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sEMG Gesture Recognition with a Simple
Model of Attention

David Josephs1, Carson Drake1, Che’ Cobb1, and John Santerre1

Master of Science in Data Science, Southern Methodist University, Dallas TX 75275
USA {josephsd, drakec, chec, jsanterre}@smu.edu

Abstract. This paper presents a novel method for fast classification of
surface electromyography(sEMG) signals, using a simple model of at-
tention. The brain transmits electrical signals throughout the body to
contract and relax muscles. sEMG measures these signals by recording
muscle activity from the surface above the muscle on the skin. By clas-
sifying these signals with low latency, they can be used to control a
prosthetic limb using an amputee’s brain power. On a difficult, industry
benchmark sEMG dataset, the proposed attentional architecture yields
excellent results, classifying 36 more gestures (53 in total) with about
20% higher accuracy (87% overall) than the current standards in the
field. These results have direct and immediate application in the fields
of robotics, myoelectric control, and prosthetics.

1 Introduction

Electrophysiological studies of the nervous system are the core area of research in
clinical neurophysiology, where scientists attempt to link electrical signals from
the body to real world effects. These studies include measuring brain waves
(electroencephalography), comparison of sensory stimuli to electrical signals in
the central nervous system (evoked potential), and the measure of electrical
signals in skeletal muscles (electromyography).

Electromyography is of particular interest to this paper. The nervous system
uses electrical signals to communicate with the rest of the body. When a signal
from the nervous system reaches a skeletal muscle, the myocytes (muscle cells)
contract, causing a physical motion. By measuring these electrical signals in a
supervised manner, we can develop a link between signal and physical action.
This connection yields many powerful uses, ranging from quantifying physical
veracity to diagnosing neurodegenerative diseases. An example of the latter can
be found in Akhmadeev et al. [2], where electromyographic (EMG) signals were
used to classify Multiple Sclerosis patients from healthy control subjects with
82% accuracy.

Deep learning can be used to further improve the power and utility of the
EMG analysis. A deep neural network is, in essence, a composition of neurons
(regressors) that learns a functional mapping between two sets of data. By learn-
ing a mapping between EMG signal and physical effect, we can develop more
sensitive and accurate models of what connects the two. This also allows us to
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use less intrusive measurement devices in studies and in the real world. The ap-
plications of this range from clinical trials and prognostication of neuromuscular
diseases to gesture prediction in “brain-controlled” prosthetic limbs. This paper
focuses on the latter application. Current state of the art myoelectric prosthetic
limbs are capable of detecting and performing between 7 and 18 motions [16] [25].
While this represents a significant increase in the quality of life of an amputee,
there remains a large amount of room for improvement. Most of the potential
for improvement does not lie in the robotics themselves, which are fairly robust,
but within the device which maps brain signal to motion of the hand. The aim
of this paper is therefore to build a highly accurate gesture classifier using EMG
signal, capable of classifying a broad range of gestures, improving the quality of
life of amputees as much as possible.

Extending from this initial goal, there are certain metrics which must be met
for the classifier to be deemed “useful” for an amputee. First, it must be fast.
If there is a large degree of latency from thought to hand motion, the user will
simply not use the device. Thus, it is important to determine the time window
in which a prediction must be made. The absolute largest prediction latency for
a model to be considered useful for myoelectric control lies between 250 and 300
milliseconds [18], [33]. For this paper, the precedent set by [12] was followed, with
a 260 millisecond prediction window. Another key consideration for the classifier
is generalizability. Within the field of myoelectric control and gesture recognition,
there are two important types of generalizability, intra-subject and inter-subject
[31]. Intra-subject generalizability indicates that the model is robust to personal
elements, such as muscle fatigue. In contrast, inter-subject generalizability refers
to the ability of the model to generalize to new people. This paper focuses on
intra-subject generalizability, as it is important that the device keep working
for extended periods of time, while models can be fit to and personalized for
amputees and non-amputees alike [4].

In this paper, we propose a novel attentional architecture for sEMG recog-
nition and myoelectric control. We demonstrate the model’s validity on the 53-
class NinaPro DB5 [27]. We also compare different techniques for dealing with
the inherent class imbalance in sEMG: a synthetic data-based approach (aug-
mentation), an undersampling based approach, and a loss-based approach. All
methods are evaluated on an intra-subject basis using the same holdout samples,
yielding promising results. This architecture represents our main contribution to
the sub-fields of myoelectric control, time series classification, and prosthetics,
however the inclusion of ideas and techniques from other domains, such as focal
loss for class imbalance, layer normalization, and the novel data augmentation
technique used in this paper represent further contributions.

The structure of this paper is as follows. In Section 2, an overview of sEMG
and the dataset is provided for the reader’s convenience. In Section 3, a brief
overview of sEMG classification with machine learning, and then with deep learn-
ing is given. Section 4 highlights the preprocessing techniques used on the data,
as well as a novel data augmentation technique, and Section 5 outlines model-
ing techniques and procedures, including the attentional architecture, novel and
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Fig. 1: A motor unit, consisting of: 1 an Axon, 2 a junction site, 3 a Myocyte,
and 4 Myofibrils. The Axon sends electrical signal through the junction cite,
causing the all of the myofibrils (and thus the entire myocyte) to contract.

powerful training techniques, and the computer vision inspired loss function.
In Section 6, the results are analyzed extensively, and Section 7 concludes the
paper.

2 Surface Electromyography

Before discussing the mechanics of the proposed model, it is important to first
discuss electromyography more closely. As mentioned in the Introduction, elec-
tromyography is the measure of electrical signals from the brain in the rest of
the body. To be more specific, the body controls the forces in the muscles using
electrical signals, via units called motor control units, as seen in Figure 1. By
measuring the amplitude and frequency of these signals, the strength or verac-
ity of the motion and the type of motion can be determined. These signals are
recorded in units of Motor Unit Action Potential (MUAP), either through inter-
nal electrodes or electrodes on the skin. This paper is particularly focused on the
measure of signals across the skin, or surface electromyography (sEMG). While
sEMG is not quite as powerful as true EMG (e.g., the signals are weaker), it is
far more practical and scalable, and far less disruptive, invasive, or sensitive to
change. In this paper, data are collected using two MYO armbands [37], on the
upper arm of the subject (just above the elbow), as seen in Figure 2. Intuitively,
the idea is to collect the signal where the sensors are, and classify them with
enough speed that it feels as if the hand were being moved on its own.

2.1 The NinaPro Database

The data in this paper comes from the NinaPro Database, specifically database
number 5 [27]. Within this database, there are 52 unique motions measured,

3

Josephs et al.: Attentional Deep Learning for Myoelectric Control

Published by SMU Scholar, 2020



Fig. 2: The MYO armbands are placed just above the elbow [10].

as well as rest, collected over 10 subjects. Each subject does each exercise 6
times, with 3 seconds of rest between each repetition. The signal from these are
collected at the frequency of the MYO armband, 200 Hertz. Figure 3 displays
the gestures performed by each of the subjects.

This is one of the big challenges and benefits of the MYO armband. Low
frequency sEMG is very sparse in information, and thus difficult to classify
(especially relative to expensive HD sEMG sensors), however this also means
that the MYO armband is cheap and accessible to the average consumer. The
other benefit of MYO’s affordability and sparsity can be inferred from Figure 2.
The inexpensive sensor constricts the arm and stays in place. Because the signals
are weaker, slight shifts in the electrode do not have as much of an impact on
the underlying signal (as the sensor is not incredibly sensitive). This means that
the MYO armband is simpler and more robust for use by the general public.

The goal of this paper is to develop an accurate mapping between MUAP
in the upper arm and the motion of the hands, in order to help amputees have
access to reliable smart prosthetics.

3 sEMG Classification

In order to justify the need for deep sEMG classifiers, it is important to briefly
discuss why shallow classifiers are inappropriate. Shallow classifiers (and really
all of classical machine learning) relies on feature engineering, or the creation of
robust features which represent the data in a precise manner [26]. This is very
powerful, but it also comes with the assumption that the same fundamental
process is generating all data points, that is the same feature set that works
at time a for person x works at time b for person y. However, in the case of
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Fig. 3: The gestures contained in the NinaPro 5 dataset [5]. This paper focuses
on Rest, Exercise A, Exercise B, and Exercise C
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Fig. 4: A simple model of temporal attention.

surface electromyography, all brains and bodies are completely unique, which
means that a classical, engineered feature set is neither robust between subjects
or between repetitions (over time) [30]. In order to build robust models, intricate
ensembling techniques with deep analysis and feature engineering are employed
[32]. Therefore, the focus of this paper is to build a simple, powerful, model,
which is able to learn features from the data, which are more robust over time
and over subjects, and easily implemented in embedded hardware.

3.1 Deep Learning for sEMG Classification

Much of the previous work in sEMG classification (and time series classifica-
tion in general [13]) with deep learning revolves around convolutional neural
networks. In this subsection, notable and influential recent work will be high-
lighted. [3] very clearly demonstrated the power of convolutional neural networks
with respect to sEMG classification, namely their flexibility and ease of use (due
to feature learning vs feature engineering). This work is expanded in [12], in
which the authors use convolutional neural networks, wavelet transformations,
and deep transfer learning to slightly improve on the results highlighted in [3]. In
[38], the authors proposed a multi-stream convolutional model, yielding 85% ac-
curacy on the NinaPro DB1 [6]. [39] explores beyond the world of CNNs, testing
a convLSTM architecture, which yielded poor results on NinaPro DB5, however
this does not mean long term memory is a bad idea, and is a promising alterna-
tive to pure convolutions. The idea of both recurrent neural networks/long term
memory and transfer learning is investigated in [20], in which the authors use
a multistage training technique in order to adapt a recurrent neural network to
dynamic sEMG data.

This paper instead explores a novel direction for both time series classifica-
tion in general and for sEMG classification in particular: attention. In the last
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few years of language modeling, attentional models have proven more and more
utilitarian, managing to solve problems of long term memory (which are com-
monplace in time series and language) while also managing to avoid the training
and gradient issues of recurrent neural networks. Attention is a flexible, intuitive
mechanism with lots of untapped application. In this paper, the simple, feed-
forward model of attention described in [29] is expanded upon. The attention
mechanism used in this paper is shown in Figure 4.

The mechanism works as follows: First time series data, an (M,N) matrix
(where M represents timesteps and N represents features or channels). This
matrix is transposed into an N by M matrix. In this matrix, an observation at a
single row represents all timesteps of that feature or channel. For example, row
x represents the time series produced by the feature N = x. This matrix is then
fed in row by row to a standard, feedforward layer, using the softmax activation
function. Thus, for each timestep of each feature, an importance (referred to as an
“attention score”) is calculated. Next, these are summed across time, producing a
single number per feature, which represents the overall importance of the feature
within that sample. As per [29], this simple mechanism, akin to a parametric
time weighted average, actually successfully solves long term memory problems
where order is not very important (or in this case, where memorization is to be
avoided). This represents a promising new direction for time series classification
as a whole and for sEMG recognition and myoelectric control in particular, as
the order of observations does not necessarily matter, but the pattern does.

4 Data Processing

There are two considerations for preprocessing sEMG data for use in a prosthetic
limb or other smart robotics. First, the preprocessing method must be fast and
simple, as it needs to run with near zero latency on edge hardware (for example
in a prosthetic hand). Second, the goal of using a deep neural network is to learn
robust features. Therefore, preprocessing methods must be simple, computation-
ally efficient, and maximize information density. The data (collected at 200 Hz),
is sampled in time windows of 260 milliseconds (or 52 time steps), following the
precedent set in [12]. One window of raw data can be seen in Figure 4a.

This raw data represents what is collected by the two MYO armbands. Each
armband collects 8-channel signal across the arm at 200 Hz. To reduce powerline
interference, the armband filters the data with a notch filter, minimizing the
effects of large nearby electronics (such as power lines). Next to further refine
and extract useful information from the signal data, the sEMG channels are
rectified (in layman’s terms, take the absolute value of). In [24], it was shown
that rectification significantly increased the availability of information pertaining
to the firing rate (temporal activity and pattern) of the motor units producing
the signal.

After increasing the information density, the next important preprocessing
step is to refine and distill the information. First, the packet of rectified sig-
nal uses a 20 Hz high-pass Butterworth filter to remove low frequency artifacts
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a: Raw sEMG b: Processed sEMG

Fig. 5: Raw and processed sEMG. the x and y axes represent time and motor
unit potential respectively.

(aliases), typically caused by the sensor shifting. Artifacts can obscure and in-
terfere with the relevant signal. Finally, the data is processed using a moving
average transform. The smoothed average signal more clearly correlates with
muscle activity [34]. The results of this preprocessing can be seen in Figure 4b.

One of the great hurdles of utilizing deep learning is its reliance on large,
robust sets of train data, and its tendency to overfit to the said data. In order
to learn more robust mappings, without collecting a significantly larger amount
of data, synthetic data can be generated, in order to allow for a more robust
and balanced training set. This helps prevent the deep learning algorithm from
simply memorizing the training data. In this study, a novel data augmentation
technique was employed, as seen in Figure 6. The methodology for the data
augmentation is a simple random sample of a spectrum of different signal-to-
noise ratios (SNR). A processed series is fed into the augmenter, and then random
noise, at a given signal to noise ratio in magnitude is added. The signal to noise
ratio for a realization is calculated at random as well, with linearly increasing
likelihood as SNR increases. This allows the model to be trained for an extended
period, without ever seeing the same observation twice.

5 Modeling

In this section, the overall architecture of the model is discussed, and then the
novel training techniques used are outline, for the sake of reproducibility. The
proposed model consists of three distinct phases: a convolutional preprocessor,
an attention layer (as discussed in Section 3), and a classifier. The the various
phases data processing, model design, training, and evaluation are implemented
in Python, leveraging Keras [11], Tensorflow 2.0 [1], and Scikit-Learn[9].
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Fig. 6: Data augmentation scheme, highlighted on a single channel of a single
sample. Brighter realizations are more likely than dim ones.

As seen in Figure 7, the first stage of the model consists of a single, 1-
dimensional convolutional preprocessing layer. This layer takes in the processed
time series data, and filters them with a kernel size of three. That is, every
three timesteps is filtered down into a single value (for each channel). This is
done for each timestep, with 128 filters, resulting in a (M, 128) matrix (where
M is the length of the time series). The output of this layer, and the output
of all subsequent layers, are normalized across features (layer normalization)
[7]. Layer normalization differs from batch normalization in that it normalizes
across features, instead of across batches. Mathematically, consider a batch with
dimensions (samples, timesteps, features). When batch normalization is ap-
plied, the weights are normalized using summary statistics across the samples,
while with layer normalization, the summary statistics used to normalize the
weights are calculated across the features. This holds true for both lower and
higher dimensional data as well.

This matrix is then fed into the feed-forward attention mechanism described
in Figure 4, resulting in a feature vector of 128 values. These are fed into the
classification network, which consists of a set of standard, feed-forward layers.
The architecture of the classifier is based off of the architecture proposed in
[17], and was chosen due to its ability to effectively represent complex data. The
output of this network is softmaxed in order to produce the final classifications.
Each layer of the classification network is regularized using dropout.
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Fig. 7: The proposed architecture. Red arrows represent dropout connections.
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5.1 Training

Several state-of-the-art training techniques were employed in this model. First,
instead of using the Rectified Linear Unit(ReLU) activation function, all layers
use the “Mish” activation function [23]. The Mish activation function is slightly
less regularized then ReLU, thus yielding results slightly faster (and avoiding
the “dead neuron” problem). Instead of optimizing the network with Adam or
SGD, the model was optimized using the Ranger optimizer. The Ranger opti-
mizer consists of two components: Rectified Adam (RAdam) and Lookahead.
The RAdam algorithm represents an improvement over the Adam optimizer in
that it does not require a “warm up period”, which Adam is notorious for need-
ing. This allows the model to be trained to an optima much faster [22]. The
Lookahead algorithm works in conjunction with a primary optimizer. The pri-
mary optimizer calculates weights as it normally does, and then the Lookahead
optimizer explores the loss landscape near the calculated weights. This allows
for even faster convergence to an optima [40]. The combination of Lookahead
and RAdam is the Ranger optimizer used in this paper [35]. Due to the very hot
start of this combination (Mish and Ranger), the model learns very quickly. To
further speed up training, the learning rate followed a delayed cosine annealing
schedule. For the first 5 epochs, the model trains at a very high learning rate,
and is subsequently annealed over the course of 50 epochs to a very low learning
rate. This allows the model to quickly propel itself to a flat optima, and then
work towards the bottom. This “hot start” methodology allows the model to
quickly converge to a robust local minima [19].

A significant issue in sEMG classification is the large class imbalance present
in the data. Most of the time, the hand is at rest. In the NinaPro 5 dataset, this
means that there was over 30 times rest as any of the other 53 classes (and this
also means that a non movable prosthetic hand would be about 60% accurate).
Three methods were tested to combat this imbalance. First, undersampling the
majority class (rest), so that it would have the same likelihood of occurring
in the training dataset as the other classes yielded decent results. A similar
approach, augmenting all the minority classes to match the majority class, was
tested, however the slight benefit over undersampling was far outweighed by the
prohibitive training cost of this method. Finally, a loss-based method was tested,
using focal loss [21]. Focal loss is calculated in almost exactly the same manner
as categorical cross entropy, except it gives a lower importance to well aligned
(easy to classify) samples, and raises the importance of difficult samples. This
yielded by far the best results.

6 Results

All models followed a training-validation-test split consisting of all 53 gesture
classes, but across different repetitions. The repetition split schedule consisted
of repetitions first through third for training set, fourth and fifth for validation
set, and the final, sixth, repetition for the test set. This section introduces the
evaluation metrics used in this paper for evaluating model performance, provides
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Table 1: Results compared to other influential papers

Model Window Size Accuracy Number of Gestures

Attentional Network, Focal Loss 260 ms 87% 53
Shen et al, 2019 200 ms 75% 53
Allard et al, 2019 289 ms 68% 17
Simao, 2019 1.5 s 90% 7
Atzori, 2016 150 ms 66% 17

Fig. 8: Count of each class, it is apparent there is a large class imbalance

context to communicate the utility of each model, and finally compares and
contrasts the results of this paper with both typical baseline models as well as
other results relevant to the current state of sEMG gesture classification.

6.1 Empirical Analysis of Results Considering Class Imbalances

As each class is equally important, regardless of count, we would like to use a
metric that is less reliant on counts. For this, we will use the Matthews Cor-
relation Coefficient (MCC)[8]. The MCC calculates, in essence, the correlation
coefficient between two sets of classes, as seen in Equation 3. This means that
a value of 1 represents perfect prediction, a value of 0 represents completely
random predictions, and a value of -1 represents inverse predictions. Because
it relies on correlations between the groupings, and accounts for true positives,
false positives, true negatives, and false negatives, it is completely robust to class
imbalances. The overall MCC for the model on the full dataset, including rest is
0.78. This indicates that the model is a strong predictive model, and is generally
correct, other than some bad samples, as it is relatively close to 1.

Table 2 shows more detailed diagnostics of the classification model. It shows
4 metrics, precision, recall, f1-score, and support. Precision is the ratio of times
a class was predicted correctly to the total number of times that class was pre-
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dicted. Recall represents the number of times a class was predicted correctly to
the number of occurrences of that class, and F1-score is the harmonic average of
precision and recall. Support is simply the number of occurrences of that class. It
is apparent that the model performed very well on rest, however it struggled with
some of the other motions. In order to make the model more useful to amputees,
it may be helpful to remove these problem classes. The power of this technique
can be observed using the balanced accuracy metric. The calculation of accuracy,
given a confusion matrix C can be seen in Equation 1, while Equation 2 shows
the calculation of balanced accuracy.

acc =

∑
diag(C)∑m

i=0

∑m
j=0 C

(1)

accbalanced =
∑ ∑

diag(C)∑m
j=0 C

(2)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

Intuitively, in balanced accuracy, scores are calculated given the support of
that class, while normal accuracy calculates scores given the total number of
observations. The balanced accuracy of the model predicting all of the classes is
70.4%. This can be seen with other references in Table 3.

In order to provide simple yet meaningful context to the model evaluation
metrics, the upper half of Table 3 demonstrates the statistical performance of
some generic “Dummy”, baseline, classifiers. In addition to providing useful base-
line to compare and contrast the model’s metrics, these baseline classifiers help
illustrate relevant concepts specific to evaluating sEMG gesture classification
models. This upper half also powerfully demonstrates the use of the MCC met-
ric, as it is far more conservative and yields near-zero scores for bad results. The
lower half of the table shows the results grouped by exercise type, where there
is clear inflation of the results from the class imbalance in the accuracy score,
while balanced accuracy is more robust to this. As mentioned above, one way to
further improve model utility is to remove problematic classes, as they lower the
ability of the model to help those missing limbs, while any improvement over
current standards (7-15 classes) represents a big improvement in the quality of
life for an amputee. This can be accomplished by removing classes with bal-
anced accuracy a certain number of standard deviations away from the average
balanced accuracy, as seen in Table 4.

Simply removing 5 problematic classes greatly increases the balanced accu-
racy, and slightly increases accuracy. By removing 15 slightly problematic classes,
the accuracy even eclipses 90%, representing significantly higher utility to the
end user.

6.2 Estimation of Uncertainty

It is highly important, especially when dealing with black box models such as
neural networks, to quantify the uncertainty of a prediction. The de-facto stan-
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Table 2: Diagnostics of each class

Gesture Precision Recall f1-score Support

0 0.961 0.971 0.966 256527
1 0.665 0.676 0.670 3672
2 0.785 0.776 0.780 2633
3 0.692 0.744 0.717 3327
4 0.781 0.824 0.802 2477
5 0.751 0.739 0.745 2933
6 0.818 0.754 0.785 2896
7 0.663 0.707 0.684 3121
8 0.840 0.819 0.829 2977
9 0.670 0.671 0.670 2301
10 0.619 0.611 0.615 2664
11 0.704 0.738 0.721 2186
12 0.754 0.710 0.732 2562
13 0.813 0.811 0.812 3183
14 0.794 0.811 0.803 2663
15 0.861 0.877 0.869 2636
16 0.674 0.714 0.693 2654
17 0.701 0.639 0.668 2439
18 0.855 0.829 0.842 2349
19 0.787 0.751 0.768 2819
20 0.645 0.629 0.637 2549
21 0.694 0.711 0.702 2743
22 0.662 0.663 0.662 2614
23 0.625 0.556 0.589 3057
24 0.533 0.562 0.547 2644
25 0.752 0.655 0.700 2790
26 0.737 0.683 0.709 2482
27 0.752 0.767 0.759 2199
28 0.671 0.662 0.667 3102
29 0.702 0.633 0.666 2977
30 0.607 0.637 0.621 2503
31 0.554 0.583 0.568 2625
32 0.565 0.505 0.533 2657
33 0.762 0.713 0.736 2679
34 0.638 0.645 0.642 2930
35 0.753 0.751 0.752 3323
36 0.709 0.687 0.698 2486
37 0.703 0.723 0.713 2795
38 0.699 0.647 0.672 2734
39 0.686 0.714 0.700 2742
40 0.683 0.698 0.690 2992
41 0.708 0.696 0.702 2734
42 0.644 0.560 0.599 2675
43 0.634 0.613 0.623 3006
44 0.608 0.692 0.647 3261
45 0.623 0.548 0.583 2966
46 0.751 0.749 0.750 3097
47 0.685 0.721 0.702 3279
48 0.782 0.715 0.747 2980
49 0.810 0.792 0.801 3009
50 0.729 0.660 0.693 3168
51 0.850 0.779 0.813 3446
52 0.848 0.805 0.826 3449
macro avg 0.717 0.704 0.710 403712
weighted avg 0.871 0.872 0.871 403712
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Fig. 9: Balanced accuracy by class, with 95% confidence intervals. We see that
there is fairly low uncertainty with the classifications

Fig. 10: Chord plot of misclassifications, showing strong links. If a line connects
0 to 12, this means that the model predicted 0 when the true class was 12, 50
times

15

Josephs et al.: Attentional Deep Learning for Myoelectric Control

Published by SMU Scholar, 2020



Table 3: Scores stratified by exercise group and reference results

Weighted Random Unweighted Random All Zeros All Ones

Acc 0.4070 0.4060 0.635 0.009
Balanced Acc 0.0190 0.0190 0.019 0.019
MCC 0.0006 -0.0002 0.000 0.000
Precision 0.4070 0.4060 0.404 0.000
Recall 0.4070 0.4060 0.635 0.009
f1-Score 0.4070 0.4060 0.494 0.000

All Finger Wrist Functional

Acc 0.8720 0.7300 0.7010 0.6840
Balanced Acc 0.7040 0.7310 0.7030 0.6800
MCC 0.7827 0.7142 0.6869 0.6719
Precision 0.8710 0.8600 0.8040 0.7570
Recall 0.8720 0.7300 0.7010 0.6840
f1-Score 0.8710 0.7880 0.7480 0.7180

Table 4: Balanced accuracy after removing classes n standard deviations below
the mean

Number of SDs Number of Classes Balanced Accuracy Accuracy

∞ 53 70.4% 87%
2 52 70.8% 87.5%
1.5 48 72% 88%
1 45 73% 89%
0.5 38 74% 90%
0 28 77% 92%

dard uncertainty estimation for deep learning models is Monte Carlo Dropout
[14]. At the cost of a slight decrease in accuracy, dropout is applied at infer-
ence time in order to induce some non-determinism in the model, which allows
the neural network to act as an approximation of a fully probabilistic Bayesian
Network.

Figure 9 displays the results of this Bayesian approximation using dropout,
as well as the general results of the classification. In general, the uncertainty is
small relative to the prediction, and thus the predictions are fairly confident.
The model also seems to struggle with a few motions of the wrist and a few
functional motions. This is in line with the observations from Table 3.

Monte Carlo Dropout can also be used to identify classes which are closely
linked. By repeating predictions, if there is a link between classes, the model
will tend to err towards the links. Therefore, making many Monte Carlo pre-
dictions and then counting misclassifications can help identify common linked
errors. Combined with the actual motions of the classes (as described in [5] and
Figure 3), certain motions can be combined in order to improve model power
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with little effect on the end user. Nina 5 is often criticized for having a small
subset of motions which are closely linked and very difficult to differentiate[36],
and thus identifying them is appropriate.

Figure 10 shows these misclassifications in detail. Each line represents 50 mis-
classifications over, meaning these represent which motions the model is most
uncertain about. Referring to Figure 10 and [5], classes which are similar can
be identified. Gestures 42 and 43 represent a tripod grasp and prismatic pinch
respectively, which are highly similar. 43 is used slightly more often in the real
world, therefore they could be combined into gesture 43 every time on the pros-
thetic. 30 and 31 are both cylindrical grasps, and can be comfortably combined,
just as 39 and 41, sphere grasps, can be. By changing these and similar classes as
reported in Figure 10, the accuracy increases to 88%, MCC to 0.79, and balanced
accuracy to 71%, at a minimal cost in utility.

7 Conclusions

This paper presents a novel and powerful method for classifying sEMG signal for
use in smart prosthetics. First, processed data is fed into a simple, feed-forward
attention mechanism which assigns a numerical score to each series. This is then
fed into a simple classifier network with dropout connections and feature-wise
normalization, achieving breakthrough accuracy with a simple model. The model
was trained with several recent advancements in deep learning and computer
vision, including focal loss and Ranger optimization, as well as a novel data
augmentation scheme. The results of these techniques yielded a significant gain
in both accuracy and number of gestures classifiable using low-frequency sEMG
data.

The resultant boost in accuracy and breadth of available motions could be
used to directly impact the lives of prosthetics users. The MYO armband used
to collect the data is a low-frequency, consumer-grade sensor, readily available
for general use, meaning the results of this study are not only powerful, but af-
fordable. By having a significantly wider range of motions, and not being limited
to just functional motions, amputees will have a significantly higher quality of
life. Moreover, using post-hoc analysis of where the misclassifications occur, the
gesture classifier can be made more useful by removing problem classes, boosting
the accuracy anywhere from 1% (using linked misclassifications) and 5% (using
mean-based removal). This may limit the range of motions of the device, but as
discussed in subsection 6.2, many of these motions are closely related and some-
what redundant. Therefore, they can be removed with little impact to the end
user. This implies that this model can be made more useful with a more robust
training set, such as that proposed in [36]. Similarly, a simple feed-forward model
can easily be embedded in lightweight hardware for long term, low latency, low
power usage. Simple DNNs such as this can be assisted by cheap accelerators,
such as those mentioned in [28], which make them more efficient and consume
less power, meaning they can act as an amputee’s hand for a longer period of
time.
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One general flaw with the methods discussed in this paper is the use of labels
at all. The human brain is not a supervised algorithm, and can learn and adapt
quickly to new situations, while a classifier simply cannot. This research should
be expanded into the fields of reinforcement and imitation learning. In [15],
imitation learning is used in a prosthetic leg, and it is proven that it can adapt to
walking on new, never before seen terrains, and capable of achieving superhuman
optimization in walking. This is the next big step for smart prosthetics, and
should be heavily researched in the future. If combined with computer vision
and other machine learning sub-fields, sEMG analysis could be the basis for
robust models with an infinite range of gestures, allowing amputees to regain
complete functionality of their limbs.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., Zheng, X.: Tensorflow: A system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). pp. 265–283 (2016), https://www.usenix.org/system/files/conference/

osdi16/osdi16-abadi.pdf

2. Akhmadeev, K., Houssein, A., Moussaoui, S., Høgestøl, E.A., Tutturen, I., Harbo,
H.F., Bos-Haugen, S.D., Graves, J., Laplaud, D.A., Gourraud, P.A.: Svm-based
tool to detect patients with multiple sclerosis using a commercial emg sensor. 2018
IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM) pp.
376–379 (2018)

3. Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neu-
ral networks applied to electromyography data: A resource for the classification
of movements for prosthetic hands. Frontiers in Neurorobotics 10 (Jul 2016).
https://doi.org/10.3389/fnbot.2016.00009

4. Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.G.M., Elsig, S.,
Giatsidis, G., Bassetto, F., Müller, H.: Electromyography data for non-invasive
naturally-controlled robotic hand prostheses. Scientific data 1(1), 1–13 (2014)

5. Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.G.M., Elsig, S.,
Giatsidis, G., Bassetto, F., Müller, H.: Electromyography data for non-invasive
naturally-controlled robotic hand prostheses. Scientific data 1(1), 1–13 (2014)

6. Atzori, M., Gijsberts, A., Kuzborskij, I., Elsig, S., Hager, A.G.M., Deriaz,
O., Castellini, C., Muller, H., Caputo, B.: Characterization of a bench-
mark database for myoelectric movement classification. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 23(1), 73–83 (2015).
https://doi.org/10.1109/tnsre.2014.2328495

7. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
8. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing

the accuracy of prediction algorithms for classification: an overview . Bioinfor-
matics 16(5), 412–424 (05 2000). https://doi.org/10.1093/bioinformatics/16.5.412,
https://doi.org/10.1093/bioinformatics/16.5.412

9. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,

18

SMU Data Science Review, Vol. 3 [2020], No. 1, Art. 9

https://scholar.smu.edu/datasciencereview/vol3/iss1/9

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.3389/fnbot.2016.00009
https://doi.org/10.1109/tnsre.2014.2328495
https://doi.org/10.1093/bioinformatics/16.5.412
https://doi.org/10.1093/bioinformatics/16.5.412


Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108–122 (2013)

10. Campbell, P.: Apl’s modular prosthetic limb reaches new levels of operability.
JHU/APL Brand (Jan 2016), https://www.jhuapl.edu/PressRelease/160112

11. Chollet, F.: keras. GitHub repository (2015), https://github.com/fchollet/

keras
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