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ABSTRACT 

Biodiesel has become a major renewable fuel for diesel engines particularly from various 

waste sources. New biodiesel production technologies are emerging with data demands for 

efficient process design.  This project highlights the data requirements, gaps in the thermo-physical 

property data, and consolidation of experimental and estimation methods for effective process 

development. Knowing the thermodynamic properties of a substance is important in order to know 

what process or procedures it has to go under. The aim of this project is to assess the potential of 

vegetable oils to serve as feedstock for biofuel production by determining their heat capacity (Cp). 

Such oils are common ingredients in daily cooking in every kitchen all over the world, as a result 

of which there is a lot of leftover oil that is thrown away. To understand the property and alterations 

of waste oils as a cheaper source for biofuel feedstock, this study has been carried out. 

A methodology for measuring Cp values was followed with the use of a calorimeter. The 

oils studied were: canola oil, corn oil and carinata oil. The experimental findings show that as each 

oil was heated repeatedly, its heat capacity changed and was found to be increasing. The heat 

capacities of canola, corn and carinata oils increased by 5.01%, 4.08% and 4.46% respectively for 

five times heated oils compared to virgin oils. This increase is due to compositional changes in the 

oils on subjecting to heating treatments. The GC-MS analysis show that the PuFAs decrease with 

every heating cycle while the SFA and one MFA increase. The total amount of PuFA decrease is 

equivalent to the total amount of SFA and MFA increase, which confirm that there is a 

conservation of mass and PuFA undergoes saturation on heating. 
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CHAPTER 1: INTRODUCTION 

Limited sources of fuels and increasing pollution have called for alternative sources to be 

developed, and biodiesel is a promising alternative. Biodiesel is produced from various kinds of 

vegetable oils including soybean oil, sunflower oil, rapeseed oil, etc. and even animal fats or 

grease. Many countries are trying to turn to manufacturing and using biodiesel. One major 

highlight of using biodiesel is it does not require any modification to existing diesel based or other 

fuel engines. Biodiesel can be used on any existing motors and can be expected to work as 

efficiently as the existing motor oils. In fact, biodiesel is expected to create more balance in the 

environment in terms of gas emissions as a result of burning regular diesel and fuel. In addition to 

this benefit, biodiesel can also be stored and pumped just like any other fuel [66]. 

Commercial grade biodiesel production in the U.S has been going on for since early 2000 

and the growth of the production and utilization has increased remarkably. While the annual 

production was about 25 million gallons in early 2000, it reached an annual production of 2.8 

billion gallons in 2016. As biodiesel production increases, it is relieving the nation of its 

dependence on another countries for fuel sources. There are reported to be about 200 biodiesel 

plants across the country with a capacity of about 3 billion gallons of fuel per year [16]. Another 

aspect of biodiesel is that its steady and consistent production is creating a new branch of jobs, not 

only in the U.S but also across the world. 

As per the data of the U.S. Energy Information Administration, annual production of 

biodiesel up till February 2018 was 126 million gallons, which is 2 million gallons more than that 

was produced in January 2018. Figure 1-1 shows the evolution of biodiesel production since 2016. 
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Sales of biodiesel, on the other hand were 48 million gallons of 100% biodiesel, whereas another 

70 million gallons were sold as a blend with another diesel fuel. For the feedstock production and 

usage, a total of 953 million pounds of feedstock was used to produce biodiesel. Out of those 953 

million pounds, Soybean oil continued to be the favorite choice of feedstock with a total usage of 

496 million pounds alone [15]. 

 

Figure 1-1 Comparison of monthly biodiesel production for the years 2016, 2017 and 2018 

(from[15]; permission to use this figure is in Appendix D) 

This project is related to heat capacity of feedstock which is both, easily available and the 

cheapest option: the cooking oils after kitchen use. We have chosen three non-soybean oils to study 

for this project. As per a report from U.S Energy Information Administration [14], in 2016 soybean 

oil was used as a feedstock for about 55% of the biodiesel produced that year in the U.S. Further, 

canola oil and corn oil consisted of 22% of all oils being used; usage includes other feedstocks like 

grease, animal fats etc. Since soybean oil is the current widely used feedstock, this project was 

targeted on other oils that can be used as raw materials. Heat capacity of fluids is one important 

parameter that needs to be taken into consideration in order to study a reaction to determine the 
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overall heat of a substance or a reaction and to set up a plant [18]. This study has been carried out 

to determine the heat capacity of three oils namely, canola oil, corn oil and carinata oil in its 

commercially available form. Carinata oil is a member of the brasiccaceae [24, 25] plant group 

and is closely related to brassica canola and brassica camelina. These are grown as oilseed crops, 

but the higher content of undesirable erucic acid makes it less preferable for general cultivation as 

this oil does not find market for regular usage. Lately, carinata oil has found a huge market as a 

raw material in production of jet biofuels and hence is being grown exclusively over large fields. 

Canola oil and corn oil are also used widely in households and restaurants for cooking. Canola is 

a variant of the rapeseed plant without rapeseed’s undesired traits and qualities, corn oil is made 

from corn bits and kernels [22]. As they have pleasant tastes, both canola and corn oils are used 

widely for culinary purposes [23] as a result of which the left-over oil is thrown away and wasted. 

The process of heating and using the oils for frying make alterations in their physical structures 

and properties. This study examines the heat capacities of waste oil from household kitchens to 

find how the heat capacity changes with usage. 

This project focuses on biodiesel feedstock and starts with discussing general but important 

information regarding biodiesel. How biodiesel production is evolving over the years, the 

application and properties of this fuel, and various methods used to produce it are discussed in the 

next chapter. Chapter three discusses the feedstock under consideration, that is the vegetable oils 

and their fatty acid compositions, giving an insight on how composition vary for different oils 

despite the same fatty acids comprising them. The main focus of this project is to determine the 

property of the oils under consideration, and also to calculate the same using methods other than 

experimental values to assess how different are the values generated by different ways. Following, 

the next chapter, chapter four goes over the significance of calorimetry, importance to study heat 
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energy for a substance or material per se, keeping process development in mind and physical 

property estimation methods. This section also gives some details about the equipment that is 

widely used to measure heat capacity. Following chapters go more into the experimental work of 

this project; chapter five shows results developed by two different estimation methods in order to 

verify and analyze the results achieved by the experiment, while chapters six and seven go into the 

details of the calorimetry and composition analysis. Towards the end, chapter eight reveals 

experimental results and discusses the results compared with the estimation model-based values. 

This project closes by theorizing the recommendations for future work. 
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CHAPTER 2: BIODIESEL 

Biodiesel, as the name suggests, is the biodegradable and green alternative to petroleum 

diesel. The fuel is not a vegetable oil that can be used directly; the oils or animal fats are processed 

with small chain alcohols to make alkyl esters, which are in turn used as a fuel. Apart from the fact 

that biodiesel is an ecologically sound alternative fuel, another benefit of manufacturing more 

biodiesel is that it also gives an economic growth to farmers, who can then grow more oilseed 

crops and breed animals. As mentioned earlier, annual biodiesel production has increased 

considerably over the past decade [16], not only in the United States but many other countries. 

This chapter will give a small background of biodiesel followed by listing some properties of this 

biofuel and discussing different methods and conditions used to produce it. 

2.1 Background 

Biodiesel produced from vegetable oils or animal fats can be used in many types of engines. 

Considered to be a green fuel, biodiesel can be used for any regular diesel-based engine vehicles 

without any changes or modifications to the engine. Apart from vehicular fuel, biodiesel as a motor 

fuel can be used in various other applications such as, a heating oil in boilers or as a generator fuel 

[1, 66]. Biodiesel produced from certain oils is also good options for jet or aircraft fuels. 

A major reason why biodiesel is being touted as the fuel of the era is because it is a green 

fuel as it produces very low to negligible harmful emissions and residue. What contributes to this 

nature of biodiesel are the raw materials that are used to produce it. Biodiesel is produced from 

some of the most natural materials such as vegetable oils, seed crop oils, animal fats and 

microalgae[1]. In some cases, grease is also used as a feedstock for biodiesel. Vegetable oils such 
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as corn oil, or seed crop oils like soybean, sunflower, safflower, hazelnut, palm, olive, groundnut, 

rapeseed oils, are already being used as a feedstock. Animal fats, such as beef tallow, pork and 

chicken fat can also be used after they have been rendered to remove unwanted fats and solids. 

Grease is rarely used. There are two kinds of greases- ‘yellow grease’ which is used, wasted or 

recycled cooking/vegetable oil that is recovered from households, restaurants or any other kitchen 

and ‘brown grease’ is the oily-greasy materials that are trapped in kitchen drains before entering 

the sewer. 

Figure 2-1 shows an overview of how University of South Florida is trying to make the 

process more environmentally efficient by reusing waste oils and alcohols as raw materials for 

biodiesel. This figure is adapted from the ‘Renew a Bull biodiesel project’, a project [19] funded 

by the Student Green Energy Funds at the USF. 

 

Figure 2-1 Recycled raw material integration (Adapted from [19]) 

2.2 Properties 

Biodiesel is different from regular petroleum diesel in terms of its composition both 

physically and chemically; resulting in difference of properties between the two kinds of diesel. 

Some of the properties include that [7]: Biodiesel has a comparatively lesser viscosity which 

increases the lubricity; this means biodiesel slips and moves more readily compared to regular 
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petroleum diesel. Lubricity is a positive aspect for biodiesel as it reduces the engine wear. As 

mentioned earlier, biodiesel is popularly known as a green energy fuel, meaning it causes 

significantly less or no pollution. Biodiesel has no sulfur content thus it does not further contribute 

to sulfur emissions in the atmosphere. Another positive point in terms of biodiesel’s role in 

reducing emission is its higher content of oxygen as compared to petroleum diesel. Although 

higher oxygen content results in reducing peak engine power by 4%; this is not a huge number, so 

it can be considered in the acceptable range for daily use vehicles due to its environmental benefits. 

Biodiesel is also biodegradable due to the fact that is produced using oils and fats. Due to these 

positive aspects, biodiesel has lower toxicity level compared to petroleum diesel. 

A few properties which are concerning and need more thoughtful attention are that [2]: 

Biodiesel is more prone to oxidation when left unattended or unused for a longer period of time. 

Biodiesel reacts with the oxygen from the air to form a semi-solid mass. When using biodiesel for 

engines or vehicles that are used less frequently, fuel should be stored in dry, tightly covered and 

semi cold container. Biodiesel is also more prone to thicken up at lower temperatures, making it a 

difficult or less preferred fuel of choice at extremely cold places or during colder climatic 

conditions. Chemically, biodiesel is more active as a solvent compared to petroleum diesel; it can 

more readily react with most of the materials used to store or carry it, contrasting with the relative 

safety of storing or carrying petroleum diesel. 

Even though these shortcomings exist, they are not major concerns since biodiesel as a 

100% pure fuel source is used in very few cases. Mostly, a blend of biodiesel with petroleum diesel 

in ratios of 2%, 5% and 20% are used. These blends are termed B2, B5 and B20 respectively [14]. 

All the major concerns regarding storing, handling and using biodiesel are more likely to be 

resolved when used as a blend with petroleum diesel. 
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2.3  Methods to Produce Biodiesel 

The biodiesel process requires triglycerides, alcohols and a catalyst and its favorable 

working conditions. Without the use of a catalyst, the process is noted to be extremely slow, with 

the eventual exhaustion of esters. Therefore, the process conditions are carried out in different 

ways leading to different methods of production. The types of catalysts, conditions under which a 

raw material is used, and the quality of the raw material make a difference in the categorizing of 

various production methods. Based on the condition and quality of raw materials, fats or oils are 

converted to biodiesel using various methods such as transesterification, thermal cracking and 

micro emulsions.  

2.3.1 Transesterification 

Transesterification is a widely used and economical method to make biodiesel from fats. 

Biodiesel is made from vegetable oils, animals fats, tallow and waste oil. In this process, the 

triglycerides (long chain esters, derived from free fatty acids and glycerol) react with small chain 

alcohols (mainly Methanol or Ethanol) to form methyl esters or ethyl esters, which are nothing but 

biodiesel. This reaction in itself is fairly slow or non-occurring. To make transesterification more 

efficient and faster, a catalyst is used. Transesterification is further classified in 3 different ways 

based on the catalyst used; two types are particularly, acidic medium and basic medium [5, 7] and 

the third is enzymatic catalysis. A general transesterification reaction for biodiesel production is 

as follows- 

CH2-OCO-R1    CH2OH  
│     │   

CH-OCOR2 + 3 CH3OH   ⟶ CHOH  +   (R1COOCH3 + R2COOCH3 + R3COOCH3) 

│     │ 
CH2-OCOR3     CH2OH 

Triglyceride    Methanol  Glycerol Fatty Acid Methyl esters 
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The Acid Catalysed Transesterfication method makes use of various acids such as HCl, 

H3PO4, BF3, H2SO4 and sulfonic acid. Out of this list of acids, sulfuric acid and sulfonic acid are 

used more often since they require less reaction time. The yield by this method is almost 99%, but 

the reaction is slow compared to base catalyzed transesterification. The temperature requirement 

for this reaction is about 100 oC or higher, and reaction time can be anywhere between 3 hours to 

48 hours. A Pryde et al. (1986) study found that the reaction between soybean oil and methanol 

takes about 50 hours [6] and a reaction temperature of about 65 oC to reach 99% oil conversion. 

The molar ratio of alcohol to oil required for this method ranges between 6:1 to 30:1 [6]. 

The Base Catalyzed Transesterification [1] is a more favorable method to make biodiesel 

because it is faster than acid catalyzed transesterification. Commonly used catalysts under this  

method are NaOH, KOH and Sodium Methoxide. The alkaline metal alkoxides are more active 

compared to metal hydroxides. Using a metal alkoxide can carry out this reaction in a shorter time 

period of about 30 minutes to 1 hour at maximum, with a conversion of 98% [7]. In addition to 

this benefit, the temperature requirement for this method is not too high, and most of the reactions 

can be carried out at 40o - 60 oC. Another reason to prefer base catalyzed method over acid 

catalyzed transesterification is because bases are less corrosive than acids. For this method, the 

required molar ratio of the alcohol (usually methanol) to oil is in the range of 6:1- 18:1 [6]. 

2.3.2 Supercritical Process 

In addition to acid or base catalyzed transesterification reaction methods, further progress 

was made to carry out this reaction in a more efficient manner and at a faster rate called 

supercritical transesterification. Compared to other transesterification methods, the reaction 

conditions for this particular method are higher than the two methods previously discussed. The 

temperature required to carry out this reaction is about 300o - 340 oC and a pressure of about 1200 

psi [6], while the other transesterification reactions are carried out at atmospheric pressures. This 
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method is used because the reaction time to make biodiesel is less (10-15 minutes) with a 

conversion of above 90%. For this reaction to take place, methanol should be in a supercritical 

state and the molar ratio requirement should be about 42:1 for methanol to oil [6]. 

2.3.3 Thermal Cracking 

Thermal cracking or pyrolysis is carried out at higher temperatures to break down the 

longer chain hydrocarbon biomasses in the absence of air. This reaction is carried out in a batch or 

continuous process. As it is a very long and time-consuming process, some catalysts, like zeolites, 

are used to make the process relatively faster. [66] The decomposition of biomass starts at around 

350 oC and can go up to 800 oC. Further, depending on the biomass and gas residence time, range 

of temperature required, heating rates and reaction time, pyrolysis is categorized as conventional 

pyrolysis, fast pyrolysis and flash pyrolysis. Some drawbacks of this method are poor thermal 

stability and water content in the final product achieved. Other drawbacks include solids and char 

present in the finished biodiesel and the resulting biodiesel being corrosive in nature. 

2.3.4 Micro Emulsions 

Micro emulsion is defined as colloidal equilibrium dispersion of immiscible fluids with 

particle dimensions in the range of 1-150 nm. These two fluids can be used as two surfactants or a 

surfactant and a co-surfactant that are isotropic liquid mixtures. Biodiesel microemulsions may 

include diesel fuel, vegetable oils, alcohol and a surfactant along with a cetane improver [9]. 

Methanol and ethanol are the two alcohols of choice in any method to form biodiesel along with 

vegetable oil as they help improve viscosity by lowering the thickness. In addition, higher alcohols 

are used in microemulsions as surfactants while alkyl nitrates are used as cetane correctors. A 

downside of using this method to make biodiesel is that on continuous use of biodiesel, that is 

made by this method, may lead to injector needle sticking, carbon deposit formation and 
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incomplete combustion [7]. Despite the negatives, some positive aspects to the biodiesel formed 

using this method is less viscosity and a better cetane number. 
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CHAPTER 3: VEGETABLE OIL AS FEEDSTOCK 

There have been some misconceptions and misunderstandings that vegetable oils can 

directly be used as car fuel. While this is not true, vegetable oils are still used but as raw materials 

in the process to make biodiesel. Oils are made up of triglycerides and some typical triglyceride 

chains identified in the oils that are used for this project are shown in figure 3-1. These triglycerides 

are glycol esters of various long chain fatty acids composing the oils. The glycerides, when reacted 

with alcohols in presence of a catalyst or under other favorable conditions, produce methyl esters 

and glycol; the methyl ester thus produced is biodiesel. 

 

Figure 3-1 Typical triglyceride molecules of fatty acids on glycerol backbone 

Even though all the oils consist of same ranges of fatty acids what makes them different is 

the proportion in which the fatty acids are contained. All the seed crop and vegetable oils are made 

up of five major fatty acids, namely stearic acid, palmitic acid, oleic acid, linoleic acid and alpha-

linolenic acid. A few other fatty acids such as myristic, palmitoleic and arachidic acids may be 
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present in traces. The fatty acids that comprise vegetable oils have a carbon chain of no longer 

than C18 while some oils such as carinata oil contains much heavier fatty acid with carbon chain 

C22, making the oil unfit for eating purpose. This oil and some other such oils with much heavier 

fatty acids have been identified to make biodiesel that is extensively used as a jet fuel. This chapter 

will give a composition indication of the oils used in this project. 

3.1 Oil Composition 

As explained earlier in this work, more or less any vegetable oil or seed crop oil is a 

potential feedstock for biodiesel. Each oil is composed of the same fatty acids yet are different 

than each other and what makes them different is the weight percentage composition of the 

comprising fatty acids. Each oil has triglyceride molecules that are three long chains of fatty acids 

attached to glycerol [67]. Furthermore, the lengths and bonds within the fatty acids are also 

different for different oils, making it another reason to draw a distinction between the oils. Fatty 

acids are long hydrocarbon chains and the number of carbons and double bonds vary amongst 

various oils. Therefore, based on the intermolecular bonds of fatty acids, they are categorized as: 

Saturated Fatty Acids (SFA), Monounsaturated Fatty Acids (MFA) and Polyunsaturated Fatty 

Acids (PuFA). 

Saturated Fatty Acids (SFA) as the name suggests are long chain single bond hydrocarbons 

ending with a carboxylic acid group. The fatty acids that fall under this category and those 

commonly present in vegetable oils are stearic acid and palmitic acid. Other SFAs that may be 

present in few other oils are myristic acid, margaric acid, arachidic, palmitoleic acid, behenic acid 

and lignoceric acid. As the name goes, since there is no unsaturated or unstable double bond 

present, these fatty acids are less susceptible and comparatively not as easy for alternations under 

any process. 
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Monounsaturated Fatty Acids (MFA) are long chain carboxylic acids with one double bond 

in its chain. A fatty acid that comes under this category which is mainly present in oils is oleic 

acid. Apart from this, other MFAs are gondoic acid, nervonic acid and erucic acid to name a few. 

These fatty acids have one double bond in the chain making it relatively less stable as compared 

to SFAs. 

Polyunsaturated Fatty Acids (PuFA) are the last category that have more than one double 

bond in the chain. These fatty acid chains have at least two double bonds and are the most 

vulnerable to any physical or chemical structural changes under any process. The most common 

PuFAs present in vegetable oils are linoleic acid and alpha-linolenic acid. Some more to add to the 

list of this category are eicosadienoic acid and docoadienoic acid. 

3.2 Oils Used 

The vegetable oils used for the experimental purpose in this research study were canola oil, 

corn oil and carinata oil. The canola and corn oils were purchased from a local grocery store while 

the carinata oil was supplied by Applied Research Associates (ARA) from their ongoing project. 

Out of these three, canola and corn oil are edible oils while carinata oil is harmful to be digested 

due to higher percentage of erucic acid, making carinata oil inedible. 

Canola oil is a derivative of the rapeseed oil that has been eliminated of its unwanted traits. 

The unwanted trait of rapeseed crop is the presence of erucic acid in higher percentage which is 

harmful for human health if ingested. The origin of canola oil or the rapeseed oil happens from the 

family of seed crop called as Brassicaceae [21]. Oil makes up about 44% of the canola seeds [21] 

which makes it a popular crop to extract oil and being one of the oldest crops to be cultivated and 

used in day to day life, canola oil has a good market in food industry. Despite soybean oil is the 

favorite feedstock for biodiesel production in the United States of America, Europe is known to 
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have invested highly in developing fields and improving infrastructure and other desired facilities 

to grow and use canola oil as a choice of raw material for biodiesel. 

Corn oil is extracted from the maize bits and kernels which fall under the plant family 

termed as Gramineae [22] and is also one of the oldest cultivated plants in various parts of the 

world, as corn is known to be a staple food in some countries. Being comparatively less expensive 

than other vegetable oils, corn oil is also likely to be used widely all around the world for cooking 

purposes. As extracting oil for cooking is not the only use of corn or maize, as it is already in use 

as a feedstock for another type of bio fuel called ethanol fuel [22]. This makes corn oil as another 

potential feedstock option for producing biodiesel. 

Carinata oil is yet another member of the plant family Brassicaceae just as the canola oil. 

Oilseeds in this plant family are identified to have higher content of erucic acid. Even though the 

presence of erucic acid was previously a reason for lesser cultivation of carinata making it unfit as 

a daily use oil, it is discovered that this oil is immensely useful in making bio jet fuel. Hence this 

oilseed crop has given farmers yet another opportunity of growing it in large quantities without 

hampering other crop cultivation [24]. Its resistance to drought, insects and diseases and its nature 

of being a high yielding seed crop, opened a whole new market for carinata oil in the biofuel 

industry. 

Mentioned below in the Tables 3-1 and 3-2 are the literature [35] and container based [9] 

fatty acid weight percent composition for canola oil and corn oil respectively. The fatty acid 

composition content on the containers bought was not a cent percent match with the composition 

available in literature. The composition for carinata oil provided by the ARA is given in the Table 

3-3. 
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Table 3-1 Canola oil composition 

 Fatty acid Literature 

composition 

Container 

composition 

SFA Palmitic acid 4 4.76 

 Stearic acid 2 2.38 

MFA Oleic acid 61 57.14 

PuFA Linoleic acid 22 19.64 

 Alpha-Linolenic acid 10 8.93 

 

 

Table 3-2 Corn oil composition 

 Fatty acid Literature 

composition 

Container 

composition 

SFA Palmitic acid 11 12.08 

 Stearic acid 2 2.20 

MFA Oleic acid 28 28.57 

PuFA Linoleic acid 58 56.17 

 Alpha-Linolenic acid 1 0.97 

 

 

Table 3-3 Carinata oil composition 

 Fatty acid ARA provided 

composition 

   

SFA Myristic acid  

 Palmitic acid 3.9 

 Stearic acid  

 Margaric acid  

 Arachidic acid  

 Behenic acid  

 Lignoceric acid  

MFA Oleic acid  

 Hexadecenoic acid  

 Gondoic acid 9.3 

 Erucic acid 42.1 

 Nervonic acid 2.4 

PuFA Linoleic acid 
30.8 

 Alpha-linolenic acid 

 Eicosadienoic acid  

 Docosadienoic acid  
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CHAPTER 4: CALORIMETRY 

Heat capacity of a material represents the heat energy (in joules) it can absorb or release. 

In a process design and scale-up, heat capacity is an essential parameter that is taken into 

consideration for process development, as heat capacity helps to determine any kind of heat 

involved in a reaction. In other words, heats of reaction, formation, absorption, mixing, etc. in turn 

can be used to design process reactors, other equipments and to determine of the operating 

conditions for a process. Thus, studying the heat capacities of vegetable oils can be used to 

determine the heats of the reaction of biodiesel production which can in turn be correlated to other 

parameters to develop a process. This chapter targets on the significance of calorimetry, 

calorimeters and modular estimation methods of heat capacity. The chapter additionally discusses 

a pre-published experiment that demonstrates how temperature rises in oil as compared to water, 

giving an understanding of the nature of an oil. 

4.1 Significance of Calorimetry 

Any chemical or physical changes causes some heat interactions and changes in a system. 

To determine such heat changes, a technique called calorimetry is used to quantify the heat flow, 

to or from the system under consideration. The study of calorimetry is done on a device called 

calorimeter. The principle behind a calorimeter is that the heat energy absorbed or released by a 

substance is the measurement of the change of temperature of the substance. On the other hand, 

heat flow in or out of a body also depends on the mass of the body. Hence, to equate the heat flow 

with mass and temperature change, a thermodynamic property of specific heat is used. In other 

words, calorimetry allows to measure the enthalpy and specific heat by studying the heat flow and 
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temperature change for a given mass of a substance. A calorimeter consists of jacketed heating 

chambers and temperature controllers that are set to ambient temperature by default. The jackets, 

or the walls of the chambers, get heated up to the set temperature and in turn heat the samples 

under consideration by conduction. The temperature and heat flow controllers allow the 

temperature to reach a set value and then attain a thermal equilibrium for the heat flow between 

the jacket walls and sample. The heat required to increase the temperature is thus measured. 

The enthalpy and heat capacity are important properties for any material as they allow for 

determination of various thermodynamic and kinetic parameters for a material or a reaction. 

Enthalpy is a variable that is used to describe various heat interactions of a system. For a 

thermodynamic system, enthalpy is given as: H= U + PV where, U is the internal energy, P is the 

pressure and V is the volume of the system. Thermodynamically, heat capacity is the change in 

enthalpy with change in temperature at a constant pressure. The change in enthalpy is expressed 

as: dH = dU + d(PV). From the equation above, dU indicates the change in internal energy which 

is caused either by adding heat, Q, to a system or when work, W, is done by the system. Hence, 

change in internal energy is written as: dU = 𝛿Q + 𝛿W. In other words, work done is expressed as 

change of volume of the system by maintaining constant pressure. Hence 𝛿W is written as -PdV 

where negative indicates the work done by the system. Thus, by using these notations, [64] 

equation for change in enthalpy can be written as: 

dH = dU + d( PV), 

dH= 𝛿Q + 𝛿W + d(PV), 

dH = 𝛿Q – PdV + PdV + VdP, 

dH = 𝛿Q + VdP 
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This equation gives the change in enthalpy at constant pressure and is denoted as Cp. Therefore, 

(∂H/ ∂T)P= (∂Q/ ∂T)P = Cp. 

Further, enthalpy also allows for determination of the kinetics of a reaction. For example, 

the enthalpy is related to the equilibrium constant by the Van’t Hoff equation: d(ln Keq)/dT = 

ΔH/RT2.The equilibrium constant signifies the ratio of the equilibrium concentrations of the 

products to that of the reactants. Enthalpy is also related to the enthalpy of reaction, which allows 

to determine the extent of reaction, expressed as [64] ΔHR = (∂H/∂ξ)P, T where, HR is the enthalpy 

or heat of reaction and ξ is the extent of reaction. 

The definition of heat capacity is the amount of heat needed by a substance to increase its 

temperature by one-degree Celsius or Kelvin while specific heat is the amount of heat measured 

to raise the temperature of one-unit mass of a substance by one degree Celsius or Kelvin 

temperature. Therefore, specific heat is nothing but an intensive property where the heat capacity 

of a substance is mass based. Heat capacity determination, in a general sense, is a thermal analysis 

of a substance which relates to studying physical and chemical properties of a substance as function 

of temperature. Heat capacity (or specific heat) is a function of heat and temperature. If Q is 

quantity of heat released or absorbed (in joules), that is the heat present in a substance, is given by 

a formula Q= m*C* ΔT where m is mass in grams, C is specific heat in J/g K and ΔT is the change 

in temperature measured in Kelvin. This project uses a rearranged form of this formula to find heat 

capacity. 

4.2 Equipments Used to Determine Heat Capacity 

Since studying and gathering such data can be critical, the devices and instruments used 

for the purpose are sensitive to any changes in the atmosphere, system settings etc. Hence it is 

essential that all the trivial details are given importance and taken care of. 

https://en.wikipedia.org/wiki/Xi_(letter)
https://en.wikipedia.org/wiki/Xi_(letter)
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A calorimeter is the equipment that is used to measure heat capacity or rather heat flow in 

or out of a system and other heat related changes for a single substance, mix of substances or a 

reaction. The heat data obtained from the calorimeter, is used to calculate the heat capacity from a 

rearranged formula of heat energy. Based on what functions can be carried out and how they are 

operated, there are many kinds of calorimeters available. The ideal ones that are used for laboratory 

purpose of are more reliable, controllable, efficient and sensitive to data and sample, than the basic 

ones.  

Differential Scanning Calorimeter (DSC), [8] is a thermal analysis method mostly used in 

bioscience studies. The calorimeter plots the specific heat vs temperature and curve generated that 

depicts the enthalpy change of a substance. This equipment is widely used to study the stability of 

proteins by determining their melting temperature, heat of melting and various such parameters. 

A DSC is widely used for various heat determination studies and is preferred for research work 

due to its speed, wide availability, efficiency and sensibility for even a small quantity of sample 

measured in milligrams. The limitation to using DSC is that, the instrument is fast to give results 

which means it is very dyanamic and hence it is imperative to keep collecting the data constantly 

and vigorously without a lag. The sample under study is heated either by a temperature ramp of 

small size or can be heated upto a desired higher temperature directly without breaking down into 

smaller ramps. It is followed by analyzing the change of heat over the course of temperature 

increment for the sample. The ramped up temperature rises linearly as a function of time. 

Furthermore, a definitive contact of the sample with the bottom or the base of the crucible or pan 

that is used to place the sample is a critical restricting factor as it makes it difficult to work with 

solids that have irregular shapes and sizes. In addition, failing to achieve a complete physical 

contact of the sample in crucible or pan may lead to poor thermal contact of the instrument with 
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the sample. This loss of thermal contact of the sample results in inconsistent and unreliable data 

generated. As mentioned earlier, DSC is very sensitive to any changes within or outside the system 

and therefore the set-up cannot be disturbed while it is being operated.  

The basic principle of an isothermal calorimeter and its mechanism are very similar to that 

of a DSC. In an isothermal reaction calorimeter, two vertical glass vials are used as opposed to a 

crucible or a pan, one as a reference and another one as a sample vial. Similar to a DSC, the heat 

flow in or out of the system is studied as a function of temperature since the temperature is ramped 

linearly over a period of time. A primary operational difference in an isothermal calorimeter is that 

it requires a significantly measurable amount of sample to generate reliable results. Another 

difference in this type of calorimeter compared to DSC is that it is more time consuming. In case 

of an isothermal calorimeter, it takes about an hour for the calorimeter to set itself to room 

temperature thermal stability at start, and to run a complete ramp cycle. For DSC, this entire cycle 

requires only a few minutes. Additionally, it is important that an isothermal calorimeter is 

maintained at consistent and undisturbed working conditions and surroundings since it is sensitive 

to any interference within the system or in the surrounding, including the quality and quantity of 

the sample. 

The calorimeter used for the study of this project is the isothermal mixing and reaction 

calorimeter. The apparatus set-up requires two cylindrical vials, which can efficiently carry any 

irregularly shaped solid and liquid to a maximum volume of 15 mL. The requirements for an 

effective operation explained above holds true for this calorimeter as well. For operating this 

calorimeter, we can set up the parameters such as ramp rate, initial temperature and final 

temperature for the ramp and isothermal delay (isothermal hold) before starting a ramp in minutes. 

The only limitation for this instrument is that it is very time consuming. On the positive side, it is 
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very stable and hence has lesser chance of error in displaying the values. Also, since the thermal 

or physical contact of the sample with the vial bottom or surface is not a problem in this case, there 

are least chances of anomalies in the data generated. A detailed procedure to use this calorimeter 

is discussed in Chapter 6. 

4.3 Heat Capacity Estimation 

The physical properties of every substance are dependent on the nature of molecules the 

substance is made up of. The reasoning behind the dependence of physical properties of a 

substance on molecules and their structure requires a complete understanding of molecular 

behavior [26]. Even though this molecular behavior is not entirely understood and available, a lot 

has been researched and developed in this aspect since the beginning of the nineteenth century. In 

the book ‘The properties of gases and liquids’ by Poling et al, the authors explain that one of the 

earliest and important correlations of properties developed was the gas law which is expressed as 

PV=nRT. Later, the deviations from this ideal gas law equation lead to van der waals equation, 

virial equation and so on for real gases, where constant terms in the modified equations were 

introduced. The introduction of these constant terms are some examples of inter-relating physical 

properties with molecular behavior to improve and modify a general equation. Gradually many 

physical, thermodynamic and transport properties were correlated using various equations which 

were quantitatively related to the molecular properties. In general, estimation of any property can 

either be done on the basis of theory or on the basis of some experimental correlations [28, 39], 

but the best results have been found when both the theory and empirical correlations are combined. 

For example, gas law states PV=NRT, but the modified form of this equation is given by van der 

waals equation of state which is expressed as (P + a/V2) (V-b) = RT. Here the empirical correlation 

constants a and b help to bridge the gap between ideal and real gases that the incomplete theory 

fails to analyze. As explained by Poling, Prausnitz and O’Connell, an ideal approach to estimate 
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a physical property provides reliable physical and thermodynamic data, designates the physical 

state of substance, requires minimum input details and takes the route with minimum errors [26]. 

Keeping these requirements in mind, some methods of physical property estimations used are 

detailed below. 

Law of corresponding states [26, 36] generalizes that the properties which are dependent 

on intermolecular forces are also related to critical properties in the same way for all compounds. 

This means, relation of pressure to volume at constant temperature may vary for different 

substances, but when the pressure, volume and temperature are related to the corresponding critical 

properties to obtain resulting reduced pressure, volume and temperature; the interrelation between 

the reduced properties thus obtained are same for each substance. In other words, the functions 

inter-relating the reduced properties (expressed as fractions of critical properties) are same for each 

substance. The application of this method can be understood better in section 5.1 where the heat 

capacity is calculated as a function of reduced temperature. 

Structure and bonding, this method of a thermophysical property estimation considers that 

all the properties are related to the molecular structure and gives major importance to 

intermolecular forces, atoms, atomic groups and bond type. Therefore, it suggests that magnitude 

of the intermolecular forces can be used to determine macroscopic properties from group 

contribution [36]. For example, knowing the storage capacity of a molecule and its energy is a 

good way to determine the heat capacity. A property that intimately uses the structural correlations 

is that of the ideal-gas heat capacities Cp
o that relates a polynomial equation of Cp

o as a function of 

temperature and constants in a polynomial equation. The constants involved in this equation are 

determined by atoms, atomic groups and types of bonds. The definite values or empirically 

weighed factors that are assigned to molecular groups are fixed in an algebraic function to calculate 
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the desired polynomial constants. This method developed and modified by Rowlison-Bondi to 

determine heat capacities of oils is explained and used ahead in chapter 5. 

 

Figure 4-1 Study of nature of oil in respect to temperature vs time [13] 

A literature experiment [13], compares the nature of oil to that of water by studying the 

change of temperature as a function of time. It states that “heat capacity of a substance is the 

willingness to change its temperature.” From the results, it was found that temperature change for 

oil as compared to water over the course of the experiment was more pronounced, which meant 

that the heat necessary to change the temperature of oil is lower as compared to water. Thus, the 

heat capacity of an oil is less than that of the water. Figure 4-1 depicts the results for the 

experiment. An additional observation was made in the experiment with respect to inconsistency 

of rising oil temperature in contrast with water. Initially, the temperature rise for water is more 

than oil and then keeps increasing at a constant rate while the oil heats up more after a certain 

point. The conclusion to this was drawn by relating it to the physical parameter of viscosity; water 

being less viscous heats up quickly initially while the oil heats up gradually at first to become less 

viscous and it catches up with the temperature rise of water and crosses over to reach higher values.  
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CHAPTER 5: MODEL BASED HEAT CAPACITY ESTIMATION 

The ways of estimating physical properties is discussed previously in chapter four. One 

method described was structure. For determining heat capacity by group contribution, Poling et al 

made an assumption that various groups in a molecular compound contribute a significant and a 

definite value to the total molecular heat capacity [26]. This assumption also means that the 

contribution of one particular group is definite and independent of the other contributing groups 

in a molecule. The liquid heat capacity estimation methods are categorized as theoretical, group 

contribution method, corresponding state and Watson’s thermodynamic cycle [36]. The theoretical 

method of estimation is done by considering each mode of energy storage at constant volume. This 

method is considered as less reliable as compared to other estimation methods. Watson’s 

thermodynamic cycle method of liquid heat capacity estimation functions for four listed 

thermodynamic conditions: 1) when a saturated liquid is heated by maintaining saturation 

conditions, 2) a liquid at higher temperature is vaporized and expanded in isothermal condition to 

a low pressure ideal gas, 3) the material is cooled from higher temperature to lower as an ideal gas 

and 4) when a fluid is compressed in isothermal condition to a saturated vapor and condensed [36]. 

This method is noted to be difficult to implement, especially with liquids like oils due to their 

relatively higher boiling point and higher viscosity. This method has also been tested to give 

inconsistent and irregular results [36]. The method of group contribution takes into account all the 

atomic groups and tabulates a definite value that a corresponding group is accounted to contribute 

to the total heat capacity of a compound molecule, for example, -CH3, -CH2-, =CH2, -OH, -ONO2 

and -Cl to list a few. These values are used in a specified expression and added together based on 
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how many different groups are present and number of groups present of the same type in a 

compound. Thus, using a group contribution method on the basis of the structure of an oil molecule 

is a reliable approach to determine heat capacity. 

For instance, Ruzicka and Domalski implement group contribution to calculate liquid heat 

capacity by using an expression: 

Cp= R [A + B * (T/100) + C* (T/100)2] ; 

where, R is gas constant and T is temperature. 

A, B and C are the constants. They are calculated as A= ∑niai ; B = ∑nibi ; C= ∑nici ; a, b and c are 

values listed in the table for group contribution parameters of Ruzicka and Domalski’s method 

[26], ni is number of times a group repeats itself in a compound. 

Although this method is the simplest way to calculate heat capacity of a compound based 

on its molecular structure, it is not as efficient as the method of corresponding states. The method 

of corresponding states relates the heat capacity of a liquid to the ideal heat capacity as a function 

of reduced temperature. As explained in the last chapter, it is assumed that the functions relating 

reduced properties are the same for all the substances. 

Two different approaches, called the Rowlison-Bondi mathematical model (RB model) and 

the Peng Robinson equation of state (PREOS) method on Aspen tool, were used to calculate heat 

capacities of the oils numerically in order to verify and analyze the experimentally obtained values. 

Although both of these methods give a close enough estimation, it is observed that the values 

generated do not match-up exactly and have some deviation from the experimental values. The 

reason for this can be attributed to the fact that these models are constructed for ideal mixtures in 

ideal conditions. On the contrary, vegetable oils used in real life may vary depending on how much 
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time and temperature they were used at. It also depends on the level of refining treatment used 

after being used in kitchen and before using it for biodiesel process. 

5.1 Rowlison-Bondi Model 

The Rowlison-Bondi method takes into consideration every individual group of a 

compound. The bond strength, molecular structure and hence the molecular behavior of different 

organic groups are different. The baseline postulation for the group contribution method of ideal 

heat capacity is the estimation that bonds in a particular group possesses characteristic frequencies 

of bending and stretching and hence these vibrations contribute to thermodynamic properties. 

Thus, the constants contributing to calculate the heat capacity vary as well for every atomic group. 

Cp
o is an ideal gas heat capacity that is calculated by Rihany and Doraiswamy’s group contribution 

method for fatty acids. The designated values of a, b, c and d for every aliphatic, aromatic, oxygen 

containing, nitrogen containing and sulfur containing groups are tabulated by Rihany and 

Doraisamy [10], are used to calculate the overall ideal gas heat capacity constants a, b, c and d of 

fatty acids. The ideal gas heat capacity Cp
o, for each fatty acid is calculated by the equation: 

Cp
o = a + bT + cT2 + dT3 

The ideal heat capacities of fatty acids are then used to calculate liquid fatty acid heat 

capacity by the expression mentioned below. Here, the heat capacity is expressed as a function of 

reduced temperature and acentric factors and thus the law of corresponding states is applied [11]. 

(Cp F.A -Cp
o) /R = 1.45 + 0.45(1-Tr) -1 + 0.25 ω [17.11 + 25.2(1-Tr)1/3Tr

-1 + 1.742(1-Tr) -1], 

Cp F.A= {1.45 + 0.45(1-Tr) -1 + 0.25 ω [17.11 + 25.2(1-Tr)1/3Tr
-1 + 1.742(1-Tr) -1]}*R + Cp

o 

where, R is gas constant,  

Tr is the reduced temperature, 

ω is acentric factor, and 
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these individual fatty acid heat capacities thus calculated were further used to calculate the oil heat 

capacity based on the weight percent composition for an oil [11]. 

Cp oil = ∑XF.A Cp F.A ; 

where, XF.A is mass fraction of a fatty acid (from the oil composition) and Cp F.A is the heat capacity 

for the fatty acid. Thus, this model incorporates the group contribution method along with the 

method of corresponding states. The heat capacities calculated by this method are listed in the 

Tables 5-1 to 5-3 below. 

Table 5-1 RB model based heat capacities of canola, canola 2H and canola 5H oils 

 Canola Canola 2H Canola 5H 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 2.2367 2.2492 2.2602 

40 2.2624 2.2625 2.2895 

50 2.3028 2.3096 2.3669 

60 2.3417 2.3542 2.4039 

70 2.3932 2.3903 2.4376 

80 2.4214 2.4415 2.4647 

90 2.4428 2.4993 2.5129 

100 2.4974 2.5365 2.5789 

110 2.5348 2.6083 2.6364 

120 2.5914 2.6511 2.6993 

 

Table 5-2 RB model based heat capacities of corn, corn 2H and corn 5H oils 

 Corn Corn 2H Corn 5H 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 2.2448 2.2575 2.2939 

40 2.2762 2.3224 2.3179 

50 2.3071 2.3491 2.3508 

60 2.3348 2.3778 2.4071 

70 2.3765 2.4158 2.4357 

80 2.4345 2.4728 2.5082 

90 2.4914 2.5190 2.5609 

100 2.5305 2.5730 2.6214 

110 2.6094 2.6162 2.6849 

120 2.6545 2.6801 2.7423 
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Table 5-3 RB model based heat capacities of carinata, carinata 2H and carinata 5H oils 

 Carinata Carinata 2H Carinata 5H 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 1.9869 1.9932 2.0207 

40 2.0158 2.0854 2.0804 

50 2.0339 2.1327 2.1270 

60 2.1443 2.1845 2.2068 

70 2.1895 2.2399 2.2804 

80 2.2136 2.2985 2.3636 

90 2.2639 2.3491 2.4162 

100 2.3216 2.4041 2.4834 

110 2.4007 2.4807 2.5446 

120 2.4956 2.5463 2.6167 

 

5.2 Peng-Robinson Method 

For further verification, the heat capacities were also plotted using Aspen tool for the same 

temperature range. All the composing fatty acids were added to the component list and a property 

set for the heat capacity mix on mass basis was created. The PENG-ROB method, which is the 

Peng Robinson equation of state was selected as the base method. The PREOS method was chosen 

because it is most suitable for non-polar liquids and hydrocarbons [27]. 

The heat capacity, Cp of a fluid can be determined from the enthalpy of the fluid. 

Thermodynamically, the enthalpy of a real system is determined as change of the enthalpy with 

respect to the ideal or reference enthalpy since an absolute enthalpy of a system is insubstantial. 

Therefore, the enthalpy of real fluid is calculated as [65]- 

H= (H- Ho) + (Ho – Ho
R) + Ho

R        (i) 

where, H is the real state enthalpy (kJ/mol), 

 Ho is the ideal gas enthalpy (kJ/mol), 

 Ho
R is the ideal gas enthalpy at reference state (kJ/mol). 

 



 

 30 

(Ho – Ho
R) = a (T -Tr) + (1/2)b*( T2- Tr

2) + (1/3)c*( T3- Tr
3) + (1/4)d* (T4-Tr

4), and (ii) 

(H- Ho) = RT [ (Z -1) – 2.078 (1 + k) α1/2 ln (Z+ 2.414B)/(Z- 0.414B) ]   (iii) 

where, R= gas constant, 

 Tr =reduced temperature = T/Tc, 

Tc = critical temperature, 

 a, b, c and d = heat capacity constants, 

α = (1 + k(1- Tr
1/2))2, 

k = 0.37464 + 1.54226 ω - 0.26992 ω2, and 

ω = acentric factor, 

The compressibility factor, Z is derived by using an equation of state. An appropriate 

equation of state is selected based on the substance or mixture under consideration. In this case, 

the oils are non-polar hydrocarbons, for which Peng-Robinson equation of state (a cubic equation 

of state) is suitable [27]. The Peng-Robinson equation of state also enables Cp to be expressed as 

a function of critical temperature (or reduced temperature) and acentric factors. An added 

advantage of using a PREOS is that it has authentic, precise and error-free representation of 

temperature, pressure and binary or multi-component systems phase composition relations [68]. 

Therefore, compressibility factor, Z for the Peng- Robinson equation of state is given by: 

Z = (V/V-B) - (AV/RT (V2 + 2BV - B2)), 

where, A = 0.45724 Pr α/Tr
2, 

B = 0.0778 Pr/Tr,  (A and B are equation of state constants ) 

V = molar volume, 

Pr = reduced pressure = P/Pc, and 

Pc = critical pressure. 
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By substituting (ii) and (iii) in (i), enthalpy H for real state can be determine by using Peng-

Robinson equation of state. Finally heat capacity, Cp is change in enthalpy with respect to 

temperature, at a constant pressure. This is expressed as: 

Cp = (dH /dT)P 

The plots generated using Aspen are shown below. 

 

 

 

Figure 5-1 PREOS method based heat capacity plots for canola, canola 2H and canola 5H oils 
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Figure 5-1 (continued) 

 

 

Figure 5-2 PREOS method based heat capacity plots for corn, corn 2H and corn 5H oils 
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Figure 5-2 (continued) 
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Figure 5-3 PREOS method based heat capacity plots for carinata, carinata 2H and carinata 5H 

oils 
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Figure 5-3 (continued) 
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CHAPTER 6:  HEAT CAPACITY 

The study of sustainability intends to find out additional ways in which an existing process 

can be made environmentally friendly. Utilizing raw materials that are recycles and reused can 

lessen the environmental impact of making biodiesel. This chapter reports the apparatus set-up, 

materials and experimental procedure followed to study unused oils and waste oils. 

6.1 Apparatus  

The instrument used to study the oils is an isothermal mixing and reaction calorimeter, 

model number SuperCRC 20-305-2.4 from Omnical Technologies, shown in Figure 6-1 below. 

The calorimeter is a heat conduction type, which needs an input power source of 115 VAC, 60 Hz 

and 10 A max and operates within a temperature range of -50 to 200 oC. The calorimeter has two 

slots for the vials to be placed on top portion of the calorimeter, which is covered with a transparent 

box that prevents the system from being disturbed by any surrounding changes or interference. 

Shown below is the image of the calorimeter in use. The calorimeter is equipped with a WinCRC 

software that helps to remotely control the functions through a desktop. 
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Figure 6-1 The calorimeter apparatus 

6.2 Materials 

The vegetable oils used for these experiments, canola oil and corn oil were purchased from 

the local grocery store Publix while the carinata oil was supplied by ARA from an ongoing project 

at the University of Florida. The calorimeter was operated in small runs initially to determine the 

operating conditions required to yield the most consistent results. Based on this sample mass 

calibration, the sample  weight was chosen and restricted to 4g with a tolerance of 0.05g. The oils 

were used in their original form for one set of experiments to study unused oil. Later the edible 

oils were used twice for frying french fries and snacks, then they were resused five times to 

replicate the used oils from restaurants. The carinata oil being an inedible oil has a strong smell 

and hence was heated in same fashion without using it to fry any snack items. 
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When the oils were used to make french fries, they were filtered completely to remove any 

solids or leftover small particles from the fries and other sediments. They were then transferred to 

sealed storage bottles and kept away from any further exposure from light and air. 

6.3 Procedure 

The procedure followed for all three oils: canola oil, corn oil and carinata oil was exactly 

the same. For the experiments, two vials of similar or relatively closer weights were chosen. The 

cleaning steps for vials followed a soap water rinse, followed by an isopropanol and DI water rinse 

to get rid of any dust. After rinsing the vials, they were placed in vacuum oven at 7.2 psi which 

was maintained at 40 oC, until dry. It was necessary to do proper rinses and drying after every 

calorimeter run so as to remove any sort of particulates, dust or oil traces from the vials. 

The parameters set on the calorimeter were: 

• Starting Temperature (oC): 20 (for example) 

• Final Temperature (oC): 30 (for example) 

• Ramp Rate (oC/min): 2 

• Isothermal delay before ramp (min): 2 

For a blank run, two vials of closer weights were selected. For example, weight of reference 

vial used was 13.639 g and weight of sample vial used was 13.642 g. Blank run was done with 

both empty vials to determine the heat absorbed by blank/empty vials. The heat of the blank vial 

was deducted from the heat of the vial containing oils samples in order to get the heat of oil. The 

mathematical expression to determine heat capacity is shown below. Both vials were securely 

placed in the two slots in the calorimeter and power was switched on. As the power was turned on, 

the calorimeter gradually set itself to thermal equilibrium and stabilized at initial temperature, 

atmospheric pressure and set parameters (mentioned above). All the desired working conditions 
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were set up remotely on the software. The initial or starting temperature for the first ramp, for 

instance started at around 20 oC and final temperature was set to 30 oC to maintain a ramp size of 

10 oC. The temperature recorded on the instrument were within a tolerance of ±0.3 oC. The 

isothermal delay enabled to the calorimeter to hold at initial temperature for two minutes before 

starting the ramp. Each ramp, with a ramp size of 10 oC, took 40-45 minutes to complete and reach 

the set final temperature followed by attaining the thermal equilibrium at that temperature. These 

ramping steps were followed for an oil run, from 20 oC to 120 oC. At the end of each ramp, the 

heat curve that had developed as a plot of heat flow as a function of temperature, was integrated 

to determine the heat at that temperature. A note was made at the end of every ramp for the 

integrated heat (in joules) at that temperature along with the read initial and final temperatures. 

For a sample run, the same vials from the blank run were used after following the cleaning 

and drying procedure. The empty sample vial was placed on the weighing scale and tared to zero. 

Gradually, the desired oil sample was added with the help of a pipette to weigh the oil sample to 

approximately 4 g. The tolerance for the sample weight, as mentioned earlier, was up to +0.05g. 

The vials were securely placed in slots. On switching on the calorimeter, the exact same procedure 

was followed as the blank runs. The operating conditions were set on the software. When the 

calorimeter reached initial thermal equilibrium, the ramps were started with an isothermal hold of 

2 mins at the starting temperature followed by 10 oC ramp size until it reached the set final 

temperature and thermal equilibrium. Similarly, ramping steps were followed from 20 oC to 120 

oC for oil samples and the heat curves at the end of every ramp were integrated to determine the 

heat of vials containing the samples. 

The heat capacity for oil samples were studied in triplicates for reliability. To calculate the 

heat capacities of the oil samples, the following formula was used: 
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Cp = ((Ht/T) - (Hr/ T)) /W ; (J/g K or J/g oC) 

or,  Cp =(Qt-Qr) / W 

where, Hr= Integrated heat for a blank run, in joules (at a particular temperature), 

Ht= Integrated heat for a sample run, in joules (at the same temperature), 

T= Temperature ramp size (oC), and 

W=Weight of the sample (g). 
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CHAPTER 7: COMPOSITION ANALYSIS 

An oil is composed of fatty acids which are categorized depending on the number of double 

bonds in it. These categories of fatty acids are saturated, monounsaturated and polyunsaturated as 

mentioned earlier. The composition of an oil is likely to change upon heating; hence the 

composition of a waste oil may vary as compared to the unused oil. To study the degree of change 

in fatty acid profile, composition analysis was carried out for all three oils in each of their three 

variants: unused, after two heating cycles and after five heating cycles. The instrument used for 

this purpose was a gas chromatograph with a mass spectrometer detector (GC-MS). A GC 

combined with MS has the ability to separate complex mixtures, detect and quantify them. This 

chapter discusses in detail about the procedure and findings of the analysis. 

7.1 Apparatus and Materials 

The instrument used to analyze all nine oil samples was a Perkin Elmer 580 Clarus GC 

attached with a Perkin Elmer 560 D Clarus MS detector. The instrument was connected to a 

Turbomass software that acts as the user interface to operate the instrument. The column used was 

the Agilent J&W HP-88 column with dimensions 60m x 0.25mm x 0.25µm and temperature limits 

within 0-260 oC. The image below shows the gas chromatograph instrument and the table 

following lists the inlet and flow settings. 
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Figure 7-1 Gas chromatograph with mass spectrometer 

Table 7-1 Inlet and flow settings on gas chromatograph 

Column Agilent J&W HP-88 column with dimensions 

60 m x 0.25 mm x 0.25 µm 

Carrier gas Helium, constant flow mode 

Carrier gas flow rate 1 ml/min 

Acquisition mode 40-400 amu 

Solvent delay 4 min 

GC inlet Manual injection, 1 µl 

Inlet Temperature 260 oC 

Split Ratio 30:1 

Oven Temperature Program 140 oC (5 min), 5 oC/min to 240 oC (10 min) 

 

The materials used as standards to obtain calibration curves were methyl palmitate (MP), 

methyl stearate (MS), methyl oleate (MO), methyl linoleate (ML1), methyl linolenate (ML3) and 

methyl erucate (ME). Margaric acid was used as an internal standard, 10% BF3 in methanol was 

used as the derivatizing agent and analytical grade n-hexane was used as the solvent. All the 

chemicals were bought from Fisher Scientific. Oils used for analysis were unused canola oil 

(Canola), canola oil after two heating cycles (Canola 2H), canola oil after five heating cycles 

(Canola 5H), corn oil (Corn), corn oil after two heating cycles (Corn 2H), corn oil after five heating 
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cycles (Corn 5H), carinata oil (Carinata), carinata oil after two heating cycles (Carinata 2H) and 

carinata oil after five heating cycles (Carinata 5H). Canola and corn oils were used to cook french 

fries for two and five heating cycles. 

7.2 Procedure and Sample Preparation 

An oil cannot be analyzed in its original form as its fatty acid chains are heavy and long to 

be carried in the column and are tough to be detected. Therefore, the fatty acids in the oils are 

derivatized to their corresponding fatty acid methyl esters. Initially, calibration was performed for 

all standard methyl esters for the range of 30-500 ppm. For each methyl ester standard, 5 samples 

of concentration 500 ppm, 250 ppm, 125 ppm and 62.5 ppm and 31.25 ppm were prepared by 

serial dilution of factor 2 and ran to develop calibration curves. The image below shows the 

calibration curves for every standard  and the following table shows the trendline equation, 

retention time and coefficient of determination (R2). The value of R2 indicates the definiteness of 

the correlation between peak area and concentration, where R2 ~1 indicates a good fit. 

 

Figure 7-2 Standard methyl esters calibration curves 
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Table 7-2 Methyl ester standards trendline equations, retention times and R2 values 

Standard Retention Time 

(min) 

Trendline Equation R2 Value 

Methyl Palmitate 13.86 y = 205748x - 4E+06 0.9979 

Methyl Stearate 16.68 y = 406441x - 6E+06 0.9953 

Methyl Oleate 17.31 y = 119186x - 6E+06 0.9916 

Methyl Linoleate 18.37 y = 125374x - 3E+06 0.9959 

Methyl Linolenate 19.58 y = 187961x - 5E+06 0.9984 

Methyl Erucate 22.14 y = 174235x - 7E+06 0.9953 

 

Before derivatizing the main oil samples, a series of six samples were derivatized using 

varying amounts (0.5 ml, 1 ml, 1.5 ml, 2 ml, 2.5 ml and 3 ml) of 10% BF3 in methanol to ensure 

complete conversion of fatty acids. The peaks for 0.5 ml, 1 ml and 1.5 ml were seen to be increasing 

with the amount of reagent while peaks were seen to be leveling off for 2 ml, 2.5 ml and 3 ml 

indicating complete conversion. Figures 7-3 and 7-4 below compares the chromatograms for the 

six samples. 

For oil analysis, [41] 100 mg of oil was weighed in a glass vial, 2 ml n-hexane, 2.5 ml 10% 

BF3 in methanol and 20 mg of margaric acid were added. Margaric acid was added to determine 

the internal standard response factor for quantifying targeted fatty acid esters. The solution was 

heated to 55 oC for 30 minutes and was then cooled to room temperature. On cooling, 2 ml of 

distilled water was added, and the vial was left for phase separation. The supernatant layer formed 

is the hexane layer carrying targeted analytes, which is used for GC analysis. The derivatized oil 

is diluted with more solvent in order to bring the concentration within the calibration range. All 

nine oil samples (Canola, Canola 2H, Canola 5H, Corn, Corn 2H, Corn 5H, Carinata, Carinata 2H 

and Carinata 5H) were prepared using this method. The samples were manually injected using a 

Thermo Fisher precision syringe. The samples were subjected to the oven temperature program 
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[43] to develop respective chromatograms. The images below are the chromatograms for all nine 

oils. 

 

Figure 7-3 Derivatization comparison chromatograms with varying amounts of derivatizing 

agent. (a) with 0.5ml (b) with 1 ml (c) with 1.5 ml (d) with 2 ml (e) with 2.5 ml (f) with 3 ml 
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Figure 7-3 (continued) 
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Figure 7-4 Comparison of extent of derivatization 

On generating the chromatograms, the peaks for every fatty acid were quantified and the 

oil composition was determined by using the method of single point internal standard. First the 

response factor for the internal standard (that is the margaric acid) was determined using the 

formula [45]: 

Internal Response factor (IRF) = [areais X amounts]/ [amountis X areas] 

where, areais and areas are the areas of internal standard peak and sample peaks, amountis and 

amounts are the amounts of internal standard and sample respectively. 

Using this internal response factor, the amount of each fatty acid methyl ester was 

determined using the formula: 

Amount of fatty acid methyl ester = [amountis X areas X IRF]/ areais 
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Note: The order of the peaks from left to right is: palmitic acid, internal standard, stearic acid, oleic 

acid, trans-linoleic acid (in 5H only), linoleic acid and 𝛼-linolenic acid 

 

Figure 7-5 Canola, canola 2H and canola 5H chromatograms 
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Figure 7-5 (continued) 
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Figure 7-5 (continued) 
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Note: The order of the peaks from left to right is: palmitic acid, internal standard, stearic acid, oleic 

acid, trans-linoleic acid (in 5H only), linoleic acid and 𝛼-linolenic acid 

 

Figure 7-6 Corn, corn 2H and corn 5H chromatograms 
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Figure 7-6 (continued) 
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Figure 7-6 (continued) 
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Note: The order of the peaks from left to right is: palmitic acid, internal standard, stearic acid, oleic 

acid, trans-linoleic acid (in 5H only), linoleic acid, 𝛼-linolenic acid and erucic acid 

 

Figure 7-7 Carinata, carinata 2H and carinata 5H chromatograms 
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Figure 7-7 (continued) 
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Figure 7-7 (continued) 

Further, literature states that 1 mole of fatty acid methyl ester corresponds to 1 mole fatty 

acid in the original oil sample. Sample calculation is shown in appendix C. For all nine oil samples, 
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a triplicate was run to verify the repeatability. The tables below show the composition of each oil 

sample as an average of three runs. A sample quantification calculation is shown in appendix C. 

Table 7-3 Canola, canola 2H and canola 5H compositions 

 Canola  Canola 2H  Canola 5H  

 Mass % Mole % Mass % Mole % Mass % Mole % 

Palmitic acid 5.11 5.56 6.05 6.60 6.93 7.55 

Stearic acid 2.52 2.48 3.62 3.58 5.53 5.46 

Oleic acid 63.79 63.26 66.39 66.03 71.17 70.73 

Linoleic acid 20.91 20.87 16.34 16.36 10.17 10.18 

Linolenic acid 7.79 7.83 7.37 7.43 5.18 5.22 

Trans-

Linoleic acid 

    1.05 0.87 

Total 100.12 100 99.77 100 100.03 100 

 

Table 7-4 Corn, corn 2H and corn 5H compositions 

 Corn  Corn 2H  Corn 5H  

 Mass % Mole % Mass % Mole % Mass % Mole % 

Palmitic acid 12.86 13.87 14.48 15.63 16.25 17.56 

Stearic acid 3.75 3.66 5.01 4.90 6.14 6.01 

Oleic acid 28.56 28.11 32.17 31.67 34.48 33.99 

Linoleic acid 51.85 51.38 47.01 46.60 40.05 39.74 

Linolenic acid 2.99 2.98 1.2 1.20 1.02 1.02 

Trans-

Linoleic acid 

    2.03 1.68 

Total 100 100 99.87 100 99.97 100 

 

Table 7-5 Carinata, carinata 2H and carinata 5H compositions 

 Carinata  Carinata 

2H 

 Carinata 

5H 

 

 Mass % Mole % Mass % Mole % Mass % Mole % 

Palmitic acid 3.24 3.76 4.79 5.58 5.60 6.47 

Stearic acid 2.37 2.49 3.64 3.84 4.54 4.76 

Oleic acid 15.00 15.89 18.01 19.16 20.52 21.63 

Linoleic acid 23.29 24.84 19.88 21.30 17.15 18.21 

Linolenic acid 17.32 18.59 15.09 16.28 12.37 13.22 
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Table 7-5 (continued) 

Erucic acid 38.77 34.43 37.90 33.83 36.89 32.61 

Trans-

Linoleic acid 

    2.93 3.11 

Total 100 100 99.30 100 100 100 
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CHAPTER 8:  RESULTS AND DISCUSSION 

This chapter discusses the results achieved from the experimental work on the unused and 

used oils, and further discusses what are the results obtained and deduces the nature of the oils. 

Waste oils/ used oils were used for either frying snacks in case of corn and canola oils and was 

heated without cooking for carinata oil. Waste oils were reused two times (2H) and five times (5H) 

individually. 

8.1 Calorimetry Results 

The integrated heat values generated from analyzing the curves on the calorimeter were 

put in the Cp formula to calculate heat capacity over the given temperature range. Both kinds of 

waste oils, 2H and 5H were studied separately and plotted alongside the unused oil values for 

comparison. The oils were observed to increase heat capacity with the increase in number of times 

the oils were heated. 

Below are the values generated for canola oil, corn oil and carinata oil using the isothermal 

calorimeter in Table 8-1, 8-2 and 8-3. Sample calculations for the experimental heat capacity 

calculations are shown in Appendix B.3. 

Table 8-1 Experimental heat capacities of canola oil 

 Unused oil Twice used 

oil (2H) 

Five times 

used oil (5H) 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 2.3015 2.3179 2.3313 

40 2.3575 2.3464 2.3722 

50 2.3949 2.3970 2.4390 

60 2.4391 2.4488 2.4850 

70 2.4929 2.4978 2.5357 

80 2.5497 2.5653 2.5893 
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Table 8-1 (continued) 

 

 

 

Table 8-2 Experimental heat capacities of corn oil 

 Unused oil Twice used 

oil (2H) 

Five times 

used oil (5H) 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 2.2937 2.3221 2.3366 

40 2.3688 2.3586 2.3893 

50 2.4092 2.3889 2.4234 

60 2.4512 2.4622 2.4866 

70 2.4977 2.5250 2.5490 

80 2.5595 2.5674 2.6154 

90 2.6119 2.6411 2.6802 

100 2.6406 2.6938 2.7520 

110 2.7351 2.7512 2.8107 

120 2.7681 2.8089 2.8812 

 

 

Table 8-3 Experimental heat capacities of carinata oil 

 Unused oil Twice 

heated (2H) 

Five times 

heated (5H) 

Temp (oC) Cp (J/g oC) Cp (J/g oC) Cp (J/g oC) 

30 2.0530 2.0758 2.0977 

40 2.1058 2.1282 2.1633 

50 2.1283 2.1927 2.2176 

60 2.2411 2.2634 2.3053 

70 2.2943 2.3395 2.3808 

80 2.3212 2.4096 2.4610 

90 2.3818 2.4680 2.5303 

100 2.4203 2.5271 2.6064 

110 2.5112 2.6009 2.6408 

120 2.5927 2.6616 2.7084 

90 2.5927 2.6152 2.6381 

100 2.6570 2.6606 2.7112 

110 2.7003 2.7363 2.7709 

120 2.7618 2.7867 2.8357 
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Figure 8-1 Heat capacities of canola oil 

 

 

Figure 8-2 Heat capacities of corn oil 
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Figure 8-3 Heat capacities of carinata oil 

8.2 Analysis Results 

From the GC composition analysis for all oils, it was found that the fatty acid compositions 

in the oils changed with the heating cycles. The polyunsaturated fatty acids (PuFA) were seen to 

be decreasing with every cycle of heating, while the saturated (SFA) and monounsaturated fatty 

acids (MFA) were seen to be increasing. The change in composition of fatty acids at every heating 

stage is shown in Figure 8-4 below. The figures indicate the increment of palmitic, stearic and 

oleic acid with every heating cycle, while there is a significant decrement in linoleic, 𝛼-linolenic 

acid and also erucic acid in carinata oil. A formation of small amount of trans-isomer of linoleic 

acid was observed for 5H oil samples. 
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Figure 8-4 Composition changes for waste oils 
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Figure 8-4 (continued) 

8.3 Discussion 

The oils used, canola, corn and carinata oils were observed to have increased heat capacities 

with every heating cycle. Further, the oil compositions were analyzed because heat capacity or any 

thermophysical property is a function of the compound structure and its composition. It was found 

that with every heating cycle, the composition of PuFA decreased, while that of SFA and MFA 

increased. From the observed pattern for change of composition, and also from some previously 

published literature [17, 48], the PuFA were expected to undergo saturation with every heating 

cycle, thus increasing the composition of MFA and SFA. From studying the pattern of change, it 

was found that the quantity of decreased PuFA was very close to the quantity of increased SFA 

and MFA after the heating cycle. This observation indicates a conservation of amount and can be 

attributed to conversion or breaking down of PuFAs to MFA and SFAs. Tables 8-4, 8-5 and 8-6 

show the changing amount of FAs for all three oils. The decreased PuFA values include the 

quantities of linoleic and linolenic acids that decreased after every heating cycle. The increased 
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S.F.A values include the quantities of palmitic, stearic and oleic acids that increased along with 

the trans-linoleic acid that formed for the 5H stage only. 

Table 8-4 Fatty acid change pattern in canola oil 

Heating Stage SFA increased 

(g) 

PuFA decreased 

(g) 

2H 4.64 4.99 

5H 9.28 9.87 

 

Table 8-5 Fatty acid change pattern in corn oil 

Heating Stage SFA increased 

(g) 

PuFA decreased 

(g) 

2H 6.48 6.63 

5H 7.06 7.14 

 

Table 8-6 Fatty acid change pattern in carinata oil 

Heating Stage SFA increased 

(g) 

PuFA decreased 

(g) 

2H 5.82 6.51 

5H 6.37 6.46 

 

Experimental calorimetry values show that heat capacities increased over successive 

heating cycles. It is postulated that the heat capacity alters with the physical structure of a 

molecular or the composition of the compound. To verify if the composition change was causing 

the heat capacity to increase and to verify the experimental values, the Rowlison- Bondi (RB) 

model and the Peng Robinson equation of state (PREOS) method on Aspen was used for the 

compositions obtained by GC analysis. Thus, as we see from the results, the heat capacities were 

increased by some degrees for the altering composition of used oils. The heat capacity of the oils 

used twice were more than that of the unused oils while, the values for the oils used five times 

were more than that for twice used oils. The calorimetry experiments were carried out at 

atmospheric pressure and over the range of temperature of 30 oC to 120 oC to study the behavior 
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of an oil. For this work, the error percent or deviation of the RB model (group contribution method) 

and the PREOS method with respect to experimental values are listed for all three oils in the tables 

8-4, 8-5 and 8-6 below. Canola oil’s deviation or error percentages for the RB model and PREOS 

were up to 4.50% and 4.99% respectively. Corn oil’s error percentages were up to 4.90% and 

4.92% respectively. Lastly, carinata oil’s error percentages were 4.95% and 4.92% respectively. 

The values calculated for RB model are shown in appendix B.3. Figures 8-5 through 8-13 show 

the deviations in a graphical format. 

Table 8-7 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for canola oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.3015 2.2367 2.2307 2.81 3.08 

40 2.3575 2.2624 2.2701 4.03 3.71 

50 2.3949 2.3028 2.3095 3.84 3.56 

60 2.4391 2.3417 2.3522 3.99 3.56 

70 2.4929 2.3932 2.3960 4.00 3.89 

80 2.5497 2.4214 2.4409 4.66 4.27 

90 2.5927 2.4428 2.4858 4.57 4.12 

100 2.6570 2.4974 2.5328 4.93 4.67 

110 2.7003 2.5348 2.5799 4.86 4.46 

120 2.7618 2.5914 2.6248 4.44 4.96 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-5 Deviation of experimental heat capacity values with respect to RB model and PREOS 

for canola oil 

Table 8-8 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for canola 2H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.3179 2.2492 2.2546 2.96 2.73 

40 2.3464 2.2625 2.2916 3.58 2.33 

50 2.3970 2.3096 2.3297 3.65 2.80 

60 2.4488 2.3542 2.3700 3.86 3.21 

70 2.4978 2.3903 2.4147 4.30 3.33 

80 2.5653 2.4415 2.4615 4.82 4.04 

90 2.6152 2.4993 2.5051 4.43 4.21 

100 2.6606 2.5365 2.5508 4.67 4.13 

110 2.7363 2.6085 2.5997 4.68 4.99 

120 2.7867 2.6511 2.6634 4.87 4.42 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-6 Deviation of experimental heat capacity values with respect to RB model and PREOS 

for canola 2H oil 

Table 8-9 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for canola 5H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.3313 2.2602 2.2732 3.05 2.49 

40 2.3722 2.2895 2.3156 3.48 2.38 

50 2.4390 2.3669 2.3580 2.95 3.32 

60 2.4850 2.4039 2.4053 3.26 3.21 

70 2.5357 2.4376 2.4514 3.87 3.32 

80 2.5893 2.4647 2.5035 4.81 3.31 

90 2.6381 2.5129 2.5545 4.74 3.17 

100 2.7112 2.5789 2.6042 4.88 3.94 

110 2.7709 2.6364 2.6564 4.85 4.13 

120 2.8357 2.6993 2.7061 4.81 4.57 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-7 Deviation of experimental heat capacity values with respect to RB model and PREOS 

for canola 5H oil 

 

Table 8-10 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for corn oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.2937 2.2448 2.2293 2.13 2.81 

40 2.3688 2.2762 2.2723 3.91 4.07 

50 2.4092 2.3071 2.3164 4.24 3.85 

60 2.4512 2.3348 2.3606 4.75 3.70 

70 2.4977 2.3765 2.4096 4.85 3.53 

80 2.5595 2.4345 2.4623 4.88 3.80 

90 2.6119 2.4914 2.5077 4.62 3.99 

100 2.6406 2.5305 2.5628 4.17 2.95 

110 2.7351 2.6094 2.6155 4.60 4.37 

120 2.7681 2.6545 2.6658 4.10 3.70 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-8 Deviation of experimental heat capacity values with respect to RB model and PREOS 

for corn oil 

Table 8-11 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for corn 2H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.3221 2.2575 2.2572 2.78 2.80 

40 2.3586 2.3224 2.2996 1.53 2.50 

50 2.3889 2.3491 2.3408 1.66 2.01 

60 2.4622 2.3778 2.3845 3.43 3.16 

70 2.5250 2.4158 2.4330 4.32 3.64 

80 2.5674 2.4728 2.4828 3.69 3.30 

90 2.6411 2.5190 2.5301 4.62 4.20 

100 2.6938 2.5730 2.5810 4.49 4.19 

110 2.7512 2.6162 2.6332 4.90 4.29 

120 2.8089 2.6801 2.6830 4.58 4.48 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-9 Deviation of experimental heat capacity values with respect to RB model and PREOS 

for corn 2H oil 

Table 8-12 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for corn 5H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.3366 2.2939 2.2866 1.83 2.14 

40 2.3893 2.3179 2.3289 2.99 2.53 

50 2.4234 2.3508 2.3712 3.00 2.15 

60 2.4866 2.4071 2.4188 3.19 2.72 

70 2.5490 2.4357 2.4665 4.44 3.23 

80 2.6154 2.5082 2.5168 4.10 3.77 

90 2.6802 2.5609 2.5698 4.45 4.12 

100 2.7520 2.6214 2.6201 4.74 4.79 

110 2.8107 2.6849 2.6744 4.47 4.85 

120 2.8812 2.7423 2.7394 4.82 4.92 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-10 Deviation of experimental heat capacity values with respect to RB model and 

PREOS for corn 5H oil 

Table 8-13 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for carinata oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.0530 1.9869 1.9958 3.22 2.78 

40 2.1058 2.0158 2.0483 4.27 2.73 

50 2.1283 2.0339 2.0980 4.44 1.42 

60 2.2411 2.1443 2.1491 4.32 4.11 

70 2.2943 2.1895 2.2015 4.57 4.05 

80 2.3212 2.2136 2.2553 4.64 2.84 

90 2.3818 2.2639 2.3104 4.95 3.00 

100 2.4203 2.3216 2.3668 4.08 2.21 

110 2.5112 2.4007 2.4220 4.40 3.55 

120 2.5927 2.4956 2.4744 3.75 4.56 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-11 Deviation of experimental heat capacity values with respect to RB model and 

PREOS for carinata oil 

Table 8-14 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for carinata 2H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.0758 1.9932 1.9966 3.98 3.82 

40 2.1282 2.0854 2.0499 2.01 3.68 

50 2.1927 2.1327 2.0999 2.74 4.23 

60 2.2634 2.1845 2.1646 3.49 4.37 

70 2.3395 2.2399 2.2292 4.26 4.71 

80 2.4096 2.2985 2.2971 4.61 4.67 

90 2.4680 2.3491 2.3618 4.82 4.30 

100 2.5271 2.4041 2.4265 4.87 3.98 

110 2.6009 2.4807 2.4943 4.62 4.10 

120 2.6616 2.5463 2.5606 4.33 3.80 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 
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Figure 8-12 Deviation of experimental heat capacity values with respect to RB model and 

PREOS for carinata 2H oil 

Table 8-15 Error percent of RB model and PREOS heat capacity values with respect to 

experimental values for carinata 5H oil 

Temp (oC) Experimental RB model PREOS Error1 Error2 

30 2.0977 2.0207 2.0383 3.67 2.83 

40 2.1633 2.0804 2.0995 3.83 2.95 

50 2.2176 2.1270 2.1310 4.08 3.91 

60 2.3053 2.2068 2.1959 4.27 4.75 

70 2.3808 2.2804 2.2641 4.22 4.90 

80 2.4610 2.3636 2.3524 3.96 4.41 

90 2.5303 2.4162 2.4059 4.51 4.92 

100 2.6064 2.4834 2.4824 4.72 4.76 

110 2.6408 2.5446 2.5424 3.64 3.72 

120 2.7084 2.6167 2.6107 3.39 3.61 

Note: Error1 is the error percentage or deviation of RB model Cp values w.r.t experimental values 

while Error2 is the error percentage or deviation of PREOS Cp values w.r.t. experimental values. 

 

1.90

2.10

2.30

2.50

2.70

0 20 40 60 80 100 120 140

C
p
 (

J/
g
 °

C
) 

Temp (°C) 

Carinata 2H

Exp RB model PREOS



 

 75 

 

Figure 8-13 Deviation of experimental heat capacity values with respect to RB model and 

PREOS for carinata 5H oil 

Additionally, it is observed that the heat capacity goes on increasing at higher temperature. 

This observation can be verified by using the conclusion from the literature experiment of oil and 

water. For oil, the rise in temperature is gradual at initial level while the heat makes the oil less 

viscous. Subsequently, as the oil becomes relatively less viscous the heating and temperature rise 

becomes greater at higher temperatures. Therefore, the error percent is observed to be greater 

towards higher temperatures. Another reason is that the models only ascertain for ideal 

compositions or structures, qualities and operating as well as surrounding conditions without 

taking into consideration any practical anomalies or uncertainties. Therefore, some error is 

expected to exist as the qualities determined by different strategies vary due to different methods 

and models used. Also, the quality and the quantity of sample used to study affects the derived 

values. The heat capacity of an oil therefore can be said to be changing simultaneously with 

temperature and composition. The difference may or may not be that significant as it is observed 

that the heat capacity for any edible oil lies in the range of 2.3 J/g oC to 2.8 J/g oC whereas the oil 
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that is used to make jet fuel is slightly lower compared to edible oils and lies within 2.0 J/g oC to 

2.7 J/g oC. 

As it was discussed earlier in physical property estimations, a substance’s its structure and 

composition contribute distinctively in determining the properties. Thus, change in heat capacity 

can be attributed to the change in fatty acid composition of the oils after use. In addition to this, 

since the used oils are more saturated than the unused oils, they can be expected to produce biofuel 

with relatively higher oxidative stability. 
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CHAPTER 9:  CONCLUSIONS AND FUTURE WORK 

On the basis of the calorimetry and composition analysis results given and verification 

carried out using mathematical model by Rowlison-Bondi and Peng Robinson equation of state 

method and after interpreting the results, conclusions can be deduced as follows. 

9.1 Conclusions 

The study on determining whether the heat capacities for waste oil changes with respect to 

unused oil was carried out. Two vegetable oils, canola and corn oils that are commonly and 

popularly used in kitchens across households and restaurants and an inedible oil, carinata oil, were 

taken into consideration for this purpose. Thus, all three oils in three different forms were studied 

viz unused, twice used/heated (2H) and five times used/heated (5H) and results were listed. As per 

the results, the heat capacity changes as the oil is heated and is reported to increase with an increase 

in number of times the oil has been used. Though the Cp for used oil is more than that of the unused 

oil, the increase in these values were within acceptable ranges. It is assumed and theorized that the 

changes in the heat capacity are a result of change composition of the oil as compared to their 

original composition; attributing to the actualization done by Poling, Prausnitz and O’Connell in 

their book [26] that physical properties of a liquid or any substance are a significant function of 

the compound structure, intermolecular forces and bonding. Further to confirm the extent of 

composition change in oils, GC-MS analysis for all the oils was carried out and was essentially 

found that the composition of oils does change significantly with every heating cycle. The SFA 

and MFA were observed to increase while the PuFA were observed to decrease. This can be 

explained as the PuFA undergo saturation and to form relatively saturated FA and break down to 
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lower molecular fatty acids. Thus, the increase in heat capacity is a function of increasing 

temperature as well as changing composition on reheating the oils. 

9.2 Future Work 

The study on changing heat capacities and the composition for waste oils as compared to 

unused oils serves a good motivation for further work on this project. To further inspect the pattern 

and reason behind changing heat capacities, the fatty acids comprising the oil can be studied in 

depth. Although the mathematical models give a fair validation to experimental results, they cannot 

be held completely reliable. As the parameters of acentric factor and reduced temperature needed 

to mathematically calculate the heat capacities may have deviations; the values generated using 

the calculation methods cannot be held accountable to verify the experimental results entirely. In 

order to further understand the changing heat capacities for reheated oils, the components of oil 

could be focused to study. The calorimetry for individual and desired composition mixture of fatty 

acids can be expected to indicate an insight on the thermodynamic property of oils and the 

alteration on subject to reheating. 
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APPENDIX A: NOMENCLATURE 

SFA: Saturated Fatty Acids 

MFA: Monounsaturated Fatty Acids 

PuFA: Polyunsaturated Fatty Acids 

DSC: Differential Scanning Calorimeter 

Un. O: Unused Oil 

2H: Twice Used Oil 

5H: Five times Used Oil 

RB: Rowlison-Bondi 

PREOS: Peng Robinson equation of state 

w.r.t: with respect to 

Hr: Integrated heat for a blank run 

Hs: Integrated heat for a sample run 

T: Temperature ramp 

W: Weight of the sample 
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APPENDIX B: CALCULATIONS 

B.1 Fatty Acid Composition in Purchased Oils 

The oils bought from the local grocery store for experimental purpose did not have the 

percent composition for a specific fatty acid but the total amount of saturated, monounsaturated 

and polyunsaturated fatty acids as a category on whole present in grams was printed in the 

nutritional facts, shown in tables B-1 and B-2 below. 

Table B-1 Nutritional fact for canola oil based on container (from [11])  

Total fat 14 g 

Saturated fat 2 g 

Monounsaturated fat 8 g 

Polyunsaturated fat 4 g 

Note: The fat amount specified above is for 1 serving size of 1 tbsp = 14 g 

Table B-2 Nutritional fact for corn oil based on container (from [11]) 

Total fat 14 g 

Saturated fat 2 g 

Monounsaturated fat 4 g 

Polyunsaturated fat 8 g 

Note: The fat amount specified above is for 1 serving size of 1 tbsp = 14 g 

The amount under each category of fatty acid was converted into percentage. The number 

so obtained was the total weight percent of that particular category of fatty acid. 

Canola oil consists of, total Fat = 14g 

Saturated fat = 1g 

This 1g was converted to percent as: x= (1/14)* 100 = 14.28% 

Similarly,  Monounsaturated fat= 8g ;  Therefore, (8/14)* 100 = 57.14% 

Polyunsaturated fat= 4g ;   Therefore, (4/14) *100 = 28.57% 
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Container based compositions in tables 3-1 and 3-2 were calculated by following these 

steps. 

Next, under each category, these total percent were used to calculate the percent of each 

fatty acid under the corresponding category by assuming the same ratio as that of the literature 

composition. 

B.2 Calculating Experimental Heat Capacity 

Looking at the analyzed curve on the calorimeter, the integrated heat for a blank vial at 40 

oC is -21.63 J/ oC and that for the unused oil sample is 77.51 J/ oC. The values so generated at by 

ramping the temperature by 10 oC in every sampler run. The weight of the sample used is 4g. 

So, by plugging these values in the formula noted-  

Qr= Hr/ T (J/ oC) = (16.79/10) = 1.679 J/ oC 

Qt= Ht/T (J/ oC) = (-77.51/10) = -7.751 J/ oC 

 

Figure B-1 Integrated heat curve for blank run 
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Figure B-2 Integrated heat curve for sample run 

 

Cp =(Qt-Qr) / Ws 

= -2.3575 J/g oC 

Tables 8-1, 8-2 and 8-3 were developed by calculating the corresponding values by using 

these formulae. 

The heat capacities for all the samples of unused and waste oils were calculated in similar 

manner and listed in the table. Now the integrated heat value for blank runs are positive indicating 

heat absorbed by the system. While for sample runs the integrated heat is negative indicating the 

system is losing heat as temperature is increasing. Since after calculation, the final heat capacity 

is negative, heat capacity can never be negative. But is only a sign convention showing the heat is 

released from the system as temperature increases [14]. 
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B.3 Rowlison-Bondi Model Based Heat Capacity Calculation 

This method uses the contribution of every hydrocarbon group in a compound. The heat 

capacity constants for each group are listed in the paper by Rihani and Doraiswamy [12]. The 

necessary values for the groups under consideration for the purpose of this project are given in 

table B-3. A sample calculation for calculating the heat capacity constants for Palmitic acid has 

been shown below: 

Palmitic acid is C16H32O2. The structure is made of one -CH3 group, fourteen -CH2 groups 

and one -COOH group. Next, taking into consideration the values listed for each of these groups. 

Table B-3 Heat capacity constants (from [12]) 

Group a b * 102 c * 104 d* 106 

-CH3 0.6087 2.1433 -0.0852 0.001135 

-CH2 0.3945 2.1363 -0.1197 0.002596 

-COOH 1.4055 3.4632 -0.2557 0.006886 

 

Now calculating ‘a’, ‘b’, ‘c’ and ‘d’ for Palmitic acid: 

a= (1* 0.6087) + (14*0.3945) + (1*1.4055)     = 7.5372 

b= (1*2.1433*10-2) + (14*2.1363*10-2) + (1*3.4632*10-2)   = 0.3551 

c= (-0.0852*10-4) - (14*0.1197*10-4) - (1*0.2557*10-4)   = -2.0167*10-4 

d= (0.001135*10-6) + (14*0.002596*10-6) + (0.006886*10-6)  = 4.4365*10-8 

Further, some additional data is required to calculate the heat capacity. 

Table B-4 Palmitic acid additional data required for heat capacity calculation 

Critical Temperature, Tc (K) 799.88 

Acentric factor, ω 1.109 

Molecular weight, MW (g/mol) 256.42 

Correction factor, Fc -0.27 

Universal constant, R (J/mol K) 8.314 
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For instance, we calculate the heat capacity for 40 oC; 

T = 40 oC = 313 K, 

Tr (reduced temperature) = T/Tc= 0.39, 

Using the heat capacity formula: Cp =a + bT + cT2 + dT3, and 

Ideal gas specific heat capacity, 

Cp
o= (7.5372) + (0.3551*313) + ( -2.0167*10-4*3132) + (4.4365*10-8*3133) 

= 100.30 cal/mol K 

= 419.96 J/mol K 

Final specific heat capacity is calculated by rearranging the formula stated by to solve for Cp, 

(Cp - Cp°) /R = 1.45+ 0.45 (1 -Tr) -1+ 0.25ω [17.11+ 25.2 (1 - Tr)1/3 Tr
-1+ 1.742 (1 -Tr)-1], 

Rearranging and solving this formula for Cp at 40 oC; 

Cp= {1.45 + 0.45 (1 -Tr) -1 + 0.25ω [17.11+ 25.2 (1 - Tr)1/3 Tr
-1+ 1.742 (1 -Tr)-1]}*R + Cp° 

Cp= {1.45+ 0.45(1-0.39)-1 + 0.25*1.109* [17.11+25.2*(1-0.39)1/30.39-1 + 1.742* (1-0.39)-

1]} *8.314 + 419.96 

=596.21 J/mol K 

Hence, Palmitic acid Cp = 596.21/256.42 =2.33 J/g K 

In similar way, heat capacities for other fatty acids of the oil, that is stearic acid, oleic acid, 

linoleic acid and alpha- linolenic acid were calculated for the temperature range of 30 oC to 120 

oC. 

Now another sample calculation for the heat capacity of the oil based on the component 

heat capacities at that temperature and weight percent composition: 
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Table B-5 Weight composition, mass fraction and heat capacities for composing fatty acids of 

canola oil at 40 oC 

Fatty acid Weight 

composition 

Number of 

moles 

Mass fraction Cp (J/g oC) 

Palmitic acid 5.11 0.02 0.04 2.3271 

Stearic acid 2.52 0.01 0.02 2.3308 

Oleic acid 63.79 0.22 0.61 2.3104 

Linoleic acid 20.91 0.07 0.22 2.2507 

Linolenic acid 7.79 0.03 0.10 2.2423 

 

Number moles = weight of the component/ molecular weight= 4/256.42= 0.02 

Mass fraction = number of moles/ total number of moles 

= 0.02/ (0.02+0.01+0.22+0.07+0.03) =0.02/ 0.35 = 0.057 

Cp for Canola oil at 40 oC by  

= (2.3271*0.04) + (2.3308*0.02) + (2.3104*0.61) + (2.2507*0.22) +(2.2423*0.1) 

= 2.2684 J/g oC 

The RB model values for all oils from tables 8-7 to 8-15 were calculated similarly. 

B.4 Calculating Error Percent 

As a sample calculation for the error percentages in tables 8-7 to 8-15 is shown below. 

Keeping it consistent, again Canola oil at 40 oC is considered. The heat capacity values for Canola 

oil at 40 oC by all three methods are listed in the table below. 

Table B-6 Sample calculation for error percent for heat capacities of canola oil at 40 oC by 

different methods 

Temp (oC) Experimental RB model PR method Error1 Error2 

40 2.3575 2.2624 2.2701 4.03 3.71 

 

Error percent = ((Expected value- Achieved value) / Expected value) * 100 

Hence, for RB model, error percent = ((2.3575-2.2624) / 2.3575) * 100 = 4.03% 

For PRWS, error percent = ((2.3575-2.2701) / 2.3575)*100 = 3.71% 
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B.5 Procedure Related Error 

For the weight of sample, the expected weight was 4 g and most of the samples were 

weighed to 4 g, there was some inconsistency while weighing some of the samples. A maximum 

error in weighed tolerated was +0.05 g 

Hence the error percent for samples is, 

((Expected value- Achieved value) / Expected value) * 100 

= ((4-4.05) / 4) * 100 = -1.25% 

For weight of vials, it is recommended that both vials, reference and sample, have the same 

weight for more accuracy. Though during this project, the two vials used as sample vial and 

reference vials were kept the same for consistency, but it was noticed that their weights were not 

exactly the same. The starting weight of sample vial was 13.642 g while that of reference vial was 

13.639 g. 

Hence the error percentage in the difference of weights between reference and sample vial 

weights is  

= ((13.642-13.639) / 13.642) * 100 = 0.02% 

For ramp temperature difference, the project involved heating run of oil from 20 oC to 120 

oC and each of these runs consisted for 10 oC ramps. That is, for example a ramp would starts at 

30 oC and end at 40 oC. Even though, it was noticed that the calorimeter temperature reading was 

not exactly starting at 30 oC and ending at 40 oC. The actual calorimeter temperatures read 29.6 oC 

and 39.5 oC thus making the temperature difference to be 9.9 oC. This error can be attributed to 

the calorimeter controller error. The difference between initial and final value of temperature, that 

is the ramp size deviated by ±0.3 oC from actual desired ramp size of 10 oC. The measured ramp 

size varied from 9.7 oC to 10.2 oC. Hence, the ramp size error for temperature difference is  

= ((10-9.7) / 10) * 100 = 3% or ((10-10.2) / 10) * 100= -2% 
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Table B-7 below lists all the procedure related errors that were encountered throughout the 

project also the difference values mentioned above remained the same in between every ramp and 

did not deflect more than the numbers mentioned. 

Table B-7 List of unavoidable errors encountered while performing experiments 

Error Type Percentage 

Weight of sample  -1.25% 

Weight of vials  0.02% 

From start to end 0.08% 

In between runs 0.01% 

Ramp Temperature Difference  ±3 % 

 

B.6 Cp Calculation Error Propagation 

The relation used for calculating Cp is as stated earlier- (ΔQ/ ΔT) 

Cp = ((Cpt- Cpr)/ Ws) 

 = ((Qt/ ΔT- Qr/ ΔT)/ Ws) 

 = (Qt- Qr)/ (ΔT* Ws) 

 

Table B-8 List of approximated and measured parameters 

Variable Approximated values Measured to 

ΔT (oC) 10 ±0.3 oC 

Ws (g) 4 +0.05 

 

Qt and Qr are not considered as variables since those are the integrated the heat curve values 

generated by WinCRC software that is equipped with the calorimeter. To do the error propagation, 

method specified in the book Applied Mathematics in Chemical Engineering [reference] was used. 

The expression for propagation of error is as follows- 

Desired quantity is related to several directly measured quantities as  M = gamma (m1, 

m2… mn) 

The most probable values of M (with errors) is denoted by Z = gamma (z1, z2,….zn) 
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The differential changes in each of z gives an overall change of Z and is expressed as- 

ΔZ = (∂gamma/ ∂z1).Δz1+ (∂gamma/∂z2). Δz2 + …. +(∂gamma/ ∂zn). Δzn  

Following this equation for Cp relation- 

(∂Cp/∂ΔT) = -(Qt-Qr)/ (Ws. ΔT2) 

(∂Cp/∂ΔWs) = -(Qt-Qr)/ (Ws
2. ΔT) 

To obtain maximum error, 

(ΔCp)max = (-(Qt-Qr)/ (Ws. ΔT2)) * Δ(ΔT)) -(Qt-Qr)/ (Ws
2. ΔT)) * ΔWs) 

= (-(-77.51 – 21.63) / 4 * 102) * Δ(ΔT)) – ((-77.51 – 21.63) / 42 * 10) * ΔWs) 

= -(-0.2357 * Δ(ΔT)) - (-0.5893 * ΔWs) 

= (0.2357* 0.3) + (0.5893 * 0.05) 

=0.1001 

Here Δ(ΔT) and ΔWs are the measurement up to deviations and are taken in positive to 

obtain maximum probable error. 

Approximate Cp for this set of numbers is- 

= (-77.51 – 16.79)/ (4 * 10) 

= -2.3575 

The negative value of Cp indicated the heat lost by the system as the temperature increases. 

Hence, the maximum percentage error is 

= ± (Δ Cpmax/ Cp) * 100 

= ± (0.1001/2.3575) * 100 

= ± 4.25 % 

B.7 Composition Analysis Calculation 

A sample calculation for mass% and mole % composition of canola oil from table 7-3 is 

shown below. Compositions for all oils were calculated similarly. 
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Table B-9 Canola oil composition 

  Canola     

 Molecular 

Weight 

(g/mol) 

Area Mass % Amount of FA No. Of 

moles 

Mole % 

Palmitic acid 270 4367636 5.11 5.11 0.0189 5.56 

Stearic acid 298 2151620 2.52 2.52 0.0084 2.48 

Oleic acid 296 54509562 63.79 63.79 0.2155 63.26 

Linoleic acid 294 17864478 20.91 20.91 0.0711 20.87 

Linolenic 

acid 

292 6653373 7.79 7.79 0.0267 7.83 

Internal 

Standard (IS) 

 33483797     

Total (w/o IS)  85447320 100.12 100.12 0.3407 100 

 

Amount of oil sample weighed = 100mg 

Amount of internal standard added= 20 mg 

Internal Response factor (IRF) = [areais X amounts]/ [amountis X areas] 

    = [33483797 * 100]/[20 * 85447320] 

    = 1.96 

Mass % of methyl esters = [area of methyl ester/ total area w/o IS] *100 

For eg- mass % of methyl palmitate = [4367636/85447320] * 100 

     = 5.11% 

Amount of fatty acid methyl ester = [amountis X areas X IRF]/ areais 

     = [20 * 4367636 * 1.96]/ 33483797 

    = 5.11 mg 

No. of moles = [Amount of fatty acid methyl ester/molecular weight] 

  = [5.11/ 270] 

  = 0.0189 

Mole % = [no. of moles/ total no. of moles] * 100 
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 = 5.56 % 

Tables 7-3, 7-4 and 7-5 were developed by following these formulae and calculations. 

The pattern to determine change in composition was calculated using mass composition 

from tables 7-3 to 7-5. The tables 8-3 to 8-6 were developed by simple subtraction of weights of 

fatty acid groups at every heating stage. Sample calculation for canola oil is shown below. Since 

saturated and monounsaturated fatty acids are increasing, 

Amount of SFA/MFA fatty acid increased at 2H heating cycle =  

(SFA/MFA in canola 2H) – (SFA/MFA in canola) 

= (6.05 + 3.62 + 66.39)g – (5.11+ 2.52 + 63.79)g = 4.64 g 

Amount of PuFA fatty acid decreased at 2H heating cycle =  

(PuFA in canola) – (PuFA in canola 2H) 

= (20.91 + 7.79)g – (16.34 + 7.37)g  = 4.99g 
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APPENDIX C: ADDITIONAL FIGURES 

 

 

 

Figure C-1 Methyl ester standards calibration chromatograms 
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Figure C-1 (continued) 
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Figure C-1 (continued) 
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Figure C-2 Methyl esters spectra 
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Figure C-2 (continued) 
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