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Estuaries are coastal bodies of water subjected to strong tidal in�uence and

characterized by their morphology, tidal dynamics, topography, and strati�cation [3, 14].

Tidal �ow is critically important to the water circulation, nutrient in�ux, and sediment

transport in or out of an estuary. However, tidal asymmetry enhanced by estuary shape

and nonlinear processes can lead to complications in estuarine �ow. Analytical models are

used to systematically study tidal �ow within an estuary. Previous studies have derived

analytical models of varying complexity and applied them to investigate tidal and residual

�ow [6, 15, 4, 12]. This thesis derives a three-dimensional analytical model with a

perturbation expansion of the Navier-Stokes equations in the shallow water limit, modi�ed

from [4]. The resulting zero-order solution is analyzed to provide insight into the tidal �ow

of the Damariscotta River estuary. The Damariscotta River is a tidally-dominated,

well-mixed estuary located on the coast of Maine. Despite its importance to local

aquaculture, few studies have been conducted within the estuary [9, 8, 7]. This thesis is an

exploratory study providing further understanding of the tidal �ow dynamics of the

Damariscotta River estuary.



The water level elevation and three-dimensional tidal �ow velocity are presented, and

sensitivity to changes in friction and width convergence are studied by altering their

respective parameters, vertical eddy viscosity and width convergence factor. Water level

elevation amplitude increases along-channel due to ampli�cation from width convergence

and, contra rily, along-channel velocity amplitude decreases along-channel due to friction,

which suggests that width convergence dominates friction in determining water elevation,

but friction has greater in�uence over velocity. This could be the result of the model

assuming constant friction. Lateral velocities exhibited a two-cell structure with �ow of the

near-surface cell and the near-bottom cell in opposite directions. Results of the model

compared well to previous studies within the estuary [7] and to the Upper Ems estuary [4],

which has similar dynamics as the Damariscotta estuary although important morphological

distinctions should be noted. Tidal asymmetry and variable friction within the estuary

were not studied in this thesis, as non-linear terms were dropped in governing equations

and vertical eddy viscosity was assumed to be constant. Furthermore, the model considers

the zero-order solution and is unable to study residual �ow in the estuary. Future work

should investigate tidal asymmetry and residual �ow in the Damariscotta estuary, while

considering a more complicated friction regime.
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CHAPTER 1

INTRODUCTION

Estuaries are coastal bodies of water, commonly formed at the mouths of rivers, within

which seawater is diluted with freshwater. However, there are numerous formal de�nitions

of an estuary. The most commonly cited is that of Cameron & Pritchard (1963), which

states an estuary is a semi-enclosed coastal body of water which has a free connection to

the open ocean and within which sea water is measurably diluted with freshwater derived

from land drainage [1]. Alternative de�nitions have been based upon the in�uence of the

tides or the source of sediments within an estuary. The morphology of an estuary may

change over time if either the �ow entering or exiting the estuary is stronger than the

other, a phenomena known as tidal asymmetry that will described in further detail in a

later section. Estuaries are initially sediment traps until an equilibrium is reached between

sediment inputs after which the physical processes of the estuary and the morphology of

the estuary is relatively stable with time [3]. Estuaries are sensitive to increases in sea level

and changes in estuary shape.

Flow within an estuary is subjected to strong tidal in�uence. Tides are created by the

gravitational forces of the moon and sun acting upon the earth, with the moon being the

dominant force due to its proximity. The result is a pattern of �ood, when water moves

landward, ebb, when water moves seaward, and slack, periods of very weak or no current

occurring between the �ood and ebb stages. There are hundreds of tidal frequencies with

diurnal, semi-diurnal, and mixed. Diurnal tide has a single occurrence of high and low tide

per day, semi-diurnal tide has two periods high tide and low tide per day, and mixed tide

has two periods high and low tide, which are measurably di�erent. The magnitude and

frequency of the tide depends on the relative positions of the sun and moon. Twice during

each lunar month, there are spring tides, when the sun and moon are aligned, which

creates high tides which are higher than normal and low tides that are lower than normal.
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Neap tides occur when the moon and sun are perpendicular, creating high tides that are

lower than normal and low tides that are higher than normal. The tide is considered a

combination of harmonic tidal constituents and the principal components are M2, S2, O1,

K1, and N2. The M2 constituent is the principal lunar semidiurnal with a period of 12.42

hours, the S2 constituent is the principal solar semidiurnal constituent with a period of 12

hours, the O1 is the principal lunar diurnal constituent with a period of 25.82 hours, the

K1 is the lunisolar diurnal constituent with a period of 23.92 hours, and the N2 is the lunar

elliptic semidiurnal constituent with a period of 12.66 hours.

The tidal wave travels as a shallow water wave toward the head of the estuary. Shallow

water waves occur where the water depth is much less than half the tidal wavelength.

Without friction, the wave will be re�ected, and it will interfere with the next wave

entering the estuary [3]. The tidal wave is a standing wave with an antinode, the point

where the amplitude of the wave is maximum, at the head of the estuary and a node at one

quarter the wavelength distance into the estuary. The tidal amplitude is ninety degrees out

of the phase with current velocity, which means there is a time lag between maximum

water height and maximum velocity [3]. If completely dissipated by friction, the tidal wave

becomes a progressive wave. Amplitude of the tide and the magnitude of the tidal current

decrease towards the head of the estuary, and the tidal amplitude is in phase with current

velocity [3]. Figure 1.1 illustrates the distinction between a standing and progressive wave,

as well as a wave with both characteristics which is common in estuaries [3].

1.1 Classi�cations of Estuaries

Estuaries can be classi�ed in many ways, for example, based upon the characteristics of

their topography, tidal �ow, morphology, and strati�cation [3, 14]. Most estuaries can be

divided into three topographic cases: coastal plain (drowned river valley), fjord, and

bar-built [11]. Coastal plain estuaries formed over a period of rapid sea level rise, which

occurred at the end of the last glacial period. Their topography resembles that of a river
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Figure 1.1. Characteristics of a standing and progressive wave and a wave with characteristics
of both [3].

valley due to insu�cient sedimentation [3]. These estuaries are often relatively shallow,

with 30 m maximum depth and triangular cross-sections. The estuary bottom may be

composed of mud or sand. In some cases, width increases exponentially towards the mouth

(seaward end of estuary). Generally, river �ow is weak in comparison to the tidal �ow.

Chesapeake Bay, USA is an example of a coastal plain estuary. Fjords formed in areas

covered by progressing glaciers, which deepened and widened pre-existing river valleys [3].

They are deep and straight, although sharp bends may occur, with rectangular

cross-sections. Unlike coastal plain estuaries, fjords are usually deeper than they are wide.

They have rocky bottoms and occur primarily at high latitudes. Commonly present at the

mouth are shallower sills which restrict the connection to the sea, and, thus, river �ow is
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stronger than tidal �ow. Bar-built estuaries are coastal plain estuaries which have a

characteristic bar across the mouth built by coastal sedimentation [3]. These estuaries are

shallow with lagoons occurring near the mouth and have a relatively small range in tides.

The mouth of the estuary is restricted by the bar, creating high current velocities that

rapidly decrease within the estuary. River �ow is generally stronger than tidal �ow in a

bar-built estuary.

Estuaries can also be classi�ed by the size of their tidal range, the di�erence in water

height of successive high and low tides. Microtidal estuaries have a tidal range less than 2

meters, mesotidal have a tidal range of 2 to 4 meters, macrotidal have a tidal range of 4 to

6 meters, and hypertidal have a tidal range greater than 6 meters. The magnitude of the

tidal range and the strength of the tidal currents is dependent on the interaction of the

tidal wave with the estuary's morphology, speci�cally the relative in�uences of width

convergence and friction [3]. Convergence without friction compresses the tidal wave

laterally, forcing an ampli�cation of the tidal range and current velocity. Friction, on the

other hand, dampens the tidal wave and reduces the tidal range and current velocity.

Estuaries are considered hypersynchronous if convergence exceeds friction, synchronous if

friction and convergence have equal in�uence on the tides, and hyposynchronous if friction

exceeds convergence (Fig. 1.2). In hypersynchronous estuaries, the tidal range and currents

increase towards the head until the riverine section, where convergence diminishes and

friction becomes important, reducing the tide [3]. In synchronous estuaries, the tidal range

is constant until the riverine section. In hyposyncronous estuaries, the tidal range and

currents diminish along the estuary towards the head [3]. Hyposynchronous estuaries tend

to be wave-dominated, whereas hypersynchronous estuaries tend to be tidal-dominated.
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Figure 1.2. Tidal amplitude, tidal current velocity, and estuary shape of hypersynchronous

(a), synchronous(b), and hyposynchronous (c) estuaries [10].

In terms of salinity and density strati�cation, estuaries are classi�ed as salt-wedge,

strongly (highly) strati�ed, weakly strati�ed, and well-mixed, Figure 1.3 [3, 14]. Salt-wedge

estuaries are strongly strati�ed with a wedge-shaped saltwater intrusion near the bottom,

resulting from large river discharge into the estuary and weak tidal in�uence [3, 14]. The

characteristic of the salt-wedge change during the tidal cycle. Mean �ow in salt-wedge type

estuaries is dominated by out�ow in most of the the water column with weak in�ow near

the bottom [14]. Strongly strati�ed estuaries are similar to salt-wedge, but remain

strati�ed throughout the tidal cycle. Fjords are strongly strati�ed. In�ow is stronger than

in salt-wedge estuaries, but overpowered by out�ow, creating strong vertical density

gradients. Weakly strati�ed estuaries, also known as partially-mixed, have moderate to

strong tidal in�uence compared to weak to moderate river in�uence. Vertical salinity

gradients are weak. Well-mixed estuaries are nearly vertically uniform in terms of salinity,

due to strong mixing caused by strong tidal in�uence.
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Figure 1.3. Vertical salinity structure and currents in salt-wedge (top left), weakly-strati�ed

(top right), strongly strati�ed (bottom left), and well-mixed (bottom right) estuaries [14].

1.2 Tides in Estuaries

1.2.1 Importance

The tides are critically important to estuaries. They are responsible for the �ushing of

water in and out of the estuary at the mouth. This exchange brings in nutrients, enriching

these environments, and controls the sediment transport in or out of the estuary. In many

estuaries, the tides drive circulation. Understanding tidal �ow can provide insight into the

overall patterns of water movement in the estuary.

1.2.2 Tidal asymmetry

Tidal distortion, which creates asymmetric tides, occurs over the continental shelf and

is further enhanced by estuary processes and morphology [2]. The elevation tidal amplitude

ratio, the ratio of the amplitude of M4 tidal constituent to the amplitude of the M2 tidal

constituent, is used to determine the nature and strength of tidal asymmetry of an estuary

[5].

Large variations in water depth during the tidal cycle cause the crest of the tidal wave

to travel faster than the trough and the crest may partially overtake the trough [3]. This

leads to shorter �ood and longer ebb stages of the tidal cycle with maximum current
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velocity occurring during the �ood stage (Fig. 1.4). Non-linear processes, such as advective

accelerations, increase the duration of slack period before ebb and ebb currents are faster

than �ood currents [2]. These processes have a smaller e�ect in short estuaries which have

a length much smaller than their tidal wavelength. Bottom friction has an increased e�ect

in shallow estuaries and during low tide. During low-tide, friction slows water movement,

leading to an increased delay of low tide along the estuary than that of high tide. Current

velocities are slightly faster during �ood, opposite to the e�ect of other non-linear terms.

The combination of these e�ects results in an estuary with shorter �ood stage with faster

current, and the estuary is considered �ood-dominated. Sediment transport is greater into

the estuary and, therefore, �ood-dominated estuaries tend to be shallow.

Figure 1.4. Tidal current velocity over a tidal cycle for �ood-dominate (a) and

ebb-dominate(b) estuaries Tidal current velocity over a tidal cycle for �ood-dominate (a)

and ebb-dominate (b) estuaries.

Contrarily, interactions between the deep channel and shallow tidal storage (e.g. tidal

�ats, marshes) portions of the estuary and variations in friction can create ebb-dominance.
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The presence of large tidal �ats enhances ebb currents [13]. The time lag in the elevation of

ocean water levels and that of the estuary is less during low tide. The curve of the tidal

wave steepens during ebb, increasing ebb current velocities [3]. Changes in cross-sectional

area at the mouth during the tidal cycle enhance this process.

1.2.3 Analytical Modeling of Estuaries

Estuarine circulation has been studied through observational and theoretical studies.

Although observational studies provide a detailed, accurate investigation of �ow in an

estuary, they require hours of �eld work, which is impractical for estuaries in remote

locations. Theoretical studies involving mathematical modeling allow researchers to study

estuaries without these restrictions. Numerical models are used to approximate �ow within

an estuary, while analytical models, derived through algebraic methods, are used to

systematically study approximate �ow within an estuary. In analytical models, estuary

processes can be isolated and parameters, e.g. width convergence, can be adjusted to study

how changes a�ect the �ow. This allows an analytical model to be applied to several

estuaries with similar dynamics by changing model parameters. The complicated shape

and curvature of estuaries is simpli�ed to that of a prism and friction is considered to be

constant or linear with depth to maintain analytic solutions. Despite these limitations,

results from analytical models provide crucial understanding and compare reasonably well

with observations. The following is a discussion of important results from previous

analytical studies of varying complexity.

1.2.3.1 Previous Analytical Studies of Estuaries

Friedrichs & Aubrey (1994) developed theory on tides in shallow, convergent estuaries

by deriving a one-dimensional analytical model. Contrary to previous work, in which water

motion was described by second-order wave equations, their improved scaling resulted in a

�rst-order wave equation which describes uni-directional wave progression, indicating there

is no re�ected wave present. The tidal wave had characteristics of both standing and
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progressive wave, and tidal motion was heavily dependent on friction [6]. Although their

work provided fundamental understanding of tidal motion in convergent estuaries,

one-dimensional models give a limited view of three-dimensional estuaries.

With a three-dimensional analytical model derived from a perturbation expansion of

the horizontal Reynolds averaged Navier-Stokes equations in the shallow water limit,

Winant (2007) studied tidal �ow in a generalized elongated basin with width less than its

external Rossby radius. The study focused on the e�ects of rotation and friction on tidal

�ow. Rotation and lateral sea-level gradients were found to drive lateral circulation, the

strength of which was dependent on friction [15]. Across-channel (lateral) �ow was small in

comparison to along-channel (longitudinal) �ow when friction was strong, but when friction

is weak to moderate, lateral �ow is of comparable magnitudes to along-channel velocities.

Ross et al. (2014) examines tidal dynamics in a narrow, deep, fjord-like basin using a

three-dimensional analytical model. They argued that the classical-view of fjord systems,

horizontal density gradients in a thin upper layer of the water column drive �ow and

currents below the layer are weak, was an oversimpli�cation. Independent of width

convergence, there was a slight increase in tidal wave amplitude from mouth to head,

indicative of a standing wave system. Although decreasing friction caused increasing

ampli�cation of the tidal wave, this e�ect was less pronounced if width convergence was

strong. For fjords with weak width convergence, the frictional boundary layer is much less

than the water depth causing the subsurface maximum and an increase in tidal amplitude

with decreasing depth.

Using similar methodology as Winant (2007), Ensing et al. (2015) examines the e�ects

of cross-section shape and anthropogenic impacts on the tidal �ow of a well-mixed estuary.

The study area was the Upper Ems, Netherlands. Their results supported claims in

Winant (2007) that lateral �ow was found to be dominated by rotation and lateral density

gradients. Laterally skewing the bottom pro�le enhanced lateral �ow [4]. The amplitude

increased due to width convergence, but was not impacted by lateral skewness in the
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bottom pro�le. Given symmetric bottom pro�le, lateral velocities were laterally

antisymmetric, becoming asymmetric when the pro�le is skewed [4].

1.3 Research Gaps and Thesis Objectives

The initial goal of this thesis is to study the Damariscotta River estuary (DRE) located

in Maine with a three-dimensional analytical model derived as in Ensing et al. (2015).

Studies of this estuary, primarily observational, are limited, particularly spatially [9, 8, 7].

There is a lack of understanding of the driving forces of �ow within the DRE and sediment

transport within the estuary. This thesis applies an analytical model focusing on the tidal

�ow within the entire DRE to gain insight into the dynamics within the estuary.

The Damariscotta River estuary is a drowned river valley estuary that is

tidally-dominated and weakly-strati�ed. It is short and narrow with a length of 30 km and

maximum width of 975 m at the mouth. The DRE is convergent, with width of 45 m at

the head, and relatively shallow, with average depth of 10 m. The tides are semi-diurnal

dominated, and the tidal range varies from 2.2 to 3.6 m during neap and spring tides [7].

Aquaculture within the estuary thrives playing a vital role in the local economy.

There are several objectives which are used to achieve the initial goal. The �rst

objective of this thesis is to study tidal wave propagation along the estuary, investigating

along-channel variations in water level and velocity. The second objective is to gain

understanding of three-dimensional tidal current velocity variations within the estuary. The

rest of this thesis is as follows. Chapter two describes a detailed derivation of the model.

Chapter three presents the results of the model and a discussion of their implications.
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CHAPTER 2

METHODS

2.1 Model Derivation

2.1.1 Equations and Variables

This section contains the equations and variables that will be used to develop the

model. First, we will de�ne all variables and parameters. Along-channel distance is

measured along the x-axis, across-channel is measured along the y-axis, and depth is

measured along the z-axis. Along-channel, across-channel, and vertical velocities are given

by u, v, and w, respectively. Density is de�ned by ρ. Gravitational acceleration, g, is 9.81

m s−2. Vertical eddy viscosity is de�ned by Av. The sea surface height is de�ned by η. The

amplitude, at the seaward end, and angular frequency of the M2 tidal component are

de�ned by AM2 and ω, respectively. The Coriolis parameter is de�ned by f and is

calculated as f = 2Ω sinφ, where φ is latitude of the estuary and Ω = 7.2921× 10−5 rad s−1

is the rotation rate of the Earth.

The estuary was modeled as in [4], shown in Fig.2.1. The dimensions of the estuary are

de�ned by the following: length from mouth to head is Lc, width at the mouth is B, and

maximum depth is hmax. However, estuary width varies along-channel. So we de�ne

estuary width more generally as b, which is a function of x:

b(x) = Be
−x
Lb , (2.1)

where Lb is the e-folding length or the distance along the estuary it takes for the width to

decrease by a factor of e. Known values of important physical parameters, speci�c to the

Damariscotta River Estuary, are given in Table 1.
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Figure 2.1. Model estuary schematic [4].

Known values of important physical parameters, speci�c to the Damariscotta River

Estuary, are given in Table 1.

Parameter Symbol Value

Maximum water depth hmax 45 m

Average water depth h̄ 10 m

Width at mouth B 963 m

Width at head bhead 45 m

Length Lc 30.6 km

e-folding length Lb 58 km

Frictionless M2 tidal wavelength divided by 2π Lt 69.6 km

Amplitude of M2 tidal elevation at the seaward end AM2 1.50 m

Angular frequency of the M2 tidal component ω 1.41× 10−4 s−1

Gravitational acceleration g 9.81 m s−2

Coriolis parameter f 1.01× 10−4 s−1

Vertical eddy viscosity Av 10−2.5 m2 s−1

Reference density ρ0 1024 kg m−3

Reference salinity sref 31.8 psu

Slip parameter at reference depth Sref 105 m s−2

Table 2.1. Parameter values for the Damariscotta River estuary
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Next, we present the equations and boundary conditions used to derive the model. The

horizontal Reynolds averaged Navier-Stokes equations in the shallow water limit are given

by Eqs. (2.2) and (2.3)). The �rst term on the left hand side (LHS) is the local

acceleration, which describes changes in velocity with time. The next three terms are the

advective accelerations, or changes in velocity with space. The last term of the LHS

represents the Coriolis acceleration, which is due to the rotation of the earth. On the right

hand side (RHS), the �rst term is the barotropic pressure gradient due to spatial

di�erences in water level. The next term is the baroclinic pressure gradient due to spatial

di�erences in density. The last term is the friction (stress divergence) with depth varying

vertical eddy viscosity.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −g ∂η

∂x
+

g

ρw

η∫
−h

∂ρ

∂x
dz +

∂

∂z
Av
∂u

∂z
(2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −g∂η

∂y
+

g

ρw

η∫
−h

∂ρ

∂y
dz +

∂

∂z
Av
∂v

∂z
(2.3)

The continuity equation, Eq. (2.4), is the conservation of mass or that there is no loss of

water in the estuary.

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.4)

We have the following boundary conditions. At the surface, z = η, we have no stress:

Av
∂u

∂z
= Av

∂v

∂z
= 0, (2.5)

and the kinematic free surface boundary condition (i.e. the vertical movement of �uid

particles is with the movement of the free surface):

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
. (2.6)

At the bottom boundary, z = −h, we have partial slip, expressed by three equations

Av
∂u

∂z
= Su, (2.7)

Av
∂v

∂z
= Sv, (2.8)
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where S is the slip parameter, and

w = − v
∂h

∂y
, (2.9)

where h = f(y) is the depth, which will be described later.

The sides of the estuary, y = ± b
2
, are assumed to be impermeable, expressed by

η∫
−h

v dz = ± 1

2

∂b

∂x

η∫
−h

u dz. (2.10)

At the mouth, x = 0, the water motion is forced solely to the semi-diurnal tide, with a

period of 12.42 h, mathematically expressed as

η = AM2cos(ωt), (2.11)

where AM2 is the amplitude at the seaward end and ω is the angular frequency of the M2

tidal component. At the head of the estuary, x = Lc, we assume that there is no transport

through the upstream boundary:
η∫

−h

u dz = 0. (2.12)

The density balance is

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
=

Kv

2

∂2ρ

∂z2
, (2.13)

where Kv is the vertical eddy di�usion coe�cient. Note that Kv is constant with respect to

depth. The density balance states that the local and advective changes in density are

balanced by mixing. We assume no vertical variation in density from the surface (z = η) to

the bottom (z = −h) of the estuary, written by

∂ρ

∂z
= 0. (2.14)

2.1.1.1 Integrated Continuity Equation

In order to solve the dynamical system above, the integrated continuity equation, over

depth and across-channel, was also needed. To integrate the continuity equation, Eq. (2.4),
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we applied the shallow water assumption, which allows integration over depth, and several

of the boundary conditions: Eq. (2.6), Eq. (2.9), and Eq. (2.10). We �rst integrate over

depth from the bottom, −h, to the free surface, η:

η∫
−h

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

)
dz,

which becomes
η∫

−h

∂u

∂x
dz +

η∫
−h

∂v

∂y
dz + w|z=η − w|z=−h = 0. (2.15)

. We apply the kinematic free surface, Eq. (2.6), and partial slip, Eq. (2.8), boundary

conditions to Eq. (2.15):

η∫
−h

∂u

∂x
dz +

η∫
−h

∂v

∂y
dz +

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
+ v

∂h

∂y
= 0. (2.16)

Next, we apply the Leibniz Integral Rule to the �rst two terms of Eq. (2.16):

∂

∂x

η∫
−h

u dz − u
∂η

∂x
+ u

∂(−h)

∂x
+

∂

∂y

η∫
−h

v dz − v
∂η

∂y
+ v

∂(−h)

∂y

+
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
+ v

∂h

∂y
= 0.

(2.17)

Note that h is a function of y so ∂h
∂x

= 0. After canceling terms, we obtain

∂

∂x

η∫
−h

u dz +
∂

∂y

η∫
−h

v dz +
∂η

∂t
= 0. (2.18)

We move the �rst two terms over to the RHS and integrate across-channel, from − b
2
to b

2
,

resulting in the following:

b
2∫

− b
2

∂η

∂t
dy = −

b
2∫

− b
2

∂

∂x

η∫
−h

u dz dy −

b
2∫

− b
2

∂

∂y

η∫
−h

v dz dy. (2.19)

Eq. (2.19) can be further evaluated as

b
∂η

∂t
= −

b
2∫

− b
2

∂

∂x

η∫
−h

u dz dy −
η∫

−h

v dz

∣∣∣∣∣∣
y= b

2

+

η∫
−h

v dz

∣∣∣∣∣∣
y=− b

2

. (2.20)
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We apply Eq. (2.10) to obtain:

b
∂η

∂t
= −

b
2∫

− b
2

∂

∂x

η∫
−h

u dz dy − 1

2

∂b

∂x

η∫
−h

u dz − 1

2

∂b

∂x

η∫
−h

u dz, (2.21)

which simpli�es to

b
∂η

∂t
= −

b
2∫

− b
2

∂

∂x

η∫
−h

u dz dy − ∂b

∂x

η∫
−h

u dz. (2.22)

We apply the Leibniz Integral rule again:

b
∂η

∂t
= − ∂

∂x

b
2∫

− b
2

η∫
−h

u dz dy +
∂( b

2
)

∂x

η∫
−h

u dz −
∂(− b

2
)

∂x

η∫
−h

u dz − ∂b

∂x

η∫
−h

u dz. (2.23)

Then, we simplify Eq. (2.23) to

b
∂η

∂t
= − ∂

∂x

b
2∫

− b
2

η∫
−h

u dz dy +
1

2

∂b

∂x

η∫
−h

u dz +
1

2

∂b

∂x

η∫
−h

u dz − ∂b

∂x

η∫
−h

u dz. (2.24)

After canceling terms, we have the integrated continuity equation, which completes the

system and allows solution for water level, η, given by

b
∂η

∂t
= − ∂

∂x

b
2∫

− b
2

η∫
−h

u dz dy. (2.25)

2.1.2 Non-dimensionalization

In order to perform perturbation analysis, we non-dimensionalize all equations and

boundary conditions. The following scaling, where ′ denotes a non-dimensional variable,

will be applied in this section:

t =
t′

ω
, f = ωf ′, x = Lcx

′, y = By′, b = Bb′, z = hmaxz
′, h = hmaxh

′,

η = AM2η
′, u = Uu′, v = V v′, w = Ww′, ρ = ∆ρp′, s = ∆ss′,

Av =
ωh2

maxA
′
v

2
, Kv =

ωh2
maxK

′
v

2
S =

ωhmaxS
′

2

(2.26)
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First, we plug the parameters in Eq. (2.26) into the continuity equation, Eq. (2.4), and

momentum equations, Eqs. (2.2) and (2.3), to obtain:

U∂u′

Lc∂x′
+

V ∂v′

B∂y′
+

W∂w′

hmax∂z′
= 0 (2.27)

ωU
∂u′

∂t′
+

U2u′

Lc

∂u′

∂x′
+

V Uv′

B

∂u′

∂y′
+
WUw′

hmax

∂u′

∂z′
− ωV f ′v′ =

− gAM2

Lc

∂η′

∂x′
+

ghmax∆ρ

ρwLc

εη′∫
−h′

η
∂ρ′

∂x′
dz′ +

UωA′vh
2
max

2h2
max

∂2u′

∂z′2

(2.28)

ωV
∂v′

∂t′
+

UV u′

Lc

∂v′

∂x′
+

V 2v′

B

∂v′

∂y′
+

WV w′

hmax

∂v′

∂z′
+ ωUf ′u′ =

− gAM2

B

∂η′

∂y′
+

ghmax∆ρ

ρwB

εη′∫
−h′

∂ρ′

∂y′
dz′ +

V ωA′vh
2
max

2h2
max

∂2v′

∂z′2

(2.29)

Multiplying Eq. (2.28) by 1
Uω

and Eq. (2.29) by 1
V ω

, we obtain:

∂u′

∂t′
+

Uu′

ωLc

∂u′

∂x′
+

V v′

ωB

∂u′

∂y′
+

Ww′

ωhmax

∂u′

∂z′
− V

U
f ′v′ =

− gAM2

ωULc

∂η′

∂x′
+

ghmax∆ρ

ωUρwLc

εη′∫
−h′

∂ρ′

∂x′
dz′ +

A′v
2

∂2u′

∂z′2

(2.30)

∂v′

∂t′
+

Uu′

ωLc

∂v′

∂x′
+

V v′

ωB

∂v′

∂y′
+

Ww′

ωhmax

∂v′

∂z′
+

U

V
f ′u′ =

− gAM2

ωV B

∂η′

∂y′
+

ghmax∆ρ

ωV ρwB

εη′∫
−h′

∂ρ′

∂y′
dz′ +

A′v
2

∂2v′

∂z′2

(2.31)

From the continuity equation, it is assumed that ∂u
∂x
≈ ∂v

∂y
≈ ∂w

∂z
[4]. In terms of scaling,

we have

U

Lc
=

V

B
=

W

hmax
. (2.32)

The local change in water level elevation is balanced by the change in the along-channel

velocity. This means that ∂η
∂t
≈ hmax

∂u
∂x

and, therefore, we assume

AM2ω =
hmaxU

Lc
. (2.33)
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We de�ne the following non-dimensional parameters:

ε =
AM2

hmax
, (2.34)

α =
B

Lc
, (2.35)

γ =
∆ρ

εαρw
, (2.36)

µ =
Lc
Lb
, (2.37)

where ε is the ratio between the tidal elevation and the water depth, α is the horizontal

aspect ratio of the estuary, γ is the density gradient scale, and µ is the width convergence

factor [4].

From Eqs. (2.32) and (2.33), we write ε as

ε =
AM2

hmax
=

U

ωLc
=

V

ωB
=

W

ωhmax
. (2.38)

Using Eq. (2.38), we can rewrite Eq. (2.27) as

εω(
∂u′

∂x′
+

∂v′

∂y′
+

∂w′

∂z′
) = 0. (2.39)

Then, if we divide Eq. (2.39) by εω, we get the non-dimensional continuity equation:

∂u′

∂x′
+

∂v′

∂y′
+

∂w′

∂z′
= 0. (2.40)

We substitute the non-dimensional parameters de�ned in Eqs. (2.34) - (2.36) to

simplify Eqs. (2.30) and (2.31), obtaining

∂u′

∂t′
+ ε

(
u′
∂u′

∂x′
+ v′

∂u′

∂y′
+ w′

∂u′

∂z′

)
− αf ′v′

= −ghmax
ω2L2

c

∂η′

∂x′
+

ghmaxαγε

ωULc

εη′∫
−h′

∂ρ′

∂x′
dz′ +

A′v
2

∂2u′

∂z′2

(2.41)

and

∂v′

∂t′
+ ε

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′
+ w′

∂v′

∂z′

)
+

1

α
f ′u′

= −ghmax
B2ω2

∂η′

∂y′
+

ghmaxεαγ

ωV B

εη′∫
−h′

∂ρ′

∂y′
dz′ +

A′v
2

∂2v′

∂z′2
.

(2.42)
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From Eq. (2.38), ε
U

= 1
ωLc

and ε
V

= 1
ωB

. Eqs. (2.41) and (2.42) become

∂u′

∂t′
+ ε

(
u′
∂u′

∂x′
+ v′

∂u′

∂y′
+ w′

∂u′

∂z′

)
− αf ′v′

= − ghmax
ω2L2

c

∂η′

∂x′
+

ghmaxαγ

ω2L2
c

εη′∫
−h′

∂ρ′

∂x′
dz′ +

A′v
2

∂2u′

∂z′2

(2.43)

and

∂v′

∂t′
+ ε

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′
+ w

∂v′

∂z′

)
+

1

α
f ′u′

= −ghmax
B2ω2

∂η′

∂y′
+

ghmaxαγ

ω2B2

εη′∫
−h′

∂ρ′

∂y′
dz′ +

A′v
2

∂v′2

∂z′2
.

(2.44)

Manipulating Eq. (2.35), we subsitute B = Lcα into Eq. (2.44) to obtain

∂v′

∂t′
+ ε

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′
+ w′

∂v′

∂z′

)
+

1

α
f ′u′

= − ghmax
α2L2

cω
2

∂η′

∂y′
+

ghmaxγ

αω2L2
c

εη′∫
−h′

∂ρ′

∂y′
dz′ +

A′v
2

∂2v′

∂z′2
.

(2.45)

We de�ne Lt, the frictionless M2 tidal wavelength, as

Lt =

√
ghmax
ω2

. (2.46)

We de�ne l to be the channel length relative to the tidal wavelength [4], expressed as

l =
Lc
Lt
. (2.47)

Eqs. (2.43) and (2.45) become

∂u′

∂t′
+ ε

(
u′
∂u′

∂x′
+ v′

∂u′

∂y′
+ w′

∂u′

∂z′

)
− αf ′v′ = − 1

l2
∂η′

∂x′
+
αγ

l2

εη′∫
−h′

∂ρ′

∂x′
dz′ +

A′v
2

∂2u′

∂z′2
(2.48)

and

∂v′

∂t′
+ ε

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′
+ w′

∂v′

∂z′

)
+

1

α
f ′u′ = − 1

l2α2

∂η′

∂y′
+

γ

l2α

εη′∫
−h′

∂ρ′

∂y′
dz′ +

A′v
2

∂2v′

∂z′2
. (2.49)
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Multiplying Eq. (2.49) by α, we have the non-dimensional horizontal momentum equations:

∂u′

∂t′
+ ε

(
u′
∂u′

∂x′
+ v′

∂u′

∂y′
+ w′

∂u′

∂z′

)
− αf ′v′ = − 1

l2
∂η′

∂x′
+
αγ

l2

εη′∫
−h′

∂ρ′

∂x′
dz′ +

A′v
2

∂2u′

∂z′2
(2.50)

and

α
∂v′

∂t′
+ αε

(
u′
∂v′

∂x′
+ v′

∂v′

∂y′
+ w′

∂v′

∂z′

)
+ f ′u′

= − 1

l2α

∂η′

∂y′
+

γ

l2

εη′∫
−h′

∂ρ′

∂y′
dz′ +

αA′v
2

∂2v′

∂z′2
.

(2.51)

The non-dimensional width equation, from Eq. (2.1), is

b′(x′) = e−µx
′
. (2.52)

Next, we apply the scaling in Eq. (2.26) to the boundary conditions, Eqs. (2.5) - (2.12).

At z′ = εη′, the stress-free surface boundary condition, Eq. (2.5), becomes

A′vωh
2
maxU

2hmax

∂u′

∂z′
=

A′vωh
2
maxV

2hmax

∂v′

∂z′
, (2.53)

which is simpli�ed as

U
∂u′

∂z′
= V

∂v′

∂z′
. (2.54)

Recall from Eqs. (2.32) and (2.35) that α = V
U
, so Eq. (2.54) becomes

∂u′

∂z′
= α

∂v′

∂z′
. (2.55)

After substituting Eq. (2.26), Eq. (2.6), the non-dimensional kinematic free-surface

boundary condition at z′ = εη′, is

Ww′ = AM2ω
∂η′

∂t′
. (2.56)

From Eqs. (2.32) and (2.33), W = AM2ω. Thus, we simplify Eq. (2.56) as

w′ =
∂η′

∂t′
. (2.57)

20



We non-dimensionalize Eqs (2.7) - (2.8), partial slip at the bottom boundary

(z′ = −h′), as the following:

A′vωh
2
maxU

2hmax

∂u′

∂z′
=

ωhmax
2

US ′u′,

which is simpli�ed to

A′v
∂u′

∂z′
= S ′u′, (2.58)

and

A′vωh
2
maxV

2hmax

∂v′

∂z′
=

ωhmax
2

V S ′v′,

which is simpli�ed to

A′v
∂v′

∂z′
= S ′v′. (2.59)

Eq. (2.9) is non-dimensionalized as

Ww′ = − V hmax
B

v′
∂h′

∂y′
, (2.60)

which is simpli�ed using Eqs. (2.32) and (2.33) to

w′ = − v′
∂h′

∂y′
. (2.61)

The sides of the estuary (at y′ = ± b′

2
) are impermeable, expressed by Eq. (2.10). Its

non-dimensional form is

V hmax

εη′∫
−h′

v′ dz′ = ±BUhmax
2Lc

∂b′

∂x′

εη′∫
−h′

u′ dz′.

From Eq. (2.32), this is simpli�ed to

εη′∫
−h′

v′ dz′ = ±1

2

∂b′

∂x′

εη′∫
−h′

u′ dz′. (2.62)

We substitute the partial derivative of the non-dimensional estuary width, Eq. (2.52), with

respect to x to get
εη′∫
−h′

v′ dz′ = ± µ

2
e−µx

′

εη′∫
−h′

u′ dz′. (2.63)
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At the mouth of the estuary (x′ = 0), the water motion is forced by the M2

semi-diurnal tide, expressed by Eq. (2.11). Its non-dimensional form is given by

η′ = cos t′. (2.64)

At the head of the estuary (x′ = l) (recall Eq. (2.47)), there is no along-channel

transport, expressed by Eq. (2.12). Its non-dimensional form is

εη′∫
−h′

u′ dz′ = 0. (2.65)

Lastly, we non-dimensionalize the integrated continuity equation, Eq. (2.25), and the

density balance, Eq. (2.13). The integrated continuity equation becomes

ωBAM2b
′∂η

′

∂t′
= − 1

Lc

∂

∂x′

Bb′
2∫

−Bb′
2

AM2
η′∫

−hmaxh′

UhmaxB u′ dz′ dy′, (2.66)

which is simpli�ed to

ωAM2b
′∂η

′

∂t′
= − Uhmax

Lc

∂

∂x′

b′
2∫

− b′
2

εη′∫
−h′

u′ dz′ dy′. (2.67)

Using Eq. (2.32) to cancel the constants, we have the non-dimensional integrated

continuity equation:

b′
∂η′

∂t′
= − ∂

∂x′

b′
2∫

− b′
2

εη′∫
−h′

u′ dz′ dy′. (2.68)

The density balance, Eq. (2.13), becomes

∆ρω
∂ρ′

∂t′
+

U∆ρ

Lc
u′
∂ρ′

∂x′
+

V∆ρ

B
v′
∂ρ′

∂y′
+

W∆ρ

hmax
w′
∂ρ′

∂z′
=

Kv∆ρ

h2
max

∂2ρ′

∂z′2
. (2.69)

Note that this is not yet non-dimensional. Multiplying Eq. (2.69) by 1
∆ρω

, we obtain

∂ρ′

∂t′
+ ε

(
u′
∂ρ′

∂x′
+ v′

∂ρ′

∂y′
+ w′

∂ρ′

∂z′

)
=

Kv

ωh2
max

∂2ρ′

∂z′2
. (2.70)
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Substituting the non-dimensional form of the vertical eddy di�usion coe�cient, Kv, we

obtain the non-dimensional density balance

∂ρ′

∂t′
+ ε

(
u′
∂ρ′

∂x′
+ v′

∂ρ′

∂y′
+ w′

∂ρ′

∂z

)
=

K ′v
2

∂2ρ′

∂z′2
. (2.71)

The non-dimensional density boundary condition, no vertical density change at the

mouth and head of the estuary, is

∂ρ′

∂z′
= 0. (2.72)

2.1.3 Perturbation Expansion

In order to analyze the system and determine the terms that are important to estuary

�ow, we construct a perturbation series in ε, which is a measure of the non-linearity of the

system, of the form:

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + ..., (2.73)

where Ψ represents the each of the non-dimensional variables u′, v′, w′, η′, and ρ′.

We then plug Eq. (2.73) into all equations and boundary conditions and collect terms

of the same order. We are only interested in the zero- and �rst- order terms, because the

zero- and �rst- order solutions represent the tidal �ow and the residual �ow, respectively,

in the estuary. Therefore, we discard terms of order two or greater, and, in most cases, only

substitute Ψ = Ψ0 + εΨ1. Using the values in Table 1, we determine that O(ε) = 0.1,

O(α) ≈ O(ε), O(γ) = 1 (recall Eqs.(2.34), (2.35), and (2.36)). Although l is smaller, we

assume O(l) = 1 which is more representative of a longer estuary. All variables are

non-dimensional so, for simplicity of notation, we drop the apostrophes. We drop constants

equal to 1.

The horizontal momentum equations, Eqs. (2.50) and (2.51), are expanded as

∂u0

∂t
+ ε

∂u1

∂t
+ ε

(
u0
∂u0

∂x
+ v0

∂u0

∂y
+ w0

∂u0

∂z

)
− αf(v0 + εv1) =

−
(
∂η0

∂x
− ε

∂η1

∂x

)
+ α

εη∫
−h

(
∂ρ0

∂x
+ ε

∂ρ1

∂x

)
dz +

Av
2

∂

∂z

(
∂u0

∂z
+ ε

∂u1

∂z

) (2.74)
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and

α

(
∂v0

∂t
+ ε

∂v1

∂t

)
+ αε

(
u0
∂v0

∂x
+ v0

∂v0

∂y
+ w0

∂v0

∂z

)
+ f(u0 + εu1)

= − 1

α

(
∂η0

∂y
+ ε

∂η1

∂y
+ ε2

∂η2

∂y

)
+

εη∫
−h

(
∂ρ0

∂y
+ ε

∂ρ1

∂y
+ ε2

∂ρ2

∂y

)
dz

+
αAv

2

(
∂2v0

∂z2
+ ε

∂2v1

∂z2

)
.

(2.75)

The continuity equation, Eq. (2.40), is expanded as

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
+ ε

(
∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z

)
= 0. (2.76)

The integrated continuity equation, Eq. (2.68), is expanded as

b

(
∂η0

∂t
+ ε

∂η1

∂t

)
= − ∂

∂x

b
2∫

− b
2

εη∫
−h

(
u0 + εu1

)
dz dy. (2.77)

The density balance, Eq. (2.71) and the density boundary condition, Eq. (2.72), are

expanded as

1

ε

(
∂ρ0

∂t
+ ε

∂ρ1

∂t

)
+ u0

∂ρ0

∂x
+ v0

∂ρ0

∂y
+ w0

∂ρ0

∂z
=

Kv

2ε

(
∂2ρ0

∂z2
+ ε

∂2ρ1

∂z2

)
(2.78)

∂ρ0

∂z
+ ε

∂ρ1

∂z
= 0. (2.79)

Note that ρ0 is a function solely of x so we drop terms to obtain

∂ρ1

∂t
+ u0

∂ρ0

∂x
=

Kv

2

∂2ρ1

∂z2
(2.80)

∂ρ1

∂z
= 0. (2.81)

The no-stress surface boundary condition, Eq. (2.55), is expanded as

∂u0

∂z
+ ε

∂u1

∂z
= α

(
∂v0

∂z
+ ε

∂v1

∂z

)
. (2.82)

The kinematic free surface boundary condition, Eq. (2.57), is expanded as

w0 + εw1 =
∂η0

∂t
+ ε

∂η1

∂t
. (2.83)
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The partial slip boundary condition (Eqs. (??), (2.59), and (2.61)) is expanded as

Av
2

(
∂u0

∂z
+ ε

∂u1

∂z

)
= Su0 + εSu1, (2.84)

Av
2

(
∂v0

∂z
+ ε

∂v1

∂z

)
= Sv0 + εSv1, (2.85)

and

w0 + εw1 = −
(
v0 + εv1

)
∂h

∂y
. (2.86)

The impermeable side boundary condition, Eq. (2.63), is expanded as

εη∫
−h

(
v0 + εv1

)
dz = ± µ

2
e−µx

εη∫
−h

(
u0 + εu1

)
dz. (2.87)

The boundary condition at the mouth of the estuary, Eq. (2.64), is expanded as

η0 + εη1 = cos t. (2.88)

The boundary condition at the head of the estuary, Eq. (2.65), is expanded as

εη∫
−h

(
u0 + εu1

)
dz = 0. (2.89)

2.1.4 Zero-order Problem and Solution

For simpli�cation, we consider constant vertical eddy viscosity, Av, with respect to

depth. The zero-order (or lowest-order) problem follows with equations given in Eqs.

(2.90) - (2.94) and boundary conditions given in Eqs. (2.95) - (2.103):

∂u0

∂t
= −∂η0

∂x
+

Av
2

∂2u0

∂z2
(2.90)

fu0 = − 1

α

(
∂η0

∂y
+ ε

∂η1

∂y

)
+

0∫
−h

∂ρ0

∂y
dz (2.91)

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z
= 0 (2.92)

b
∂η0

∂t
= − ∂

∂x

b
2∫

− b
2

0∫
−h

u0 dz dy (2.93)

25



∂ρ1

∂t
+ u0

∂ρ0

∂x
=

Kv

2

∂2ρ1

∂z2
(2.94)

∂ρ1

∂z
= 0 (density boundary condition) (2.95)

∂u0

∂z
= 0 (no stress surface) (2.96)

w0 =
∂η0

∂t
(kinematic free surface) (2.97)

Av
2

∂u0

∂z
= Su0 (partial slip) (2.98)

Av
2

∂v0

∂z
= Sv0 (partial slip) (2.99)

w0 = − v0
∂h

∂y
(partial slip) (2.100)

0∫
−h

v0 dz = ± µ

2
e−µx

0∫
−h

u0 dz (impermeable sides) (2.101)

η0 = cos t (estuary mouth) (2.102)

0∫
−h

u0 dz = 0 (estuary head) (2.103)

Note that v0 is not present in the zero order across channel momentum equation. Thus,

we will also examine the �rst order. Then, we will solve a linear combination of the zero

and �rst order equations. The �rst order terms are given by

α
∂v0

∂t
+ εfu1 = −ε

2

α

∂η2

∂y
+ ε

0∫
−h

∂ρ1

∂y
dz +

αAv
2

∂2v0

∂z2
. (2.104)

We assume that along-channel velocity, u, is a combination of the depth-averaged and

depth-varying components, denoted with the subscripts da and dv, respectively, and

uda
udv

= O(ε). Thus, we have u0 = u0,da + εu0,dv. Combining the zero and �rst order lateral

momentum terms, we have

α
∂v0

∂t
+ fu0,da + εfu0,dv = − 1

α

(
∂η0

∂y
+ ε

∂η1

∂y
+ ε2

∂η2

∂y

)

+

0∫
−h

(
∂ρ0

∂y
+ ε

∂ρ1

∂y

)
dz +

αAv
2

∂2v0

∂z2
.

(2.105)

26



Recall, surface elevation and density does not vary across channel in the zero order, due to

the basin being narrow and well-mixed. Let η′ = η1 + εη2 be the higher order surface

elevation e�ects, which will be solved for as a single variable. We have

α
∂v0

∂t
+ fu0 = − ε

α

∂η′

∂y
+

0∫
−h

ε
∂ρ1

∂y
dz +

αAv
2

∂2v0

∂z2
. (2.106)

For periodic solutions, we substitute

(u0, v0, w0, η0, η1, ρ1) = Re((U0, V0, W0, N0, N1, ρ̂1) e−it) (2.107)

into all equations and boundary conditions. Note that U0, V0, W0, and N0 are the complex

amplitudes, or magnitude, of the horizontal and vertical velocities and the sea surface

elevation, respectively. The governing equations, (2.90) - (2.94), become

iU0 = −∂N0

∂x
+

Av
2

∂

∂z

∂U0

∂z
(2.108)

− iαV0 + fU0 = − ε
α

∂N ′

∂y
+ ε

0∫
−h

∂ρ̂1

∂y
dz +

αAv
2

∂2V0

∂z2
(2.109)

∂U0

∂x
+

∂V0

∂y
+

∂W0

∂z
= 0 (2.110)

− ibN0 = − ∂

∂x

b
2∫

− b
2

0∫
−h

U0 dz dy (2.111)

− iρ̂1 + U0
dρ0

dx
=

Kv

2

∂2ρ̂1

∂z2
(2.112)

The boundary conditions, (2.95) - (2.103), become

∂ρ̂1

∂z
= 0 (density boundary condition) (2.113)

∂U0

∂z
= 0 (no stress surface) (2.114)

∂V0

∂z
= 0 (no stress surface) (2.115)

W0 = −iN0 (kinematic free surface) (2.116)
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Av
2

∂U0

∂z
= SU0 (partial slip) (2.117)

Av
2

∂V0

∂z
= SV0 (partial slip) (2.118)

W0 = − V0
∂h

∂y
(partial slip) (2.119)

0∫
−h

V0 dz = ± µ

2
e−µx

0∫
−h

U0 dz (impermeable sides) (2.120)

N0 = 1 (estuary mouth) (2.121)

0∫
−h

U0 dz = 0 (estuary head) (2.122)

Recall, non-dimensional width, b(x), is given by Eq. (2.52). Depth, h(y), is modeled as

a non-dimensional parabolic function of y, given by

h(y) = ε + (1 − ε)(1− y2). (2.123)

We solve the above system for all unknown variables analytically, i.e. on paper.

2.1.4.1 Along-channel Velocity

First, we solve for the along-channel velocity, U0, by solving Eq. (2.108). After

multiplying by 2
Av

and rearranging terms, we have

∂2U0

∂z2
+

2i

Av
U0 =

2

AV

dN0

dx
. (2.124)

Let Γ2 = −2i
Av

(Ensing et al., 2016). Then, Eq. (2.124) becomes

∂2U0

∂z2
− Γ2U0 =

2

AV

dN0

dx
(2.125)

The solution to the homogeneous problem, ∂
2U0

∂z2 − Γ2U0 = 0, is

U0,h = C1e
Γz + C2e

−Γz. (2.126)

The non-homogeneous, particular, solution is

U0,nh = −idN0

dx
. (2.127)
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So the total solution is given by

U0 = U0,h + U0,nh = C1e
Γz + C2e

−Γz − i
dN0

dx
. (2.128)

Applying the surface boundary condition, Eq. (2.114), we have that C1 = C2. The

solution then becomes

U0 = C1(eΓz + e−Γz) − i
dN0

dx
. (2.129)

We apply the hyperbolic-trigonometric identity, cosh(z) = ez+e−z

2
, to obtain

U0 = 2C1cosh(Γz) − i
dN0

dx
. (2.130)

Next, we apply the bottom boundary condition, Eq. (2.117)

Av
2

(
2C1γsinh(−Γh)

)
= S

(
2C1cosh(−Γh) − i

∂N0

∂x

)
(2.131)

and solve for the constant, C1:

C1 =
−iS dN0

dx

ΓAvsinh(−Γh) − 2Scosh(−Γh)
. (2.132)

Factoring 2S in the denominator of Eq. (2.132), we obtain

C1 =
−i∂N0

∂x

2(ΓAv
2S
sinh(−Γh) − cosh(−Γh))

. (2.133)

Substituting δ = 2S
Av
(Ensing et al., 2015) into Eq. (2.132), we have

C1 =
−idN0

dx

2(Γ
δ
sinh(−Γh) − cosh(−Γh))

. (2.134)

So the zero-order solution for the along-channel velocity magnitude is

U0 = i
dN0

dx

(
−2cosh(Γz)

2(Γ
δ
sinh(−Γh) − cosh(−Γh))

− 1

)
. (2.135)

Since cosh(−z) = cosh(z) and sinh(−z) = −sinh(z), we have

U0 = i
dN0

dx

(
−2cosh(Γz)

−2(Γ
δ
sinh(Γh) + cosh(Γh))

− 1

)
. (2.136)

Eq. (2.136) is simpli�ed to give the �nal solution for U0,

U0 = −idN0

dx

(
1− cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
. (2.137)
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2.1.4.2 Water Level

Next, N0 is solved for by converting the integrated continuity equation, Eq. (2.111),

into a homogeneous ordinary di�erential equation. We �rst substitute the solution for U0

into Eq. (2.111).

− ibN0 = i
∂

∂x

b
2∫

− b
2

0∫
−h

dN0

dx

(
1− cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dz dy. (2.138)

Eq. (2.138) is simpli�ed to

− bN0 =
∂

∂x

∂N0

∂x

b
2∫

− b
2

0∫
−h

(
1− cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dz dy. (2.139)

Let

po = 1− cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

. (2.140)

To perform a change of variables, let y′ = 2y
b
. Then, Eq. (2.139) becomes

− bN0 =
∂

∂x

b

2

∂N0

∂x

1∫
−1

0∫
−h

podz dy
′. (2.141)

We move terms around and simplify to obtain

bN0 +
1

2

∂

∂x
b
∂N0

∂x

1∫
−1

0∫
−h

podz dy
′ = 0. (2.142)

Estuary width, b, is a function of along-channel position, x (Eq. (2.52)). So Eq. (2.142)

becomes

bN0 +
1

2

(
∂b

∂x

∂N0

∂x
+ b

∂2N0

∂x2

) 1∫
−1

0∫
−h

podz dy
′ = 0. (2.143)

Let Po =
0∫
−h

po dz, which is evaluated as

Po = h +
1

Γ

sinh(−Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

. (2.144)
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Applying sinh(−z) = −sinh(z), we have

Po = h − 1

Γ

sinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

. (2.145)

So Eq. (2.143) becomes

bN0 +
1

2

(
∂b

∂x

∂N0

∂x
+ b

∂2N0

∂x2

) 1∫
−1

Pody
′ = 0. (2.146)

We de�ne κ2
0 as

κ2
0 = 2

( 1∫
−1

Pody
′
)−1

. (2.147)

Then, we have

bN0 +
1

κ2
0

(
∂b

∂x

∂N0

∂x
+ b

∂2N0

∂x2

)
= 0. (2.148)

Eq. (2.148) is rearranged:

b

κ2
0

∂2N0

∂x2
+

1

κ2
0

∂b

∂x

∂N0

∂x
+ bN0 = 0. (2.149)

Multiplying by
κ2

0

b
, we have

∂2N0

∂x2
+

1

b

∂b

∂x

∂N0

∂x
+ κ2

0N0 = 0. (2.150)

Substituting Eq. (2.52) and evaluating, we have an homogeneous ordinary di�erential

equation,

d2N0

dx2
− µ

dN0

dx
+ κ2

0N0 = 0. (2.151)

We substitute N0 = erx to obtain the characteristic equation: r2 − µr + κ2
0 = 0.

From the quadratic equation, we �nd the complex roots to be

r =
µ

2
±
√
κ2

0 −
µ2

4
. (2.152)

Let d0 = κ2
0 −

µ2

4
. Then, the solution for N0 is

N0 = C1e
µx
2 (cos(d0x) + isin(d0x)) + C2e

µx
2 (cos(d0x) − isin(d0x)). (2.153)
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To solve for the constants, C1 and C2, we apply the boundary conditions, Eqs. (2.121)

and (2.122). Applying Eq. (2.121), we have that C1 = 1 − C2, which we substitute into

Eq. (2.153). After simpli�cation, the solution becomes

N0 = e
µx
2 (cos(d0x) + isin(d0x)) − 2iC2e

µx
2 sin(d0x). (2.154)

After substituting the solution for U0 integrated over depth, Po, into Eq. (2.122), we have

the condition (at x = l) that

dN0

dx
= 0. (2.155)

To solve for C2, we take the derivative with respect to x of Eq. (2.154),

dN0

dx
=

µ

2
e
µx
2 (cos(d0x) + isin(d0x)) + e

µx
2 (−d0sin(d0x) + id0cos(d0x)) −

2iC2(
µ

2
e
µx
2 sin(d0x) + d0e

µx
2 cos(d0x)).

(2.156)

In the following four equations, we apply Eq. (2.155) and solve for C2:

0 =
µ

2
e
µl
2 (cos(d0l) + isin(d0l)) + e

µl
2 (−d0sin(d0l) + id0cos(d0l)) −

2iC2(
µ

2
e
µl
2 sin(d0l) + d0e

µl
2 cos(dl)).

(2.157)

0 =
µ

2
(cos(d0l) + isin(d0l)) + (−d0sin(d0l) + id0cos(d0l))

− 2iC2(
µ

2
sin(d0l) + d0cos(dl)).

(2.158)

2iC2(
µ

2
sin(d0l) + d0cos(dl)) = (

µ

2
+ id0)cos(d0l) − (d0 − i

µ

2
)sin(d0l) (2.159)

C2 =
(µ

2
+ id0)cos(d0l) − (d0 − iµ

2
)sin(d0l)

2i(µ
2
sin(d0l) + d0cos(dl))

. (2.160)

Lastly, we substitute C2 into Eq. (2.154).

N0 = e
µx
2 (cos(d0x) + isin(d0x)) −

(µ
2

+ id0)cos(d0l) − (d0 − iµ
2
)sin(d0l)

µ
2
sin(d0l) + d0cos(d0l)

e
µx
2 sin(d0x).

(2.161)

Eq. (2.161) is simpli�ed in Eqs. (2.162) and (2.163)

N0 = e
µx
2

(
(cos(d0x) + isin(d0x))(µ

2
sin(d0l) + d0cos(d0l))

µ
2
sin(d0l) + d0cos(d0l)

−

(µ
2

+ id0)cos(d0l) − (d0 − iµ
2
)sin(d0l)sin(d0x)

µ
2
sin(d0l) + d0cos(dl)

) (2.162)
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N0 = e
µx
2

( µ
2
(sin(d0l)cos(d0x) − cos(d0l)sin(d0x))

µ
2
sin(d0l) + d0cos(d0l)

+
d0(cos(d0l)cos(d0x) + sin(d0l)sin(d0x))

µ
2
sin(d0l) + d0cos(d0l)

)
.

(2.163)

Applying the trigonometric identities sin(α− β) = sin(α)cos(β)− cos(α)sin(β) and

cos(α− β) = cos(α)cos(β) + sin(α)sin(β), we have the �nal solution for N0, given by

N0 = e
µx
2

( µ
2
sin(d0(l − x)) + d0cos(d0(l − x))

µ
2
sin(d0l) + d0cos(d0l)

)
. (2.164)

Note that N0 is a function of only x. We can now �nd dN0

dx
, which can then be substituted

into the solution for U0, Eq. (2.137).

dN0

dx
=

µ

2
e
µx
2

( µ
2
sin(d0(l − x)) + d0cos(d0(l − x))

µ
2
sin(d0l) + d0cos(d0l)

)
+ e

µx
2

(
d2

0sin(d0(l − x)) − d0µ
2
cos(d0(l − x))

µ
2
sin(d0l) + d0cos(d0l)

)
.

(2.165)

2.1.4.3 Across-Channel Velocity

Next, we solve Eq. (2.109) for V0 and apply boundary conditions Eqs. (2.115),(2.118).

We rearrange terms and multiply by 2
αAv

∂2v0

∂z2
+

2i

Av
V0 =

2f

αAv
U0 +

2ε

α2Av

∂N ′

∂y
− 2ε

αAv

0∫
−h

∂ρ̂1

∂y
dz. (2.166)

Recall, Γ2 = −2i
Av

. We replace the lateral density gradient by the lateral gradient of the

depth-mean density.

∂2V0

∂z2
− Γ2V0 =

2f

αAv
U0 +

2ε

α2Av

∂N ′

∂y
− 2ε

αAv

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z. (2.167)

The solution for V0 is a linear combination of the solutions to the homogeneous and

non-homogeneous equations, i.e. V0 = V0,h + V0,nh. The solution to the homogeneous

equation, V0,h, found from the characteristic equation, is given by

V0,h = C1e
Γz + C2e

−Γz. (2.168)
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The solution to the non-homogeneous equation is a combination of three parts, each

corresponding to a term on the right hand side of Eq. (2.167), i.e.

V0,nh = V0,nh1 + V0,nh2 + V0,nh3 . We use undetermined coe�cients to �nd V0,nh2 and

V0,nh3 . Note that A,B,C are constants.

V0,nh2 = A
∂N ′

∂y
,

implying that

0 − Γ2 A
∂N ′

∂y
=

2ε

α2Av

∂N ′

∂y

from which it follows that

V0,nh2 = − iε
α2

∂N ′

∂y
. (2.169)

V0,nh3 = B
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z + C,

implying that

0 − Γ2

(
B
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z + C

)
= − 2ε

αAv

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z

from which it follows

V0,nh3 =
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z. (2.170)

V0,nh1 is found from the solution to the homogeneous equation, Eq. (2.168), using

variation of parameters. The solution for V0,nh1 can be written as

V0,nh1 = u1e
Γz + u2e

−Γz, (2.171)

where u1, u2 = f(x, y, z). Note that u1, u2 are not the �rst order and second order

expansions of the along-channel velocity. The system of equations we will use to solve for

u1, u2 is given by

u′1e
Γz + u′2e

−Γz = 0

Γu′1e
Γz − Γu′2e

−Γz = g(x, y, z),

(2.172)
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where g(x, y, z) = −2if
αAv

dN0

dx

(
1 − cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
. Then,

u1 = −
∫
e−Γzg(x, y, z)

W
dz

u2 =

∫
eΓzg(x, y, z)

W
dz,

(2.173)

where W is the Wronskian of eΓz and e−Γz given by

W = −2Γ. (2.174)

We integrate over depth to solve for u1 and u2, noting that h is constant with depth.

u1 = − if

ΓαAv

dN0

dx

∫ (
e−Γz − e−Γzcosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dz, (2.175)

u1 = − if

ΓαAv

dN0

dx

(
−1

Γ
e−Γz −

∫
e−Γz(eΓz + e−Γz)

2(cosh(Γh) + Γ
δ
sinh(Γh))

dz

)
, (2.176)

u1 = − if

ΓαAv

dN0

dx

(
−1

Γ
e−Γz −

∫
1 + e−2Γz

2(cosh(Γh) + Γ
δ
sinh(Γh))

dz

)
, (2.177)

u1 =
if

Γ2αAv

dN0

dx
e−Γz +

if

2ΓαAv(cosh(Γh) + Γ
δ
sinh(Γh))

dN0

dx
z

− if

4Γ2αAv

dN0

dx

e−2Γz

cosh(Γh) + Γ
δ
sinh(Γh)

.

(2.178)

Recall, Γ2 = − 2i
Av
. Then, the �nal solution for u1 is

u1 =
−f
2α

dN0

dx
e−Γz − f

4α

dN0

dx

Γz

cosh(Γh) + Γ
δ
sinh(Γh)

+
f

8α

dN0

dx

e−2Γz

cosh(Γh) + Γ
δ
sinh(Γh)

.

(2.179)

It follows similarly that the solution for u2 is given by

u2 =
−f
2α

dN0

dx
eΓz +

f

4α

dN0

dx

Γz

cosh(Γh) + Γ
δ
sinh(Γh)

+
f

8α

dN0

dx

e2Γz

cosh(Γh) + Γ
δ
sinh(Γh)

.

(2.180)

Substituting these into Eq. (2.171) and simplifying, we have

V0,nh1 =
f

α

(
1

4

cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

Γzsinh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx
. (2.181)
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Combining the solutions to the homogeneous and non-homogeneous solution, the solution

for V0 is given by

V0 = C1e
Γz + C2e

−Γz +
f

α

(
1

4

cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

Γzsinh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx
− iε

α2

∂N ′

∂y
+

iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z,

(2.182)

with its �rst partial derivative with respect to z given by

∂V0

∂z
= ΓC1e

Γz − ΓC2e
−Γz

+
f

α

(
Γ

4

sinh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− Γ

2

sinh(Γz) + Γzcosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx

+
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
.

(2.183)

To solve for C1, C2, �rst, we apply the surface boundary condition, Eq. (2.115),

0 = ΓC1 − ΓC2 +
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
. (2.184)

C2 is, thus, given by

C2 = C1 +
iε

Γα

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
. (2.185)

So V0 and
∂V0

∂z
can be written as

V0 = 2C1cosh(Γz) +
iε

Γα
e−Γz ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
1

4

cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

Γzsinh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx

− iε
α2

∂N ′

∂y
+

iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
z

(2.186)
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∂V0

∂z
= 2ΓC1sinh(Γz) − iε

α
e−Γz ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
Γ

4

sinh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− Γ

2

sinh(Γz) + Γzcosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx

+
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
.

(2.187)

Now, we apply the bottom boundary condition, Eq. (2.118), to solve for C1:

2C1cosh(−Γh) +
iε

Γα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
1

4

cosh(−Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

−Γhsinh(−Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx

− iε
α2

∂N ′

∂y
− iεh

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
=

2
Γ

δ
C1sinh(−Γh) − iε

δα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
Γ

4δ

sinh(−Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− Γ

2δ

sinh(−Γh) − Γhcosh(−Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx

+
iε

δα

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
.

(2.188)
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2C1cosh(Γh) +
iε

Γα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
1

4

cosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

Γhsinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx

− iε
α2

∂N ′

∂y
− iεh

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
=

−2
Γ

δ
C1sinh(Γh) − iε

δα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
f

α

(
−Γ

4δ

sinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

+
Γ

2δ

sinh(Γh) + Γhcosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx

+
iε

δα

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
.

(2.189)

2C1

(
cosh(Γh) +

Γ

δ
sinh(Γh)

)
= − iε

Γα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iεh

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

iε

α2

∂N ′

∂y
− f

α

(
1

4

cosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

2

Γhsinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

)
dN0

dx
− iε

δα
eΓh ∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iε

δα

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

f

α

(
−Γ

4δ

sinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

+
Γ

2δ

sinh(Γh) + Γhcosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx
.

(2.190)

2C1(cosh(Γh) +
Γ

δ
sinh(Γh)) =

iε

α

(
− eΓh

Γ
− eΓh

δ
+ h +

1

δ

)
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

iε

α2

∂N ′

∂y

+
f

α

(
− 1

4

cosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

+
Γh

2

sinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

+ 1

)
dN0

dx

+
f

α

(
−Γ

4δ

sinh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

+
Γ

2δ

sinh(Γh) + Γhcosh(Γh)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dN0

dx
.

(2.191)
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2C1(cosh(Γh) +
Γ

δ
sinh(Γh)) =

iε

α

(
− eΓh

Γ
− eΓh

δ
+ h +

1

δ

)
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

iε

α2

∂N ′

∂y
+

f

α

(
1 +

1

cosh(Γh) + Γ
δ
sinh(Γh)(

sinh(Γh)

(
− Γ

4δ
+

Γ

2δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

)))
dN0

dx

(2.192)

The solution for C1 is given by

C1 =
1

2(cosh(Γh) + Γ
δ
sinh(Γh))

iε

α

(
− eΓh

Γ
− eΓh

δ
+ h +

1

δ

)
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

1

2(cosh(Γh) + Γ
δ
sinh(Γh))

iε

α2

∂N ′

∂y

+
1

2(cosh(Γh) + Γ
δ
sinh(Γh))

f

α

[
1 +

1

cosh(Γh) + Γ
δ
sinh(Γh)(

sinh(Γh)

(
− Γ

4δ
+

Γ

2δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

))]
dN0

dx
.

(2.193)

We substitute C1 into Eq. (2.186) and group terms:

V0 =
f

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

[
1 +

1

cosh(Γh) + Γ
δ
sinh(Γh)(

sinh(Γh)

(
− Γ

4δ
+

Γ

2δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

))]
+

1

cosh(Γh) + Γ
δ
sinh(Γh)

(
1

4
cosh(Γz) − Γz

2
sinh(Γz)

)
− 1

]
dN0

dx

+
iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
− eΓh

Γ
− eΓh

δ
+ h +

1

δ

)
+

e−Γz

Γ
+ z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y
.

(2.194)
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In the next several equations, we simplify the solution

V0 =
f

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

[
1 +

1

cosh(Γh) + Γ
δ
sinh(Γh)(

sinh(Γh)

(
− Γ

4δ
+

Γ

2δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

))]
+

1

cosh(Γh) + Γ
δ
sinh(Γh)

(
1

4
cosh(Γz) − Γz

2
sinh(Γz)

)
− 1

]
dN0

dx

+
iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
− cosh(Γh) + sinh(Γh)

Γ

− cosh(Γh) + sinh(Γh)

δ
+ h +

1

δ

)
+

1

Γ

(
cosh(Γz)− sinh(Γz)

)
+ z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
+

iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y

(2.195)

V0 =
f

α

cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

[
1 +

1

cosh(Γh) + Γ
δ
sinh(Γh)(

sinh(Γh)

(
− Γ

4δ
+

Γ

2δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

))]
+

1

cosh(Γh) + Γ
δ
sinh(Γh)

(
1

4
cosh(Γz) − Γz

2
sinh(Γz)

)
− 1

]
dN0

dx

+
iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
− 1

Γ
sinh(Γh) − 1

δ
cosh(Γh) + h +

1

δ

)

− 1

Γ
sinh(Γz) + z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y

(2.196)
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V0 =
f

α(cosh(Γh) + Γ
δ
sinh(Γh))

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
cosh(Γh)

+
Γ

δ
sinh(Γh) + sinh(Γh)

(
Γ

4δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

))
+

1

4
cosh(Γz) − Γz

2
sinh(Γz) − cosh(Γh) − Γ

δ
sinh(Γh)

]
dN0

dx

+
iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
− 1

Γ
sinh(Γh) − 1

δ
cosh(Γh) + h +

1

δ

)

− 1

Γ
sinh(Γz) + z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y

(2.197)

V0 =
f

α(cosh(Γh) + Γ
δ
sinh(Γh))

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
cosh(Γh)

+
Γ

δ
sinh(Γh) + sinh(Γh)

(
Γ

4δ
+

Γh

2

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

4

)
− 3Γ

4δ
sinh(Γh) − 3

4
cosh(Γh)

)
+

3cosh(Γz)

4(cosh(Γh) + Γ
δ
sinh(Γh))(

cosh(Γh) +
Γ

δ
sinh(Γh)

)
+

1

4
cosh(Γz) − Γz

2
sinh(Γz)

− cosh(Γh) − Γ

δ
sinh(Γh)

]
dN0

dx
+

iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)(

− 1

Γ
sinh(Γh) − 1

δ
cosh(Γh) + h +

1

δ

)
1

Γ
sinh(Γz) + z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y
.

(2.198)
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The �nal solution for V0 is given by

V0 =
f

α(cosh(Γh) + Γ
δ
sinh(Γh))

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
cosh(Γh)

+
Γ

δ
sinh(Γh) + sinh(Γh)

(
Γh

2
− Γ

2δ

)
+ cosh(Γh)

(
Γ2h

2δ
− 1

))
+ cosh(Γz) − Γz

2
sinh(Γz) cosh(Γh) − Γ

δ
sinh(Γh)

]
dN0

dx

+
iε

α

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

(
− 1

Γ
sinh(Γh) − 1

δ
cosh(Γh) + h +

1

δ

)

− 1

Γ
sinh(Γz) + z

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)

+
iε

α2

[
cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

− 1

]
∂N ′

∂y
.

(2.199)

In consideration of the length, we will use the following identities in addition to p0, Eq.

(2.140), to write V0

F = cosh(Γh) +
Γ

δ
sinh(Γh) (2.200)

ph = F + sinh(Γh)

(
Γh

2
− Γ

2δ

)
+ cosh(Γh)

(
Γ2

2δ
− 1

)
(2.201)

pz = cosh(Γz) − Γz

2
sinh(Γz) − F (2.202)

rh = − 1

Γ
sinh(Γh) − 1

δ
cosh(Γh) + h +

1

δ
(2.203)

rz = − 1

Γ
sinh(Γz) + z (2.204)

So V0 becomes

V0 =
f

αF

[
(1−p0)ph + pz

]
dN0

dx
+
iε

α

[
(1−p0)rh + rz

]
∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
− iε

α2
p0
∂N ′

∂y
. (2.205)

It should be noted that ph and pz di�er slightly from that of Ensing et al. (2015), which

is the basis for this model's derivation. There is a F , where they have a 1 [4].

In order to solve for V0, we need to �nd ∂N ′

∂y
. We integrate the continuity equation over

depth and width (from − b
2
to y′ b

2
). We �rst integrate over depth and apply the surface and
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bottom boundary conditions for vertical velocity, W0.

0∫
−h

(
∂U0

∂x
+

∂V0

∂y
+

∂W0

∂z
= 0

)
dz (2.206)

0∫
−h

∂U0

∂x
dz +

0∫
−h

∂V0

∂y
dz +

0∫
−h

∂W0

∂z
dz = 0 (2.207)

0∫
−h

∂U0

∂x
dz +

0∫
−h

∂V0

∂y
dz + W0|z=0 − W0|z=−h = 0 (2.208)

0∫
−h

∂U0

∂x
dz +

0∫
−h

∂V0

∂y
dz − iN0 + V0

∂h

∂y

∣∣∣∣
z=−h

= 0 (2.209)

Note that the height function, h, is a function of y only. So we have

0∫
−h

∂U0

∂x
dz +

0∫
−h

∂V0

∂y
dz − iN0 + V0

∂h

∂y

∣∣∣∣
z=−h

= 0. (2.210)

We apply the Leibniz integral rule to the �rst two terms. Note the several terms that

result from applying the Leibniz rule result in zero and have been dropped

∂

∂x

0∫
−h

U0dz +
∂

∂y

0∫
−h

V0dz + V0
∂(−h)

∂y

∣∣∣∣
z=−h

− iN0 + V0
∂h

∂y

∣∣∣∣
z=−h

= 0. (2.211)

Canceling terms, we have

∂

∂x

0∫
−h

U0dz +
∂

∂y

0∫
−h

V0dz − iN0 = 0. (2.212)

We integrate over width (from − b
2
to y′b

2
)

y′b
2∫

− b
2

∂

∂x

0∫
−h

U0dzdy +

y′b
2∫

− b
2

∂

∂y

0∫
−h

V0dzdy −

y′b
2∫

− b
2

iN0dy = 0 (2.213)

y′b
2∫

− b
2

∂

∂x

0∫
−h

U0 dzdy +

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

−
0∫

−h

V0dz

∣∣∣∣∣∣
y=−b

2

− iN0y|y= y′b
2

+ iN0y|y=−b
2

= 0 (2.214)
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We apply the lateral boundary condition

y′b
2∫

− b
2

∂

∂x

0∫
−h

U0 dzdy +

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

+
∂

∂x

(
b

2

) 0∫
−h

U0dz

∣∣∣∣∣∣
y=−b

2

− i b
2
y′N0 − i

b

2
N0 = 0. (2.215)

We rearrange terms to solve for lateral transport evaluated at y′ b
2
, evaluate the partial

derivative of width, b, and substitute the solution for U0

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

= i

y′b
2∫

− b
2

∂

∂x

dN0

dx

0∫
−h

(
1 − cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dzdy

− iµ
b

2

dN0

dx

0∫
−h

(
1 − cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
dz

∣∣∣∣∣∣
y=−b

2

+ iN0
b

2

(
y′ + 1

) (2.216)

We evaluate the integrals over depth, given by P0 (Eq. (2.145)). Then, we have

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

= i

y′b
2∫

− b
2

∂

∂x

dN0

dx
P0dy − iµ

b

2

dN0

dx
P0|y=−b

2
+ iN0

b

2

(
y′ + 1

)
. (2.217)

We apply the Leibniz integral rule again to the �rst term on the RHS and evaluate the

partial derivatives of width, b, with respect to x

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

= i
∂

∂x

y′b
2∫

− b
2

dN0

dx
P0dy − i

dN0

dx
P0

∣∣∣∣
y′b
2

∂

∂x

(
y′b

2

)

+ i
dN0

dx
P0

∣∣∣∣
y=−b

2

∂

∂x

(
−b
2

)
− iµ

b

2

dN0

dx
P0

∣∣∣∣
y=−b

2

+ iN0
b

2

(
y′ + 1

) (2.218)

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

= i
∂

∂x

y′b
2∫

− b
2

dN0

dx
P0dy + iµy′

b

2

dN0

dx
P0

∣∣∣∣
y= y′b

2

+ iµ
b

2

dN0

dx
P0

∣∣∣∣
y=−b

2

− iµ
b

2

dN0

dx
P0

∣∣∣∣
y=−b

2

+ iN0
b

2

(
y′ + 1

) (2.219)

Canceling terms, we have

0∫
−h

V0dz

∣∣∣∣∣∣
y= y′b

2

= i
∂

∂x

dN0

dx

y′b
2∫

− b
2

P0dy + iµy′
b

2

dN0

dx
P0

∣∣∣∣
y= y′b

2

+ iN0
b

2

(
y′ + 1

)
. (2.220)
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Let y′′ = 2y
b
. Then, we have

0∫
−h

V0dz

∣∣∣∣∣∣
y= y′b

2

= i
∂

∂x

dN0

dx

b

2

y′∫
−1

P0dy
′′ + iµy′

b

2

dN0

dx
P0

∣∣∣∣
y= y′b

2

+ iN0
b

2

(
y′ + 1

)
. (2.221)

Applying the product rule, we obtain

0∫
−h

V0 dz

∣∣∣∣∣∣
y= y′b

2

= i

(
b

2

d2N0

dx2
− µ

b

2

dN0

dx

) y′∫
−1

P0dy
′′

+ iµy′
b

2

dN0

dx
P0

∣∣∣∣
y= y′b

2

+ iN0
b

2

(
y′ + 1

)
.

(2.222)

The solution for V0, Eq. (2.205), is integrated over depth, and then will be set equal to

Eq. (2.222).

0∫
−h

V0 dz =
f

αF

dN0

dx

0∫
−h

[
(1− p0)ph + pz

]
dz

+
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

) 0∫
−h

[
(1− p0)rh + rz

]
dz − iε

α2

∂N ′

∂y

0∫
−h

p0 dz,

(2.223)

which is simpli�ed to

0∫
−h

V0 dz =
f

αF

dN0

dx

[
1

F
ph

0∫
−h

cosh(Γz) dz +

0∫
−h

pz dz

]

+
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)[
1

F
rh

0∫
−h

cosh(Γz) dz +

0∫
−h

rz dz

]

− iε

α2

∂N ′

∂y

0∫
−h

p0 dz.

(2.224)

The integrals are evaluated and we substitute P0, Eq. (2.145), to obtain

0∫
−h

V0 dz =
f

αF

dN0

dx

[
sinh(Γh)

ΓF
ph +

0∫
−h

pz dz

]

+
iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)[
sinh(Γh)

ΓF
rh +

0∫
−h

rz dz

]
− iε

α2

∂N ′

∂y
P0,

(2.225)
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with
0∫
−h
pz dz and

0∫
−h
rz dz given by

0∫
−h

pz dz =
1

Γ
sinh(Γh) − 1

2

(
hcosh(Γh) − 1

Γ
sinh(Γh)

)
− Fh, (2.226)

and
0∫

−h

rz dz =
1

Γ2
cosh(Γh) − 1

Γ2
− h2

2
. (2.227)

We evaluate Eq. (2.225) at y = y′b
2
, which is dropped in the equations for ease of

writing, and set it equal to Eq. (2.222) to algebraically solve for ∂N ′

∂y
. First, we move the

term with ∂N ′

∂y
to one side and move the other terms opposite.

iε

α2

∂N ′

∂y
P0 =

f

αF

dN0

dx

[
sinh(Γh)

F
ph +

0∫
−h

pz dz

]
+

iε

α

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
[
sinh(Γh)

F
rh +

0∫
−h

rz dz

]
− i

(
b

2

d2N0

dx2
− µ

b

2

dN0

dx

) y′∫
−1

P0dy
′′

− iµy′
b

2

dN0

dx
P0 − iN0

b

2

(
y′ + 1

)
.

(2.228)

Multiplying both sides by −iα
2

εP0
, the solution for ∂N ′

∂y
is obtained, given by

∂N ′

∂y
= −ifα

εF

1

P0

[
sinh(Γh)

F
ph +

0∫
−h

pz dz

]
dN0

dx
+ α

1

P0

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
[
sinh(Γh)

F
rh +

0∫
−h

rz dz

]
− α2

ε

1

P0

(
b

2

d2N0

dx2
− µ

b

2

dN0

dx

) y′∫
−1

P0dy
′′

− α2

ε
µy′

b

2

dN0

dx
− N0

1

P0

bα2

2ε

(
y′ + 1

)
.

(2.229)

We now solve for the lateral gradient of the depth mean density:

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
,

which is the �nal component needed for V0. Recall the zero order density balance equation

and respective boundary condition at the surface and bottom are given by

− iρ̂1 + U0
dρ0

dx
=

Kv

2

∂2ρ̂1

∂z2
, (2.230)

46



and

∂ρ̂1

∂z
= 0. (2.231)

We �rst integrate Eq. (2.230) over depth to obtain

− i
0∫

−h

ρ̂1 dz +
dρ0

dx

0∫
−h

U0 dz =

0∫
−h

Kv

2

∂2ρ̂1

∂z2
dz. (2.232)

We evaluate the integral on the RHS and apply the boundary condition, Eq. (2.231).

− i
0∫

−h

ρ̂1 dz +
dρ0

dx

0∫
−h

U0 dz = 0. (2.233)

We rearrange terms and integrate Eq. (2.137) over depth, substituting (??), to obtain

− i
0∫

−h

ρ̂1 dz = i
dN0

dx

dρ0

dx
P0. (2.234)

Next, we multiply both sides by i
h
:

1

h

0∫
−h

ρ̂1 dz = −1

h

dN0

dx

dρ0

dx
P0. (2.235)

For the lateral gradient, we take the partial derivative with respect to y:

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
= −dN0

dx

dρ0

dx

∂

∂y

(
1

h
P0

)
. (2.236)

In the following two steps, we �rst apply the product rule and then the chain rule to

evaluate ∂
∂y

(
1
h
P0

)
:

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
= −dN0

dx

dρ0

dx

(
P0

∂

∂y

(
1

h

)
+

1

h

∂P0

∂y

)
, (2.237)

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
= −dN0

dx

dρ0

dx

(
− 1

h2
P0
∂h

∂y
+

1

h

∂P0

∂h

∂h

∂y

)
. (2.238)

We simplify to obtain the lateral gradient of the depth mean density

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
= −dN0

dx

dρ0

dx

1

h

∂h

∂y

(
∂P0

∂h
− 1

h
P0

)
. (2.239)
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2.1.4.4 Vertical Velocity

To solve for W0, we integrate the continuity equation, Eq. (2.110), from −h to z and

apply the partial slip boundary condition, Eq. (2.119),

z∫
−h

∂U0

∂x
dz +

z∫
−h

∂V0

∂y
dz + W0|z − W0|−h = 0. (2.240)

We rearrange terms, to solve for W0 at z, and apply the partial slip boundary condition,

Eq. (2.119), to obtain

W0|z = −
z∫

−h

∂U0

∂x
dz −

z∫
−h

∂V0

∂y
dz − V0

∂h

∂y
. (2.241)

The partial of U0, Eq. (2.137), with respect to x is given by

∂U0

∂x
= −id

2N0

dx2

(
1 − cosh(Γz)

cosh(Γh) + Γ
δ
sinh(Γh)

)
. (2.242)

Integrating over depth, we have

z∫
−h

∂U0

∂x
dz = −id

2N0

dx2

(
z + h − sinh(Γz) + sinh(Γh)

Γ(cosh(Γh) + Γ
δ
sinh(Γh))

)
. (2.243)

Next, we take the partial derivative of V0 with respect to y

∂V0

∂y
=

f

α

[
−2cosh(Γz)

F 3

∂F

∂y
ph +

cosh(Γz)

F 2

∂ph
∂y

+
−1

F 2

∂F

∂y
pz +

1

F

∂pz
∂y

]
dN0

dx

+
iε

α

[(
− cosh(Γz)

F 2

∂F

∂y
rh +

cosh(Γz)

F

∂rh
∂y

)
∂

∂y

(
1

h

0∫
−h

ρ̂1dz

)

+

(
cosh(Γz)

F
rh + rz

)
∂2

∂y2

(
1

h

0∫
−h

ρ̂1dz

)]

+
iε

α2

[
− cosh(Γz)

F 2

∂F

∂y

∂N ′

∂y
+

(
cosh(Γz)

F
− 1

)
∂2N ′

∂y2

]
,

(2.244)
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with the partial derivatives given by

∂F

∂y
=

(
Γsinh(Γh) +

Γ2

δ
cosh(Γh)

)
∂h

∂y

∂ph
∂y

=
∂F

∂y
+

(
Γcosh(Γh)

(
Γh

2
− Γ

2δ

)
+

Γ

2
sinh(Γh)

+ Γsinh(Γh)

(
Γ2h

2δ
− 1

)
+

Γ2

2δ
cosh(Γh)

)
∂h

∂y

∂pz
∂y

=
∂F

∂y

∂rh
∂y

=

(
− F + 1

)
∂h
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The derivative with respect to y of the lateral gradient of the depth mean density, Eq.

(2.239), is given by
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The second derivative of the higher order sea level with respect to y is given by
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with partial derivatives given by
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We integrate the partial derivative of V0 with respect to y from −h to z:
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We evaluate the integrals to obtain
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We substitute sinh(−Γh) = −sinh(Γh):
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where the integrals over depth of pz and rz, Eqs. (2.202) and (2.204), respectively, are

given by

z∫
−h

pz dz =
1

Γ

(
sinh(Γz) + sinh(Γh)

)
− 1

2

(
zcosh(Γz) + hcosh(Γh)

− 1

Γ

(
sinh(Γz) + sinh(Γh)

))
− F (z + h)

(2.252)

and
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The �nal solution for W0, Eq. (2.241), is found by combining negative Eq. (2.243),

negative Eq. (2.251), and the negative product of Eq. (2.205) and the partial derivative of
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h with respect to y. Thus, W0 is given by
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, the results are presented and discussed. First, the analytical model is

summarized, in addition to a brief discussion of the study area. The model is derived from

the zero-order solution of a perturbation expansion about ε =
AM2

hmax
of the Navier-Stokes

equations. Recall, the zero-order expansion represents the tidal �ow, while the �rst-order

expansion represents the residual �ow within the estuary. The �rst-order expansion, thus

residual �ow, is not considered in this paper. Furthermore, non-linear terms which create

asymmetric tides are excluded from the governing equations and vertical eddy viscosity is

assumed to be constant. Estuary width, b(x) and estuary depth, h(y), are given by

b(x) = e−µ x,

h(y) = ε + (1 − ε)(1− y2).

(3.1)

Water level elevation, η(t, x) is given by
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2
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µ
2
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e
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)
. (3.2)

Along-channel velocity, u(t, x, y, z), and across-channel velocity are given by

u0(t, x, y, z) = Re

(
− i dN0

dx
p0 e

−it
)
, (3.3)

and
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(3.4)
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with the identities

F = cosh(Γh) +
Γ

δ
sinh(Γh),
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and the along-channel gradient of the water level magnitude, N0, is
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(3.6)

The lateral gradient of higher order sea level, N ′, is given by

∂N ′

∂y
= −ifα

εF

1

P0

[
sinh(Γh)

F
ph +

0∫
−h

pz dz

]
dN0

dx
+ α

1

P0

∂

∂y

(
1

h

0∫
−h

ρ̂1 dz

)
[
sinh(Γh)

F
rh +

0∫
−h

rz dz

]
− α2

ε

1

P0

(
b

2

d2N0

dx2
− µ

b

2

dN0

dx

) y′∫
−1

P0dy
′′

− α2

ε
µy′

b

2

dN0

dx
− N0

1

P0

bα2

2ε

(
y′ + 1

)
,

(3.7)

and the lateral gradient of the depth mean density is given by
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Vertical velocity, w(t, x, y, z), is given by
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(3.9)

The model is applied to study tidal �ow dynamics of the Damariscotta River estuary

(DRE) using Matlab software. Figure 3.1 shows the estuary from above and its location in

Maine. The estuary is tidally-dominated and weakly-strati�ed. It is relatively short, with

length of 30.6 km, and narrow. The width converges from 963 m at the mouth to 45 m at

the head. The tides are semi-diurnal dominant with a period of 12.42 h. Tidal amplitude

ranges from 0.8 to 2.1 m between neap and spring tides [7].
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Figure 3.1. Location and satellite (Google Earth) image of the study area: the Damariscotta

River Estuary, ME. Location and satellite (Google Earth) image of the study area: the

Damariscotta River estuary, ME.

The results of the model will be presented and discussed for water elevation,

along-channel and across-channel velocity in the context of previous studies. First, the

variation of water elevation amplitude and phase along the length of the estuary is

considered. Next, along channel velocity amplitude and phase at one location in the

cross-section of the estuary is examined for the entire distance along the estuary. This

leads to an investigation into three-dimensional variations of the amplitude and phase of

the along-channel velocity. Then, variations over the tidal cycle in three-dimensional

velocity, particularly the along- and across-channel velocities, are examined. Vertical eddy

viscosity, Av, and the width convergence factor, µ, are then varied independently to study

sensitivity to changes in friction and width convergence of water level and along-channel

velocity. Lastly, the limitations of the model are discussed in addition to suggestions for

future work.
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3.1 Water Elevation

Along-channel variations in water elevation, η, within the Damariscotta River Estuary

are �rst investigated. Due to the narrow width of the estuary, the zero-order water level

does not vary across the channel. Thus, amplitude of water elevation is a function of only

along-channel distance into the estuary, x. Figure 3.2 shows the amplitude and phase of

water elevation of the Damariscotta estuary as a function of along-channel position.

Towards the head, tidal amplitude increases from 1.5 m to 3 m, indicative of tidal

ampli�cation due to width convergence.Lieberthal et al. (2019) considers overtides, due to

the D2, D4, and D6 tidal constituents, which are found to be ampli�ed in the estuary. The

phase of η increases to approximately 60 degrees at the head of the estuary (Fig. 3.2). This

is interpreted as a time lag of about two hours in water elevation between the mouth and

head of the estuary.

Figure 3.2. Amplitude and phase of water level elevation (η) as a function of along-channel

distance into the estuary, x.
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3.2 Velocity

Tidal �ow velocity within the Damariscotta estuary is examined in this section, focusing

�rst on the along-channel component, u, and then the lateral and vertical components, v

and w respectively. In Figure 3.3, amplitude and phase of along-channel velocity at the

center and surface of the channel are shown as a function of along-channel position in the

estuary. Amplitude of along-channel velocity near the surface, center of the channel ranges

from approximately 0.2 to 0.4 m/s within the estuary. This compares well with Lieberthal

et al. (2019) which found maximum along-channel velocity amplitude of 0.4 m/s predicted

in a perturbation model of the Damariscotta estuary. Along-channel velocity amplitude

increases slightly at �rst, but decreases from the mouth towards the head due to friction.

This is notable because water level amplitude shows an increase with along-channel

distance. The result suggests that width convergence is more important in determining

water level elevation while friction has stronger in�uence on along-channel velocity, which

is evident in the solution for U0. This makes it di�cult to determine which, convergence or

friction, is more important to estuary dynamics. The Damariscotta estuary cannot be

classi�ed as hypersynchronous or hyposynchoronous based on de�nitions in Chapter 1. The

following section will examine the in�uences of friction and convergence further.

Phase of along-channel velocity, u, increases along the estuary from 78 to 88 deg, which

is a slight increase of 10 deg or 0.3 h, until just after mid-estuary (Fig. 3.3). At about 18

km into the estuary, phase sharply decreases towards the head of the estuary by about 30

deg or 1 h. Unfortunately, along-channel variations in along-channel velocity phase

di�erence are not presented in Lieberthal et al. (2019) for comparison.
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Figure 3.3. Amplitude and phase of along-channel velocity, u, at the center, surface of the

channel as a function of distance along the estuary, x.

It is important to note that along-channel velocity varies within the estuary

cross-section and Fig. 3.3 is for a single location within the cross-section. This leads to a

necessary investigation into three-dimensional variability of the amplitude and phase of

along-channel velocity, as shown in Figure 3.4. Along-channel velocity amplitude

diminishes towards the bottom of the estuary and towards the sides of the channel due to

increased friction near the boundary of the channel (Fig. 3.4a,c,e). This matches well with

results of previous work within the Damariscotta estuary [4, 7]. Phase of along channel

velocity increases from -100 deg at the lateral boundaries (sides of the channel) to -40 deg

at the center of the channel (Fig. 3.4b,d,f). In terms of tidal propagation, this means that

changes occur �rst at the sides of the channel and then at the center of the channel about

two hours later. Equivalent phase di�erence in along-channel velocity across the channel

was found in Lieberthal et al. (2019). Flood and ebb are symmetric (Fig. 3.5), because

non-linear terms which cause tidal asymmetry are not included. It is stressed that
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along-channel velocity is only a part of the �ow within the estuary and the additional

components of velocity are examined next.

Across-channel and vertical velocities are at least an order of magnitude less than

along-channel velocities within the estuary, as seen in Lieberthal et al (2019).

Across-channel (lateral) velocity is the product of the combined e�ects of Coriolis, lateral

depth-averaged density gradient and the lateral gradient of higher order (�rst and second)

sea level (Eq. (3.4)). The solution for amplitude of across-channel velocity di�ers slightly

from that found in Ensing et al. (2015), but it is not clear at this time if there is a mistake

in their derivation. Figure 3.5, shows along-channel velocity (contours) and lateral

velocities (vectors) throughout the estuary cross-section at one-quarter length into the

estuary and mid-estuary over the tidal cycle. Lateral velocity in the Damariscotta estuary

exhibits a two-cell structure. During �ood, lateral velocities near the surface �ow right,

when looking into the estuary towards the head of the estuary, and lateral �ow is in the

opposite direction near the bottom of the estuary (Fig. 3.5). .
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Figure 3.4. Amplitude (a, c, e) and phase (b, d, f) of along-channel velocity, u, at one-quarter

length (top row) into the estuary, mid-estuary (middle row), and three-quarters into the

estuary (bottom row) for the estuary cross-section. Amplitude (a, c, e) and phase (b, d, f)

of along-channel velocity, u, at one-quarter length (top row) into the estuary, mid-estuary

(middle row), and three-quarters into the estuary (bottom row) for the estuary cross-section.

Across channel position, y is along the x-axis and depth, z, is along the y-axis
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Figure 3.5. Along-channel velocity at one-quarter length (left) and half-length (right) into

the estuary during several times during the tidal cycle: t = 0 (a,b), t = 6 h(c,d), t = 9 h

(e,f), t = 11.5 h (g,h). Along-channel velocity at one-quarter length (left) and half-length

(right) into the estuary during several times during the tidal cycle: t = 0 (a,b), t = 6 h(c,d),

t = 9 h (e,f), t = 11.5 h (g,h). Contours represent along-channel velocity (m/s). Vectors are

across-channel velocity (m/s).
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3.3 Sensitivity to Friction and Width Convergence

In this section, sensitivity of water level elevation and velocity amplitudes to changes in

friction and width convergence are investigated by altering the vertical eddy viscosity, Av,

and the width convergence factor, µ. First, we consider friction. When friction is increased

(Av = 10−1), water level elevation decreases into the estuary until width convergence

becomes more important and water level increases slightly towards the head of the estuary,

while when friction is weaker (Av = 10−4) water level elevation is ampli�ed by width

convergence throughout the estuary (Fig. 3.6a, b). Amplitude of along-channel is

diminished towards the estuary by strong friction (Fig. 3.7a). For weaker friction, the

maximum amplitude of along-channel velocity is an order of magnitude greater than for

normal friction within the Damariscotta estuary and along-channel velocity, although

initially ampli�ed slightly, decreases towards the head of the estuary (Fig.3.7b). Although,

not presented here, weaker friction leads to a subsurface maximum in along-channel

velocity, because interaction with the boundaries has weaker e�ect. The convergence factor

of the Damariscotta estuary, µ ≈ 0.5, is relatively weak width convergence, so only strong

convergence is considered in this section. Strong convergence (µ = 3) leads to

ampli�cation of amplitudes of water level elevation and along-channel velocity along the

estuary (Fig. 3.8).
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Figure 3.6. Amplitude of water level (η) for vertical eddy viscosity, Av, values of 10−1 (a)

and 10−4 (b), representative of strong and weak friction, respectively. Amplitude of water

level(η) for vertical eddy viscosity, Av, values of 10−1 (a) and 10−4 (b), representative of

strong and weak friction, respectively.
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Figure 3.7. Amplitude of along-channel velocity (u) for vertical eddy viscosity, Av, values of

10−1 (a) and 10−4 (b), representative of strong and weak friction, respectively.

.

Figure 3.8. Amplitude of water level (a) and along-channel velocity (b) for a channel with

stronger width convergence, µ = 3.
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3.4 Signi�cance, Limitations, and Future Work

This thesis expands on the spatial scale of [7], which investigated one interesting section

of the Damariscotta estuary, by providing results for the entire length. The solutions found

for across-channel velocity and the higher order sea level gradient are unique, although

derived as in [4]. The model has several limitations. First, the model is only able to study

tidal �ow, excluding residual �ow. The �rst order solution, which represents the residual

�ow, is complicated to solve analytically. Non-linear terms, which are responsible for tidal

asymmetry, are excluded from the model so �ood or ebb dominance within the

Damariscotta Estuary cannot be determined by this study. Friction is considered to be

constant with depth, but in an estuary friction varies signi�cantly with depth. The solution

becomes more complicated, however, if friction is not considered constant. These, in

combination, could explain discrepancies between model results and observational data.

Future work should focus on the residual �ow within the estuary and include the e�ects of

non-linear terms and variable friction. However, this may have to be done numerically, as

the problem may be too di�cult to solve through analytical methods.

3.5 Conclusions

This thesis derives a three-dimensional analytical model by perturbation expansion of

the Navier-Stokes equations in the shallow water limit, modi�ed from Ensing et al. (2015).

The resulting zero-order solution is analyzed to provide insight into the tidal �ow of the

tidally-dominated, well-mixed Damariscotta River Estuary. The water level elevation, and

�ow velocity in three-dimensions are presented after applying the model with parameters

representative of the properties of the Damariscotta estuary. Parameters for friction and

width convergence are then changed to investigate the sensitivity of the estuary to those

forces. Water level elevation amplitude increases into the estuary due to ampli�cation by

width convergence, and along-channel velocity amplitude decreased into the estuary due to

dampening by friction. This phenomenon suggests width convergence has greater in�uence
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on water level elevation, whereas friction is more in�uential to velocity. Lateral velocities

exhibited a two cell structure with �ow of the near-surface cell and the near-bottom cell in

opposite directions. Results of the model compared well to previous studies within the

estuary [7] and to the Upper Ems estuary [4] , which has similar dynamics as the

Damariscotta estuary although important morphological distinctions should be noted.

Tidal asymmetry and variable friction within the estuary were not studied in this thesis, as

non-linear terms were dropped in governing equations and vertical eddy viscosity was

assumed to be constant. Furthermore, the model considers the zero-order solution and is

unable to study residual �ow in the estuary. Future work should investigate tidal

asymmetry and residual �ow in the Damariscotta estuary, while considering a more

complicated friction regime.
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