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Abstract:
Single-molecule fluorescence microscopy has become a popular tool for exploring structural changes and dynamics

of biological systems. In our laboratory, we use single-molecule techniques to track conformational changes of

immobilized nitric oxide synthase (NOS) and determine their relationship to catalytic activity. Properly immobilizing

biomolecules like NOS on a glass surface requires careful attention to coverslip cleaning and preparation. There are many

protocols available for cleaning glass coverslips, but these protocols are time-consuming and often use harsh conditions.

Alternatively, commercially cleaned and passivated coverslips are available but are quite expensive. In this poster, we

examine the possibility of using purchased pre-cleaned coverslips (Schott Nexterion) that come ready to be prepared for

single-molecule measurements. We present figures and measurements of merit comparing the pre-cleaned coverslips

with ozone cleaned coverslips; demonstrating the effectiveness of pre-cleaned coverslips for single-molecule

fluorescence microscopy.

Introduction:
Single-molecule fluorescence microscopy (SMFM) has become an indispensable tool in the biosciences by giving

insight into the kinetics and dynamics of biological molecules while leaving samples minimally perturbed (1). SMFM utilizes

fluorescence, a process that occurs when a photon of light is absorbed by a conjugated fluorophore, which re-emits the

photon at a higher wavelength. The first detection of a single molecule using SMFM was reported by Tomas Hirshfield in

1976 when he observed the presence of fluorescently labeled globulin proteins flowing past a detector (1). His success led

to the continued application of SMFM to many other structures such as enzymes, DNA, and other cellular structures.

For SMFM to work properly, the coverslips used must be exceptionally clean because nonspecific molecular binding

can interfere with the quantification of background noise (2,3). To prevent these interactions, surface passivation can be

used. This process facilitates the specific binding of desired molecules to the surface. PEG passivation is very effective,

and it has become a standard for SMFM, but the cleaning procedure can be very tedious, complicated, and involve harsh

conditions (2). One option is for labs to buy coverslips that have already been cleaned and passivated, but these are very

expensive. A second, less expensive option is buying coverslips that have been cleaned but not passivated. However, some

may question the robustness, longevity, and consistency of this commercial cleaning. A third method is buying coverslips

that have not been pre-cleaned and subjecting them to a quicker and easier cleaning procedure, such as ozone cleaning.

Ozone cleaning involves using high powered UV light to generate ozone. The ozone reacts with contaminants on the

coverslip surface, forming volatile compounds that evaporate from the surface of the coverslip. This method can take as

little time as 10-15 minutes, and then passivation can proceed. Here we explore the cleanliness and coverage quality of

pre-cleaned coverslips and ozone cleaned coverslips for SMFM applications.

Materials and Methods:
Pre-cleaned coverslips were purchased from Schott Nexterion (Louisville, KY). These coverslips were placed

individually in sterile 50mL falcon tubes and vacuum-sealed to preserve cleanliness. The lids on the falcon tubes were

turned very loosely, which allowed the air to be removed from the falcon tube. Two separate batches of these pre-cleaned

coverslips were used in this study. Also, a box of Platinum Line coverslips from ThermoFisher (Waltham, MA) was

procured, and these are not pre-cleaned. For ozone cleaning, a UV Ozone Cleaner from Ossila (Sheffield, UK) was used.

Three coverslips from each box were ozone cleaned prior to passivation, and another three coverslips from each box

were solely passivated.

The protocol for PEG passivation of glass coverslips was adapted from Gidi et al. (2). In a hood cleaned with acetone, a

silicone mold form Grace Bio-Labs (Bend, OR) was placed onto a glass coverslip. The desired wells were washed with 110 μl

of dry-acetone and emptied after each wash. Then the wells were airdried to remove any residual acetone. The coverslip

was placed in a desiccator apparatus and heated in an oven at 90°C for 5 minutes. To the desired wells, 99:1 25%v/v PEG-

Silane and Biotin-PEG-Silane was added and then heated for 15 minutes at 90°C to facilitate an alcohol condensation

between the silanol of the glass and the ethoxide of silane component of PEG. The desired wells were washed three times

with Ambion water (Austin, TX).

In this study, a confocal microscopy and avalanche photodiodes from ISS (Champaign, IL) were utilized, and the

experiments were carried out over a period of two months. To assess coverslip cleanliness, we compared untreated

coverslips (coverslips right outside of the box) to their ozone cleaned counterparts from the two batches of Schott

Nexterion coverslips (pre-cleaned) and Platinum Line coverslips. The wells on the coverslips were washed with water

three times and then filled with water and imaged at five different locations using the water objective. The area of the

images was 600 mm by 600 mm. The wavelength was set to 594 nm and the intensity was adjusted to achieve a power of

around 630 nW when measured immediately before the laser entered the microscope. Utilizing the same settings and

coverslip categories, we compared how coverslip cleanliness related to coverage quality. The coverslips were passivated

according to the aforementioned protocol. The wells were then washed three times with fluorescence buffer, which is

composed of 10 mL of 10X fluorescence buffer stock, 1 mL of 10 mg/mL BSA, and 89 mL of Ambion water mixed and run

through a sterile 0.2 μm polyethersulfone membrane filter. The 10X fluorescence buffer stock is made of 1 M KCL and 0.5 M

HEPES at a pH of 7.4. Then 110 mL of 100 nM solution of streptavidin-conjugated-Alexa Flour 594 from ThermoFisher was

added, which binds biotin tagged molecules. This was allowed to incubate for fifteen minutes. Then the wells were washed

three more times with fluorescence buffer and filled with fluorescence buffer once more. Next, the coverslips were once

again imaged at five different locations using the air objective. This was to determine the quality of the surface that had

been created. A patchy uneven spread of Alexa Flour 594 indicates a poor surface, while even coverage suggests higher

quality surface passivation.

Results:

Discussion
To assess the cleanliness of the coverslips, we compared the mean counts of untreated coverslips to their ozone

cleaned counterparts. We concluded that ozone cleaning improved the cleanliness of Batch 1 Schott and Platinum

coverslips (Figure 1,2). However, cleanliness of coverslips did not necessarily correspond to the evenness of surface

coverage when the coverslips was treated with PEG and incubated with streptavidin AF594. We found that ozone cleaning

did not impact the surface coverage of the Batch 1 and 2 coverslips but enhanced the surface coverage of Platinum

coverslips (Figure 3,4). Therefore, we conclude that Schott coverslips are adequate to use right of the box because their

background counts are low and their surface coverage is even. However, commercially uncleaned coverslips such as the

Platinum coverslips can be ozonated to improve the surface quality for single-molecule fluorescence microscopy, noting

that surface coverage was varied (Figure 3,4). Further directions would be to examine different coverslip cleaning

procedures that are cheaper, as ozone cleaning is expensive. Additionally, we could analyze how different surface

passivation protocols, such as with BSA, might affect the evenness of the coverage on a coverslip.
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Figure 4: 600x600 µm area of PEG treated coverslips that are incubated with streptavidin AF594 that are either untreated or ozone cleaned. From left to right and top to bottom, the 

images correspond to areas from Platinum coverslips untreated and ozone treated, Batch 1 Schott coverslips untreated and ozone treated, Batch 2 Schott coverslips untreated and 

ozone treated.  These images are representative images from each category.

Figure 1: 15x15 µm area of a variety of coverslip types that are ozone cleaned or untreated. From left to right: Platinum untreated, Platinum ozone cleaned, Batch 1 Schott coverslip 

untreated, Batch 1 Schott coverslip ozone cleaned, Batch 2 Schott coverslip untreated, Batch 2 Scott coverslip ozone cleaned. These images are representative images from each 

category and are standardized to the same count maximum.

Comparing the different coverslip types that were untreated, both the Platinum coverslips and Batch 2 Schott coverslips had the lowest means and

standard deviations (Figure 1,2). For the ozone treatment, only the means of the Batch 1 Schott and Platinum coverslips were significantly different from

their untreated counterparts (Figure 1,2). Comparing how surface cleanliness improves surface coverage, ozone cleaning of platinum coverslips

significantly reduced the coefficient of variation compared to its untreated counterpart (Figure 3,4). For the remaining coverslips, there was no significant

difference in the coefficient of variation between ozone cleaned and untreated coverslips (Figure 3,4). Ozone cleaning significantly increased the mean

counts of Batch 1 and 2 Schott slides (Figure 3,4).
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Figure 2: Comparing fluorescence intensity from various 

coverslip types with and without ozone cleaning. The 

fluorescence intensity is measured by focusing on the surface 

of the slide. The mean counts, shown here, reflect the 

cleanliness of slide, with lower counts corresponding to a 

cleaner slide. * Indicates a significant difference from its 

counterpart in the same coverslip type (p<0.05). For each 

subcategory n=15 images from 3 slides.

Figure 3: Comparing the evenness of surface coverage between different 

coverslip types. Surfaces were covered with streptavidin conjugated with 

AF594 following surface passivation with PEG-PEG Biotin. The mean refers to 

the brightness of an image area and the coefficient of variation corresponds 

to the differences in counts within an image area. Greater coefficient of 

variation indicates unevenness of coverage. * Indicates a significant 

difference between the means from the same coverslip type (p<0.05). *

Indicates a significant difference between the coefficients of variation from 

the same coverslip type (p<0.05). Red error bars represent standard 

deviation of the coefficient of variation. For each subcategory n=15 images 

from 3 slides.


