subjects aged

18 to 40 years with weight of 55-95 kg were eligible for
the study. Subjects had similar inclusion and exclusion
criteria as above, as well as a requirement for a normal
stable baseline body temperature on study day 1.

Clinical Study Designs
Phase 1 SAD and MAD. This was a phase 1 random-

ized, double-blind, placebo-controlled single-site study
to determine the safety, tolerability, and PK of MW189
administered intravenously in a SAD andMADdesign.
In the first-in-human phase 1a SAD study, subjects un-
derwent a screening visit to determine eligibility within
28 days of dosing. If eligible, subjects were admitted
to the clinical research unit on the day prior to dosing
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(day -1). Dosing took place on day 1, and the subjects
underwent safety and PK assessments for 48 hours
postdose. Subjects were discharged on the morning of
day 3 and returned for a safety follow-up visit on day 8.

Four escalating doses of MW189 (0.025, 0.05, 0.10,
and 0.25 mg/kg administered by intravenous infu-
sion over 15-20 minutes) were evaluated sequentially,
starting with the lowest dose and escalating progres-
sively to the highest dose. Eight subjects were dosed
in each cohort, randomized to 6 MW189:2 placebo
control. Matched placebo is 0.9% sodium chloride
(saline). Dosing within each cohort was staggered,
with a sentinel pair (1 MW189:1 placebo) dosing at
least 1 day before the remaining cohort subjects (5
MW189:1 placebo). Dosing of the remaining cohort
subjects was contingent on an acceptable safety review
of the sentinel pair’s day 1 safety data and 24-hour
postdose laboratory safety tests. Escalation from one
cohort to the next was contingent on joint approval
by the Investigator and sponsor following a compre-
hensive blinded safety review of the residential phase
data.

In the MAD study, subjects were screened as above,
admitted to the clinical research unit on day -1, and re-
mained in the phase 1 unit until discharge on day 8.
Follow-upwas done through a clinic visit at 2 weeks and
a phone call at 4 weeks. Eight subjects were random-
ized to MW189 or saline placebo control (6 MW189:2
placebo). Subjects received 2 doses per day for 5 consec-
utive days, administered by intravenous infusion over
15-20 minutes and given 12 hours apart. Four dose co-
horts were evaluated: 0.075, 0.15, 0.25, and 0.30 mg/kg
intravenously twice daily (or matched placebo).
Phase 1 Endotoxin Study. This was a phase 1 double-

blind, randomized, placebo-controlled study to evalu-
ate the effects of a single intravenous dose of MW189
on endotoxin-induced changes in plasma cytokine lev-
els in healthy male volunteers. Eighteen adult subjects
were randomly assigned to 1 of 2 treatment groups
(MW189 or placebo), in a 1:1 ratio. All 18 completed
the study. All subjects who received any study treatment
were included in the safety analysis, and all subjects who
received the intended dose of lipopolysaccharide (n =
16) were included in the cytokine analysis.

On day -1, each subject underwent a thorough safety
review to confirm that they were healthy, stable, and
eligible for the study. Subjects provided a safety labo-
ratory sample, and a hydration program was initiated
to ensure adequate hydration on day 1. On day 1, each
subject received a single intravenous dose of study
drug (0.25 mg/kg MW189 or matched placebo) admin-
istered as a 20-minute infusion followed immediately
by a single-bolus intravenous injection of low-dose
endotoxin (Escherichia coli lipopolysaccharide [LPS])
at 2 ng/kg in the contralateral arm.

Careful monitoring of standard safety parameters
after LPS administration occurred, including evalua-
tion of adverse events (AEs), vital signs, electrocardio-
grams (ECGs), and body temperature. Blood samples
for cytokine measurements were collected over a
12-hour period following the LPS challenge. Sub-
jects were discharged on the morning of day 2, after
completion of the 24-hour assessments and with the
Investigator’s approval and returned on day 6 for a
follow-up visit.

Safety Evaluations and Analyses
Safety and tolerability were assessed during and follow-
ing dosing by clinical staff and physician observation
and spontaneous reporting of symptoms by subjects.
Other safety and tolerability end points included re-
ported AEs, changes in vital signs, physical and neuro-
logical examination results, 12-lead ECGs, and clinical
laboratory tests including hematology, chemistry, and
urinalysis. A safety monitoring committee evaluated
the safety and tolerability in the dose-escalation co-
horts. Safety data for each dosing cohort were reviewed
prior to initiation of each subsequent cohort. Doses
were escalated in successive cohorts unless 1 subject ex-
perienced a serious adverse event (except if clearly un-
related to the study product) or 2 participants reported
the same adverse event of moderate intensity that was
considered at least probably related to the study drug.

All subjects who received any study treatment were
included in the safety analysis grouped by treatment
received. The statistical analysis of safety data is de-
scriptive in nature; no inferential hypothesis testing was
performed on the safety variables. For all safety anal-
yses, baseline was defined as the last evaluation before
dosing. For continuous variables, summaries include
sample size, mean, standard deviation, minimum, and
maximum. For categorical variables, the summaries
include frequencies and corresponding percentages.
Repeat or unscheduled results were not included in
the summaries, but are listed. Data from subjects who
received placebo were pooled for data presentations.
Statistical analyses of these data were performed using
version 9.1 (SAD) or version 9.4 (MAD) of SAS (Cary,
North Carolina).

Drug Concentration (Pharmacokinetic) Measure-
ments
Blood Sampling and Plasma Preparation. Blood samples

were obtained from each subject in lithium heparin
tubes for the determination of MW189 plasma con-
centrations. For the SAD cohorts, blood samples
were collected prior to dosing (0 hours) and at the
following postdose times: 7 minutes, end of infusion
(15 or 20 minutes), 0.5, 1, 2, 4, 8, 12, 36, and 48 hours
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postdose. For the MAD cohorts, blood samples were
collected at the following times, anchored to the start
of each infusion:

� Day 1 morning dose: predose, 20 minutes (at
the end of infusion; sample collected prior to
completion of the infusion), 1, 2, 4, 7.5, and
12 hours (immediately before the day 1 second
dose) postdose.

� Day 1 second dose: 20 minutes (at the end of
infusion; sample collected prior to completion
of the infusion) 1, 2, 4, and 7.5 hours postdose.

� Day 2 morning dose: predose (approximately
24 hours after day 1 morning dose).

� Day 3 morning dose: predose (approximately
48 hours after day 1 morning dose).

� Day 4 morning dose: predose (approximately
72 hours after day 1 morning dose).

� Day 5 morning dose: predose (approximately
96 hours after day 1 morning dose), 20 minutes
(at the end of infusion; sample collected prior
to completion of the infusion), 1, 2, 4, 7.5, and
12 hours (immediately before the day 5 second
dose) postdose.

� Day 5 second dose: 20 minutes (at the end of
infusion; sample collected prior to completion
of the infusion), 1, 2, 4, and 7.5 hours postdose.

� Day 6: approximately 16 hours after day 5 sec-
ond dose, approximately 24 hours after day 5
second dose.

� Day 7: approximately 48 hours after day 5 sec-
ond dose.

Following collection, blood samples were im-
mediately placed on ice, plasma was separated by
centrifugation, transferred to polypropylene speci-
men containers, and frozen at -70°C until shipped
to the bioanalytical laboratory (Biovail Contract
Research/Lambda Therapeutic Research, Toronto,
Ontario, Canada, for the SAD study; MPI Research,
Mattawan Michigan, for the MAD study).
Bioanalytical Methods. Plasma concentrations of

MW189 were determined with a validated bioanalyt-
ical assay employing liquid chromatography-tandem
mass spectrometry (LC-MS/MS). The assay was
validated over the concentration range of 0.08 to
20.0 ng/mL (±10%). An internal standard was used
to normalize samples in terms of sample handling
and LC-MS/MS method precision. For the SAD, the
internal standard was MW151,12 a close structural
analogue of MW189; for the MAD, the internal
standard was either MW151 or a deuterated form of
MW151 (MW151-D4). For both the SAD and MAD,
transitions of the respective [M-H]+ ions were used to
monitor MW189 (m/z 396 → 275), MW151 (m/z 333→

212), and MW151-D4 (m/z 337→ 214). Long-term
stability studies showed that MW189 was stable in
human plasma for at least 380 days when stored at
-70°C and up to 231 days when stored at −25°C. All
PK samples were analyzed within this established
storage stability period.

For the SAD, extraction of MW189 and the internal
standard from human plasma was done by protein pre-
cipitation in methanol: 0.1% formic acid (50:50, v/v).
The analytes were separated by high-pressure liquid
chromatography using reversed-phase chromatography
on a Thermo Hypersil Gold column (100 × 2.1 mm,
5.0 µm) at room temperature. The mobile phase was
methanol: 0.005 ammonium formate with 0.1% formic
acid (65:35, v/v); run time was �4.5 minutes. Detection
was done using a TSQ Quantum tandem mass spec-
trometer with electrospray ionization (ESI) source op-
erating in the positive ion mode. Intra-assay precision
range (%CV) was 2.4%-6.9%, and interassay %CV was
2.7%-5.8%.

For the MAD, extraction of MW189 and the
internal standard from human plasma was done
in methanol, then 100 µL of the supernatant was
mixed with 100 µL of water/methanol/formic acid
(50/50/0.1, v/v/v), and injected onto the LC-MS/MS
system for analysis. The LC system used a Phenomenex
Kinetex C18 column (2.1 × 50 mm, 2.6 µm) with
an isocratic flow consisting of water/1M ammonium
formate/formic acid (100/0.5/0.1, v/v/v) and methanol
at a flow rate of 0.4 mL/min. Analytes were detected us-
ing a SCIEX API 5000 triple quadrupole LC-MS/MS
system equipped with an ESI (TurboIonSpray) ion-
ization source operated in the positive ion mode.
Intraassay %CV was 2.0% to 9.8%, and interassay
%CV was 2.6% to 5.4%.
Pharmacokinetic Analyses. Individual plasma

concentration-versus-time profiles of MW189 for
the SAD and MAD studies were used to generate
PK parameters using noncompartmental analysis.
The noncompartmental PK analysis was performed
in Phoenix WinNonlin (version 5.2 [SAD] or version
6.3 [MAD]; Pharsight Corporation, Mountain View,
California). An assessment of steady state was per-
formed by comparing trough concentrations (CMIN)
following doses 1, 2, 3, 5, 7, and 9 using the Helmert
transformation methodology,20 a method for deter-
mining time to steady state. In this method, the mean
concentration at the first time is compared with the
pooled mean over all remaining times, then the mean
at the second time is compared with the pooled mean
over all remaining times, and then testing continues in
this way until the contrast is not statistically significant.
The first dose in the first nonsignificant contrast
was considered the time at which steady state was
attained. Within-participant correlation was modeled
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using a linear mixed-effects model with participant
as a random effect. The model assumed a monotonic
nondecreasing function with balanced data. Any con-
centration below the quantification limit was assigned
a value of zero for the PK calculations.

For both the SAD andMAD cohorts, the peak drug
concentration (Cmax) and time of peak concentration
(Tmax) were calculated using the observed data for
MW189. For the SAD cohort, AUC from time 0 to
time of last nonzero concentration (AUC0-t), AUC
from 0 extrapolated to infinity (AUC0-inf ), and elim-
ination half-life (t1/2) were calculated. For the MAD
cohort, AUC from 0 to 12 hours (AUCtau) was assessed
for MW189. AUC0-t and AUCtau were calculated using
the linear trapezoidal method. Trough concentration
(CMIN), defined as the concentration 12 hours after
the last dose and before start of the next dose was
calculated using the observed data for MW189 after
doses 1 and 2 on day 1, dose 1 on days 2, 3, and 4, and
dose 1 on day 5. Using data from the last dosing on
day 5, the following additional PK parameters were
estimated: terminal elimination rate constant (λz),
elimination half-life (t1/2), clearance (CL), and volume
of distribution during the terminal phase (Vz). λz was
determined as the slope of a log-linear least squares
of at least 3 concentration-time points judged after
the last dose by visual inspection to be in the apparent
terminal elimination phase. Half-life was calculated
as t1/2 = ln2/ λz. Clearance at steady state (CLSS)
was estimated using CLSS = dose/AUCtau. Vz was
estimated using Vz = dose/(λz × AUC0-inf ). Area under
the concentration-time curve from time of last dosing
to infinity (AUC0-inf ) was estimated using AUC0-inf =
AUCLAST + CLAST/λz, where CLAST was the last mea-
surable plasma concentration after the last dose and
AUCLAST was the AUC from the time of last dosing to
the time of the last measurable sample. AUCLAST was
calculated using the linear trapezoidal method, and at
least 3 times after the last dose with measurable plasma
concentrations were required for the calculation of
AUCLAST. Values for λz and other λz-related param-
eters (eg, AUC0-inf , t1/2, CL, VZ) were not reported for
concentration profiles that did not exhibit a terminal
elimination phase in the concentration-versus-time
profile. Nominal sampling time was used in PK
calculations.

Pharmacodynamic Cytokine Analyses
Blood samples were collected in potassium-
ethylenediaminetetraacetic acid tubes predose on
day 1 and at 30 minutes and 1, 1.5, 2, 3, 4, 6, 8, and
12 hours post-LPS administration. Plasma was sep-
arated by centrifugation, and frozen at -70°C until
shipped to the cytokine testing laboratory for analysis.
Plasma levels of the cytokines interleukin (IL)-1ra,

IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α),
and chemokine C-C motif ligand 2 (CCL2) were mea-
sured by a CLIA-certified biomarker testing service
(Aushon BioSystems, Inc., Billerica, Massachusetts),
using their SearchLight Custom Array Technology.21

The SearchLight microplate-based array is a multiplex
sandwich enzyme-linked immunosorbent assay in
which capture antibodies are spotted in single wells
and the secondary detection antibody is conjugated
with a chemiluminescent label. Three custom arrays
were used ([1] TNF-α/IL-6/IL-8/IL-10, [2] CCL2, [3]
IL-1ra), grouped according to their expected plasma
concentrations. Analyte concentrations were quantified
by comparison with the corresponding standard curves
that had previously been qualified over the linear
concentration ranges for each analyte.

For each cytokine, the differences in mean cytokine
levels were assessed for treatment by time (treatment ×
time) effects using the generalized linear model proce-
dure (analysis of variance) in SAS on ln-transformed
data. If the treatment × time effect was found to
be statistically significant, then treatment levels were
compared for each time separately using post hoc
analysis (SLICE option from the least-squares means
[LSMEANS] statement). The SLICE option provides
a test of the equality of means for each level of each
effect in an interaction. The analysis tested for a
treatment-by-time effect sliced by time to determine
at which times the significant differences occurred.
P values were derived from type III sums of squares.
All inferential statistical analyses were performed at
the 0.05 level of significance.

Results
Disposition of Subjects
In the SAD study, 32 subjects were randomized (8
placebo and 24 MW189). There were no discontin-
uations, and all subjects completed the study. In the
MAD study, a total of 35 subjects were randomized
(9 placebo and 26 MW189), and 28 completed the
study. Seven subjects prematurely discontinued: 3
placebo (33.3%; 1 each for AE, lost to follow-up,
and withdrawal by subject) and 4 MW189 (15.4%; 2
each for AE and withdrawal by subject), all of whom
were assigned to receive 0.30 mg/kg MW189. Of the
4 0.30 mg/kg MW189 subjects, 2 were replaced to yield
a total of 8 subjects in the 0.30 mg/kg dose group. In
the endotoxin study, 18 healthy adults were enrolled,
and all completed the study.

Demographics
Summary demographic data and baseline charac-
teristics for subjects in the SAD and MAD studies
are shown in Table 1. Subjects were relatively well
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Table 1. Demographic Summary of SAD and MAD Studies

MW189 Treatment Group

1a. SAD Study Placebo 0.025 mg/kg 0.05 mg/kg 0.10 mg/kg 0.25 mg/kg All Active
Parameter n = 8 n = 6 n = 6 c = 6 n = 6 n = 24

Continuous, mean (SD)
Age (years) 37.8 (7.4) 28.2 (5.2) 30.2 (9.1) 28.5 (7.4) 38.0 (5.8) 31.2 (7.7)
Height (cm) 175.9 (5.0) 172.7 (3.1) 175.8 (7.1) 178.8 (7.0) 168.5 (9.0) 174.0 (7.6)
Weight (kg) 76.5 (10.8) 81.4 (10.8) 73.8 (11.3) 73.6 (6.2) 86.4 (9.6) 78.8 (10.6)
BMI (kg/m2) 24.7 (2.9) 27.3 (3.2) 23.9 (3.3) 23.2 (2.9) 30.4 (2.8) 26.2 (4.1)
Categorical, n (%)
Race
Black/African American 6 (75.0) 5 (83.3) 4 (66.7) 6 (100.0) 4 (66.7) 19 (79.2)
White 2 (25.0) 0 (0.0) 2 (33.3) 0 (0.0) 2 (33.3) 4 (16.7)
American Indian/Alaska Native 0 (0.0) 1 (16.7) 0 (0.0) 0 (0.0) 0 (0.0) 1 (4.2)

Ethnicity
Hispanic 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (33.3) 2 (8.3)
Non-Hispanic or Latino 8 (100.0) 6 (100.0) 6 (100.0) 6 (100.0) 4 (66.7) 22 (91.7)

Sex
Female 0 (0.0) 1 (16.7) 2 (33.3) 0 (0.0) 2 (33.3) 5 (20.8)
Male 8 (100.0) 5 (83.3) 4 (66.7) 6 (100.0) 4 (66.7) 19 (79.2)

MW189 Treatment Group

1b. MAD Study Placebo 0.075 mg/kg 0.15 mg/kg 0.25 mg/kg 0.30 mg/kg All Active
Parameter n = 8 n = 6 n = 6 n = 6 n = 8 n = 26

Continuous, mean (SD)
Age (years) 37.4 (6.7) 32.4 (5.9) 31.6 (6.2) 34.5 (7.4) 30.5 (10.9) 32.1 (7.8)
Height (cm) 165.8 (6.7) 171.6 (8.7) 164.0 (11.1) 170.9 (10.5) 173.1 (8.4) 170.1 (9.9)
Weight (kg) 74.5 (6.1) 70.5 (9.1) 75.2 (6.2) 85.5 (20.5) 86.4 (12.7) 79.9 (14.2)
BMI (kg/m2) 27.1 (1.9) 24.1 (3.8) 28.1 (2.7) 29.1 (5.6) 28.8 (3.8) 27.6 (4.3)
Categorical, n (%)
Race

a

Black/African American 5 (62.5) 5 (83.3) 2 (33.3) 3 (50.0) 5 (62.5) 15 (57.7)
White 4 (50.0) 1 (16.7) 4 (66.7) 2 (33.3) 3 (37.5) 10 (38.5)
American Indian/Alaska Native 1 (12.5) 0 (0.0) 2 (33.3) 0 (0.0) 0 (0.0) 2 (7.7)

Asian 0 (0.0) 1 (16.7) 1 (16.7) 1 (16.7) 0 (0.0) 3 (11.5)
Ethnicity
Hispanic or Latino 1 (12.5) 0 (0.0) 1 (16.7) 0 (0.0) 1 (12.5) 2 (7.7)
Non-Hispanic or Latino 7 (87.5) 6 (100.0) 5 (83.3) 6 (100.0) 7 (87.5) 24 (92.3)

Sex
Female 5 (62.5) 1 (16.7) 4 (66.7) 1 (16.7) 4 (50) 10 (38.5)
Male 3 (37.5) 5 (83.3) 2 (33.3) 5 (83.3) 4 (50) 16 (61.5)

n, number of subjects in cohort; SD, standard deviation; %, percentage of subjects in cohort; BMI, body mass index (defined as weight in kilograms
divided by height in meters squared).
aMultiple races were reported in some subjects, so the sums of the race numbers do not always match the group numbers.

matched for weight, height, and body mass index
across treatment and dose groups. The overall SAD
study population (Table 1a) was composed of 27 male
and 5 female subjects; among MW189 subjects, 19
were male and 5 were female, and the placebo group
was 8 male and 0 female subjects. The mean age of all
subjects treated with MW189 was 31.2 years, and the
mean of subjects treated with placebo was 37.8 years.
Reflecting the demographics of the clinical site, most

subjects in each treatment group were black/African
American (75.0% placebo, 79.2% MW189), and all
but 2 subjects were non-Hispanic or Latino. The
MAD study population (Table 1b) showed similar
demographics, to the study population composed of 19
male and 15 female subjects; among MW189 subjects,
16 were male and 10 were female, and the placebo
group was 3 male and 5 female subjects. The mean age
of all subjects treated with MW189 was 32.1 years,
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and the mean of subjects treated with placebo was
37.4 years. Most subjects in each treatment group
were black/African American (62.5% placebo, 57.7%
MW189), and all but 3 subjects were non-Hispanic or
Latino.

Safety and Tolerability
SAD. MW189 was well tolerated at single doses of

0.025, 0.05, 0.10, and 0.25 mg/kg in healthy adult male
and female subjects. There were no treatment-emergent
adverse events (TEAEs) leading to withdrawal, no
deaths, and no serious adverse events (SAEs) during
the study. Overall, 7 TEAEs were reported by 5 subjects
(2 placebo, 3 MW189). The incidence of TEAEs was
higher in the placebo group (25% of subjects report-
ing) than in the MW189 group (12.5% of subjects
reporting). All the reported AEs were mild in severity
and resolved completely without medical intervention.
Two subjects reported 3 TEAEs, which were consid-
ered possibly related to the study drug (1 placebo
subject reported headache, 1 MW189 subject reported
headache and nausea). There was no pattern of in-
creasing incidence of TEAEs with increasing MW189
dose. No laboratory, vital sign, ECG, or injection-site
reaction AEs were reported during the study, and
no treatment-related or dose-related trends were
observed.
MAD. Overall, multiple ascending doses of MW189

were safe and well tolerated, with no deaths or SAEs
reported. The overall incidence of TEAEs was higher
in the all MW189 treatment group (84.6%) than in the
placebo treatment group (62.5%). However, these re-
ported TEAEs were all mild to moderate in intensity
and generally transient in nature. There was no pat-
tern of increasing incidence of TEAEs with increasing
MW189 dose. The incidence of TEAEs related to the
study drug was also higher in the all MW189 treatment
groups (69.2%) than in the placebo treatment group
(37.5%). This imbalance was driven by an increase of
mild to moderate infusion-related AEs (pain in extrem-
ity, infusion-site pain, phlebitis) in the higher MW189
dose groups. With regard to infusion-associated AEs,
the 0.25 mg/kg dose appeared better tolerated than the
0.30 mg/kg dose. One subject in the placebo treatment
group and 3 subjects in the 0.30 mg/kg MW189 dose
group experienced a TEAE that led to study drug dis-
continuation. Only 1 subject (in the 0.30mg/kgMW189
dose group) had a discontinuation event considered re-
lated to the study drug (pain in extremity), although
another subject in the 0.30 mg/kg MW189 dose group
had TEAEs considered related to the study drug that
may have contributed to a decision to withdraw from
the study. Postdose changes in laboratory, vital sign,
and ECG values were small, transient, and not consid-
ered clinically significant. No treatment or dose-related

trends were observed. None of the subjects had a post-
dose clinically significant finding on physical or neuro-
logical examination.
Endotoxin Study. All the subjects received LPS and

therefore exhibited typical flu-like symptoms, but the
intensity and duration varied. The low-dose endotoxin
exposure was well tolerated, with the incidence rates of
clinical signs (fever, vital signs) and symptoms (chills,
headache, nausea, myalgia) of inflammation being sim-
ilar between placebo and theMW189 treatment groups.
There were no SAEs, severe AEs, or unexpected TEAEs
during the study. No clinically relevant changes in lab-
oratory parameters, vital signs, or ECG findings were
observed beyond those anticipated with LPS. The in-
cidence rates of AEs were similar in the placebo and
MW189 treatment groups.

Pharmacokinetics
SAD. Plasma concentration-time profiles (Fig-

ure 2A) and plasma exposure (Table 2) increased
following intravenous administration of increasing sin-
gle doses of 0.025, 0.05, 0.10, and 0.25 mg/kg. The time
to maximum plasma concentration (Tmax) was 15-20
minutes for all dose levels tested, corresponding to the
plasma sampling time taken at the end of the MW189
infusion. The mean Cmax and AUC values observed
across all dose groups suggested proportional increases
in exposure with increasing dose (Figure 2B). The T1/2

for MW189 following intravenous administration (�6
hours) was similar to that of dogs (�4-5 hours) and
appeared slightly higher (�10 hours) for the highest
dose group. The CL and Vz were comparable across
doses. Thus, after a single intravenous dose of 0.025 to
0.25 mg/kg, MW189 exhibited approximately linear ki-
netics and dose-proportional PK, suggesting first-order
clearance mechanisms in the dose range studied.
MAD. Plasma concentration-time profiles (Figure 3)

and associated PK parameters (Table 3) are shown
for the 4 MAD dose cohorts (0.075, 0.15, 0.25, and
0.30 mg/kg). MW189 displayed approximately linear
kinetics with dose-proportional increases in Cmax and
AUCtau in all dosing groups. T1/2 was comparable
across the doses, ranging from approximately 3.8 to
9.1 hours. Steady state was achieved following the sec-
ond dose in the 0.075 and 0.15 mg/kg cohorts based
on nonsignificant difference in Cmin values for subse-
quent doses (Supplemental Table S2). Steady state was
achieved after the third dose in the 0.25 and 0.30 mg/kg
cohorts.

Pharmacodynamic (Cytokine) Analyses
The pharmacological mechanism of action of MW189
in preclinical studies is to attenuate stressor-induced
upregulation of proinflammatory cytokines. It was of
interest, therefore, to explore whether MW189 could
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Figure 2. MW189 plasma concentration-time profiles and
dose-proportional increases in exposure following single ascend-
ing doses of MW189. Four escalating doses (0.025, 0.05, 0.10,
0.25 mg/kg) of MW189 were administered as a single intravenous
infusion. (A) The mean ± SD concentrations (ng/mL) of MW189
versus time after the dosing (hours) are plotted on a log-linear
scale. The inset graph shows an expansion of the data for the
first 4 hours after dosing, plotted on a linear scale. (B) The
mean ± SEM of Cmax (maximum observed concentration) and
AUC0-inf (area under the concentration-time curve from time
zero to infinity [extrapolated]) parameters are plotted versus in-
creasing single doses of MW189. Linear regression analyses are
consistent with dose proportionality.

show this PD effect in humans. However, using cy-
tokines as biomarkers of a PD effect in healthy young
adult subjects is not feasible, as cytokine levels are
constitutively low in the absence of an inflammatory
trigger, and these basal physiological levels of cytokines
are not suppressed by MW189. For this reason and
because of the reproducibility and predictability of the
LPS endotoxemia model to induce a transient acute
inflammatory response, administration of low levels of
endotoxin to healthy volunteers is accepted as a safe
model to study mechanisms and treatments for sys-
temic inflammation.22,23 Although the role of cytokines
in neuroinflammation after acute brain injury differs
both quantitatively and qualitatively from the systemic

inflammatory response induced by LPS, this pilot
experiment was undertaken as an initial step to explore
the anti-inflammatory potential of MW189 in humans.

Of the 18 subjects in the study, 2 subjects (1 placebo
and 1 MW189) received only partial LPS doses be-
cause of a mg/kg calculation error; therefore, only
16 subjects were included in the cytokine analyses.
The mean cytokine level-versus-time profiles of the 6
cytokines measured in plasma over the first 12 hours
after LPS administration (IL-1ra, IL-6, IL-8, IL-10,
TNF-α, CCL2) were similar between MW189- and
placebo-treated subjects, showing the anticipated
LPS-induced acute cytokine surge in the first few hours
and then returning back toward baseline by 12 hours.
Four of the cytokines (IL-1ra, IL-6, IL-8, CCL2)
showed no significant differences between MW189-
and placebo-treated subjects. However, there were
statistically significant differences in the mean plasma
levels of IL-10 and TNF-α in MW189-treated versus
placebo-treated subjects (Supplemental Table S3).
Specifically, the MW189 group showed significantly
higher levels of the anti-inflammatory cytokine IL-10
compared with the placebo group; these differences
between treatments occurred around the time of maxi-
mum effect, from 1 to 4 hours post-LPS (Figure 4A). In
addition, the MW189 group showed significantly lower
levels of the proinflammatory cytokine TNF-α from
6 to 12 hours post-LPS compared with the placebo
group (Figure 4B); these differences occurred on the 3
last sampling times, from 6 to 12 hours post-LPS and
were close to the baseline values.

Discussion
This study reports the first clinical experience with
MW189, a novel CNS-penetrant small molecule that
selectively suppresses injury- and disease-induced
glial proinflammatory cytokine overproduction.12 The
phase 1a SAD and phase 1b MAD trials demonstrated
that single and multiple intravenous doses of MW189
in healthy adult volunteers were well tolerated. MW189
treatment showed no clinical or laboratory safety sig-
nals of potential clinical concern. AEs were mostly
mild, transient, and resolved without intervention. The
primary TEAE-related safety issue observed was mild
to moderate drug-related, infusion-associated AEs
(pain in extremity, infusion-site pain, phlebitis), which
occurred at a higher frequency in the highest MW189
dose group (0.30 mg/kg). These infusion-related AEs
were potentially because of the acidic composition
of the study drug and the route of administration
(intravenous infusions twice daily over 5 consecutive
days). Because the infusion-associated AEs were less
tolerable at the highest dose studied (0.30 mg/kg), a
future phase 2a study done with a similar intravenous
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Table 2. Plasma PK Parameter Estimates for MW189 in the SAD Study Stratified by Dose

Dose of MW189

Parameter (Units) 0.025 mg/kg 0.05 mg/kg 0.10 mg/kg 0.25 mg/kg

Tmax (h) 0.25 ± 0.0 0.27 ± 0.05 0.33 ± 0.0 0.33 ± 0.0
Cmax (ng/mL) 91.4 ± 20.8 145 ± 59.6 254 ± 35.2 584 ± 261
AUC0-t (ng·h/mL) 121 ± 49.8 182 ± 48.8 397 ± 156 1360 ± 355
AUC0-inf (ng·h/mL) 124 ± 52.4 183 ± 49.4 400 ± 160 1410 ± 385
T1/2 (h) 6.90 ± 2.79 6.12 ± 1.57 6.24 ± 1.86 10.37 ± 3.47
Cl (L/h/kg) 0.23 ± 0.09 0.29 ± 0.08 0.27 ± 0.07 0.19 ± 0.07
Vz (L/kg) 2.05 ± 0.35 2.58 ± 0.91 2.33 ± 0.41 2.68 ± 0.66
Vss (L/kg) 1.26 ± 0.25 1.31 ± 0.44 1.18 ± 0.24 1.85 ± 0.57

Tmax, time to maximum plasma concentration; Cmax, maximum observed concentration; AUC0-t, area under the concentration-time curve from time
zero to time of last nonzero concentration;AUC0-inf,area under the concentration-time curve from time zero to infinity (extrapolated);T1/2,elimination
half-life; Cl, total body clearance; Vz, volume of distribution; Vss, estimated volume of distribution at steady state.
Data are shown as mean ± standard deviation.

Figure 3. MW189 plasma concentration-time profiles follow-
ing multiple ascending doses of MW189. Four escalating doses
(0.075, 0.15, 0.25, and 0.30 mg/kg) of MW189 were administered
by intravenous infusion every 12 hours over 5 days. The mean
concentrations (ng/mL) of MW189 versus time after the dosing
(hours) are plotted on a log-linear scale.

administration will be done at a dose of 0.25 mg/kg.
The method of intravenous drug delivery could also be
modified, for example, slowing the flow or changing
the route of delivery to a central line or a peripherally
inserted central catheter, to potentially limit these
events in future studies.

MW189 showed similar PK profiles after single
or multiple administrations. When dose-normalized,
the Cmax and AUCtau values were comparable in both
the SAD and MAD studies. The range of mean CLss,
Vz, and T1/2 were also comparable between studies.
The plasma concentration-time profiles and associ-
ated PK parameters demonstrated dose-proportional
and approximately linear kinetics at all doses tested,
suggesting first-order clearance mechanisms across

the entire dose range tested (0.025 to 0.30 mg/kg).
The clearance and volume of distribution were not
appreciably different between dose groups, and there
was no significant accumulation of MW189. Steady
state was achieved by dose 3 for all dosing cohorts.
Overall, the PK parameters support a twice daily
intravenous dosing regimen in future clinical studies.

Preclinical efficacy and PK studies of MW189 were
performed in rats and permitted determination of
PK parameters associated with an efficacious dose.
Efficacy studies in a rat rheumatoid arthritis model
of inflammation showed a significant reduction in
inflammation and clinical disease with a minimum
effective dose of 1 mg/kg (unpublished data). After
dose-normalizing the PK data to the minimum effec-
tive dose of 1 mg/kg, mean Cmax and AUCtau over the
dosing interval associated with an effective dose ranged
from 513 to 741 ng/mL and 496 to 694 ng·h/mL, respec-
tively. These values were comparable to the mean Cmax

and AUCtau following a dose of 0.25 and 0.15 mg/kg,
respectively. Thus, doses of 0.15 to 0.25 mg/kg MW189
would achieve comparable exposures associated with
efficacy in animal models, further supporting the use
of 0.25 mg/kg dosing in future clinical studies.

To begin to explore engagement of the pharma-
cological mechanism in humans, a small pilot study
was done to evaluate the effects of a single intravenous
dose of MW189 on endotoxin-induced changes in
blood cytokine levels in healthy volunteers. This study
was not powered for efficacy, but was designed as
an initial screen in humans. The goal was to assess
whether MW189 could induce any changes in plasma
cytokine levels in volunteers administered low levels
of endotoxin (LPS) to induce systemic inflammation.
As anticipated with only 8 subjects per group, the
LPS-induced cytokine profile for most of the cytokines
(IL-1ra, IL-6, IL-8, CCL2) showed no significant
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Table 3. Plasma PK Parameter Estimates for MW189 in the MAD Study Stratified by Dose

Dose of MW189

0.075 mg/kg 0.15 mg/kg 0.25 mg/kg 0.30 mg/kg

n = 6 n = 6 n = 6 n = 6 n = 6 n = 6 n = 8 n = 4
Parameter (Units) Dose 1 Dose 10 Dose 1 Dose 10 Dose 1 Dose 10 Dose 1 Dose 10

Cmax (ng/mL) 192 ± 89 227 ± 80.5 323 ± 89.4 347 ± 86.8 743 ± 210 609 ± 180 851 ± 188 750 ± 235
AUCtau (ng·h/mL) 275 ± 63.9 362 ± 123 474 ± 132 639 ± 220 912 ± 278 1225 ± 474 1222 ± 185 1525 ± 458
T1/2 (h) 3.8 ± 1.7 8.5 ± 3.4 6.6 ± 3.4 8.5 ± 3.7 7.4 ± 2.9 8.8 ± 2.8 6.4 ± 2.3 9.1 ± 2.8
Clss (L/h/kg) 0.286 ± 0069 0.229 ± 0.082 0.335 ± 0.081 0.256 ± 0.073 0.299 ± 0.104 0.236 ± 0.103 0.251 ± 0.041 0.210 ± 0.061
Vz (L/kg) 1.48 ± 0.44 2.92 ± 1.91 2.97 ± 1.23 2.84 ± 0.52 2.96 ± 0.98 2.72 ± 0.63 2.34 ± 0.94 2.72 ± 0.63

Cmax, maximum observed concentration; AUCtau, area under the concentration-time curve from time zero to 12 hours after dose 1; T1/2, elimination
half-life; Clss, steady state clearance; Vz, volume of distribution; n, number of participants.
Data are shown as mean ± standard deviation.

Figure 4. Plasma cytokine levels following endotoxin challenge
and MW189 administration.Healthy adult male volunteers were
administered a single intravenous dose of MW189 (0.25 mg/kg)
or matched placebo,followed immediately by a single intravenous
injection of low-dose endotoxin (LPS, 2 ng/kg) to induce in-
creases in plasma cytokine levels. Blood was collected over a
12-hour period after the LPS challenge, and plasma cytokines
were measured by ELISA (8 MW189, 8 placebo). Mean ± SEM
plasma levels (pg/mL) are shown for (A) IL-10 and (B) TNF-α.
Note that MW189 treatment increases the anti-inflammatory
cytokine IL-10 level and decreases the proinflammatory cytokine
TNF-α level compared with placebo treatment. The inset graph
in (B) shows an expansion of the data for the last 4 times (4,
6, 8, and 12 hours). *Statistically significant difference between
MW189 and placebo groups.

differences between MW189- and placebo-treated sub-
jects. However, MW189 treatment led to significantly
higher levels of the anti-inflammatory cytokine IL-10
and significantly lower levels of the proinflammatory
cytokine TNF-α compared with placebo treatment.
These results have implications for future development
of MW189. The results show that MW189 admin-
istered intravenously does not immunosuppress as
judged by the ability of the subjects to respond to an
LPS challenge by increases in plasma cytokine levels. In
addition, the significant increase in IL-10 and decrease
in TNF-α levels in MW189-treated subjects compared
with placebo may be a relevant observation in the con-
text of the anti-inflammatory mechanisms of the drug.

MW189 has several properties relevant to a phar-
macological intervention for acute brain injuries. Its
pharmacological mechanism of action is selective
attenuation of injury-induced upregulated biosynthesis
of proinflammatory cytokines, and MW189 targets
cytokine biosynthesis through pathways that are not
dependent on p38α mitogen-activated protein kinase
(MAPK) activation. MW189 does not inhibit p38α
MAPK or other standard kinases18,24,25 and does not
show activity in assays that depend on p38α MAPK
signaling.26 Secondary pharmacology screens of
MW189 with 412 kinases and 55 G-protein coupled re-
ceptors showed no binding (reference 18 and Table S1).
MW189 is not a nonsteroidal anti-inflammatory drug
and is distinct from steroids or pansuppressors of di-
verse tissue responses. By targeting a biosynthetic pro-
cess,MW189 has the potential of an extended PD effect
comparedwith the time course of detectable drug levels.
A key aspect of dosing is the therapeutic time window,
which is driven by consideration of patient diagnosis
and pathophysiology progression. This means that the
pathological process targeted by the drug should be oc-
curring during a time window that allows for presenta-
tion of the patient to the trauma center for therapeutic
intervention. For acute brain injury, that intervention
window is the acute cytokine surge that occurs in the
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first several hours to days after injury. Treatment with
MW189 in preclinical injury models, even when initial
drug administration was delayed until 6 hours postin-
jury, demonstrated the ability of this drug candidate to
engage the pharmacological mechanism of action and
bring about improvements in neurological outcomes.13

The pilot endotoxin study reported here is also consis-
tent with the ability of MW189 to engage its pharmaco-
logical mechanism in humans and supports continued
development of MW189 for acute brain injury.

Conclusion
These first-in-human studies report the initial clini-
cal experience with MW189, characterizing the overall
safety and tolerability, PK, and initial PD of MW189
administered intravenously in healthy adult volunteers.
Three major findings emerge from these studies. First,
MW189 was safe and well tolerated over the dose
ranges tested in both SAD and MAD studies, with
no significant clinical or laboratory safety concerns.
The primary TEAE-related safety issue observed was
infusion-related reactions such as pain in extremity,
infusion-site pain, or mild phlebitis, but these effects
may be able to be mitigated in future studies by altering
the method of intravenous drug delivery. Second, the
PK analyses of MW189 showed approximately linear
kinetics, dose proportionality, no significant accumula-
tion after multiple doses, a sufficiently long half-life for
twice-daily dosing, and steady state achieved by dose 3
for all dosing cohorts. Third, the endotoxin study re-
sults provide initial evidence of a PD effect in humans
at the dose proposed for phase 2a studies (0.25 mg/kg),
consistent with the calculations that this dose would
achieve comparable exposures associated with efficacy
in animal models. Overall, these studies support further
development of MW189 for treatment of patients with
acute brain injuries such as TBI or hemorrhagic stroke.
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