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Abstract 
  
 Three ice cores and one guano core were obtained from lava tubes in El Malpais National 

Monument, New Mexico, in the Southwest United States.  A large hiatus in the Bat Cave guano 

record, resulting from mining activities in the early 1900's, left us with only ~50 years of data 

(from AD 1955-2006) to use in analysis.  d13C values in guano (-18 to -11.6‰) primarily fall 

within the range of C4 plants, and likely indicate a tendency of Tadarida brasiliensis to feed on 

insects over grasslands to the North or South of the park.  Variations in d13C values for this 

period fail to reflect local temperature or precipitation influences, and are likely the result of 

changes in bat foraging range (to include C3 plants within the park).  d15N variations in Bat Cave 

guano (from 5.7 to 8.8‰) likely reflect changes in bat trophic level, and may also be impacted 

by fire activity in El Malpais.  Ice cores from two lava tubes (Cave 91 and Cave 455) did not 

contain enough organic sediment for dating.  However, analysis of LMWLs indicates that 

moisture from Cave 91 ice came from an arid moisture source, and strong evaporative processes 

were present during precipitation.  The LMWL derived from Cave 455 ice closely resembles the 

GMWL, therefore it can be assumed that no evaporation happened during precipitation, and that 

the moisture came from a source of high relative humidity.  The presence of abundant charcoal 

in Cave 29 (indicating that Native Americans melted the ice for drinking water) allowed 

radiocarbon dating, the results of which suggest the ice core spans the period between AD 138 

and 948.  Analysis of d18O from this lava tube (values range from -9.3 to -6.8‰) reveals that the 

majority of ice accumulation happened during summer monsoon months, with the Gulf of 

Mexico being the primary moisture source.  A lesser degree of winter precipitation, arriving in 
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the form of snow storms form the Pacific, also likely contributed to ice accumulation by being 

deposited on the surface and percolating into the lava tube after melting in the spring.  Variations 

in d18O in Cave 29 ice result from local surface temperature variations, with a decrease in values 

around AD 450 aligning with a transition from the Roman Warm Period to the Dark Age Cold 

Period.  d18O values then display an accelerated increase beginning around AD 800, at the onset 

of the Medieval Warm Period.  Considering the fact that ice in El Malpais caves is rapidly 

ablating under present day climate conditions, we highly recommend that this resource be further 

examined in paleoclimate studies over the next several years. 
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Chapter 1: 

Introduction 

The Southwest United States has had a history of droughts and climatic hardship long 

before the occurrence of large scale anthropogenic related climate changes (Grissino-Mayer, 

1995; Carrillo et al., 2017).  Better understanding the climate of the past few thousand years in 

this region not only sheds light on the struggles faced by the Native Americans and early settlers 

of the Southwest, but may also give us insight into the problems affecting our society in the 

present and near future.  Paleoclimate reconstructions are generated using proxies preserved in 

biological or inorganic archives that maintain evidence of past climate conditions.  New archives 

are continually sought out by researchers to obtain a more complete picture of our planet’s 

climatic past (Lowe & Walker, 2015). 

Ice cores from glaciers and ice sheets have long been a source of paleoclimate data, with 

oxygen and hydrogen analysis having the potential to reveal temperature records and paleo-

moisture sources (Gat, 2010).  The isotopic composition of cave ice was first examined by 

Şerban et al. (1967), and later in more detail and using modern calibration techniques by Yonge 

& MacDonald (1999).  Its first use in paleoclimate reconstruction was in two studies of Focul 

Viu Ice Cave in Romania by Kern et al. (2004), and Fórizs et al. (2004).  While oxygen isotopes 

in cave ice in El Malpais have been examined by Dickfoss (1996), a full paleoclimate record 

based on isotopic composition of ice has yet to be examined in New Mexico. 

 Guano (bat excrement) that accumulates under maternity colonies during warm seasons 

has been found to have great potential in carbon and nitrogen isotope analysis, revealing 
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information about past vegetation association and precipitation regimes (Marais et al., 1980; 

Wurster et al., 2007; Onac et al., 2014; Forray et al., 2015, Cleary et al., 2016).  Fractionation in 

nitrogen stable isotopes in guano, being identifiable in specific conservative pathways in the bat 

food web, has also been demonstrated to indicate climatic variations, as well as changes in 

anthropogenic activities (Cleary et al., 2016). 

 In this study, we have obtained one guano core and three ice cores from four different lava 

tubes in the El Malpais National Monument.  The goal of this thesis is to test the following hypotheses: 

  1) A previous study by Asmerom et al. (2007) on the d18O record in speleothems in New 

Mexico attributed isotopic variations to change in moisture sources.  If large fluctuations in the 

d18O signal in ice from lava tubes can also be attributed to changes in moisture source, we can 

better determine if rainfall in El Malpais National Monument area was derived from the Gulf of 

Mexico or the Pacific Ocean throughout the duration of ice accumulation for our chosen cores. 

2) In a study by Marais et al. (1980) it was found that when carbon enters the bat food 

web, it carries with it an isotopic signal specific to a particular photosynthetic pathway 

representative of either C3, C4, or CAM plants.  If d13C values in guano reflect various 

photosynthetic pathways in local vegetation, we can track changes in dominant vegetation type 

in the region near a given cave that in turn provides a hydroclimate record or documents different 

water use efficiency (Farquhar et al., 1982). 

3) Robinson (2001) found that d15N could be used as an integrator for variations in the 

Nitrogen Cycle.  Based on work by Bird et al. (2007), Wurster et al. (2015), and Cleary et al. 

(2016), if it can be assumed that d15N trends in the bat-food web reflect changes in the Nitrogen 

Cycle, then we may use the values from our guano core to make assumptions about past 

anthropogenic activities, precipitation, and fires in El Malpais.  
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Chapter 2:  

Background 

 

2.1 Study Area 

 
2.1.1 Geological Settings of El Malpais National Monument 

El Malpais is one of two volcanic fields on the Colorado Plateau, the other being the 

Sunset Crater Region located in Arizona.  The El Malpais lava field is part of the greater Zuni-

Bandera volcanic field, which also includes the Northern and Southern Chain of craters to the 

West.  The Zuni-Bandera volcanic field has one of the longest spanning volcanic histories in the 

United States, estimated to range from 700,000 to 3,000 years ago (Laughlin et al., 1994).  Most 

of the defining features of El Malpais can be attributed to multiple lava flows creating new 

surfaces every 7,000-25,000 years (Mabery, 1997).  Figure 1 displays a map of El Malpais 

National Monument and its location in the United States. 

The primary stage of volcanism found in El Malpais can be characterized as having three 

main basalt variations: tholeiitic, alkalic, and transitional (Ander, 1997).  The oldest volcanic 

activity in El Malpais is attributed to the El Calderon flow discovered by Maxwell (1986), which 

has been dated through K-Ar methods to be around 91 ka (Laughlin et al., 1993).  Newer 

volcanic activity is characterized by the Lava Crater Flow, dated at 17 ka by Dunbar and Phillips 

(1994), and the McCartys Flow, the youngest flow in El Malpais at 3 ka (Maxwell, 1986; 

Laughlin et al., 1994). 
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Figure 1: A map of the El Malpais and El Morro National Monument and its location in the continental  

United States (USGS, 2017). 

2.1.2 Lava Tube Formation and Morphology 

A lava tube can be described as a type of cave that forms in lava flows where the roof 

solidifies faster than the middle section, allowing it to empty out and leave a system of tube-

shaped cavities (Rogers & Mosch, 1997).  There are 457 documented lava tubes in El Malpais 

National Monument, in which at least 14 different species of bats make their homes (NPS, 

2015a).  Since some of the lava tubes used in this study are closed to public access, for safety 

and conservation reasons, cave numbers provided by NPS will be used in place of names. 

Conditions important to the formation of lava tubes include moderate effusion rates, 

eruptions lasting more than two days, and fluid lava that has not significantly degassed such as 

pahoehoe (Greeley, 1987).  Both Aa and Pahoehoe flows can be found in El Malpais (Fig. 2), the 

majority of which are composed of basalt.  This petrology and type of flow (Aa) is important in 
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the formation of lava tubes, as basalts solidify much faster than other magmas when in contact 

with air.  This leads to the development of a crust (future lava tube roof) at the surface that has 

the potential to insulate the lava flowing beneath, sustaining the higher temperatures necessary to 

extend flow distances (Rogers & Mosch, 1997).  Lava tubes generally start out with elliptical 

morphologies, but can evolve into more circular cross sections as the crust cools from the outer 

walls towards the interior (Kauahikaua et al., 1998). 

A lava tube with a collapsed entrance in the upper section and deeper descending sinuous 

passages has the potential to form a cold air trap.  While ice deposits in most caves will 

experience melting during warm seasons, caves that act as cold air traps will hold cool air during 

the summer as the higher density of cold air keeps it from escaping to the surface.  As the outside 

air temperature becomes lower than that of the cave interior in the fall, convection will resume 

and cooler air will sink to the lower passages (Perşoiu & Onac, 2018).  The underlying processes 

involved in cave ice formation are discussed in further detail in section 2.4.1. 

   
 

Figure 2: Aa (left) and Pahoehoe (right) flows in El Malpais (left photo courtesy BP Onac). 
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2.1.3 Cave 91  

The entrance to Cave 91 (2353 m asl) is a collapsed lava tube ceiling with a ~12 m drop 

that must be rappelled down for access (Fig. 3).  The lava tube has a total surveyed length of 

145.2 m, and is 41 m below surface at its deepest point.  Because of the difficult access, the lava 

tube interior has remained undisturbed by anthropogenic activity.  The relative humidity 

measured by NPS employees in the main ice room between January and September 2017 

indicates an average of ~95%.  The air temperature inside the cave for 2017 averaged -0.88oC. 

 
Figure 3: Image of the collapsed entrance that gives access to Cave 91 (photo courtesy BP Onac). 
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2.1.4 Cave 455  

At an altitude of 2268 m, the entrance to Cave 455 is a difficult to find small hole on the 

side of a large collapsed lava tube.  The ice block inside this cave extends from floor to the 

ceiling and is ~1.2 m in thickness.  The tube has a total surveyed length of 113.8 m and a depth 

of 23.4 m.  No temperature or humidity records are available for this site. 

2.1.5 Cave 29 

Cave 29 (Fig. 4) opens at the same altitude as Cave 455.  It is a portion of a larger lava 

tube with a long collapsed ceiling entrance dividing it into two sections.  The tube has a 

horizontal length of 146.6 m and a depth of ~12 m.  No temperature or relative humidity 

measurements were conducted in Cave 29.  Large mounds of charcoal line the section of the tube 

containing the ice block, and some pottery can be found as well.  It is possible that ice was mined 

from this tube by Native Americans, or later by settlers from the 1800s. 

 

Figure 4: The collapsed entrance into Cave 29 viewed from inside. 
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2.1.6 Bat Cave 

 Bat Cave (Fig. 5) is located just east of the El Calderon Crater.  It is home to at least 2 

species of bats that use the cave as maternity or hibernation site, being currently closed in the 

interest of public health and bat conservation.  Around 50,000 Mexican free-tailed bats 

(Tadarida brasiliensis) form maternity colonies along the lava tube during the spring-summer 

and migrate south for the winter months (NPS, 2015a).  A small population of between 10-20 

Townsend’s big eared bats (Corynorhinus townsendii) makes its home in Bat Cave during the 

winter months for hibernation (Weaver, pers. comm., 2018). 

 

Figure 5: The entrance to the Bat Cave (USGS, 2017). 

2.1.7 Tadarida brasiliensis Dietary Habits 

The maternity colony found in Bat Cave consists of only Tadarida brasiliensis, and we 

must take into consideration their diet when tracking carbon and nitrogen isotope signal 

variations in the bat food web.  Tadarida brasiliensis is insectivorous, with a diet consisting 

primarily of carabidae (ground beetles), lygaeidae (milkweed bugs) in the evenings, and 
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lepidoptera (butterflies and moths) in the mornings, as reported in a study in Mason County, 

Texas (Whitaker et al., 1996).  The same study found that smaller amounts of Scarabaeidae 

(scarab beetles), other species of coleoptera (beetles), cicadellidae (leaf hoppers), and cydnidae 

(burrowing bugs) are also included in their diet.  In a study by Davis et al. (1962) in Texas, it 

was found that Tadarida brasiliensis tend to stay within ~80 km of their cave in any given 

foraging trip. 

2.2 Modern Climate Setting of Southwest United States 

2.2.1 Temperature 

Temperature in the Southwest US follows a normal four season cycle with maximums in 

the summer and minimums in the winter, decreasing with higher elevations (Sellers & Hill, 

1974).  El Malpais experiences a broad range of temperatures throughout the year, with daily 

high and low differences of up to 16.65oC (30oF).  The park typically sees summer highs in the 

mid-30’s (~95oF), and nights in the winter reaching temperatures as low as -29oC (-20oF) (NPS, 

2015b). 

2.2.2 Precipitation 

The Southwest US, being located south of the average winter westerly storm tracks, is 

usually not subject to the large amount of precipitation brought to the northern states during 

these months.  Rather, these westerly storms result in higher winds and increased cloud cover 

throughout the area.  When precipitation does occur in the winter, it is often caused by large 

cyclones spanning a few thousand kilometers that enter North America via California.  Large 

variations in winter climate in the Southwest US can be attributed to 4 major causes: the 

Pacific/North American (PNA) pattern, Southwestern troughs, the El Niño-Southern Oscillation 

(ENSO), and the Pacific Decadal Oscillation (Sheppard et al., 1999).  A positive PNA pattern 



10 

results in an eastward shift of the exit region of the East Asian jet stream, while a negative PNA 

pattern forces a westward retraction (NOAA, 2012).  In the Southwest US, a positive PNA 

pattern can also be linked to above average precipitation depending on the location of the east to 

west high-pressure ridge, where a negative pattern will usually result in below average 

precipitation (Simmons et al., 1983).  During Southwestern troughing, a phenomenon in which 

meridional flow is displaced westward, the winter circumpolar vortex grows and pushes Pacific 

storms to the south, causing them to absorb more moisture and contributing to a large increase in 

precipitation in the Southwest US (Sellers & Hill, 1974). 

The dominant feature of summers in the Southwest US is the North American Monsoon 

System (NAMS), which develops from the thermal contrast between continents and oceans in 

low-latitude regions, and has a large effect on warm season precipitation patterns (Sheppard et 

al., 1999).  NAMS has a strong effect on most of the western United States as well as 

northwestern Mexico, the onset of which typically occurs in Mexico in June, and later in higher 

latitudes such as in New Mexico and Arizona (Higgens et al., 1997). 

The moisture source of NAMS has long been a point of controversy in the Paleoclimate 

Community.  Early theories by Bryson & Lowry (1955) and later corroborated by Sellers & Hill 

(1974), pointed to the Gulf of Mexico as the primary source of moisture.  Hales (1974), on the 

other hand, proposed a model in which NAMS moisture flux could be traced to the Gulf of 

California.  In the National Centers for Environmental Prediction (NCEP) and the National 

Center for Atmospheric Research (NCAR) reanalysis, a climate dataset created by the NCEP-

NCAR, Higgens et al. (1997) found that moisture sources of water vapor in the Sonora Desert 

(Arizona), could be divided into lower and upper levels, with moisture below 850 hPa coming 

from the Gulf of California and moisture above 850 hPa originating in the Gulf of Mexico.  This 
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was roughly in agreement with a European Centre for Medium-Range Weather Forecasts 

(ECMWF) analysis by Schmitz & Mullens (1996), which separated the primary moisture sources 

at 700 hPa. 

Other studies seeking to understand moisture sources in the Southwest US have focused 

on stable isotope behavior.  Oxygen and hydrogen isotopes from the Gulf of Mexico and Pacific 

Ocean have specific values and are preserved in multiple archives, including ice, speleothems, 

fossils, lake sediments, and tree rings.  Summer moisture in New Mexico has been found to be 

more isotopically heavy (positive), representative of moisture from the Gulf of Mexico, whereas 

the winter precipitation bears a lighter (negative) isotope signal closer to that of the Pacific (Hoy 

& Gross, 1982; Yapp, 1985). 

The ENSO is the primary driver for major weather pattern changes in the spring/autumn 

dry seasons of the Southwestern US climate (Kiladis & Diaz, 1989).  During El Niño events, 

both spring and autumn see an atypical increase in precipitation due to unusually warmer water 

from the West Coast, which enables the creation of powerful west-coast troughs and decreases 

the magnitude of tradewind inversion (Andrade & Sellers, 1988).  The effects of ENSO on 

summer precipitation are minimized, primarily due to the fact that the NAMS supplies a fairly 

constant influx of precipitation (Sheppard et al., 1999).  While the effects are largely diminished 

in the winter by mid-latitude storm systems (Andrade & Sellers, 1988), stronger ENSO events 

can result in variations in cold season precipitation.  Large, warmer ENSO events (El Niño) lead 

to cooler winters with increased precipitation, with deserts in the Southwest US experiencing 

winter flooding.  Strong cold ENSO events (La Niña), on the other hand, result in a negative 

PNA pattern, which causes warmer, more arid climate conditions during cold seasons (Kiladis & 

Diaz, 1989). 
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2.2.3 Droughts and Megadroughts 

The Southwest US owes much of its aridity to a semi-permanent subtropical high-

pressure ridge, which spans the climate region; other contributing factors include above average 

temperatures, rain shadow effects from nearby mountains, and the related increase in 

evapotranspiration (Scott, 1991).  Droughts in the Southwest US can be particularly intense, 

sometimes spanning several decades (Fig. 6).  In one study by Carrillo et al. (2017), the past 

century of drought data was analyzed using tree ring time series complimented with the 

Twentieth-Century Reanalysis product (20CR).  Their study found that the majority of multiyear 

drought and pluvial events could be linked to ENSO, with El Niño like conditions consistent 

with droughts and La Niña phases coinciding with pluvials.  The largest drought found in their 

study spanned between AD 1912 to 1933. 

 

Figure 6: The July-August (JA) Moisture Flux Convergence (MFC) anomaly time-series.  The convergence and 

divergence of the moisture flux are pointed out with arrows.  The dotted bars show annual changes and the solid line 

represents the running mean over 10 years (Carrillo et al., 2017). 
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2.3 Oxygen and Hydrogen Stable Isotope Analysis in Paleoclimate 

2.3.1 Basic Principles and Delta Notation 

 Any of two or more species of the same chemical element having the same number of 

protons but a different number of neutrons is called an isotope.  The majority of elements have 

multiple naturally occurring isotopes (stable or radioactive), with the exception of 21 

“monoisotopic” elements (Sharp, 2007).  Stable isotopes are so named because they do not decay 

into other elements.  In contrast, all unstable (radioactive) isotopes decompose spontaneously in 

time, ultimately achieving a stable nuclear composition.  Oxygen has three naturally occurring 

stable isotopes, 16O, 17O, and 18O, with 18O being the more abundant of the two heavier isotopes 

(Gat, 2010).  Naturally forming hydrogen stable isotopes consist of H1 (Protium), and H2 

(Deuterium) (Sharp, 2007).   

The main principle behind the use of oxygen stable isotopes in paleoclimate 

reconstructions is based on the fact that oxygen isotopic variations (heavy to light oxygen isotope 

ratio) in ice (in our case) reflect changes in the isotopic composition of meteoric water and can 

be linked to climate through the understanding of the hydrologic cycle (Bradley, 2015).  When 

ocean water evaporates, the lighter oxygen isotope (16O) will be preferentially removed before 

the heavier isotope (18O) (Gat, 2010).  The various processes that lead to preferential 

fractionation are discussed in further detail in section 2.3.3.   

There are two main types of fractionation that occur in nature, equilibrium and kinetic.  

Equilibrium processes can be described as those in which isotope behavior is related to bond 

strength (Sharp, 2007).  For example, when water condenses, the liquid phase has stronger bonds 

than those in gas, and the heavier oxygen isotope will condense before the lighter one.  Kinetic 

processes describe irreversible and fast reactions, and are more common in biological processes 
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such as photosynthesis and microbial activity, and are governed not by bond strength, but by the 

reaction speeds of isotopes (Gat, 2010).  They can also occur in non-organic natural processes 

such as evaporation and diffusion. 

The isotope ratio values in samples (Rsample) are then compared to those in a standard 

(Rstandard).  The most commonly used standard for oxygen isotopes is the Vienna Standard Mean 

Ocean Water (VSMOW) (Clark & Fritz, 1997).  The result of this comparison is expressed in 

delta notation as shown below 

, 

where d18O is expressed in per mil (‰).  In paleoclimatology, d18O in ice sheets can be described 

as having a positive relationship with global temperatures; that is, a 16O-enrichment in ice due to 

a decrease in temperature results in lower d18O values relative to those of the ocean (Gat, 2010). 

2.3.2 Local Meteoric Water Lines 

 The average oxygen and hydrogen stable isotope ratios in meteoric waters are expected to 

have a linear relationship, described by the so-called Meteoric Water Line.  A Local Meteoric 

Water Line (LMWL) can be established for a specific location and its equation is then compared 

to the one of the Global Meteoric Water Line (GMWL) of non-evaporated meteoric water (Gat, 

2010). 

d2H = 8·d18O + 10 (‰) 

This equation was modified to a long-term weighted means through analysis of all available 

International Atomic Energy Agency (IAEA)/World Meteorological Organization (WMO) 

station data by Rozanski et al. (1993): 

 d2H = (8.20 ± 0.07) d18O + (11.27 ± 0.65) (‰), 
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where variations in slope are primarily determined by the extent of evaporation during 

precipitation, and changes in the intercept, also referred to as deuterium-excess (d-excess or 

simply d), represent variations in environmental conditions such as humidity and temperature at 

the moisture source (Craig, 1961). 

 By algebraically modifying the GMWL equation, d-excess has been defined by 

Dansgaard (1964) as: 

d = d2H - 8·d18O 

As suggested by Rozanski (1987) and later confirmed by Froehlich et al. (2002), d-excess has an 

inverse relationship with relative humidity at moisture sources.  This accounts for changes in d-

excess with seasonality, when a decrease in d-excess is attributed to an increase in humidity over 

the ocean relative to humidity over continents. 

2.3.3 Oxygen and Hydrogen Isotope Fractionation in Precipitation 

 After evaporating from sea water, oxygen and hydrogen isotopes are subjected to further 

fractionation processes (Fig. 7).  For example, as moisture moves over regions of higher altitude, 

the decrease in temperature causes condensation and “rain out”, leaving air masses further 

enriched in the lighter isotopes.  This is known as the altitude effect and only holds true for liquid 

precipitation (Gat, 2010).  In one study, the specific oxygen isotope variations due to the altitude 

effect for different regions were estimated, with variations in North America approximating -

0.27‰ for every 100 m of altitude (Poage & Chamberlain, 2001).  Following this model, with 

the lava tubes of our study area being located at an average altitude of ~2296 m, we should 

expect a decrease in oxygen isotopes due to the altitude effect. 

Oxygen isotopic fractionation in the atmosphere can also be attributed to the so-called 

latitude effect (Gat, 2010).  As latitude increases, δ18O and δ2H values will decrease.  The IAEA 
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has estimated this effect in North America as a -0.6‰ decrease in δ18O for each degree increase 

in latitude.  Since the study region, at a latitude of 35°, is roughly 5° north of the Gulf of Mexico, 

we expect a decrease in δ18O due to the latitude effect (IAEA & UNESCO, 2001). 

 Other processes contributing to variations of the isotopic composition include the amount 

and continental effects.  The amount effect describes a decrease in δ18O values due to increased 

rainfall (Fritz & Clark, 1997), and while it is typically for tropical and sub-tropical regions and 

only a factor in summer precipitation for the mid-latitude climate belt, the low amount of rainfall 

and high air temperature above the exposed basalt fields in the El Malpais area could make it 

relevant to our study.  The continental effect, relates to a decrease in δ18O values as moisture 

moves inland from the coast.  It is extremely variable by region and difficult to account for 

without in-depth modeling of evapotranspiration and moisture flux by season for the specific 

region in question (IAEA & UNESCO, 2001). 

Figure 7: A diagram of the various fractionation factors for oxygen as it travels from moisture source to caves  

(Lachniet, 2009). 
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2.4 Ice in Caves 

 Ice caves refer to rock caves containing perennial ice and are totally different from glacial 

caves, which are cavities solely developed in glaciers.  Ice cave can be found in many countries 

around the world, with the likelihood of occurrence increasing with higher latitudes (Perșoiu & 

Lauritzen, 2018). 

2.4.1 Models of Cave Ice Formation  

 In a recently published book, Perșoiu & Lauritzen (2018) argue that the primary 

prerequisite for glaciation in caves is that the temperature of the rock remains negative yearlong.  

At lower latitudes, such as in the El Malpais (~35°N), specific conditions are required to 

maintain negative temperatures inside caves during warm seasons. 

 Perşoiu & Onac (2018) recognized three main mechanisms for cave ice formation: 1) 

trapping of snow, 2) ventilation due to the chimney effect, and 3) the presence of cold air traps.  

The freezing of melt water in a trapped snow pack is a possible method of ice accumulation, but 

there are currently no studies that detail this process.  The chimney effect, a far more common 

phenomenon, is possible in caves with two or more entrances at varying elevations.  The 

temperature difference at these entrances results in a pressure gradient at the lower entrance, 

advecting cold air and expelling warm air through the upper entrance in cold seasons.  During 

warm periods, this circulation is reversed with cold air entering via the upper entrance and warm 

air being expelled through the lower entrance.  This process was first described by Thury (1861) 

and the type of cave in which it occurs was referred to as “dynamic”. 

 The third mechanism for cave ice accumulation, cold air trapping, is the most relevant to 

our study.  The model was first proposed by Thury (1861), where he defined such caves as 

“static”.  In caves with one or more entrances at the same elevation and descending passages, 
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which is the case for the lava tubes in this study, cold air sinks when the air temperature outside 

is lower than that of the cave, pushing warm air out of the upper entrance. This cold air is 

“trapped” in the summer when warm, lighter air is unable to enter.  During these months, a 

certain amount of ice melting does occur as the cave air temperature rises near the entrance as a 

result of direct sunlight shining on the ice or due to heat conduction through the bedrock.  This 

rise in temperature is largely cancelled out however, as the melting process cools the cave air and 

helps maintain negative temperatures (Perşoiu & Onac, 2018). 

2.4.2 Cave Ice as a Paleoclimate Archive 

The first investigations into the use of cave ice in paleoclimatology focused on the 

relation of ice mass balance and temperature (Șerban, 1987; Racoviţă & Șerban, 1990; Ohata et 

al., 1994; Luetscher et al., 2005).  Like the Antarctic and Greenland ice sheets, perennial cave ice 

stores a record of oxygen isotope ratios reflecting changes in climate.  Isotope analysis, first 

examined by Şerban et al. (1967) and now a popular technique in cave ice paleoclimate 

reconstruction, has had mixed results.  In one study by Yonge & MacDonald (1999), it was 

found that ice in the Canadian Great Divide exhibited isotope values exceeding that of local 

precipitation, with a decrease in δ18O with cave air temperature increases.  They attributed this to 

hoar ice deposition during warm seasons enriching the cave ice in the heavier isotopes. 

Fórizs et al. (2004) also found higher isotope values in cave ice than in local precipitation 

from a cave in the Bihor Mountains, Romania.  They attributed this heavy isotope enrichment to 

ice ablation and/or evaporation.  Kern et al. (2004) report conflicting results with those of Yonge 

& MacDonald (1999), with a positive correlation between Tair and δ18O, when studying Focul 

Viu Ice Cave in the Bihor Mountains.  One study of cave ice in Lecco (Italy) by Citterio et al. 

(2004) noticed that the isotopic values become more negative with depth. 
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2.4.3 Previous Studies on Cave Ice in New Mexico 

 In his M.S. Thesis, Dickfoss (1996) studied the chemical and physical composition of ice 

cores from La Marchantia and Candelaria Ice Caves (LIC and CIC) located in the central part of 

ELMA.  His findings on the history of ice and its continued ablation in CIC were published a year 

later (Dickfoss et al., 1997), but without reporting any additional oxygen isotope data.  The oxygen 

isotope values from the CIC and LIC ice cores in his Thesis were compared to those of local 

precipitation (Fig. 8) collected at the Cerro Montoso Weather Station (1980 m and 1840 m of 

elevation, respectively), and later reported by Pendall (1997).  The station is located at 34°21'N, 

106°31'W, approximately 160 km southeast of El Malpais National Monument.  These results are 

relevant to our study and will be compared with our own proxy values in the Discussion Chapter. 

 

Figure 8: δ18O box plot comparison of isotopes in LIC and CIC ice cores and precipitation from the Cerro Montoso 

Weather Station (modified after Dickfoss, 1996). 
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δ18O values from the CIC ice cores in El Moro range from -5.65 to -11.69‰.  Cores from 

LIC contained δ18O values between -8.58 and -15.49‰. The meteoric δ18O values measured in 

the precipitation collected by Pendall (1997) range between -17 and -5‰, with the majority 

falling between -12 and -5.5‰.  It is important to note that the ice core oxygen isotopes are well 

within the range of local meteoric values, indicating that they are very much representative of 

those in local precipitation.  The LMWL obtained for rainfall at Cerro Montoso is given by the 

equation below: 

 δ2H = 8·δ18O + 13.5, 

which has the same slope as the GMWL indicating a lack of evaporation during precipitation.  

The higher d-excess may suggest a lower humidity at the moisture source. 

2.5 Carbon and Nitrogen Stable Isotope Analysis in Paleoclimate 

2.5.1 The Carbon Cycle 

Carbon is present on our planet primarily in two large reservoirs: ocean and crust.  The 

ocean maintains equilibrium with atmospheric carbon through the incorporation and expulsion of 

carbonate, bicarbonate, and carbonic acid (as a function of pH), and by absorption into plants via 

photosynthesis (Fritz & Clark, 1997).  In order for the land reservoir and the atmosphere to 

maintain carbon equilibrium, an immense amount is absorbed into soil as organic carbon via 

photosynthesis and decomposition (112 x 1015 grams/year), and is returned to the atmosphere via 

the decomposition of plants and other organic matter in soil (Sharp, 2007).  This large amount of 

carbon flux has kept atmospheric concentrations of carbon in the form of CO2 low and relatively 

constant throughout time. 

Anthropogenic activity since the industrial revolution has led to a large increase in 

atmospheric CO2 concentrations.  It has been estimated that as of 2016, over 36 billion metric 
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tons of CO2 is released into the atmosphere every year from the burning of fossil fuels (NOAA, 

2017).  This disruption in atmospheric and land/ocean CO2 equilibrium has had a direct impact 

on global temperature increases for the past 150 years, leading to an increased rate in sea level 

rise, as well as more frequent droughts and fires in regions like the Southwest US (Walsh et al., 

2014). 

A side effect of the anthropogenic CO2 released to the atmosphere is the so-called 13C 

Suess effect that is responsible for a change in the average global δ13C in the atmosphere from 

6.5‰ in preindustrial times (prior to AD 1850) to less than 8.0‰ today (Keeling et al., 1979).    

This is due to the fact that combustion of fossil fuel, which is strongly depleted in the stable 

isotope 13C due to the preferential uptake of the lighter 12C isotope during photosynthesis 

(Andres et al., 1996), results in a reduction of the 13C/12C ratio of atmospheric CO2.  Given this 

postindustrial isotopic shift, all δ13C values needs to be corrected for the Suess effect (see 

Methods). 

2.5.2 C3, C4, and CAM Photosynthetic Pathways and δ13C 

 There are three primary pathways in plant photosynthesis, C3, C4, and CAM.  C3 

photosynthesis, which gets its name from the 3-carbon molecule produced during the reaction 

within leaves, is the oldest and most common pathway.  C3 plants such as trees and shrubs fix 

carbon directly from the air, but this process is heavily dependent on the atmospheric CO2 

concentrations.  As a result of decreases in global atmospheric CO2 concentrations millions of 

years ago, some plants modified their photosynthetic pathways to maximize CO2 retention (Sage, 

2004).  These C4 (4-carbon molecule) plants transfer the absorbed CO2 to bundle sheath cells 

before the reaction occurs, where a lower oxygen content ensures higher efficiency in carbon 
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fixation (Hatch et al., 1966).  The majority of C4 plants are angiosperms, and thrive in the 

relatively low CO2 and higher temperature environments compared to C3 plants. 

CAM (crassulacean acid metabolism) plants have adapted to extremely arid environments 

where stomata are must remain closed during the day to prevent water loss.  Carbon dioxide in 

these plants is instead absorbed through the stomata at night, and is converted to malate 

molecules and stored until photosynthesis can begin in daylight (Ranson & Thomas, 1960). 

Smith & Epstein (1971) demonstrated that each photosynthetic pathway produces a 

characteristic range of δ13C values.  Further studies by O'Leary (1981) and Cerling et al. (1997) 

show that the δ13C values of C3 plants range between ~ -24 to -32‰ (averages at -26.6 ± 2.3‰) 

and for C4 plants from ~ -10 to -16‰ (average -12.5 ± 1.1‰), with CAM plants typically 

showing δ13C values in between C3 and C4.  Variations in δ13C values within the C3 or C4 

photosynthetic pathways are largely the result of alterations in plant light-use, CO2 recycling in 

the canopy, and water-use efficiency (WUE) (Lambers et al., 2008).  Since WUE is primarily 

dependent on CO2 concentrations in the atmosphere and rainfall amounts, one can use δ13C 

variations within C3 and C4 pathways as a proxy for different hydroclimate conditions (Silva & 

Horwath, 2013; Forray et al., 2015). 

2.5.3 δ13C Fractionation in the Bat Food Web 

After carbon dioxide is absorbed by plants through photosynthesis, depending which 

pathway they use (C3, C4, or CAM), the δ13C signature of plants is transferred into the chitin of 

the insects that feed on them at the larva stage, hence reflecting their diet.  Along the plant-

insect-bat-guano pathway, the carbon isotope fractionation is minimal (Marais et al., 1980; 

Wurster et al., 2007; Onac et al., 2014).  In fact, it has been demonstrated that insects maintain a 

δ13C ratio in their tissue enriched by an average of 2‰ relative to their diet (De Niro & Epstein, 
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1978).  Further fractionation occurs in the production of insect-synthesized alkanes, resulting in a 

1‰ depletion (Marais et al., 1980).  By combining these two digits, we expect a total 13C 

enrichment in insects of 3‰ relative to the consumed plant.  Carbon isotopes in these insect 

alkanes are not expected to undergo further fractionation during the metabolic processes after 

consumption by bats (Mitchell, 1972).  Thus, the isotopic signature of insect remains is 

transferred unaltered into the bulk guano. 

The usefulness of δ13C in guano-based paleoclimate studies resides in the fact that the 

photosynthetic pathways that plants use all have identifiable ranges of δ13C.  Thus, changes from 

C3 to C4 vegetation assemblages (especially prior to human presence) captured in the δ13C values 

of guano will help in deciphering the prevailing environmental conditions such as temperature 

and precipitation at the time guano accumulated (Smith & Epstein, 1971; Ehleringer et al., 1997). 

Vegetation in El Malpais consists of primarily mixed conifer areas mostly composed of 

Pinus ponderosa (ponderosa pine), shrub/conifer areas, and grass/shrub land consisting of 

multiple species of C4 grasses (Bleakly, 1997).  Because of the extensive foraging range of 

Tadarida brasiliensis (~80 km), the insects consumed will have δ13C signals that vary depending 

on whether they foraged primarily over grassland (C4) or conifer areas (C3) (Davis et al., 1962).  

The dietary preferences of the 3 primary species of insects consumed by Tadarida brasiliensis 

must also be considered.  During evening foraging times, this species primarily consumes 

carabidae, most of which as larvae are opportunistic omnivores that have little dietary 

preference, and lygaeidae, which have a tendency to feed on milk-weed seeds (Davies, 1959; 

Ralph, 1976; Whitaker et al., 1996).  Lepidoptera, which are preferentially consumed during pre-

dawn feeds, can consume leaves from a wide range of plants during larva stages (Whitaker et al., 

1996).  Since no in-depth study of insect diet in El Malpais is available, it must be assumed that 
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the majority of the insects consumed by bats obtained their δ13C and δ15N signal from whatever 

plants were most available in the foraging area.  

2.5.4 δ15N and the Nitrogen Cycle 

 Nitrogen accounts for 78% of the Earth's atmosphere and represents the main source for 

plant usage (Vitousek et al., 1997).  While much of the modern nitrogen content on land has an 

anthropogenic origin, the primary source outside of human involvement can be found in biotic 

fixation, accounting for 110 Tg yr-1 (Gruber & Galloway, 2008).  Anthropogenic activities such 

as fossil fuel burning and agriculture, on the other hand, are responsible for ~160 Tg y-1, while 

approximately 98 Tg y-1 is retained on land or converted to N2 through denitrification (Galloway 

et al., 2004; Gruber & Galloway, 2008).  A full depiction of the Nitrogen cycle in both land and 

ocean environments can be further examined in Figure 9. 

 

Figure 9:  An illustration of the nitrogen cycle in both terrestrial (left), and ocean (right) environments.  Sources 

include man-made (orange) and natural (blue); values are given in Tg y-1 (from Gruber & Galloway, 2008). 
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Nitrogen in guano has only recently been used in paleoclimate studies, primarily because 

of the relative complexity of the nitrogen cycle as well as the involvement of microbial processes 

in decomposition.  The degree of fractionation in the nitrogen isotopes following deposition can 

be indicated by the C:N ratio and chemical composition of guano (Bird et al., 2007; Wurster et 

al., 2015).  In a study by Robinson (2001), it was found that δ15N could be used as an integrator 

for the Nitrogen cycle and therefore used as a record of the processes involved such as 

fractionation, nitrogen pool mixing, and nitrogen content percent variations.  The δ15N values 

can also be used to determine past anthropogenic activities such as use of fertilizer in agriculture, 

deforestation, and fires (Kendall et al., 2007).  Multiple studies on nitrogen isotopes in vegetation 

and soil found that a relationship exists between δ15N and precipitation, with decreases in δ15N 

corresponding with wet periods and vice-versa (Austin & Vitousek, 1998; Handley et al., 1999; 

Robinson, 2001; Swap et al., 2004).   

2.5.5 δ15N Fractionation in Soil 

 There are multiple stages in the bat food cycle, each of which may cause nitrogen isotope 

fractionation.  The source of nitrogen in this cycle is found in dissolved inorganic nitrogen (DIN) 

in soil, which has an isotope signature dependent on processes such as ammonification 

(fractionation is negligible), ammonia volatilization, nitrification, and denitrification (Table 1) 

(Högberg, 1997; Robinson, 2001; Tiunov, 2007).  All of these transformations lead to a kinetic 

fractionation in which the heavier isotope is enriched (Högberg, 1997). 
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Table 1:  Organic processes in soil causing 15N enrichment (values are expressed in ‰; from Robinson, 2001). 

 

2.5.6 δ15N Fractionation in Plants 

 Certain fungi (mycorrihizal and ectomycorrhizae), which help roots with nitrogen uptake 

in a symbiotic relationship, have been found to fractionate nitrogen during the transfer process to 

roots, leaving a lower δ15N value in them while increasing them in fungi (Högberg, 1997; Hobbie 

et al., 2000).  After absorbing nitrogen (as ammonium and nitrate) from soil via their root 

systems (sometimes assisted by fungi) or from the atmosphere through fixation, metabolic 

processes within plants tend to cause further enrichment of the heavier isotope (Evans, 2001).  

These metabolic processes include nitrogen reallocation, nitrogen loss in specific organs, and 

multiple assimilations. 

2.5.7 δ15N Fractionation in Insects and Bats 

As mentioned in previous sections, large scale changes in dominant vegetation type will 

be reflected by the isotopic signature of guano.  For more recent guano accumulations, the 

variations of the δ15N values will be largely dependent on the chosen foraging area and the 

specific diet for each bat species.  Because the 80 km foraging range of Tadarida brasiliensis 

encompasses grassland, forest, and the Rio Grande, the δ15N is likely to vary according to the 

forage location preferences of this particular species (Davis et al., 1962).  As nitrogen moves 

along the bat food web, it becomes even further enriched in 15N.  This is due to the fact that after 
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the consumption of insects, much of the absorbed nitrogen is lost as ammonia in urea, with the 

lighter isotope preferentially converted and lost (Adams & Sterner, 2000; Kelly, 2000).  As 

nitrogen makes its way up the trophic levels through larvae, insects, and finally to bats, δ15N will 

increase by ~3‰ for each level (Kelly, 2000).  
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Chapter 3:  

Methods 

 

Note To Reader 

 All photos with visible individuals have permission granted for use in this thesis. 
 
3.1 Sample Collection 

 
3.1.1 Ice Coring Procedure 

A Bosch hand held corer was used to recover the first 50 cm core from Cave 29.  We 

employed a 100 cm long and 7.25 cm diameter Kovacs Mark 3 (COS-710-002) corer to collect 

samples from Cave 91 and the lower 50 cm of the Cave 29’s ice deposits.  We extracted a 100 

cm core from Cave 91 (Fig. 10), which was then divided into 5 cm blocks, each of them crushed 

inside plastic bags before being transferred to plastic bottles.  Two cores were recovered from the 

same location in Cave 29, 50 cm in 2017 (cut into 2 cm intervals) and 100 cm in 2018 (cut into 5 

cm slabs due to lack of organic matter for use in dating) (Fig. 11).  Since we used the same 

starting depth for both cores and they were taken within 10 cm of each other, we can combine 

them for use in analysis as one 100 cm core. 

The cave settings in Cave 455 were unfavorable for vertical core extraction (narrow 

passage with low ceiling).  Therefore, samples were taken horizontally along a vertical section 

(122 cm) using a Petzl ice screw at 2 cm intervals down the ice cliff (Fig. 12).  Nitrile gloves 

were used for every step involving handling of the ice cores. 
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Figure 10: Left: Coring the ice deposit from the floor of Cave 91. Right: Image of the recovered ice core. 

  

  

Figure 11: Top and Bottom Left: Test coring of the upper 50 cm in the Cave 29 ice block.  

Top & Bottom Right: Coring the 1-m long ice core from Cave 29. 
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Figure 12: Left: The ice wall in Cave 455. Right: Recovering short, horizontal ice cores at 2-cm intervals using a 

Petzl ice screw on the ice wall of Cave 455. 

3.1.2 Guano Coring Procedure 

The guano pile in Bat Cave was cored using a meter-long Russian Peat Borer with a twist 

handle and extending rods (Fig. 13).  This device’s twisting motion is meant to prevent inter-

layer mixing.  Without a mechanical drill, extraction was more difficult and only a 70 cm core 

was recovered from a large guano mound accumulated along the main tube passage (Fig. 14). 

 

 

 

 

 

 

 

 

Figure 13: A sketch of the Russian Peat Corer used in 

recovering guano from Bat Cave (with  

permission from Aquatic Research Instruments 2018). 
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Figure 14: Left: A guano mound located in Bat Cave. Right: The guano core retrieved from Bat Cave  

showing some internal layering. 

3.2 Isotope Analysis 

3.2.1 δ18O and δ2H in Ice 

Ice samples were melted at room temperature before being transferred to smaller glass 

bottles filled to the very top to prevent evaporation.  They were then transported to the 

University of South Florida (USF), School of Geosciences, where the isotope analysis were 

performed on a Piccaro L2130-i Cavity Ringdown Spectroscope.  About 0.8 mL of ice-melted 

water was filtered using 0.22 µm silicon disk filters before filling the 2 mL Piccaro vials. 

 All δ18O and δ2H values are reported in ‰ relative to VSMOW.  Two in-house standards: 

USFW1 ( δ2H = -136.09 ± 0.1‰, δ18O = -17.62 ± 0.08‰) and USFW2 ( δ2H = -0.01 ± 0.12‰, 

δ18O = 2.37 ± 0.07‰) were calibrated against VSMOW2 and SLAP2.  Since the standards used 

in analysis displayed deviations in reproducibility of δ18O < 0.06‰ and δ2H < 0.2‰, both within 

and across separate Picarro runs, drift correction was deemed unnecessary. 
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3.2.2 δ13C and δ15N Isotope Analysis 

Guano samples were homogenized using a Crescent Wig-L-Bug LP-602E and an agate 

vial and agate grinding ball (International Crystal Labs).  We then weight out two milligrams of 

each sample and sealed them in tin capsules.  A Costech ECS4010 Elemental Analyzer (Costech 

Analytical Technologies ECS) coupled to a Delta V Advantage Isotope Ratio Mass Spectrometer 

(ThermoFisher Scientific) in the Isotope Lab of the School of Geosciences (USF) was used to 

analyze the samples for carbon and nitrogen isotopes.   

Three standards were used during bulk guano isotope analysis: B2155, a protein standard 

(Elemental Microanalysis Ltd.), glutamic acid (GLU, internal standard), and USGS-40, the 

official USGS L-glutamic acid standard.  The in-house glutamic acid standard (GLU) has 

measured values of δ15N = -16.5‰ and δ13C = -6.28‰.  The precision of analysis was estimated 

based on replicate standards in each run (δ15N: 0.18‰; δ13C: 0.04‰).  Due to post-industrial 

revolution increases in atmospheric CO2 concentrations, δ13C values have been adjusted using 

the Suess Correction, which is implemented by subtracting the Suess effect from our time series 

model, and is based on the global 13CO2 record (Keeling et al., 1979). 

3.3 Radiocarbon Dating and Age-Depth Modeling 

3.3.1 Principles of Radiocarbon Dating 

The radiocarbon dating method is based on the fact that the radiogenic carbon isotope 

(14C) is constantly being created when cosmic rays interact with nitrogen in the upper 

atmosphere.  This unstable isotope is eventually oxidized into 14CO2, which then enters the 

global carbon cycle and is assimilated by animals and plants throughout their lifetimes.  We 

expect carbon in the tissue of living organisms to be in equilibrium with atmospheric 

radiocarbon, and that when organisms die this isotope will begin to decay to the stable 14N 
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isotope.  We can therefore use the half-life of 14C (5,730±40 years) to precisely determine the 

age, assuming the organism in question was in a closed system after death where it no longer 

interacted with atmospheric radiocarbon and no amount of the daughter isotope was initially 

present (Libby, 1955; Taylor, 1997).  As 14C travels through the bat food web through plants and 

insects, it is expected to maintain equilibrium with atmospheric radiocarbon until after deposition 

in guano, when it begins to decay (Taylor, 1997).  Radiocarbon in charcoal pieces and organic 

sediments found in the three ice cores should likewise allow for the precise age determination of 

these respective organic materials. 

3.3.2 Sample Collection/Preparation for Radiocarbon Dating 

Large charcoal samples from the upper part of the Cave 29 core, specifically at 0-2, 15-

20, and 53-55 cm depths, were recovered from the ice-melted water and sent to the National 

Institute for Physics and Nuclear Engineering in Romania, where they were radiocarbon dated 

using a 1 MV Tandetron accelerator mass spectrometer (AMS). 

Samples from the Cave 455 ice core were completely lacking in sediment and were 

therefore not sent for radiocarbon dating.  For Cave 91, as well as for the lower part of Cave 29 

ice cores, some sediment with possible organic content was noticed.  Therefore, we used silicate 

filters and a vacuum pump to extract any organic and other sediments available in key samples 

throughout the ice cores from these caves (Fig 15).  Organic and/or inorganic material was 

extracted from samples at depths of 5-10, 25-30, 70-75, and 90-95 cm from the Cave 29 core.  

Lack of visual evidences for charcoal in the Cave 91 ice core led us to sample only the top and 

bottom of the core (5-10 and 95-100 cm) for radiocarbon dating. 
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Figure 15: Sediment filtered from melted ice cores to be sent for radiocarbon dating. 

Guano samples BC-1 (64-66 cm), BC-3 (60-62 cm), BC-9 (48-50 cm), BC-11 (44-46 

cm), BC-22 (22-24 cm), and BC-33 (0-2 cm) were homogenized using a Crescent Wig-L-Bug 

LP-602E and sent to the National Institute for Physics and Nuclear Engineering in Romania for 

radiocarbon dating. 

3.3.3 Age Depth Modeling 

Because the atmospheric 14C concentration varies through time, and because nuclear 

testing in the 1950s dramatically altered these concentrations, calibration techniques using U-

series dated carbonates and tree rings with known ages must be employed.  Age-depth models 

were created using the Clam 2.2 code (Blaauw, 2010) run under R (version 3.01), an open-source 

statistical software (R Development Core Team, 2013). Clam code requires ages to be calibrated 

using pre- or post-bomb atmospheric conditions.  Since we obtained ages both older and younger 

than 1950, post-bomb results were calibrated with CaliBomb (Reimer & Reimer, 2009) using the 

IntCal13 and the Northern Hemisphere Zone 2 post-bomb datasets, respectively (Reimer et al., 
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2013).  The pre-bomb sample was calibrated directly through R (version 3.01) with Clam 2.2 

code. 

 As the Clam-generated age-depth model contains multiple sections within the same year, 

a method had to be designed to find the associated months for these samples.  Based on the fact 

that we expect guano accumulation to occur between April and September, the periods in which 

the bachelor/maternity colony is active, we created an equation to precisely obtain the months 

within this time period: 

(ID - Y) * N + S = M, 

where ID is the interpolated date rounded to two decimal places, Y is the year, N is the number 

of months for which we expect guano to accumulate, and S equals the month in which the 

interval starts (e.g., January = 1), in our case being April when accumulation begins.  Once a 

month (M) was obtained, this value was then converted back to a final age (FA) rounded to two 

decimals using the following equation: 

(M - S)/12 + Y = FA, 

so that the age could still be plotted with proper monthly spacing, S in this case being 1 since we 

are converting back to a 12-month interval. 
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Chapter 4:  

Results 

 

4.1 δ18O Values for Cave 91 and 455 

 The δ18O values for the ice core in Cave 91 (see Appendix A, Table A.1) show a 

decreasing trend for the first 25 cm (with the exception of the section between 15 and 20 cm) and 

relatively stable values, averaging -9.3‰, throughout the rest of the core (Fig. 16A).  The most 

notable feature of the δ18O results for Cave 455 (see Appendix A, Table A.2) is the large shift to 

more negative values between 34 and 48 cm depth (Fig. 16B).  δ18O values throughout the core 

oscillate between -11.4 and -7.6‰, except for the depth interval mentioned above where they are 

as low as -12.5‰. 

 

Figure 16: δ18O vs depth plots for cave 91 (A) and 455 (B) ice cores. 
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4.2 Cave 29 δ18O Time Series 

 The upper 57 cm of the ice core from Cave 29 was the only one with sufficient organic material 

(charcoal) available for dating.  The radiocarbon ages obtained for the 4 samples sent for dating are 

listed in Table 2.  One more age was obtained for the depth interval 5 to 10 cm, but it was out of 

chronological order and therefore discarded.  The age depth model (Fig. 17) and δ18O time series plot 

(Fig. 18) for this core are presented below (full results in Appendix A, Table A.3).  A figure of δ18O 

plotted with depth for the entire Cave 29 core is available in Appendix A (Fig. A.2).  
 

Table 2: Radiocarbon ages and the calibrated years AD used to generate the age-depth model. 

Sample depth 
(cm) 

Radiocarbon age 
(yrs BP) 

Calibrated 2σ age 
(cal AD) 

1-2 cm 1105 ± 33 948 ± 13 

15-20 cm 1148 ± 34 875 ±15 

25-30 cm 1301 ± 22 693 ± 9 

53-55 cm 1833 ± 74 192 ± 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Age-depth model for the Cave 29 ice core. 
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The δ18O time series, which assumes a continuous ice accumulation, reveals an overall 

decreasing trend until the second largest trough (-8.9‰) at ~AD 500 (Fig. 18).  This is followed 

by a brief increase before plummeting to the lowest point at -9.3‰ (~AD 659).  The remainder 

of the core displays an overall increasing trend with its highest peak of -6.9‰ at AD 919. 

Figure 18:  The ice δ18O time series plot for Cave 29. 

 
4.3 δ2H Values and Local Meteoric Water Lines 

 δ2H values across all cores have a minimum of -91.4‰ and a maximum of -28.7‰, with 

a mean of -59.1‰.  LMWLs plotted for all three cores show good linear correlations with R2 

values > 0.90.  The Cave 91 LMWL (Fig. 19A) displays a positive linear correlation between 

δ2H and δ18O values with an R2 of 0.9889.  The equation given by this relationship plots above 

the GMWL with a much higher d-excess of 17.5‰. 

 The LMWL plot obtained from Cave 29 (Fig. 19B) has an R2 of 0.91317 and plots above 

the GMWL, but with a higher slope of 8.7.  The d-excess obtained from this core approximates 

that of Cave 29 at 17.1.  Cave 455 has a LMWL (Fig. 19C) that bears the closest resemblance to 

the GMWL with a slope of 8 and a d-excess of 9, with a good linear relationship defined by 



39 

R2=0.98142.  D-excess values plotted with depth for all 3 caves can be found in Appendix A, 

Figure A.1. 

 
Figure 19: The Local Meteoric Water Line for cave 91 (A), 29 (B), and 455 (C) ice cores (blue line)  

plotted against the GMWL (red dashed line). 

4.4 Guano Core Description, Carbon/Nitrogen % Content, and Age-Depth Model 

The guano core exhibits varying sections of dark/light gray banding, with the lightest 

occurring between 21 to 28 and 34 to 42 cm in depth.  The upper section is primarily composed 

of loosely bound guano pellets, while the lower part is noticeably darker and more compact.  

Based on three preliminary radiocarbon ages, it appeared that the guano accumulation between 



40 

the surface and a depth of 44 cm was much faster than in the lower part of the core.  Therefore, 

we selected more samples from the lower part of the core to be sent for dating (Table 3). 

Table 3. AMS 14C measurements on guano samples and the calibrated years AD. 

Sample depth 
(cm) 

Radiocarbon age 
(yrs BP) 

Calibrated 2σ age 
(cal AD) 

0-2 -549 ± 27 2005 

22-24 -592 ± 20 2003.5 

34-36 -777 ± 28 1998 

44-46 -276 ± 28 1956.5 

48-50 -265 ± 21 1956 

60-62 -321 ± 21 1955.5 

62-64 337 ± 25 1584 

64-66 321 ± 30 1564 

 
 The additional ages revealed a long hiatus between the lowest section of the core (AD 

1584) and the rest, likely due to guano mining activities in the late 1800's and early 1900’s.  

Ages for the upper 60 cm of the core cover the time interval between AD 1955 and 2006.  The 

accumulation rate is noticeably faster between AD 1955 and 1957 (~9 cm/yr), where after it 

slows dramatically (~0.33 cm/yr) and increases again from AD 1998 to 2006 (~2.12 cm/yr).  The 

age-depth model was generated by 

linear interpolation of these results 

using Clam code (Blaauw, 2010) is 

presented in Figure 20. 

 

 

 

Figure 20: The Bat Cave guano age-depth 

model. 
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 The % content of carbon and nitrogen, and C:N ratio are displayed in Figure 21.  %N 

values remain relatively high and range between 11.6 to 16%.  The %C values also maintain a 

relative stability and oscillate from 37.3 to 45.5%.  The C:N ratio throughout the core never 

exceeds 3.5.    

 

Figure 21: A comparison of %N, %C, and C:N in Bat Cave guano. 
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4.5 Bat Cave Guano δ13C Time-Series 

 The δ13C time-series plot obtained from Bat Cave guano core is shown in Figure 22A 

(full results are listed in Table A.4, Appendix A).  Values range between -18.05 and -11.64‰; an 

increase in δ13C values can be noticed between the two samples from the bottom part of the core 

defining the time period between AD 1564 and 1584.  To better visualize the intervals with high 

accumulation rates, i.e., AD 1955-1957 and AD 1998-2006, respectively, two separate plots were 

created (Fig. 22B and C).  The plot of δ13C and δ15N values against depth is available in 

Appendix A, Figure A.4. 

Figure 22: The Bat Cave guano δ13C time-series (A), with close-up view for the intervals between 1998-2006  

and 1955-1957 (B and C, respectively). 
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 The average δ13C value (-14.1‰) for the period from AD 1955 to 1957 is slightly higher 

than that of samples found at the top of the core, which is -16‰.  The 1955 accumulation 

interval starts with increasing values in July and a decreasing trend in August.  The most notable 

feature in AD 1956 is a trough (-15.5‰) in May.  The δ13C values of guano accumulation 

intervals between AD 1998 and 2006 show a maximum peak of -12.4‰ around August, 2003, 

and a minimum of -18‰ in June of 2004.  The AD 2003 and 2004 periods have the highest 

resolution, covering full guano accumulation intervals, while the majority of values between 

1998 and 2002 only include one value per year.   

 
4.6 Guano δ15N Time-Series 

 The δ15N values range between 5.7 and 8.8‰ (Fig 23A).  Because the accumulation rate 

was higher between AD 1955-1957 and AD 1998-2006, these intervals are plotted separately to 

better observe the isotopic fluctuations (Fig. 23B and C).  δ15N values of the samples at the 

bottom of the core corresponding to AD 1564 and 1584 are significantly higher than the majority 

of the upper core.  After the hiatus, the δ15N values are slightly below the previous ones and 

show an overall decreasing trend between AD 1955 and 1957, with the exception of a peak of 

7.7‰ in May, 1956 (Fig. 23C).  From 1957 to 1998 the general trend is an increasing one with a 

small trough in 1974.  Values from AD 1998 to 2002 maintain a decreasing trend with a large 

peak of 8.2‰ in July, 2001.  AD 2003 to 2004 values cover two full accumulation intervals with 

2003 displaying a noticeable 2‰ increase while values in 2004 oscillate between 7 and 8.5‰. 
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Figure 23: The Bat Cave guano δ15N time-series (A), with the intervals between 1998-2006 and 1955-1957 

enlarged in panels B and C, respectively. 
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Chapter 5: 

Discussion 

5.1 Interpreting δ18O Values in Ice Cores  

 5.1.1 Isotopic variations in Cave 91 and 455 Ice Cores 

 Due to the lack of organic sediment available for radiocarbon dating in the Cave 91 and 

Cave 455 ice cores, it was impossible to create time series plots and make proper comparison 

with other proxy records to further discuss the causes for the isotopic variations.  That being said, 

a certain amount of important information can still be derived from analyzing the amount of δ18O 

fractionation within each of the cores.  Studying the meteoric water lines and d-excess of these 

cores can also reveal much about past moisture source and local climate conditions (Fig. 19 and 

Fig. A1, respectively). 

 Cave 455 δ18O values decrease as much as ~5‰ between 50 and 30 cm depth, whereas 

Cave 91 values oscillate as much as 3.5‰ in the upper 30 cm (see Fig. 16).  Using the Johnsen et 

al. (1989) equation describing the relationship between local surface temperature and δ18O values 

in Greenland ice cores: δ18O = 0.67T - 13‰, we see that a 5‰ (from -12.5 to -7.6‰) change 

would reflect a proportional ~7°C change in local surface temperature.  It should be noted that an 

equation relating temperature and δ18O in ice from Greenland may not fully apply to the cave ice 

in New Mexico, as it forms under very different climate conditions.  Nevertheless, it at least 

gives us an idea of how oxygen isotopes in ELMA precipitation may be responding to local and 

regional temperature changes.  Since it is unlikely that such a drastic temperature change (7°C) 

could occur over a short interval, it is possible that other factors such as more Pacific-derived 
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precipitation (more negative δ18O) decreased values in the core.  Melting of the upper layer of 

the Cave 455 ice block from contact with warm water in the summer may also have led to 

decreases in δ18O values.  The 3.5‰ oscillation in the Cave 91 core would have reflected local 

temperature changes up to 3.5°C.  This increase in temperature is also high considering it only 

spans a 30 cm depth interval, and likely reflects the same moisture source changes we see in 

Cave 455. 

 The LMWL from Cave 455 has a slope that nearly matches that of the GMWL (Fig. 19).  

As discussed in section 2.3.2, variations in LMWL slope indicate evaporative processes during 

precipitation (Rozanski et al., 1993).  Therefore, we can assume that the ice in Cave 455 was 

subject to little or no evaporation during precipitation in El Malpais.  The d-excess value of 9.01 

is slightly lower than the GMWL, suggesting faintly higher relative humidity at the moisture 

source compared to that of nearby land. 

 The LMWL derived from the Cave 91 ice core is defined by the equation δ2H = 8.6*δ18O 

+ 17.5.  The slightly higher slope relative to the GMWL signifies a small amount of evaporation 

during rainfall.  A large d-excess of 17.5 infers a substantially lower relative humidity at 

moisture source.  The Cave 455 LMWL shows a clustering of δ18O values between -10.5 and -

7.5‰, this is slightly higher than the concentration of values we see in Cave 29 (-10.3 to -8.5‰) 

and could indicate a higher frequency of summer precipitation in Cave 455 ice. Alternatively, the 

discrepancy between clustering in both LMWLs could suggests precipitation from a single 

moisture source but at varying temperatures, as seasonal changes alone at a single source can 

alter δ18O values up to 6‰ (IAEA, 2010).  If temperature is the primary cause for δ18O variations 

in El Malpais, however, this would suggest a lower temperature (T) coefficient than the one 

found in the Johnsen et al. (1989) equation. 



47 

 The clustering of both δ18O and d-excess values in both caves may suggest a 

discontinuous accumulation of ice (see Figure A.1).  This could mean that extreme precipitation 

events occurring in short intervals contributed to more accumulation, followed by periods of 

little or no precipitation/ice accumulation.  Further study of accumulation rates based on a higher 

resolution chronology would allow to better understand the ice deposition.  Furthermore, a mass 

balance that relates amount of precipitation and ice could be an important research goal for 

future studies. 

 
5.1.2 Human Activity in Cave 29 

 Fragments of indented, corrugated pottery inside Cave 29 were identified as Cibola 

Grayware (Fig. 24) (Baumann, pers. comm., 2018).  This type of ceramic is characteristic of the 

Ancestral Puebloan, from which the Acoma and Zuni peoples of El Malpais descend, and dates 

back to AD 800 to 1300.  The section of Cave 29 where the ice block is located contains large 

charcoal mounds. It is likely that Native Americans had used fires inside the cave to melt ice for 

drinking water during periods of drought.  This could explain why the top of our core was dated 

at AD 948, as the missing ice above could have been melted for drinking. 
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Figure 24: Left: Cibola Grayware fragment found on top of the Cave 29 ice block. Right: A large charcoal mound 

next to the Cave 29 ice block. 

 
 Several pits can be found between the cave entrance and the ice block.  It is possible that 

they were dug to collect and store melted ice water to facilitate its usage.  Another possible 

explanation for their presence would be that early settlers in the 1800's prospected the lava tube 

in search of precious metals.  In support of this hypothesis comes traces of a mined section in the 

back of the cave, where miners used hammer and chisel.  In addition, the upper part of a wooden 

ladder coming out of one of these pits (now an ice pond) suggests the miners dug rather deep 

exploration ditches. 

 5.1.3 The Cave 29 Ice δ18O Record and Major Climate Events 

 The majority of local precipitation δ18O values collected by Pendall (1997) fell between  

-17 and -5‰ (a 12‰ amplitude).  While our values are within this range, they only vary up to 

2.5‰ in the Cave 29 ice core.  In his study on Candelaria Ice Cave in El Malpais, Dickfoss 
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(1996) found δ18O in ice ranged between -11.7 and -5.7‰ (a 6‰ amplitude).  He attributed this 

discrepancy between precipitation and ice δ18O to three major causes, two of which are 

applicable to our study.  First, because snow accumulates throughout the winter and enter the 

cave after melting, the δ18O values for these months mix together and will produce an isotopic 

signal that represents an average of the entire season.  Second, a small degree of melting due to 

rainfall-derived water percolating in the cave during warm seasons is responsible for mixing 18O-

enriched summer and 18O-depleted winter precipitation.  See Appendix A, Figure A.3 for a 

comparison of ice core δ18O values from this thesis with the Dickfoss (1996) ice and Pendall 

(1997) precipitation values. 

 The upper 55 cm of the Cave 29 ice core spans the period between AD 138 and 948.  The 

following analysis assumes a continuous ice accumulation between ages obtained from 

radiocarbon dating, but it is important to note that the clustering of δ18O values could suggest a 

majority of accumulation happening during heavy rainfall events (See Figure A.1).  The 

accumulation rate between AD 138 and 693 (0.05 cm/yr) is almost twice as fast as the period 

from AD 693 to 875 (0.027 cm/yr).  After AD 875, accumulation speeds up dramatically to 0.18 

cm/yr.  The rates of accumulation for the entire core, however, are substantially lower than that 

of the CIC core studied by Dickfoss (1996), which reaches 3.1 cm/yr.  This is likely due to the 

fact that ice in CIC accumulates next to one end of the collapsed lava tube ceiling, making 

possible for large amounts of rain and snow buildup to occur over a relatively shorter period of 

time, due to the proximity to the entrance.  

 There are three important climate events that occurred over the interval between AD 138 

and 948: the Roman Warm Period (RWP: BC 250 - AD 450), Dark Ages Cold Period (DACP: 

AD 450 - 800), and the Medieval Warm Period (MWP: AD 800 - 1350).  δ18O values in our core 
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remain relatively constant throughout the end of the RWP, but plunge at ~AD 450 during the 

onset of the DACP.  A steady increasing trend begins around AD 665, accelerating at ~AD 850, 

right after the beginning of the MWP.  We found several other proxy records that span these 

climate periods for use in comparison (Fig. 25). 

 
 5.1.4 The Climatic Significance of δ18O Fractionation in Ice: Temperature and 

          Amount Effects 

 In understanding the relationship between our δ18O values and temperature trends, we use 

the Ljungqvist (2010) multi-proxy reconstruction of Northern Hemisphere temperature (Fig 

25B).  While major peaks and troughs have little in common between this record and our own, 

the ice δ18O values from Cave 29 do follow general Northern Hemisphere temperature trends, 

marking three distinct climate periods (RWP, DACP, and MWP).  Ljungqvist's reconstruction 

marks the end of the RWP at AD 300, when Northern Hemisphere temperatures had decreased to 

a minimum average and stabilized.  Other temperature reconstructions using lake sediments in 

northwest and southeast North America show a similar trend.  Studies in Europe such as Hass 

(1996), or even earlier studies by Lamb (1982, 1985), identify AD 400 as the onset of the DACP.  

Our record however, shows a decreasing trend in δ18O representing climate deterioration at the 

end of the RWP and transition into the DACP around AD 450.  This is in closer agreement with 

the Follet et al. (2004) climate reconstruction which used changes in C3/C4 vegetation 

dominance as a proxy for temperature and precipitation in the Western Corn Belt and Great 

Plains, and noted a large transition to a colder climate at AD 450.  A comparison of our record 

with the Trouet et al. (2013) North American temperature reconstruction based on pollen shows 

a similar trend with the lowest values in the DACP between AD 550 and 650, where after both 

records demonstrate an increase during the transition into the MWP. 
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Figure 25: A comparison between the Cave 29 ice core δ18O record (A), the Northern hemisphere multi-proxy 

temperature reconstruction (B; Ljungqvist, 2010), a δ18O record from a speleothem in Juxtlahuaca Cave, Mexico  

(C; Lachniet et al., 2012), the North American 30 year resolution pollen temperature reconstruction by Trouet et al. 

(2003)(D), the Carlsbad, NM speleothem δ18O record (E; Asmerom et al., 2007), the El Malpais 20-year average 

tree-ring thickness record (F; Grissino-Mayer, 1995), and the Southern Oscillation Index reconstruction by Yan et 

al. (2011) (G). 
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Fractionation in the Carlsbad Caverns speleothem δ18O record documented by Asmerom 

et al. (2007) (Fig. 25C) was attributed mainly to changes in moisture source resulting from solar 

forcing, and in part to the amount effect.  Therefore, we examine whether the amount effect 

affects our record as well.  One way of addressing this is to make use of the dendrochronology 

study provided by Grissino-Mayer (1995) (Fig. 25F).  When comparing the tree-ring thickness 

and the Carlsbad Caverns δ18O values in speleothem (Fig. 25F and E), we noticed that increases 

in precipitation denoted by wider tree rings mostly correspond with decreases of δ18O in 

speleothem calcite values.  This is in agreement with the Asmerom et al. (2007) study that 

reported an amount effect on their speleothem, giving us an opportunity to evaluate the δ18O 

values in the Cave 29 ice core against the record derived from the tree ring study conducted in 

ELMA by Grissino-Mayer (1995).  The direct comparison of these two time-series show no 

similar trends or overlapping peaks (Fig. 25A and F), however, thus leading us to the conclusion 

that the amount effect has little to no impact on our ice core record. 

 
 5.1.5 Moisture Source Variation and ENSO 

 δ18O values become more negative as the moisture travels from source to precipitation 

site due to the altitude and continental effects.  This means that our range of values were closer 

to those of Gulf of Mexico summer precipitation (between -2 to -4‰) before undergoing such 

processes.  Furthermore, in comparison with the trend line in the Lachniet et al. (2012) 

speleothem δ18O record in Mexico (Fig. 25C), which was used as a proxy for NAMS strength, 

we see an anti-correlation with our values.  This is due to the fact that unlike the δ18O values in 

ice from El Malpais, the Juxtlahuaca speleothem values are primarily controlled by the amount 

affect due to the lower latitude of the cave (~18° N), decreasing in response to increases in 
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precipitation from the GoM.  In our record we see an opposite response, as increased 

precipitation from NAMS leads to more positive δ18O values in ELMA precipitation.  The 

relative smoothness of our trends as compared to those in the speleothem record is likely due to a 

difference in resolution.   Thus, we believe that ice in Cave 29 accumulated year-round, with the 

majority building up during summer monsoon seasons (or ponding in the summer and freezing in 

the autumn/winter), while a much smaller amount originates from winter precipitation from the 

Pacific.  Furthermore, variations in the frequency of precipitation from these two sources may 

have the potential to cause shifts in our isotopic signal, and thus Winter precipitation from the 

Pacific must be examined as well. 

 The frequency of winter precipitation received in the Southwest is largely modulated by 

ENSO.  During El Niño conditions, we see increased winter precipitation from the Pacific in the 

Southwest and therefore expect a decrease in δ18O.  The opposite effect (a decrease in winter 

precipitation) manifests during La Niña events.  To investigate how changes in Winer 

precipitation as modulated by ENSO may have impacted the isotopic values in ELMA, we have 

provided a comparison of the δ18O in the Cave 29 ice core to a reconstruction of the Southern 

Oscillation Index (SOIpr) based on Pacific precipitation reconstructions using the Mg/Ca ratio in 

foraminifera (Fig. 25G) (Yan et al., 2011).  El Niño like conditions in this scale are inferred by 

negative SOIpr values, while positive values denote a more La Niña-like state.  Thus, we expect 

to see a direct relationship between SOIpr and δ18O anomalies in Southwest precipitation, with 

positive SOIpr values indicating a decrease in winter Pacific precipitation (removing more 

negative values while leaving higher values from the Gulf of Mexico unaffected), and therefore 

increasing δ18O values in cave ice.  In comparing these records, however, we see little correlation 

between ENSO conditions and δ18O trends.  This provides further evidence that the majority of 
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precipitation in ELMA for this period was from NAMS, which researchers as of yet have been 

unable to properly correlate to ENSO (Andrade & Sellers, 1988; Sheppard et al., 1999).  The 

Cave 29 ice core δ18O values thus primarily reflect local temperature variations, as well as 

changes in NAMS strength.  

 
5.2 Possible Causes for Carbon and Nitrogen Stable Isotope Variations in Bat Cave Guano  

 While the resolution of our guano time series is not good enough to make solid 

conclusions based on comparisons with modern records, it is still worth examining to see if any 

obvious relationships present themselves.  The range of δ13C values in guano has been found in 

previous studies to be primarily influenced by the bat food web (changes in insect diet from C4 

and C3 plants).  Our relatively high values of δ13C (-16 to -11.9‰) are the result of an insect diet 

consisting primarily of C4 plants, which have their δ13C range of -10 to -16‰ (O'Leary, 1981; 

Cerling et al., 1997). It is unlikely that such large fractionation (~4‰) in the δ13C values of bulk 

guano could reflect WUE changes in our region.  This becomes even more evident if considering 

a recent study on C4 grass found that WUE causes only a ~1‰ difference in δ13C between well-

watered and water-limited plants (Ellsworth et al., in review).  Our core covers a recent 50-year 

interval during which no dramatic changes in dominant vegetation type occurred.  In addition, 

while El Malpais National Monument is largely conifer forest (C3 plants), the Eastern edge of the 

monument is also covered with sparse grass, and several species of cacti can be found throughout 

the park (C4 plants).  The wide 80 km foraging range of Tadarida brasiliensis allows for the 

possibility of feeds outside of the park as well, inviting the likelihood of bats feeding in the large 

expanse of desert grassland to the north and south of the park.  A vegetation study in ELMA by 

Bleakly (1997) found that the park contained four typical species of grasses, three of which use 

C4 photosynthetic pathways.  The relatively higher δ13C values in our record can thus be 
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explained by a preference of Tadarida brasiliensis to forage over grasslands either within the 

park or outside it.  Variations in this signal are most likely the result of bats changing their 

foraging area.  However, because bats lack a well-developed ability to modulate body 

temperature, their foraging habits are highly dependent on environmental conditions (Herreid, 

1959).  Therefore, it is still worth investigating relationships between recent climate trends and 

our δ13C record.  

 Since the δ15N signal between the bottom and top of this 50-year interval exhibits only a 

0.6‰ enrichment, and because samples throughout the core maintain a relatively stable, high 

%N content (11.6 to 16%), we therefore expect little to no fractionation due to processes such as 

denitrification or ammonia volatilization.  This makes sense for our study area, as a lack of water 

availability and very low relative humidity in the cave would effectively arrest decomposition 

processes in guano (Mituzani et al., 1992).  Cleary et al. (2017) concluded that δ15N variations 

for guano in some Romanian caves are primarily controlled by winter precipitation.  This is 

because while the insects in the bat food web are consumed in the spring/summer months, the 

δ15N values in the plants they eat reflect soil nitrogen conditions before growth season in the 

late-fall and winter months.  A study by Ma et al. (2012) characterize the specific relationship 

between δ15N fractionation in plants and precipitation as -1.0 ± 0.1‰ per 100 mm of rain.  The 

fact that precipitation for our time period never exceeds 40 mm, however, makes it unlikely that 

we would see much impact in δ15N from rainfall.  Other possible causes for variation in our δ15N 

values include changes in Tadarida brasiliensis dietary habits.  A preferential consumption of 

insect larva vs fully formed adults, for example, can cause a 3‰ difference in δ15N (Kelly, 

2000).  The fact that Tadarida brasiliensis prefers carabidae beetles (which can be carnivorous) 

during evening feeds can also have an impact on δ15N in guano (up to 3‰ due to an increase in 
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trophic level) (Davis et al., 1962; Kelly, 2000).  Different C4 plant species may also carry 

different δ15N signals, but an in-depth study of the isotopic composition of various El Malpais 

vegetation types would be required to further analyze this topic.  

 Anthropogenic activities must also be considered when analyzing δ15N trends in guano. 

While logging practices can affect nitrogen content in soil due to the removal of biomass and 

result in altering δ15N values in plants in the bat food web, they are ultimately unrelated to our 

study period as logging practices in ELMA ended in 1942 (Glover and Hereford, 1986).  Fires have 

the potential to alter δ15N values in soil as well by increasing N removal by volatilization (McGrath 

et al., 2001).  As such, we must also examine known fire records for the two intervals discussed 

below.  Fires can also alter δ13C values by impacting the bat foraging range or by altering the 

vegetation of the area affected, for example with C4 plants in the foraging range being destroyed and 

replaced by new C3 plants. 

 
 5.2.1 δ13C and δ15N variations in bulk guano from Bat Cave from AD 1955-1957 

 Since the accumulation rate in our record is much faster for two specific periods (AD 

1955-1957 and 1998-2006), we have focused our comparison on these two intervals.  The reason 

for this variation in accumulation rate is most likely due to a change in colony distribution inside 

the cave, with decreases in accumulation occurring when less bats roost directly above the coring 

site.  It could also indicate changes in food availability and implicitly the number of bats in the 

colony.  We have included temperature and precipitation values from the closest available 

weather station at the Grants-Milan Municipal Airport, approximately 30 km north from El 

Malpais (NOAA, 2018).  The relationship between precipitation and δ13C and δ15N variation for 

the 1955-1957 interval (Fig. 26A and B) is only notable in 1956, when both records show a peak 

in May.  It is unlikely that a direct correlation between these records and climate changes exists 
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on such short interval, however, considering δ15N in the bat food web are expected to respond to 

precipitation changes from the previous cold season while δ13C changes are much less delayed.  

The persisting arid conditions of this period (Fig. 25D), coupled with the lack of any correlation 

between our records and temperature (Fig. 26C), lend credence to the idea that isotopic variation 

in guano for this period resulted from dietary and foraging habit changes independent of 

environmental conditions.  

 Fires have the potential to decrease δ15N values in soil by volatizing N and resulting in a 

closed nitrogen system (Davidson et al., 2007).  Therefore, the incorporation of insects that fed 

on plants from areas affected by fire could potentially lead to the large variations in δ15N we see 

in Bat Cave guano.  Another effect that fire frequency and/or amplitude may have on our record 

for the AD 1955-1957 timescale is changes it could cause in Tadarida brasiliensis foraging 

range.  The Grissino-Mayer (1995) study found that the tree ring records from Mesita Blanca and 

Hidden Kipuka areas of the park are the only ones to have displayed continuous fire frequency 

since the 1940's.  If the Tadarida brasiliensis colony originally included the grasslands to the 

south of the park in their foraging area, fire activity in the aforementioned locations may have 

prevented them from feeding there.  This would alter the δ13C signal due to an inclusion of C3 

vegetation-fed insects and change δ15N values by changing insect availability to include larva or 

carnivorous beetles in the bat diet (changing the trophic level).   
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Figure 26: A comparison between δ13C (A) and δ15N (B) with modern records with a single guano accumulation 

interval for the period AD 1955-1957.  The scale for δ13C has been reversed for clarity.  Temperature (C) and 

precipitation (D) were recorded by the weather station at Milan-Grants Municipal Airport and are averaged from 

daily values. 

 
 5.2.2 Stable isotope variations in bulk guano from AD 1998-2006 

 The prevailing arid conditions (rainfall below 40 mm/month) for the period AD 1998-

2006 (Fig. 27D and E), coupled with multiple oscillations in both δ13C and δ15N time-series  

(Fig. 27A and B) further demonstrates a lack of connection between precipitation and stable 

isotope variation for our record.  The fact that δ13C values for this period exceed the lower limit 
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for C4 plants (-16‰) at times also lends evidence to the hypothesis of changes in foraging habits 

to include areas dominated by C3 plants. 

 
Figure 27: A comparison between δ13C (A) and δ15N (B) with modern records for three guano accumulation 

intervals during the period AD 1998-2006.  The scale for δ13C has been reversed to match the wet/dry scale.  

Temperature (C) and precipitation (D) were recorded by the weather station at Albuquerque International Airport 

and are averaged from daily values. 
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Trends in δ15N for these periods bear little resemblance with temperature or precipitation 

variation, and are more likely the result of diet changes unrelated to climate.  One event that may 

have led to the largest changes in δ15N values for 2004 and 2005 was a fire that occurred near the 

Sandstone Bluffs on the northern edge of the park (Baumann, pers. comm., 2018).  If insects 

feeding on plants in the Sandstone Bluffs were incorporated into the bat foraging range, they 

could have caused the large variations we see in δ15N values for AD 2004 and 2005 (to include 

higher values from insects consumed in this area).  The fire could have potentially restricted bat 

movement to the northern grasslands and resulted in increased the amount of C3 vegetation type 

closer to the cave into the bat foraging range.  This would then lead to the large decrease in δ13C 

values seen in late 2003.  This change in foraging area would have caused variations in insect 

diversity and availability that in turn would alter the δ15N signal as well. 
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Chapter 6: 

Conclusions 

 Stable isotope analysis of the three cores recovered from ice deposits hosted in lava tubes 

in El Malpais National Monument reveal a relationship between temperature and NAMS strength 

variations with δ18O trends in ice.  While the Cave 91 and 455 ice cores did not contain enough 

organic sediment to extract radiocarbon dates, the upper 55 cm of the Cave 29 core produced 

ages spanning the interval between AD 137 and 948.  δ18O trends in this core reflect changes in 

both North American temperature reconstructed from pollen (Trouet et al., 2013), and large-scale 

Northern Hemisphere temperature as found in the Ljungqvist (2010) study, decreasing after the 

transition from the RWP to the DACP, and increasing rapidly at the onset of the MWP.  A 

correlation also exists between the Cave 29 δ18O values and variations in NAMS strength as 

reflected in the Lachniet et al. (2012) Mexico speleothem record, with δ18O in our core 

increasing when ELMA receives more frequent precipitation from NAMS.  

 Due to the mining activities by early settlers, our guano core from Bat Cave included a 

long hiatus near the bottom of the core at AD 1584, leaving us with a short, 50-year interval of 

accumulation between AD 1955 and 2006.  The periods between AD 1955-1957 and AD 1998-

2006 showed the fastest accumulation of guano and therefore had a higher resolution of δ13C and 

δ15N data points.  As such, these periods were magnified for comparison with modern records.  

Our values (-16 to -11.9‰) fall within the range of C4 plants, and are likely the result of 

Tadarida brasiliensis foraging in the C4 grasslands to the north or/and south of ELMA.  The 

large range of δ13C values (~5‰) despite the overall lack of precipitation for this interval infers 
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that δ13C variations in this record are primarily related with the foraging habits of Tadarida 

brasiliensis.  

 δ15N values are also likely reflective of dietary changes largely independent of climate.  

While some fire activity was present for our interval, these events were few and far between and 

did not occur in the grasslands.  It is possible that natural fires had an effect on δ15N values, if the 

bat foraging range sometimes included insects that had consumed vegetation from areas that 

previously experienced such phenomena.  They may also have altered the bat foraging area and 

affected insect availability, forcing bats to include carnivorous beetles or larva in their diet, 

which could potentially alter the δ15N signal up to 3‰ due to changes in trophic level. 
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Appendix A: Data 

Table A.1: Isotope results from the Cave 91 ice core. 

Depth (cm) δ18O (‰) δ2H (‰) d-excess (‰) 
5.00 -8.94 -60.24 11.28 
10.00 -10.10 -69.79 11.01 
15.00 -11.36 -79.88 11 
20.00 -10.12 -72.46 8.5 
25.00 -11.82 -84.81 9.75 
30.00 -9.45 -64.28 11.32 
35.00 -9.08 -61.38 11.26 
40.00 -9.31 -62.87 11.61 
45.00 -9.90 -67.72 11.48 
50.00 -9.55 -64.40 12 
55.00 -9.42 -63.75 11.61 
60.00 -8.88 -58.83 12.21 
65.00 -8.87 -58.94 12.02 
70.00 -9.36 -62.28 12.6 
75.00 -9.05 -60.64 11.76 
80.00 -8.72 -58.12 11.64 
85.00 -9.64 -65.18 11.94 
90.00 -9.02 -60.88 11.28 
95.00 -9.72 -66.09 11.67 
100.00 -9.62 -65.53 11.43 
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Table A.2: Results from the Cave 455 ice core. 

Depth (cm) δ18O (‰) δ2H (‰) d-excess (‰) 

6 -7.62 -52.26 8.7 
8 -9.71 -68.19 9.49 
10 -8.78 -63.32 6.92 
12 -8.9 -62.77 8.43 
14 -8.27 -60.11 6.05 
16 -9.08 -64.53 8.11 
18 -9.59 -67.87 8.85 
20 -9.76 -69.17 8.91 
22 -9.82 -69.99 8.57 
24 -9.13 -65.85 7.19 
26 -8.81 -63.82 6.66 
28 -9.06 -65.23 7.25 
30 -8.74 -65.49 4.43 
32 -9.02 -64.17 7.99 
34 -9.54 -67.56 8.76 
36 -11.37 -80.75 10.21 
38 -12.13 -86.42 10.62 
40 -12.22 -87.78 9.98 
42 -12.08 -87.39 9.25 
44 -12.45 -91.42 8.18 
46 -12.19 -90.02 7.5 
48 -11.04 -79.63 8.69 
50 -9.24 -64.28 9.64 
52 -7.97 -53.04 10.72 
54 -7.64 -50.09 11.03 
56 -8.41 -56.59 10.69 
58 -8.63 -58.49 10.55 
60 -8.51 -58.21 9.87 
62 -8.3 -56.64 9.76 
64 -8.47 -58.1 9.66 
66 -8.4 -58.28 8.92 
68 -8.31 -57.92 8.56 
70 -8.6 -59.63 9.17 
72 -9.12 -63.09 9.87 
74 -9.11 -63.21 9.67 
76 -9.03 -62.14 10.1 
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78 -8.97 -61.85 9.91 
80 -8.58 -58.96 9.68 
82 -7.6 -55.76 5.04 
84 -8.9 -61.83 9.37 
86 -8.68 -60.05 9.39 
88 -8.97 -62.18 9.58 
90 -9.52 -66.04 10.12 
92 -9.03 -62.34 9.9 
94 -8.6 -59.05 9.75 
96 -8.11 -55.73 9.15 
98 -8.42 -58.1 9.26 
100 -9.4 -65.41 9.79 
102 -10.23 -72.63 9.21 
104 -10.27 -73.03 9.13 
106 -9.7 -71.27 6.33 
108 -10.01 -71.01 9.07 
110 -8.56 -59.39 9.09 
112 -8.34 -57.76 8.96 
114 -8.04 -55.46 8.86 
116 -11.38 -84.55 6.49 
118 -10.09 -73.45 7.27 
120 -10.29 -74.1 8.22 
122 -10.77 -77.53 8.63 
124 -11.36 -82.41 8.47 
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Table A.3: Cave 29 ice core results.  Ages obtained only between 0 and 57 cm depth. 

Depth (cm) Age (AD) δ18O (‰) δ2H (‰) d-excess (‰) 
1.00 948 -6.51 -38.97 13.11 
2.00 943 -6.43 -38.31 13.13 
3.00 933 -6.66 -39.58 13.7 
4.00 928 -6.72 -39.95 13.81 
6.50 919 -6.63 -40.17 12.87 
7.50 914 -6.55 -39.38 13.02 
8.50 909 -6.67 -40.43 12.93 
9.50 904 -6.82 -41.50 13.06 
10.50 899 -6.95 -42.83 12.77 
11.50 895 -7.23 -44.17 13.67 
14.50 885 -7.32 -45.47 13.09 
16.50 857 -7.62 -46.84 14.12 
17.50 839 -7.87 -48.38 14.58 
19.00 821 -8.00 -49.19 14.81 
20.00 784 -8.07 -49.55 15.01 
22.00 766 -8.36 -51.23 15.65 
23.00 748 -8.15 -49.94 15.26 
24.00 711 -8.54 -52.74 15.58 
25.00 693 -8.56 -53.91 14.57 
26.00 675 -8.62 -54.25 14.71 
27.00 657 -8.83 -55.80 14.84 
28.00 639 -8.69 -54.36 15.16 
30.00 621 -8.47 -52.33 15.43 
32.50 586 -8.33 -51.65 14.99 
35.00 532 -8.06 -49.70 14.78 
37.00 496 -8.47 -52.35 15.41 
39.00 460 -7.97 -48.97 14.79 
40.50 425 -7.69 -47.33 14.19 
42.00 407 -7.60 -46.75 14.05 
44.50 371 -7.76 -46.88 15.2 
46.00 335 -7.61 -46.24 14.64 
47.50 299 -7.56 -46.11 14.37 
48.50 282 -7.65 -46.75 14.45 
50.00 264 -7.60 -48.09 12.71 
51.50 228 -7.81 -46.52 15.96 
53.00 210 -7.61 -46.24 14.64 
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55.00 174 -7.70 -49.14 12.46 
57.00 138 -7.53 -47.93 12.31 
60.00 N/A -6.88 -39.42 15.62 
65.00 N/A -7.83 -47.43 15.21 
70.00 N/A -8.23 -50.45 15.39 
75.00 N/A -8.06 -48.30 16.18 
80.00 N/A -7.14 -43.76 13.36 
85.00 N/A -7.07 -39.61 16.95 
90.00 N/A -6.68 -36.27 17.17 
95.00 N/A -5.71 -31.83 13.85 
100.00 N/A -5.79 -28.73 17.59 
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Table A.4: Bat Cave guano core results. (Clam interpolated ages adjusted using formula discussed in section 3.3.3) 

Depth 
(cm) Age (AD) δ13C (‰)  

Suess 
Corrected 
δ13C (‰) 

δ15N (‰) 

0 2005.26 -16.09 -14.32 8.48 
2 2004.75 -17.92 -16.14 8.40 
4 2004.66 -19.49 -17.72 6.87 
6 2004.57 -19.50 -17.73 7.12 
8 2004.48 -19.81 -18.03 8.80 
10 2004.38 -18.98 -17.20 7.12 
12 2004.29 -18.38 -16.60 7.59 
14 2003.78 -18.02 -16.24 8.71 
16 2003.69 -19.57 -17.85 8.26 
18 2003.60 -14.08 -12.37 8.49 
20 2003.51 -17.39 -15.68 8.09 
22 2003.41 -18.67 -16.95 6.35 
24 2002.49 -15.37 -13.66 5.64 
26 2001.57 -16.72 -15.01 8.24 
28 2000.64 -15.71 -14.00 6.77 
30 1999.72 -18.53 -16.85 7.41 
32 1998.79 -18.68 -17.01 7.29 
34 1998.29 -16.72 -15.04 8.45 
36 1989.69 -16.92 -15.51 8.48 
38 1981.51 -16.22 -14.96 7.87 
40 1973.33 -15.99 -15.04 6.07 
42 1964.73 -15.80 -15.13 6.59 
44 1956.55 -12.15 -11.63 5.71 
46 1956.41 -16.00 -15.48 7.66 
48 1956.27 -12.45 -11.93 6.06 
50 1955.80 -16.51 -15.98 6.72 
52 1955.76 -15.80 -15.28 6.03 
54 1955.71 -14.25 -13.72 7.20 
56 1955.65 -13.91 -13.39 8.26 
58 1955.61 -13.69 -13.17 8.26 
60 1955.55 -16.45 -15.93 7.87 
62 1691.31 -15.55 -15.55 8.50 
64 1561.64 -16.31 -16.31 8.07 
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Figure A.1: d-excess plotted against depth for Cave 91 (A), Cave 455 (B), and Cave 29 (C).  Red circles denote 

clusters of values. 
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Figure A.2: The δ18O values plotted against depth for the entire Cave 29 core. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.3: A box-plot comparison of oxygen isotopes in El Malpais cave ice (including results from this study) and 

precipitation (Dickfoss, 1996; Pendall 1997) (PE9 = Precipitation; CIC = Candelaria Ice Cave; LIC = La Marchantia 

Ice Cave) 
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Figure A.4: Carbon and Nitrogen isotopes plotted against depth for the Bat Cave guano core (hiatus only included in 

the age-depth time series). 
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Figure B.3: Permission granted by Springer Nature for use of figure originally printed in; Multi-year climate 
variability in the Southwestern United States within a context of dynamically downscaled twentieth century 

reanalysis. 
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