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ABSTRACT
We consider the effects of radio wave scattering by cool ionized clumps (T ∼ 104 K) in
circumgalactic media (CGMs). The existence of such clumps is inferred from intervening
quasar absorption systems, but has long been something of a theoretical mystery. We consider
the implications for compact radio sources of the ‘fog-like’ two-phase model of the CGM
recently proposed by McCourt et al. In this model, the CGM consists of a diffuse coronal gas
(T � 106 K) in pressure equilibrium with numerous �1 pc scale cool clumps or ‘cloudlets’
formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected
to exceed unity in �1011.5 M� haloes, and the ensuing radio wave scattering is akin to that
caused by turbulence in the Galactic warm ionized medium. If 30 per cent of cosmic baryons
are in the CGM, we show that for a cool-gas volume fraction of fv ∼ 10−3, sources at zs ∼
1 suffer angular broadening by ∼15μas and temporal broadening by ∼1 ms at λ = 30 cm,
due to scattering by the clumps in intervening CGM. The former prediction will be difficult
to test (the angular broadening will suppress Galactic scintillation only for <10μJy compact
synchrotron sources). However the latter prediction, of temporal broadening of localized
fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as a
function of halo mass and redshift, and thus provides a test of the model proposed by McCourt
et al.

Key words: scattering – galaxies: haloes.

1 IN T RO D U C T I O N

The circumgalactic medium (CGM) of galaxies and the intergalactic
medium (IGM) are together expected to harbour about 80 per cent
of all baryons in the Universe (Anderson & Bregman 2010). Ab-
sorption spectroscopy of quasars along intervening CGM sightlines
in recent years have yielded a wealth of information on the physical
state of CGM gas. Some of these findings have however contradicted
naive models based on theoretical considerations. In particular, the
ubiquitous detection of cool (∼104 K) and likely dense (ne ∼ 1 cm−3

at z ≈ 2; Hennawi et al. 2015; Lau, Prochaska & Hennawi 2016)
gas in the CGM of massive galaxies (M � 1012 M�) is puzzling –
an outcome that was not predicted by canonical galaxy assembly
models. Based on theoretical consideration and numerical simula-
tions, McCourt et al. (2018) and Ji, Oh & McCourt (2017) have
shown that numerous sub-parsec scale cool1 gas clumps can form

� E-mail: vedantham@astron.nl
1The clumps of interest are photoionized gas at ∼104 K. In the recent CGM
literature, whose terminology is used by McCourt et al., such clouds are
called ‘cold’, while gas at 104−5 K is called ‘cool’, and gas at 105−6 K
called ‘warm’, in contrast to the volume filling ‘hot’ gas at ∼106 K. This
is unfortunately inconsistent with many decades of tradition of literature on

in galaxy haloes due to thermal instabilities, likening the CGM to a
‘fog’ consisting of partially ionized ∼104 K cloudlets dispersed in a
hot ∼106 K ambient medium. Such small clumps, though they can
explain many features of quasar absorption lines, are however sub-
ject to uncertainty regarding the initial conditions, and destruction
by electron conduction from the surrounding hot gas unless mag-
netically shielded. It is therefore desirable to have an observational
probe capable of detecting the existence of such small clumps in the
CGM of distant galaxies. Here we show that the fog-like CGM leads
to observable scattering of radio waves from extragalactic sources,
and that upcoming surveys for fast radio bursts (FRBs) can con-
strain the sub-parsec scale morphology of cool gas in intervening
CGM.

The assembly of dissipative baryons into galaxies in the presence
of dark matter potential wells has been studied extensively based on
general physical principles (see e.g. Binney 1977; Rees & Ostriker
1977; Silk 1977; White & Rees 1978). The conclusion of these early
studies relevant for this paper is as follows: gravitational potential

the interstellar medium, in which partially ionized gas at 8000 K is called
‘warm’, while ‘cold’ is reserved for neutral and molecular gas at much
lower temperatures. To avoid confusion, in this paper we decided to call the
photoionized clumps ‘cool’ rather than ‘cold’ or ‘warm’.

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
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972 H. K. Vedantham and E. S. Phinney

energy of baryons is converted to kinetic energy during dissipative
collapse. This heats the baryons to the virial temperature Tvir ≈
106 M

2/3
12 h2/3(z) K, where M12 is the halo mass in units of 1012 M�

and h(z) is the dimensionless Hubble parameter at redshift z of
the halo. For haloes less massive than about 1011.5 M�, the virial
temperature drops below ∼105 K, whereupon the radiative cooling
time-scale, tcool (primarily via metal lines) is smaller than the Hubble
time, t0. The gas then rapidly cools to T ∼ 104 K throughout the
halo, loses pressure support, and falls inwards to form stars. In more
massive haloes, tcool � t0 and the gas at large radii r ∼ rvir forms
a long-lived pressure-supported hot (T � 105.5 K) halo devoid of
cold neutral gas.2

Quasar absorption spectroscopy and fluorescent Lyα studies of
the CGM, however, tell a somewhat different story. Absorption
studies routinely detected large amounts (N ∼ 1018– 1020 cm−2) of
cool (104 K) gas at the virial radius of �1012 M� haloes at both high
(z ∼ 2) and low (z ∼ 0) redshifts (Steidel, Sargent & Boksenberg
1988; Steidel, Dickinson & Persson 1994; Stocke et al. 2013; Werk
et al. 2014; Lau et al. 2016; Mathes, Churchill & Murphy 2017;
Tumlinson, Peeples & Werk 2017). Studies of galaxies at redshifts
z ∼ 0.1–2.5 have shown that associated absorption lines are almost
always found in the spectra of background quasars projected in the
range 50–100 kpc of the galaxies (Rudie et al 2012; Turner et al.
2014; Tumlinson et al. 2017). Thus the covering factor of cool gas in
galaxy haloes exceeds 50 per cent even at such large distances from
the galaxies. Photoionization models, though uncertain, indicate
that the projected mass surface density scales roughly as r−1 (see
e.g. fig. 7 of Tumlinson et al. 2017). Florescent Lyα imaging of
quasar host galaxies at z ∼ 3 provides additional confirmation that
cool gas has a covering fraction of unity even out to the virial radius,
with a surface brightness that evolves with radius as r−1.8 (Cantalupo
et al. 2014; Borisova et al. 2016). Both the emission and absorption
observations point to the ubiquitous nature of cool (∼104 K) gas in
the CGM of M � 1012 M� haloes – a result not predicted by the
canonical model of halo formation. The radial profile and smooth
absorption lines over the viral velocity width in addition disfavour
any model where the cool gas is confined to a narrow shell around
the virial shock, but instead suggests that the cool gas pervades the
CGM in multiple small clouds with a total areal covering factor
exceeding unity.

Broadly speaking, two classes of models have been advanced
via sophisticated simulations to explain the large covering fraction
of cool gas in massive galactic haloes: (a) The first set of models
create the cool gas in situ by recognizing that in practice, only a
part of the accreted gas is likely heated to the virial temperature
at the accretion shock (see e.g. Kereš et al. 2005, fig. 7) and/or by
enhancing thermal instability via magnetic suppression of buoyant
oscillation (Ji et al. 2017). The cooler (T � 105.5) gas can therefore
cool well within t0 in situ. (b) The second set of models trans-
port the cool gas from near the galactic disc into the halo in the
form of galactic winds (Faucher-Giguère et al. 2016). At present,
these are somewhat heuristic arguments and the precise details of
how cool gas is produced and sustained in galactic haloes remain
an active field of study (see Tumlinson et al. 2017 for a recent
review).

Absorption spectroscopy (Steidel et al. 1988; Tumlinson et al.
2017) measures the column density of cool gas. The volume den-
sity can only be inferred from photoionization modelling that is

2At some sufficiently small radius r � rvir, tcool < t0 and the gas can collapse
into stars.

fraught with uncertainties. Yet the volume density of cool gas in
CGM and its internal clumpy structure are critical to the determina-
tion of its physical state, formation mechanism, and eventual fate.
Recently, McCourt et al. (2018) have employed simulations and
theoretical arguments to study the condensation of cool (T ≈ 104 K)
clumps from a background of hot T � 106 K gas that leads to the
development of the classical two-phase medium (Field 1965). Mc-
Court et al. (2018) argue that, akin to fragmentation in the Jeans’
instability (Jeans 1902) of gravitationally collapsing clouds with γ

< 4/3, cooling of clouds whose size greatly exceeds cstcool does not
proceed isochorically, but leads to continual fragmentation of gas
into pieces of size ∼cstcool which are able to maintain isobaric cool-
ing, down to a length-scale of order the minimum of cs(T)tcool(T) as
a function of temperature T. For radiative cooling curves relevant
to astrophysical plasma, this characteristic minimum scale of cool
clumps occurs at T ∼ 104 and is ∼(0.1 pc) (n/cm−3)−1. This pre-
dicts a fixed gas column density of the individual smallest clumps
(independent of ambient pressure) of Ne ≈ 1017 cm−2 (McCourt
et al. 2018, their section 2.1). Such small length-scales are currently
well beyond the reach of halo-scale simulations and much smaller
than can be constrained by photoionization modelling of absorption
spectra.

By contrast, the scattering of radio waves is a highly sensitive
function of small-scale density inhomogeneities. For instance, ra-
dio wave propagation through the Galactic warm ionized medium
(WIM) has been used to study its density structure on spatial scales
of 108−1015 cm (Armstrong, Rickett & Spangler 1995). Here we
show that the same techniques can be applied to probe the structure
of cool gas in the CGM. More importantly, the recent discovery
of FRB (Lorimer et al. 2007) – millisecond duration radio pulses
originating at cosmic distances – opens up an unprecedented op-
portunity to revolutionize our understanding of the CGM, much
in the same way the discovery of pulsars led to a profoundly im-
proved understanding of the Galactic interstellar medium (Rickett
1990).

The rest of the paper is organized as follows: in Section 2, we lay
down the basic halo properties as as function of mass and redshift. In
Section 3, we compute the scattering characteristic of such haloes.
In Section 4, we present a discussion of our results by considering
the observable signature of scattering by the CGM of an ensemble
of haloes in the Universe. We adopt the Planck cosmological pa-
rameters (Planck Collaboration 2016): H0 = 67.8 km s−1 Mpc−1,
�m = 0.308, and �� = 1 − �m throughout this paper. A glossary
of symbols and their meaning is given in the Appendix for quick
reference.

2 H ALO PRO PERTIES

We assume the usual definition of virial radius, r200, as the radius
at which the matter density equals 200 times the critical density at
any given redshift. The halo mass, M12 = M/1012 M�, is then the
mass enclosed within r200:

r200 =
(

3M

800πρ(z)

)1/3

≈ 163 M
1/3
12 h−2/3(z) kpc, (1)

where the critical density ρ(z) is given by

ρ(z) = 3H (z)2

8πG
≈ 277.34 h2(z) M� kpc−3. (2)

Here H(z) is the Hubble parameter at redshift z:

H (z) = H0

√
�m(1 + z)3 + ��, (3)

MNRAS 483, 971–984 (2019)
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Radio wave scattering in the CGM 973

and h(z) is the dimensionless Hubble parameter defined as H (z) =
h(z) × 100 km s−1 Mpc−1. With the dark matter halo properties
completely specified by equations 1–3, we turn our attention to the
gas properties.

2.1 Gas density

We assume that in the halo mass range of interest, the infalling gas
is shock heated to the virial temperature of

Tvir = 9.3 × 105 M
2/3
12 h2/3(z) K. (4)

The hot gas pressure at r200 and its profile is somewhat difficult to
derive from first principles. We therefore pick a gas pressure at r200

that yields a predefined baryon fraction in the hot phase. There is
currently no consensus on how the cosmic baryons are apportioned
to the various gas and stellar phases. The current best constraints
place about 20 per cent of baryons in galaxies (stars, gas, and dust;
see e.g. Anderson & Bregman 2010), while the remaining 80 per
cent must be in the CGM and IGM (Tumlinson et al. 2017). We will
normalize our results to the nominal case where fCGM = 30 per cent
of baryons are in the CGM. We further assume a density profile of
n(r) ∝ r−α for 0 < r ≤ rshock = 1.5r200 with α = 1.5 (Fielding et al.
2017). This yields a gas pressure at r200 of

P200(M, z) = 27

(
fCGM

0.3

)
M

2/3
12 h(z)8/3 cm−3 K. (5)

2.2 Volume fraction and covering factor

The closest analog to the cool clumps that have been studied in any
detail are the Milky Way’s high-velocity clouds (HVC). HVCs de-
tected in emission have a total mass of about 2.6 × 107 M� (Putman,
Peek & Joung 2012) which yields a lower limit on cool gas volume
fraction of about fv > 10−5. Several authors have studied absorption
line systems at higher redshifts up to z ∼ 2. The measured column
densities in conjunction with photoionization modelling yield vol-
ume fractions of fv = 10−4–10−3.5 (Prochaska & Hennawi 2009;
Stocke et al. 2013; Hennawi et al. 2015; Lau et al. 2016). We refer
the reader to McCourt et al. (2018, their table 1) for a summary of
these results. Photoionization modelling suffers from considerable
uncertainties. In limited cases, fine structure lines may be used to
get a direct estimate of gas densities without the need for photoion-
ization modelling. Such observations also show large gas densities
(Lau et al. 2016) in excess of ∼1 cm−3 that imply comparable vol-
ume filling fractions. Hence, we will adopt a characteristic of fv =
10−4 when a specific number is required, but we will carry fv as a
variable in our equations such that variations between photoioniza-
tion models may be included in the future.

There is sparse observational constraint regarding the radial evo-
lution of the volume fraction. Borisova et al. (2016) find that the
surface brightness of the Lyα fluorescent emission in z ∼ 2–3 CGM
has a power-law variation, r−1.8. If the volume density of cool gas
evolves as r−1.5 as seen in simulations (Fielding et al. 2017), then
the fluorescent emission can be reconciled with a volume fraction
that changes only weakly with radius as fv(r) ∝ r−β , with β = −0.2.
We will adopt this value throughout.

The foggy-CGM model under consideration here specifically ad-
dresses the large areal covering factor of cool gas despite its low vol-
ume fraction as implied by photoionization modelling. The number
of cool clumps encountered by a sightline at a characteristic impact
factor of b is given by fa(b) ≈ fv(b) b/rc where rc is the radius of
the individual cloudlets that comprise the CGM fog. Because the

column density in individual cloudlets is fixed by the model under
consideration at Ne = 1017 cm−2, the cloudlet size at radius r is
rc(r) = 0.5Ne/ne(r) which gives

fa(b) ≈ 3

(
fCGM

0.3

)(
fv

10−4

)
M12h

2(z)

(
b

r200

)1−β−α

. (6)

For our fiducial values of α = 1.5, β = −0.2, fv = 10−4, f CGM = 0.3,
the covering fraction of cloudlets exceeds unity at impact parameter
b ∼ r200 for haloes above 1011.9 M� at z = 0 or above 1011.4 M�
at z = 1. This fog-like nature of the CGM wherein a low volume
fraction leads to a high areal covering factor is depicted in Fig. 1
with some characteristic parameter values for a 1012 M� halo at
z = 1. The reader may readily scale the numbers to other halo
masses and redshifts via equations 1–6 or using Fig. 2. The resulting
densities and high areal covering factors are roughly consistent
with inferences from observations of quasar absorption systems;
see for instance McCourt et al. (2018, their table 1), who present a
compilation of relevant observational inferences from Prochaska &
Hennawi 2009, Stocke et al. 2013, Hennawi et al. 2015, and Lau
et al. 2016.

2.3 Neutral fraction

The last aspect of haloes that needs specification is the ionization
fraction, since only free electrons contribute to radio wave scat-
tering. We adopt an intergalactic UV photoionization rate to be

(IGM) = 10−13[(1 + z)/1.2]5 sec−1 (Gaikwad et al. 2017) to de-
termine the neutral fraction at different radii, ζ (r). The details of
our photoionization-equilibrium calculations in a fog-like CGM are
given in the Appendix. We find that individual cloudlets with their
column density of 1017 cm−2 are only partially ionized, but the fog
can self-shield itself against the extragalactic radiation field below
a critical radius that, for α = 1.5, β = −0.2, has an approximate
value of (proof in Appendix)

rss ≈ 0.11

(
fv

10−4

)0.56 (
fCGM

0.3

)1.11

M0.93
12

h2.59(z)

(1 + z)2.78
. (7)

At radii below rss the clouds rapidly achieve neutrality. We therefore
find that haloes more massive that 1013.2 M� at z = 0 or 1013.4 M�
at z = 1 can self-shield themselves even at their virial radius. The
halo mass range that is relevant for radio wave scattering is there-
fore bounded. On the lower mass end, haloes less massive than
1011.5 M� are not expected to have long-lived pressure-supported
halo gas, and haloes more massive than about 1013.5 M� can self-
shield themselves against ionization from the extragalactic radiation
field. Now that the halo mass range and the relevant gas properties
have been specified, we turn our attention to the problem of com-
puting the scattering parameters.

3 SC AT T E R I N G BY A S I N G L E H A L O

Before considering the scattering of radio waves from a cosmic
distribution of haloes, it is instructive to build up our analysis starting
with the scattering properties of a single cool gas clump, which we
will call as a ‘cloudlet’ after McCourt et al. (2018).

3.1 Dispersion in a cloudlet

Propagation through plasma of column density Ne advances the
phase of a monochromatic wave of wavelength λ by φ = λNere,
where re is the classical electron radius. Wave diffraction is a result

MNRAS 483, 971–984 (2019)
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974 H. K. Vedantham and E. S. Phinney

Figure 1. A depiction of the fog-like CGM model considered here and some characteristics physical parameters for a 1012 M� halo at z = 1. Cyan denotes
the cool 104 K gas clumps or ‘cloudlets’ that are dispersed in a virial-shock heated 106 K halo gas. The cloudlets have a large areal covering factor despite their
small volume fraction.

Figure 2. CGM fog characteristics assumed in this paper (equations 1–7). The column density through individual cloudlets and the cloudlet volume fraction
are taken to be Ne = 1017 cm−2, and fv = 10−4, respectively. The cloudlet size, rc, and the areal covering factor, fa, are evaluated at the viral radius, r200, and
evolve with radius according to r1.5 and r0.2, respectively.

of fluctuations of phase φ transverse to the direction of propagation.
Specifically, a transverse gradient of ∂φ/∂r leads to a deflection
of the direction of light propagation through an angle (geometry
sketched in Fig. 3)

θsc = λ

2π

∂φ

∂r
. (8)

For a cloudlet radius of rc, the phase gradient is ∂φ/∂r ∼ λNere/rc,
which gives a characteristic deflection angle of

θsc ∼ 0.3μas λ2
30 Ne,17 (rc/1 pc)−1. (9)

The geometric delay between the time of arrival of signals from
multiple images may also be observed in impulsive sources such as
FRBs. Here again, the cosmological distances will have profound

effect. The characteristic time delay is

�τ ≈ θ2
sc

2c

DlsDl

Ds

(10)

The delay is maximized for a geometry where Dls = Dl:

�τmax ≈ 0.05μs (Dl/1 Gpc) λ4
30 N2

e,17 (rc/1 pc)−2 (11)

which is comparable to the temporal broadening due to scattering
in the Galactic WIM towards Pulsars at high Galactic latitude (see
for e.g. Manchester et al. 2005). We therefore conclude that even
an isolated cloudlet at cosmological distances leads to measurable
effects on radio waves. Because we expect typical sightlines through
the CGM to intercept a large number of cloudlets (equation 6),

MNRAS 483, 971–984 (2019)
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Radio wave scattering in the CGM 975

Figure 3. A not-to-scale sketch of the scattering geometry and symbols used in this paper.

we now generalize these results to the case of a random cloudlet
ensemble.

3.2 Ensemble scattering properties

The volume filling fraction of cloudlets is expected to be small,
∼10−4, and we treat the cloudlets as discrete objects that are ran-
domly distributed. The transverse phase gradient imparted by such
an ensemble of cloudlets is a random variable, whose statistical
properties are best expressed in terms of the phase structure func-
tion, Dφ(�r), defined as:

Dφ(�r) ≡ 〈
[φ(r) − φ(r + �r)]2

〉
, (12)

where the angular brackets denote ensemble average, and φ(r) is the
total wave phase at transverse coordinate r. The structure function
therefore measures the variance of phase differences between two
sightlines that are separated by a transverse distance �r, and is the
statistical analogue of the transverse phase gradient ∂φ/∂r used in
Section 2.2 to compute the scattering angle.

If there be on average fa cloudlets intercepted by a sightline, the
structure function can be shown to be (see Appendix)

Dφ(�r) = 2λ2r2
e N2

e fa�(�r/rc), (13)

where the function �(.) ≤ 1 only depends on the internal structure
of the cloudlets and determines the slope of the phase structure
function.

The upper panel of Fig. 4 shows the numerically computed,
normalized structure function �(�r/rc) for a spherical cloudlet.
As anticipated, the differential phase increases monotonically for
�r < rc. Beyond a transverse separation of rc, rays encounter an
independent realization of cloudlets and the structure function sat-
urates and becomes independent of �r. The saturated value of the
structure function is simply the Poisson variance in the phase accu-
mulated along two independent realization of the cloudlet ensemble
which is 2fa × (λreNe)2. Here the first term is the Poisson variance in
the differential number of cloudlets on two independent sightlines
and the second term is the square of the radio wave phase through
a single cloudlet.

The bottom panel of Fig. 4 shows the logarithmic slope of the
structure function under the spherical cloudlet assumption. The
slope is less than the critical value of 2, which implies a ‘shal-
low spectrum’ in which the transverse phase structure on smaller
spatial scales dominates the scattering as opposed to larger scales
fluctuations (Goodman & Narayan 1985). At smaller spatial scales
(�r � rc), the slope is close to the Kolmogorov value of 5/3, which
is usually employed to model wave scattering in extended turbu-

Figure 4. The normalized phase structure function of an ensemble of spher-
ical cloudlets with uniform density, compared to a Kolmogorov structure
function with the same normalization and an outer scale of rc. The structure
function is normalized by the factor 2fa(λreNe)2.

lent media. We will therefore proceed with the assumption that the
structure function is ‘Kolmogorov-like’ with an outer scale of rc

and total phase variance of 2λ2N2
e r2

e fa:

Dφ(�r) =
(

�r

rdiff

)5/3

�r < rc

2λ2N2
e r2

e fa otherwise, (14)

where the diffractive scale rdiff is

rdiff = rc

(
2λ2N2

e r2
e fa

)−3/5
, (15)

or

rdiff ∼ 1.6 × 1010 cm (rc/1 pc) λ
−6/5
30 N

−6/5
e,17 (fa/10)−3/5 . (16)

For comparison, the Galactic WIM has a diffractive scale of
∼109.5 cm at λ = 30 cm (Armstrong et al. 1995, their figure 2).
Hence we expect the cloudlet ensemble to scatter incoming light
through angles that are comparable to that from the Galactic WIM.

The typical scattering angle can be computed analogous to equa-
tion (8), by noting that the stochastic phase fluctuates by ∼1 rad
over a transverse extent equal to the diffractive scale. This gives
∂φ/∂r ∼ 1/rdiff, and the characteristic scattering angle becomes

θsc = λ

2πrdiff
, (17)

MNRAS 483, 971–984 (2019)
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976 H. K. Vedantham and E. S. Phinney

or

θsc ∼ 63μas (rc/1 pc)−1 λ
11/5
30 N

6/5
e,17 (fa/10)3/5 . (18)

The characteristic temporal broadening (equation 10) is much
larger than that seen in the Galactic WIM:

�τ ∼ 0.4 ms (rc/1 pc)−2 λ
22/5
30 N

12/5
e,17 (fa/10)6/5

×
(

DlsDl/Ds

1 Gpc

)
. (19)

3.3 Dependence on halo mass and impact parameter

Lets us now evaluate the scattering angle and temporal broadening
when the sightline passes a halo of a given mass at some redshift
with an impact parameter b. Such a ray will pass through cloudlets at
varying radii which will possess varying scattering strengths. Ideally
one would evaluate the integral

∫
dy∂Dφ(�r, y)/∂y along the ray path

within the halo with y as the affine parameter. However, scattering
is dominated by the densest3 part of the halo along the ray path. We
can therefore obtain reasonably accurate values for the scattering
parameters by assuming that a ray with impact parameter b traverses
a distance of b along a cloudlet ensemble with volume filling factor
fv(b) and cloudlet radius of rc(b). The areal covering factor along
such a ray is fa(b) = fv(b) b/rc. Following a procedure similar to
that in Section 3.2, we obtain an expression for the diffractive scale
at impact parameter b:

rdiff (b200) = (
2λ2N2

e r2
e

)−3/5
[rc(b)]8/5 [fv(b)b]−3/5 . (20)

Substituting rc(b) = NeT/[2P(b)] and employing the halo properties
from Section 2, we get

rdiff (b)

1011 cm
= 3.5

(
λ30

1 + z

)−1.2 (
fv

10−4

)−0.6 (
fCGM

0.3

)−1.6

×M−1.27
12 h−3.87(z)b1.68

200

for rshock > b200 > 1.5rss, (21)

= 0.17λ−1.2
30

(
fv

10−4

)0.34 (
fCGM

0.3

)0.27

M0.29
12

× h0.48(z) (1 + z)−3.47 for b200 < 1.5rss, (22)

where we have enforced the saturation of rdiff due to self-shielding.
The saturation radius of 1.5rss, instead of simply rss (see equa-
tion 7) was chosen to match rdiff versus b profiles obtained from full
numerical integration of ∂Dφ(y)/∂y along the ray path in the halo.

The corresponding scattering angle is

θsc(b)

μas
= 2.5

(
λ30

1 + z

)2.2 (
fv

10−4

)0.6 (
fCGM

0.3

)1.6

M1.27
12

×h3.87(z)b−1.68
200 for rshock > b200 > 1.5rss,

= 50 λ2.2
30

(
fv

10−4

)−0.34 (
fCGM

0.3

)−0.27

M−0.29
12

×h−0.48(z) (1 + z)2.47 for b200 < 1.5rss. (23)

3By densest, we imply largest fv and smallest rc.

The apprent size of the scattering disc is θ ap = θ scDls/Ds. Finally,
the temporal broadening time-scale is

�τ

ms
= 7.6 × 103

(
λ30

1 + 2

)4.4

(
fv

10−4
)1.2

(
fCGM

0.3

)3.2

×M2.54
12 h7.74(z)b−3.36

200

(
Deff

1 Gpc

)

for rshock > b200 > 1.5rss,

= 3 λ4.4
30

(
fv

10−4

)−0.68 (
fCGM

0.3

)−0.54

M−0.58
12

×h−0.96(z) (1 + z)4.94

(
Deff

1 Gpc

)

for b200 < 1.5rss, (24)

where the effective distance is Deff = DlsDl/Ds. With the above
equations, we can now compute the optical depth to scattering
for any halo mass function. Fig. 5 shows a to-scale depiction of
the scattering properties and projected sizes of haloes of various
masses and redshifts. Fig. 6 compares the analytical approximation
of the scattering angle with the result of (a) numerically solving the
equilibrium neutral fraction at each location in the halo and then (b)
numerically integrating the phase structure function along the CGM
sightline. The agreement is good and we will use equations (21)–
(24) to compute the statistics of scattering by a cosmic distribution
of haloes in Section 4.

3.4 The impact of granularity

Before we extend the formalism to account for scattering from mul-
tiple haloes, we pause to appreciate the impact of pc-scale cloudlet
structure on CGM scattering. Consider a 1012 M� halo at z = 1 with
a cool-gas volume fraction of fv = 10−4, and a fraction fCGM = 0.3
of baryons in the CGM. The column density of the hot-phase gas
would be Ne ≈ 2 × 1019. If this gas were fully turbulent with an
outer scale of r200 ≈ 140 kpc, then its diffractive scale at λ = 30 cm
is rdiff ≈ 4 × 1013 cm. The diffractive scale due to scattering by
cloudlet in our formalism is rdiff ≈ 2 × 1011 cm – about two orders
of magnitude smaller. Hence even though the cool gas only has a
volume fraction of 10−4, it scatters radio waves through a charac-
teristic angle that is two orders of magnitude larger. This is a direct
result of the small-scale granularity of cool gas in the cloudlet model
considered here. In other words, radio wave scattering is highly sen-
sitive to the small-scale fluctuations in gas density.

4 D I SCUSSI ON AND SUMMARY

We will now discuss the observable impact of scattering in the CGM.
To do so, we first predict the scattering properties of an ensemble
of haloes.

4.1 Scattering in a �CDM Universe

We assume that the volume fraction of cool gas is redshift inde-
pendent. The halo scattering properties however remain redshift
dependent due to the evolution of virial pressure and halo number
counts with redshift. We use the halo mass function calculator of
Murray, Power & Robotham (2013) to compute dN(z, M)/dM –
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Radio wave scattering in the CGM 977

Figure 5. To-scale cartoons showing the relative amount of projected sky area within which the scattering angle exceeds the value given by the colour code, for
haloes of varying mass (1012, 1012.5, and 1013 M�). Each row corresponds to a different halo redshift. Scattering strength is parametrized as the characteristics
ray deflection angle, θ sc, at an observed wavelength of λ = 30 cm (observed size of the scattering disc is θap = θsc Dls/Ds). The grey background marks the
virial extent of the halo.

the co-moving volume density of haloes with mass in an infinites-
imal interval dM about M, at redshift z. Fig. 7 shows the ensuing
numbers of haloes larger than a mass shown in the legend that
are intercepted (within their virial shock) by an average sightline
through the Universe. We find that nearly all sightlines out to z ∼
1 pass within the virial radius of a 1013 M� halo, and ˜ten 1011 M�
halo. Because larger haloes condense out of the Hubble flow at later
times and possess smaller virial radii at higher redshift, the number

of intercepts for any given mass range rise up to z ∼ 1 and decline
thereafter.

Consider a radio source at redshift zs. The statistics of the scat-
tering time-scales from all intervening haloes at redshift zl < zs can
be computed as follows: we pick a scattering time-scale τ sc, and for
each halo mass and redshift bin, we compute the impact parameter
bmax(M, zl, zs, τ sc) below which the scattering time-scale exceeds
τ sc via equation (24). The projected area is πb2

max/D
2
l . There are
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978 H. K. Vedantham and E. S. Phinney

Figure 6. Solids lines: plots of scattering angle, θ sc, versus impact parameter, b200 (same data as in Fig. 5) for varying halo mass. Dashed lines: analytical
approximation from equation (23). The vertical dot–dashed lines mark 1.5 rss (defined in equation 7) where the scattering is expected to saturate due to
self-shielding against the ionizing IGM background radiation.

Figure 7. Number of virial intercepts by haloes with mass in excess of
value shown in legend per unit redshift bin. The halo mass functions were
computed using the program of Murray et al. (2013), and the footprint of
each halo extended to a radius of rshock = 1.5 r200 (see equation 1).

dN(M, zl)/dM haloes per unit volume that contribute to the scatter-
ing. The areal covering factor of sightlines whose scattering time-
scale exceed τ sc is therefore

A(>τsc) =
∫

d2V (z)
∫ Mmax

Mmin

dM
dN (M, zl)

dM

×πb2
max(M, zl, zs, τsc)

D2
l

, (25)

where Mmin and Mmax are the mass range of interest, assumed to be
1011.5 M� and 1013.5 M�, respectively, and d2V(z) is the co-moving
volume element at redshift z given by

d2V (z) = c3

(∫ z

0 dz′/H (z′)
)2

H (z)
dz d�. (26)

We note that A(>τsc) can be larger than unity which indicates
that there is more than one halo along the sightline whose ‘stand-

alone’ scattering strength exceeds τ sc. An identical procedure can
be followed for any other scattering parameter such as the apparent
size of the scattering disc. Fig. 8 shows the apparent angular size
of the scattering disc and the scattering time-scale calculated using
the above prescription. The figure shows that most sightlines out to
zs = 1 suffer angular broadening of at least ∼8μas and temporal
broadening of at least ∼0.1 ms. The scattering for zs � 0.2 happens
due to many intervening haloes. To understand their effect, we must
compute the average scattering angle.

To first order, the scattering angle due to multiple scattering
‘screens’ add in quadrature, and the scattering time-scale add lin-
early (Blandford & Narayan 1985, their Appendix A). We can there-
fore compute the mean scattering time-scale as

τsc = −
∫ ∞

0
dτ τ

dA(>τ )

dτ
, (27)

where (the negative of) the differential in the integrand returns the
probability density function of τ and the integral therefore evaluates
to the expected value of τ . The mean size of the scattering disc is
similarly

θap =
√

−
∫ ∞

0
dθ θ2

dA(>θ )

dθ
. (28)

Fig. 9 shows the mean temporal and angular broadening this com-
puted as a function of source redshift for different values of cool-gas
volume fraction fv and fraction of baryons in the CGM, fCGM. The
fractional sample variance on the mean is driven in large part by
the Poisson fluctuations in the number of intercepted haloes. Based
on Fig. 7, the fractional variation is of order unity for zs � 0.2 and
reduces to few tens of per cent by zs ∼ 1.

4.2 How can CGM scattering be observed?

Fig. 9 shows that sources at zs � 1 are scatter broadened to typical
angular size of ∼20μas and in time-scale to about �1 ms, at a
wavelength of λ = 30 cm. Despite the considerable uncertainty in
parameters affecting CGM scattering (specifically fv and fCGM), let
us take these numbers as a fiducial test case to understand the
observational manifestation of CGM scattering.
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Radio wave scattering in the CGM 979

Figure 8. Left: Areal covering factor of sightlines with scattering angle in excess of value on x-axis. Right: Same as left, but for scattering time-scale. A
covering factor >1 implies that there is more than one intervening halo whose scattering individually exceeds the x-axis value. The assumed parameter values
are fv = 10−4, fCGM = 0.3, and 
 = 10−13 [(1 + zl)/1.2]5 s−1.

Figure 9. Mean angular (left) and temporal (right) broadening as a function of source redshift. The different lines show variation in cool gas volume fraction
fv and the fraction of cosmic baryons in the CGM, fCGM. A photoionization background of 
(z) = 10−13[(1 + z)/1.2]5 s−1 has been assumed.

4.2.1 Refractive and diffractive scales

We first summarize the relevant aspects of two regimes of scattering:
diffractive and refractive.4 Diffractive effects manifest on scales
given by θdiff = rdiff/Dl on which individual speckles form. The
ensemble of speckles form a scattering disc over the refractive
scale given by θap = θscDls/Ds = λ/(2πθdiff ) Dls/(DsDl). Because
rdiff evolves as λ−6/5, the diffractive and refractive scales evolve as
θdiff ∝ λ−6/5 and θ ap ∝ λ11/5. When the scattering is too weak to
form speckles, the apparent size of a point-like source is set by
the size of the first Fresnel zone given by θ2

f = λ/(2π) Dls/(DlDs).
It is trivial to show that θ2

f = θdiffθap and that all three angular

4Also called fast and slow scintillation, respectively. See Rickett, Coles &
Bourgois (1984) and Goodman & Narayan (1985) for further details.

scales are equal to one another at the transition wavelength: λtran =
2πr2

diff Ds/(DlDls). Below the transition wavelength, scattering is
weak and manifests as weak flux density modulation due to plasma
density fluctuations that focus and de-focus the electromagnetic
wavefront on the Fresnel scale. Above the transition wavelength,
diffractive flux density modulations result from fluctuations in the
position and brightness of speckles that interfere at the observer,
while refractive modulations result from focusing and de-focusing
of the entire speckle ensemble. The above discussion applies to
point-like sources. The refractive and diffractive scintillation of
extended sources are rapidly ‘washed out’ as the intrinsic source size
exceeds the diffractive and refractive scales, respectively. Fig. 10
and Table 1 summarize the angular and time-scale of scintillation in
the Galactic WIM at high Galactic latitudes and the corresponding
CGM values for our fiducial test case.
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980 H. K. Vedantham and E. S. Phinney

Figure 10. Plot showing the typical refractive and diffractive scales in
the CGM (green lines) and Milky Way (orange lines) for a source at
z � 1. In either set of curves, the dot−dashed line (∝ λ1/2) shows the weak
scattering regime below the transition wavelength. In the strong scattering
regime, the solid (∝ λ11/5) and dashed (∝ λ−6/5) curves show the refractive
and diffractive scales, respectively. The solid black lines (∝ λ) show the
intrinsic angular size of a (incoherent) synchrotron source with a brightness
temperature of 1012 K, and flux density values given in the in-line labels.
A length-scale of 1 Gpc has been assumed to convert all physical scales to
angular scales.

Table 1. A comparison of characteristic angular and time-scales for scatter-
ing in the CGM (this work) and the Galactic warm ionized medium (Walker
1998). A refractive scale of θap = 20μ at λ = 30 cm has been assumed for
the CGM contribution (see Fig. 8).

Parameter CGM MW
(high lat.)

Transition wavelength (λtran) 0.3 cm 3.75 cm
Length-scale 1 Gpc 1 kpc
Fresnel scale at λtran 10−3 μas 3μas
Diffractive angular scale (λ = 30 cm) 10−6 μas 0.25μas
Refractive angular scale (λ = 30 cm) 20μas 0.3 mas
Diffractive time scale (λ = 30 cm) 5 min/0.5 s† 10 min
Refractive time-scale† (λ = 30 cm) 180 yr/0.3 yr† 8 d
Temporal pulse broadening (λ = 30 cm) 1 ms 0.17μs

Note. †For the CGM case, the refractive time-scales are quoted for two
cases: (a) when the transverse velocity is 500 km s−1 and (b) when the
transverse velocity equals the speed of light (relevant for relativistically
moving sources).

4.2.2 Incoherent synchrotron sources

Let us first consider incoherent optically thin synchrotron sources
with a characteristic brightness temperature of 1012 K. Although
the flux density of such sources is strongly modulated by refractive
effects for λ � 0.3 cm, the time-scale over which these modulations
manifest in light curves is too large to be of practical interest.
More importantly, even sources as faint as 10μJy are too large
for refractive modulations to be observable at λ � 10 cm, whereas

at λ � 10 cm, the flux density modulations are dominated by the
Galactic WIM. Hence the influence of CGM scattering will be
difficult to identify observationally using incoherent synchrotron
sources. This conclusion also serves as an essential ‘sanity-check’ in
that, our postulated existence of significant CGM scattering does not
violate the large existing body of work on scintillation of incoherent
synchrotron sources (active galactic nuclei and gamma-ray burst
afterglow for e.g.) that only consider flux modulations from Galactic
scintillation.

There is, however, a narrow parameter range where CGM scatter-
ing may be discerned from Galactic scattering in weak (<10μJy)
level sources. Consider the 3 cm � λ � 10 cm regime in Fig. 10. In
the absence of CGM scattering, weak sources may be small enough
to display diffractive scintillation in the Galaxy which could be ob-
served as modulations in the radio spectrum of sources on scales
of �ν/ν ≈ (ν/ν0)17/5 (Walker 1998, their section 3.2.2). However,
these scintillations will be quenched in the presence of angular
broadening of the source in intervening CGM which could push the
apparent source size above the Galactic diffractive scale. Given the
large uncertainty in predictions for CGM scintillation parameters
it is difficult to accurately predict where this wavelength window
exists for a given sightline. A targeted survey of sources along sight-
lines at varying impact parameters (which would vary the transition
frequency in Fig. 10) may be a fruitful avenue to explore. Assuming
a characteristic coherence scale of �ν ∼ 1 GHz, τ ∼ 1 hr for Galac-
tic diffractive scintillation, a system temperature of 30 K, aperture
efficiency of 60 per cent, such an experiment would require a col-
lecting area well in excess of ∼105 m2 which is barely within reach
of existing radio telescopes.

We have also considered early radio emission from gamma-ray
bursts (GRBs), which can have higher brightness temperatures at
early times than blazars, owing to their ultrarelativistic velocities.
They can therefore be brighter and easier to measure while still
at small angular sizes, and are consequently observed to show in-
terstellar scintillation in their first days at ∼5 GHz (Granot & van
der Horst 2014). Before deceleration to Lorentz factor 
 < 1/θ j

(before the ‘jet break’ for a jet of opening half-angle θ j), the pro-
jected source angular size θ at (earth) time T after explosion of
a GRB at redshift z is θ ∼ 2cT 
/DM(z), where DM(z) = DA(z)
(1 + z) is the proper motion distance, and DA(z) the angular di-
ameter distance. The Blandford–McKee blast wave of the ultrarela-
tivistic shock moving into a medium of uniform external density ρ0

has radius R  2cT 
2/(1 + z) and explosion energy per unit solid
angle E/�  ρ0R3
2c2, which gives 
  9(Eiso, 53/n0)1/8(T/[(1 +
z)day])−3/8, where E = 1053 erg(�/4π)Eiso,53 and n0 is the exter-
nal density in cm−3 (Granot et al 2002, cf.). At DM(z = 1) = 3.3
Gpc, θ = [0.2, 1, 4]μas at T = [0.1, 1, 10] d. Thus at λ < 4 cm
(the transition wavelength below which Milky Way scintillation
becomes unimportant), the GRB will be smaller than our fiducial
scattering angle θ = 20μas(λ/30 cm)11/5 < 0.25μas for less than
0.1 d. During this time, the scintillation time-scale will be set by the
rapidly expanding source, expanding across the refractive screen at
a projected speed of ∼
cDl/Ds. This is many times c for our cos-
mological lenses with Dl ∼ 0.5Ds (but less than 1 km s−1 for Milky
Way interstellar plasma at Dl ∼ 100 pc, so Milky Way scintillation
time-scales are dominated by gas motions in the Milky Way, not the
apparent source expansion). The refractive scintillation time-scale
is thus the same as the time-scale for the source to expand to a size
larger than the refractive scale – i.e. the source will have only about 1
speckle before becoming too large to display refractive scintillation.
This would be difficult to convincingly detect in a GRB.

We thus turn to the most promising class of sources.

MNRAS 483, 971–984 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/1/971/5210101 by U
niversity of G

roningen user on 06 M
arch 2020



Radio wave scattering in the CGM 981

4.2.3 Coherent sources

FRBs (Lorimer et al. 2007) are the only known class of coherent
emitters at cosmic distances of interest to CGM scintillation. Extra-
galactic mega-masers are known to scintillate due to the Galactic
turbulence (Argon et al. 1994). However, even if they are compact
enough to show diffractive scintillation in intervening CGM, the in-
terpretation is clouded by the possibility of intrinsic variability (see
e.g. Greenhill et al. 1997), and we will not consider them here. FRBs
are �1 ms duration bright (∼1 Jy) radio bursts of extragalactic ori-
gin. At least one FRB is known to repeat (Spitler et al. 2016) which
is the only FRB to have been securely localized, and resides in a
galaxy with redshift zs = 0.193 (Chatterjee et al. 2017; Tendulkar
et al. 2017). However, if most of the observed plasma dispersion
is apportioned to the IGM, then the known populations of FRBs
with dispersion measures DM ∼ 500−2000 pc cm−3 (Petroff et al.
2016; Ravi 2019) originate at redshifts of z ∼ 0.5–2. In this redshift
range, the spectra of quasars show absorption systems, e.g. in Mg
II, C IV, Lyman limit systems produced in the haloes of one or more
intervening galaxies (Steidel et al. 1988, 1994; Mathes et al. 2017).
Thus signals from cosmological FRBs must also be passing through
the cool ionized clumps in the CGM of galaxies.

Based on their ∼ ms duration, FRBs should project an angu-
lar size of ∼10−6 μas at Ds ∼ 1 Gpc, even if the emission region
travels with apparent superluminal speed with relativistic γ ∼ 103.
Hence FRBs must display the effects of diffractive (and refractive)
scintillation in both intervening CGM and the Galactic WIM. The
characteristic pulse broadening time-scale in the CGM of �1 ms
should also be easily distinguishable from the �0.1μs of broad-
ening expected in the Galactic WIM at high latitudes, and a pre-
sumably similar amount from the FRB host galaxy. Some FRBs
may also originate in dense star-forming regions which may con-
tribute significantly to temporal broadening. CGM scattering can
however be distinguished in a population of localized FRBs in
two ways: (a) One can attempt a statistical detection of an FRB
temporal broadening versus redshift relationship and constrain the
amount of cool gas in the CGM fog (via Fig. 9), (b) The variation of
temporal broadening with halo mass and impact parameter can be
measured (with significant investment of time on optical spectro-
graphs, comparable to that invested in quasar studies, e.g. Steidel
et al. 1994) and CGM scattering constrained via equations (24)
and (5). These appear to be the most promising avenues to directly
constrain the fine sub-parsec scale properties of cool gas in the
CGM.

With the current absence of a sample of well-localized FRBs,
we can only make a heuristic comparison between our predictions
and data. If a large fraction of the observed FRBs at λ = 30 cm are
indeed at z ∼ 1 as the dispersion measures suggest (Petroff et al.
2016), then based on Fig. 8, the most extreme models with fV � 10−3

and fCGM � 0.6 are disfavoured. The more moderate models such as
(fCGM = 0.3, fV = 10−4) or (fCGM = 0.6, fV = 10−4) are broadly
consistent with the ∼ms scale scattering seen in some FRBs if they
are at z ∼ 1. The same models also predict > 1 s of scattering at
frequencies below ∼200 MHz, making them difficult to detect. This
is a plausible explanation for the current non-detection of FRBs at
such low frequencies (Karastergiou et al. 2015; Tingay et al. 2015;
Chawla et al. 2017).

4.3 Summary

In addition to the hot 106 K halo gas, quasar absorption spectroscopy
and fluorescent Lyα imaging have detected large amounts of cool

104 K gas in the CGM of �1012 M� haloes. This was not predicted
in canonical galaxy assembly models, but has been accounted for
in recent simulations of cooling instabilities that drive the forma-
tion of numerous sub-pc size cloudlets of cool gas. The tiny size
of these cloudlets make their spectroscopic or imaging-based de-
tection (and even study via simulations) difficult. We have shown
that the pc-scale ‘granularity’ imparted by the small cloudlet size
results in a large increase in their radio wave scattering strength.
The resulting temporal broadening at λ = 30 cm of ∼10−1–10 ms
(depending on cool gas volume fraction and fraction of baryons
in CGM) far exceeds that expected from the Galactic WIM. This
makes their study feasible with FRBs. Identification of our pre-
dicted associated temporal broadening in FRBs could revolutionize
the study of small-scale structure of the CGM in much the same
way as the pulsars revolutionized our understanding of sub-au scale
structure in the Galactic WIM. We have computed the scattering
properties of individual haloes (equations 21–24) as function of
halo parameters and redshift, as well as ensemble scattering proper-
ties through sightlines in the Universe (equation 9). The imprint of
CGM scattering on the angular size and scintillation of faint com-
pact radio sources may be difficult to discriminate from scattering in
the Galactic WIM. A population of well-localized FRBs, however,
will provide a much more promising avenue to measure the sub-pc
scale structure of the CGM. Such a measurement will however have
to discriminate between scattering in intervening CGM and other
plausible scattering sites such as the circum-burst medium.

We end by noting that while we have demonstrated the observable
scattering effects of cool gas clouds, the precise CGM model con-
sidered here is likely simplistic. For instance, McCourt et al. (2018)
considered equilibrium cooling rates for collisionally ionized solar-
metallicity gas that is optically thin. These and other assumptions
(see e.g. section 4.1 of McCourt et al. 2018) likely break down at
least in some parameter ranges of redshift, halo mass, and galaxy
type. Our method to compute CGM scattering from small-scale
cool-gas clouds presented here can however be readily adapted to
future refinement of CGM cool-gas models.
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APPENDIX A : PHASE STRUCTURE FUNCTI ON
OF A C LOUDLET ENSEMBLE

Let the two-dimensional impact parameters vector be b = [bx, by],
and let us use the notation |x| ≡ x for spatial vectors. If there are
fa cloudlets intercepted by a ray, then the number of cloudlets in-
tercepted with impact parameters within an interval dbx ddy around
[bx, by] is a Poisson random variable with mean〈

∂2N (bx, by)

∂bx ∂by

〉
= fa

πr2
c

. (A1)

Let f (b) ∈ [0, 1) be the fractional path-length through a cloudlet.
Because λreNe is the maximal phase through a cloudlet, the phase
inserted into a ray at impact parameter b is therefore λreNef (b).
With these definitions, the phase structure function at transverse

Table A1. Glossary of symbols and their implied meaning.

Symbol Meaning

λ Observed wavelength
λ30 λ in units of 30 cm
Ne Electron column density through a single cloudlet
Ne, 17 Ne in units of 1017 cm−2

rc Radius of a single cloudlet
fa Average number of cloudlets intercepted
fCGM Fraction of baryons in CGM (halo mass and redshift independent)
rdiff Diffractive scale of plasma inhomogeneities
θ sc Characteristic wave scattering angle
�τ Characteristic pulse broadening time-scale
r200 Radius at which halo density is 200 times critical density
M200 Mass enclosed within r200

M12 M200 in units of 1012 M�
b Impact parameter
b200 Impact parameter in units of r200

bc Radius below which cloudlets self-shield against photoionization
bc, 200 bc in units of r200

P200 Gas pressure at r200

T, T4 Gas temperature in units of Kelvin and 104 Kelvin, respectively
α Power-law index for variation of gas pressure with radius
β Power-law index for variation of cool-gas volume fraction with

radius
Dφ (r) Phase structure function at transverse separation r
Dl Observer−Lens angular diameter distance
Ds Observer−Source angular diameter distance
Dls Lens−Source angular diameter distance
re Classical electron radius ≈2.81794 × 10−13 cm.

separation �r can be written as the ensemble average:

Dφ(�r) =
〈(∫

dbx

∫
dby

∂2N (bx, by)

∂bx ∂by

× λreNe [f (b) − f (b + �r)]

)2〉
. (A2)

We now bring in the assumption that cloudlets are randomly dis-
tributed. The random variable ∂2N (bx, by)/∂bx ∂by therefore has
the properties〈

d2N (bx, by)

dbx dby

d2N (b′
x, b′

y)

db′
x db′

y

〉
= 2fa

πr2
c

if bx = x ′
x, by = b′

y

= 0 otherwise. (A3)

With this, the structure function reduces to

Dφ(�r) = λ2r2
e N2

e 2fa ×
∫

dbx dby [f (b) − f (b + �r)]2

πr2
c

. (A4)

The first factor is the variance of the phase accumulated by a ray
propagating through the cloudlet ensemble. The second factor, de-
fined as the function �(.) in Section 3, only depends on the internal
structure of the cloudlets. For axially symmetric cloudlets, it is only
a function of �r/rc. It increases from 0 for �r = 0 and saturates at
1 for �r ≥ rc.

A P P E N D I X B: PH OTO I O N I Z AT I O N BA L A N C E
I N THE G ALAC TI C FOG

We make the following simplifying assumption in our computation
of the photoionization balance: (a) all neutral hydrogen atoms are in
the ground state, (b) photons emitted during direct recombinations
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Figure B1. Neutral fraction profile, ζ (r), computed using full radiative transfer of the IGM UV field from equation (B7) for different redshifts and halo mass
(halo properties defined in Section 2). The dashed lines show the location of the ionization front as approximated by equation (B10).

to the ground state are all reabsorbed ‘close by’ in the halo (so
called on-the-spot approximation), (c) only photons close to ν0 =
3.3 × 1015 Hz participate in the ionization balance, and (d) the free-
electrons have a Maxwellian distribution owing to their large elastic
scattering cross-section (∼10−13 cm−2).

Let Jν0 (r) be the number of photons at frequency ν0 per unit
area, per unit solid angle, per unit frequency, per unit time present
in the halo at radial distance r (i.e. Iν0 = Jν0/(hν0)). The bound-
ary condition for photoionization equilibrium is set by the mea-
sured/modelled UV photon field in the IGM, which is typically
specified as an isotropic photoionization rate:


(IGM) = 4π Jν0 (IGM) a0, (B1)

where a0 ≈ 6.3 × 10−18 cm−2. Gaikwad et al. (2017) determined a
photoionization rate of 
(IGM) = 10−13[(1 + z)/1.2]5. This gives
the boundary condition of

4πa0Jν0 = 10−13 [(1 + z)/1.2]5 . (B2)

At any location r in the halo, if ζ (r) is the neutral fraction, then
photionization balance is enforced via

[1 − ζ (r)]2

ζ (r)
= 
(r)

n(r)αB
, (B3)

where αB = 2.6 × 10−13 cm
−3

s−1 at T = 104 K is the effective
recombination coefficient for the on-the-spot approximation, and
n(r) is the total density.


(r) is evaluated by the equation of radiative transfer. Recom-
binations to levels other than the ground state do not contribute
photons for ionization, and photons from recombinations to the
ground state have been accounted for in αB. This simplifies the
equation of radiative transfer substantially (no source term).


(r) = 2π
∫ π

0
dθ sin θ Jν0 (IGM) exp−τ (r,θ ) (B4)

where τ (r, θ ) is the optical depth to ionizing photons arriving at
radius r from the IGM, at a polar angle θ :

τ (r, θ ) = a0

∫ ∞

0
dx n(x)ζ (x) fv(x), (B5)

where the integrand is just the column density of neutral atoms
along the ray, and x is the affine parameter along the ray. The
above equation will need to be evaluated numerically for a spherical
geometry that we are considering here (unlike the plane-parallel
approximation that is usually employed).

Taken together, we are now tasked with solving the following
integral equation in ζ (r):

[1 − ζ (r)]2

ζ (r)
= 
(IGM)

2αBn(r)

∫ π

0
dθ sin θ exp

×
[
−a0

∫ ∞

0
dx n(x)ζ (x)fv(x)

]
. (B6)

Any given set of halo mass and redshift completely specify n(x),
rc(x), fv(x), and 
(IGM). This allows us to solve for ζ (x) recursively
via

[1 − ζi+1(r)]2

ζi+1(r)
= 
(IGM)

2αBn(r)

∫ π

0
dθ sin θ exp

×
[
−a0

∫ ∞

0
dx n(x)ζi(x)fv(x)

]
. (B7)

We choose an initial value by setting the optical depth term to unity:

[1 − ζ0(r)]2

ζ0(r)
= 
(IGM)

αBn(r)
. (B8)

An approximate location of the ionization front can be found by
assuming (i) a radiation field given by 
(IGM) throughout the halo
to compute the neutral fraction in each cloud, and (ii) computing the
radial depth at which the ensuing neutral fraction yields a column
density of a−1

0 . Because individual clouds at the outskirts of the
halo are only partially neutral, we have ζ (r) ≈ n(r)αB/
(IGM).
Setting the neutral column density integrated from the halo edge,
rshock = 1.5 r200 to the self-shielding radius rss in units of r200, to
a−1

0 , we get

a0αB/
(IGM)r200

∫ 1.5

rss

d(r/r200) n2(r/r200)fv(r/r200) = 1. (B9)

We can let the upper limit of integration to recede to infinity with-
out significant loss of accuracy, substitute for the radial scaling of
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density and volume fraction from Section 2, and get an approximate
expression for the self-shielding radius in units of r200

rss ≈ 0.11

(
fv

10−4

)0.56 (
fCGM

0.3

)1.11

M0.93
12

h2.59(z)

(1 + z)2.78
. (B10)

We have adjusted the numerical constant with a factor of order unity
to match rss to the radius at which ζ = 0.5 (within ∼10 per cent) for

mass and redshift ranges of interest, in the neutral profile determined
from the full radiative transfer as per equation (B7). Fig. B1 shows
the neutral fraction profile evaluated using equation (B7) and the
approximation for rss given above.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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