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a b s t r a c t

A revised version of the massively parallel simulator of a universal quantum computer, described in this
journal eleven years ago, is used to benchmark various gate-based quantum algorithms on some of the
most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the
memory requirement by a factor of eight, making it possible to simulate universal quantum computers
with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-
ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM Blue Gene/Q, and
on Intel Xeon based clusters, implying that the combination of parallelization and hardware can track the
exponential scaling due to the increasing number of qubits. Results of executing simple quantum circuits
and Shor’s factorization algorithm on quantum computers containing up to 48 qubits are presented.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Simulatinguniversal quantumcomputers on conventional, clas-
sical digital computers is a great challenge. Increasing the number
of qubits (denoted by N) of the quantum computer by one requires
a doubling of the amount of memory of the digital computer.
For instance, to accurately simulate the operation of a universal
quantum computer with 45 qubits, one needs a digital computer
with slightly more than 1/2 Petabytes (1015/2 bytes) of mem-
ory. There are only a few digital computers in the world which
have the amount of memory, number of compute nodes, and a
sufficiently powerful network connecting all the compute nodes
to perform such simulations. Performing computations with such
a large amount of memory and processors requires a simulator
that can efficiently use the parallel architecture of present day
supercomputers.

We report on novel algorithms and techniques implemented
in the Jülich universal quantum computer simulator (JUQCS). In
this paper, ‘‘universal quantum computer’’ refers to the theoretical,
pen-and-paper, gate-based model of a quantum computer [1] in
which the time evolution of the machine is defined in terms of
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a sequence of simple, sparse unitary matrices, with no reference
to the real time evolution of a physical system. An article about
an earlier version of the same simulator was published in this
journal eleven years ago [2]. Since then, supercomputer hardware
has evolved significantly and therefore we thought it was time
to review and improve the computationally critical parts of the
simulator and use it to benchmark some of the most powerful
supercomputers that are operational today. In Table 1 we collect
the main characteristics of the computer systems that we have
used for our benchmarks.

JUQCS runs on digital computers ranging from personal com-
puters to the largest supercomputers that are available today. The
present version of the simulator comes in two flavors. One version,
referred to as JUQCS-E (E referring to numerically exact, see below),
uses double precision (8-byte) floating point arithmetic and has
been used to simulate a universal quantum computer with up
to 45 qubits. The 45 qubit limit is set by the amount of RAM
memory available on the supercomputers that we have access
to, see Table 1. For a system of N qubits and using 16 bytes per
complex coefficient of the 2N different basis states, the amount of
memory required to store the wave function is 2N+4, i.e., 1/2 PB
are needed to store the wave function of N = 45 qubits. Adding
storage for communication buffers (default is to use 2N−3 bytes)
and an insignificant amount of bytes for the code itself, simulating
a N = 45 qubit universal quantum computer requires a little more
than 1/2 PB but certainly less than 1 PB of RAMmemory.

https://doi.org/10.1016/j.cpc.2018.11.005
0010-4655/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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Table 1
Overview of the computer systems used for benchmarking. The IBM Blue Gene/Q JUQUEEN [3] (decommissioned), JURECA [4] and JUWELS are located at the Jülich
Supercomputing Center in Germany, the K computer of the RIKEN Center for Computational Science in Kobe, Japan, and the Sunway TaihuLight [5] at the National
Supercomputer Center in Wuxi, China. The row ‘‘# qubits’’ gives the maximum number of qubits N that can be simulated with JUQCS-A (JUQCS-E). At the time of running
the benchmarks on JUWELS, the maximum number of qubits N was limited to 43 (40)

JUQUEEN K computer Sunway TaihuLight JURECA-CLUSTER JUWELS

CPU IBM PowerPC eight-core SPARC64 SW26010 manycore Intel Xeon Dual Intel Xeon
A2 VIIIfx 64-bit RISC E5-2680 v3 Platinum 8168

clock frequency 1.6 GHz 2.0 Ghz 1.45 GHz 2.5 GHz 2.7 GHz
memory/node 16 GB 16 GB 32 GB 128 GB 96 GB
# threads/core used 1 – 2 8 1 1 – 2 1 – 2
# cores used 1 – 262144 2 – 65536 1 – 131072 1 – 6144 1 – 98304
# nodes used 1 – 16384 2 – 65536 1 – 32768 1 – 256 1 – 2048
# MPI processes used 1 – 524288 2 – 65536 1 – 131072 1 – 1024 1 – 2048
# qubits 46 (43) 48 (45) 48 (45) 43 (40) 46 (43)

A second version, referred to as JUQCS-A (A referring to approx-
imate), trades memory for CPU time and can be used to simulate
a universal quantum computer with up to 48 qubits on digital
computers with less than 1 PB of RAM memory, with a some-
what reduced numerical precision relative to the other version of
the simulator. JUQCS-A employs adaptive coding to represent the
quantum state in terms of 2-byte numbers, effectively reducing
the memory requirements by a factor of eight relative to the one
of JUQCS-E (see Section 4.1 for more details). The adaptive coding
requires additional computation such that for someof the quantum
gates, JUQCS-A takes a longer time to complete than JUQCS-E.
The reduced precision (about 3 digits) has been found more than
sufficient for all quantum circuits that have been tested so far.

From the quantum computer user perspective, JUQCS-E and
JUQCS-A are fully compatible. In this document, the acronym
JUQCS refers to both versions while JUQCS-E and JUQCS-A are
used specifically to refer to the numerically exact version and the
adaptive-coding version of the simulator, respectively. The only
difference, if any, between JUQCS-E and JUQCS-A is in the accuracy
of the results.

A quantum gate circuit for a universal quantum computer is a
representation of a sequence of matrix–vector operations involv-
ingmatrices that are extremely sparse. Only a few arithmetic oper-
ations are required to update one coefficient of the wave function.
Therefore, in practice, simulating universal quantum computers
is rather simple as long as there is no need to use distributed
memory or many cores and the access to the shared memory is
sufficiently fast [6–9]. The elapsed time it takes to perform such
operations is mainly limited by the bandwidth to (cache) memory.
However, for a large number of qubits, the only viable way to
alleviate thememory access problem is to use distributedmemory,
which comes at the expense of overhead due to communication
between nodes, each ofwhich can have several cores that share the
memory (as is the case on all machines listed in Table 1). Evidently,
the key is to reduce this overhead by minimizing the transfer of
data between nodes, which is exactly what JUQCS does [2].

Another road to circumvent thememory bottleneck is to use the
well-known fact that propagators involving two-body interactions
(two qubits in the case at hand) can be replaced by single-particle
propagators by means of a Hubbard–Stratonovich transformation,
that is by introducing auxiliary fields. A discrete version of this
trick proved to be very useful in quantumMonte Carlo simulations
of interacting fermions [10]. In Section 4, we show that the same
trick can be used in the present context to great advantage as well,
provided that the number of two-qubit gates is not too large and
that it is sufficient to compute only a small fraction of the matrix
elements between basis states and the final state. The latter condi-
tion considerably reduces the usefulness of this approach because
for an algorithm such as Shor’s, it is a-priori unknownwhich of the
basis states will be of interest. Nevertheless, this trick of trading

memory for CPU time is interesting in itself and has recently been
used, in various forms and apparently without recognizing the
relation to the auxiliary field approach to many-body physics, to
simulate large random circuits with low depth [11–14].

JUQCS is a revised and extended version of the simulator, writ-
ten in Fortran, developed about eleven years ago [2]. Depending
on the hardware, the source code can be compiled to make use
of OpenMP, the Message Passing Interface (MPI), or a combination
of both. Apart from a few technical improvements, the ‘‘compli-
cated’’ part of the simulator, i.e. the MPI communication scheme,
is based on the same approach as the one introduced eleven years
ago [2]. JUQCS-E and JUQCS-A use the same MPI communication
scheme. During the revision, we have taken the opportunity to
add some new elementary operations for implementing error-
correction schemes and a translator that accepts circuits expressed
in OpenQASM, i.e., the language used by the IBM Q Experience
[15,16]. The executable code of JUQCS has been built using a variety
of Fortran compilers such as Intel’s ifort, GNU’s gfortran, IBM’s
XLF, and others. Using JUQCS-A (JUQCS-E), a notebook with 16GB
of memory can readily simulate a universal quantum computer
with 32 (29) qubits. Since portability is an important design ob-
jective, we have not engaged in optimizing the code on the level of
machine-specific programming tomake use of, e.g., the accelerator
hardware in the Sunway TaihuLight. We leave this endeavor to
future work.

A JUQCS program looks very much like a conventional assem-
bler program, a sequence of mnemonics with a short list of ar-
guments. JUQCS converts a quantum circuit into a form that is
suitable as input for the simulation of the real-time dynamics
of physical qubit models, such as NMR quantum computing [17]
using the massively-parallel quantum spin dynamics simulator
SPI12MPI [6], or quantum computer hardware based on supercon-
ducting circuits [18]. A description of the instruction set that JUQCS
accepts is given in Appendix A.

The primary design objective of the original JUQCS simulator [2]
was to provide an environment for testing and optimizing the MPI
communication part of SPI12MPI. The efficient simulation of spin-
1/2 models (e.g. physical models of quantum computers) requires
elementary operations that are significantly more complex than
those typically used in universal quantum computation [6]. There-
fore, to test the MPI communication part properly, JUQCS does not
exploit the special structure of the CNOT and the Toffoli gate and
also does not modify the input circuit using quantum gate circuit
optimization techniques.

JUQCS is found to scale very well as a function of the number
of compute nodes, beating the exponential growth in time that
is characteristic for simulating universal quantum computers [1].
Such simulations can be very demanding in terms of processing
power, memory usage, and network communication. Therefore,
JUQCS can also serve as a benchmark tool for supercomputers.
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We cover this aspect by reporting weak scaling plots obtained
by running quantum algorithms on the supercomputers listed in
Table 1.

The paper is structured as follows. In Section 2, we briefly
review the basics of gate-based universal quantum computing,
emphasizing the aspects which are important for the design of
a simulator. Section 3 addresses techniques for distributing the
workload of a simulation over many compute cores. The primary
bottleneck of simulating a gate-based universal quantum com-
puter is the amount ofmemory required to store thewave function
representing the quantum state of the machine. Section 4 dis-
cusses two very different methods for alleviating this problem. In
Section 5, we present results obtained by executing a variety of
quantum circuits on JUQCS, running on five different supercom-
puters. Conclusions are given in Section 6.

2. Basic operation

A quantum computer is, by definition, a device described by
quantum theory. The elementary storage unit of a quantum com-
puter is, in its simplest form, represented by a two-level system,
called qubit [1]. The state of the qubit is represented by a two-
dimensional vector

|Φ⟩ = a(0)|0⟩ + a(1)|1⟩, (1)

where |0⟩ and |1⟩ denote two orthogonal basis vectors of the two-
dimensional vector space and a0 ≡ a(0) and a1 ≡ a(1) are complex
numbers, normalized such that |a0|2 + |a1|2 = 1.

The internal state of a quantum computer comprising N qubits
is described by a 2N -dimensional unit vector of complex numbers

|Φ⟩ = a(0 . . . 00)|0 . . . 00⟩ + a(0 . . . 01)|0 . . . 01⟩ + · · ·
+ a(1 . . . 10)|1 . . . 10⟩ + a(1 . . . 11)|1 . . . 11⟩, (2)

where
2L−1∑
i=0

|ai|2 = 1, (3)

i.e. by rescaling the complex-valued amplitudes ai, we normalize
the vector |Φ⟩ such that ⟨Φ|Φ⟩ = 1.

Unlike inmany-body physicswhere the leftmost (rightmost) bit
of the basis state represents quantum spin number 1 (N), in the
quantum computer literature it is common to label the qubits from
0 to N−1, that is the rightmost (leftmost) bit corresponds to qubit
0 (N − 1) [1].

Executing a quantum algorithm on a universal, gate-based
quantum computer consists of performing a sequence of unitary
operations on the vector |Φ⟩. As an arbitrary unitary operation can
be decomposed into a sequence of single-qubit operations and the
CNOT operation on two qubits [1], it is sufficient to implement
these specific operations as a sequence of arithmetic operations
on the vector v = (a(0 . . . 00), . . . , a(1 . . . 11))T.

We illustrate the procedure for the Hadamard gate on qubit
0 ≤ j ≤ N − 1. The 2N

× 2N matrix H multiplying the vector
v is given by H = 10 ⊗ · · · ⊗ 1j−1 ⊗H ⊗ 1j+1 ⊗ · · · ⊗ 1N−1 where
H denotes the 2× 2 Hadamard matrix

H =
1
√
2

(
1 1
1 −1

)
. (4)

Obviously, the matrix H is very sparse. The matrix–vector mul-
tiplication v ← H v decomposes into 2N−1 matrix–vector multi-
plications involving H and vectors of length two only. The whole
operation can be carried out in place (i.e. by overwriting v), requir-
ing additional memory of O(1) only.

In more detail, the rule to update the amplitudes reads

a(∗ . . . ∗ 0j ∗ . . . ∗) ←
1
√
2

(
a(∗ . . . ∗ 0j ∗ . . . ∗)

+ a(∗ . . . ∗ 1j ∗ . . . ∗)
)

a(∗ . . . ∗ 1j ∗ . . . ∗) ←
1
√
2

(
a(∗ . . . ∗ 0j ∗ . . . ∗)

− a(∗ . . . ∗ 1j ∗ . . . ∗)
)
, (5)

where the ∗’s are placeholders for the bits 0, . . . , j − 1 and j +
1, . . . ,N − 1. From Eq. (5), it follows that the update process
consists of selected pair of amplitudes using bit j as index, replace
the two amplitudes by the right-hand side of Eq. (5), and repeat
the calculation for all possible pairs. Obviously, the update process
exhibits a very high degree of intrinsic parallelism.

Implementing quantum gates involving two qubits, e.g. the
CNOT gate, or three qubits, e.g. the Toffoli gate, requires selecting
groups of four or eight amplitudes, respectively. In other words,
instead of the two rules in Eq. (5), we have 2N−2 (2N−3) groups
of four (eight) amplitudes that need to be updated. Note that as
the CNOT (Toffoli) gate only exchanges two of the four (eight)
amplitudes, the computational work involved is less than in the
case of say the Hadamard gate.

The result of executing a quantum gate circuit on JUQCS is
an array of amplitudes v which represents the final state |Φ⟩
of the pen-and-paper quantum computer. According to quan-
tum theory, measuring a single qubit j yields an outcome that
is either 0 or 1 with probability

∑
∗
|a(∗ . . . ∗ 0j ∗ . . . ∗)|2 or

∑
∗

|a(∗ . . . ∗ 1j ∗ . . . ∗)|2, respectively. JUQCS provides methods for
computing these probabilities as well as for generating events.

3. Parallelization techniques

As explained in Section 2, the sparse matrix structure of the
quantum gates translates into an algorithm for updating the am-
plitudes which exhibits a very high degree of intrinsic parallelism.
In this section, we discuss two different techniques to exploit this
parallelism.

3.1. OpenMP

Assuming memory is not an issue, a platform independent
method to distribute the computational work over several com-
pute cores is to use OpenMP directives. Thereby, care has to be
taken that the order in which the groups of amplitudes are pro-
cessed is ‘‘cache friendly’’. The excerpt of the Fortran code given
below shows how we have implemented a single-qubit gate in
qubit j.

nstates=2**(N-1)
i=2**j
if( nstates/(i+i) >= i ) then

!$OMP parallel do private ...
do k=0,nstates-1,i+i
do l=0,i-1
i0 = ior(l, k) ! *...* 0 *... *
i1 = ior(i0, i) ! *...* 1 *... *
...
end do
end do

!$OMP end parallel do
else
do k=0,nstates-1,i+i

!$OMP parallel do private ...
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do l=0,i-1
...
enddo

!$OMP end parallel do
enddo

The indices k and l run over all possible values of the bits
(N − 1), . . . , j + 1 and (j − 1), . . . , 0, respectively. We use the
test ‘‘nstates/(i+i) ≥ i’’ to decide whether it is more efficient to
distribute both the outer and inner loop or only the inner loop over
all compute cores. Our numerical experiments show that the test
‘‘nstates/(i+i)≥ i’’ is not optimal. The best choice depends onN and
on the particular hardware in a seemingly complicatedmanner but
the reduction of computation time ismarginal. Therefore,we opted
for the simple, universal test ‘‘nstates/(i+i)≥ i’’.

The implementation of two-qubit gates involving qubits j0 and
j1 requires three instead of two loops to generate the ‘‘*’’’s in the
bit string ‘‘∗ . . . ∗ j1 ∗ . . . ∗ j0 ∗ . . . ∗’’, a simple generalization of
the code used to implement single-qubit operations. This scheme
straightforwardly extends to three-qubit gates.

3.2. MPI

As the number of qubits N increases, there is a point at which
a single compute node does not have enough memory to store the
whole vector of amplitudes such that it become necessary to use
memory distributed over several compute nodes. A simple scheme
to distribute the amplitudes over a number of nodes is to use the
high-order bits as the integer representation of the index of the
node. Let us denote the number of high-order bits that will be
used for this purpose byNh, the corresponding number of compute
nodes by Kh = 2Nh , and the number of amplitudes per compute
node by Kl = 2Nl where Nl = N − Nh.

Obviously, there is no need to exchange data between compute
nodes if we perform a single-qubit operation on qubit 0 ≤ j < Nl
because each pair of amplitudes which need to be updated resides
in the memory of the same compute node. However, if Nl ≤ j <
N − 1, it is necessary to exchange data between compute nodes
before the two amplitudes can be multiplied by the 2 × 2 matrix
which represents the quantum gate. For an operation such as the
Hadamard gate, this implies that half of all amplitudes have to
be transferred to another compute node. In JUQCS this exchange
is implemented by swapping nonlocal qubits and local ones and
keeping track of these swaps by updating the permutation of the
N bit indices [2]. Nevertheless, if N is large, this swapping is a
time-consuming operation, even if the inter-node communication
network is very fast.

Operations such as the CNOT and Toffoli gate that only ex-
change two amplitudes can be implemented without having to
exchange data through the inter-node communication network.
As explained earlier, the primary design objective of the original
JUQCS simulator [2] was to provide an environment for testing and
optimizing the MPI communication scheme for a quantum spin
dynamics simulator which requires the implementation of more
complicated many-qubit gates. Therefore, the current version of
JUQCS does not exploit the special structure of the CNOT or Toffoli
gate. The MPI communication scheme that we use is, apart from
its actual implementation, identical to the one described in Ref. [2]
and will therefore not be discussed in detail here.

4. Trading memory for CPU time

Themain factor limiting the size of the pen-and-paper quantum
computer that can be simulated is the memory required to store
the 2N amplitudes of the vector |Φ⟩. In this section, we discuss
two different methods to reduce the amount of memory needed.
Evidently, this reduction comes at the price of an increase of
computation time.

4.1. Double precision versus byte encoding

In quantum theory, the state of a single qubit is represented by
two complex numbers ψ0 and ψ1 which are normalized such that
|ψ0|

2
+ |ψ1|

2
= 1 [1]. A gate operation on the qubit changes these

numbers according to(
ψ0
ψ1

)
← U

(
ψ0
ψ1

)
, (6)

where U is a 2 × 2 unitary matrix. Gate operations involving
n qubits correspond to (repeated) matrix–vector multiplications
involving 2n

× 2n unitary matrices. As the number of arithmetic
operations on the vector of complex amplitudes representing the
state of the N-qubit systems grows exponentially with N , it may
seem necessary to perform these operations with high numerical
precision. Our implementation of JUQCS-E uses two 8-byte floating
point numbers to encode one complex amplitude.

However, not all gates change the numerical representation of
the state amplitudes. For instance, the X and CNOT gates only swap
amplitudes, while the Hadamard gate arithmetically combines the
two amplitudes. Therefore, we have explored various ways to
encode the complex numbers with less than 16 bytes. An adaptive
encoding scheme that we have found to perform quite well for
quantum gate circuits is based on the polar representation z = reiθ
of the complex number z. We use one byte variable−128 ≤ b1 <
128 to encode the angle −π ≤ θ < π , i.e. θ = πb1/128. Another
byte variable −128 ≤ b0 < 128 is used to represent r in the
following manner. The special values r = 0 and r = 1 correspond
to b0 = −128 and b0 = 127, respectively. The remaining values
of −127 ≤ b0 ≤ 126 are used to compute r according to r =
(b0 + 127)(r1 − r0)/253 + r0, where r0 and r1 are the minimum
and maximum value of the z’s with 0 < |z| < 1 over all elements
of the state vector. The values of r0 and r1 need to be updated to
adaptively tune the encoding scheme to the particular quantum
circuit being executed. Obviously, our encoding scheme reduces
the amount of memory required to store the state by a factor of
8 at the expense of additional CPU time to perform the decoding–
encoding procedure. The amount of additional CPU time depends
on the gate and varies from very little for e.g. the X or CNOT gate to
a factor of 3–4 for gates such as the Hadamard or +X gate.

4.2. Auxiliary variable method

An appealing feature of the universal quantum computation
model is that only a few single-qubit gates and the CNOT gate
suffice to perform an arbitrary quantum computation [1]. In other
words, in principle, any unitary matrix can be written as a product
of unitary matrices that involve only single-qubit and two-qubit
operations.

This subsection demonstrates that any circuit involving single-
qubit gates, controlled-phase-shifts, and CNOT operations can be
expressed as a string of single-qubit operations, summed over a
set of discrete, two-valued auxiliary variables. Each term in this
sum can be computed in O(N) arithmetic operations. The number
of auxiliary variables is exactly the same as the number P of
controlled-phase-shifts or CNOT gates in the circuit. Theworst case
run time and memory usage of this algorithm are O(NM2P ) and
O(N + M), respectively, where M is the number of output ampli-
tudes desired. Clearly, if M ≪ 2N , the memory reduction from
O(2N ) to O(N + M) bytes becomes very significant as the number
of qubits N increases. To be effective, this approach requires that
the input state to the circuit is a product state. However, this is
hardly an obstacle because in the gate-based model of quantum
computation, it is standard to assume that the N-qubit device can
be prepared in the product state [1]

|0⟩ = |0⟩0|0⟩1 . . . |0⟩N−1, (7)

where the subscripts refer to the individual qubits.
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First, let us consider a string of single-qubit gates acting onqubit
j = 0, . . . ,N−1 and denote the product of all the unitarymatrices
corresponding to these single-qubit gates by Vj. The application of
these gates changes the initial state of qubit 0 into

Vj|0⟩j = αj|0⟩j + βj|1⟩j, (8)

where αj and βj are complex-valued numbers satisfying |αj|
2
+

|βj|
2
= 1. If V = V0 ⊗ · · · ⊗ VN−1 represents a circuit that consists

of single-qubit gates only, we have

V |0⟩ =
N−1∏
j=0

(
αj|0⟩j + βj|1⟩j

)
. (9)

FromEq. (9), it follows immediately that in practice, the right-hand
side can be computed in O(N) arithmetic operations on a digital
computer. More importantly, the amount of memory required
to store the product state Eq. (9) is only 25N bytes (assuming
8-byte floating point arithmetic), much less (if N > 7) than the
exponentially growing number 2N+4 required to store an arbitrary
state.

Second, consider the results of applying to the state Eq. (9), a
CNOT gate with control qubit 0 and target qubit 1. We have

CNOT01V |0⟩ =
(
α0α1|0⟩0|0⟩1 + β0α1|1⟩0|1⟩1

+α0β1|0⟩0|1⟩1 + β0β1|1⟩0|0⟩1

)
×

(N−1∏
j=2

(
αj|0⟩j + βj|1⟩j

))
, (10)

such that it is no longer possible to treat the coefficients of qubit
0 and 1 independently from each other. Of course, this is just a
restatement, in computational terms, that the CNOT gate is a so-
called ‘‘entangling’’ gate. It is not difficult to imagine that a circuit
containing several CNOT (or controlled phase shift, Toffoli) gates
that involve different qubits can create a state, such as the one
created by the sequence of CNOT gates mentioned in Section 5.2,
in which a single-qubit operation on one particular qubit changes
the amplitudes of all basis states. Thus, any strategy to reduce
the memory usage must deal with this aspect and must therefore
‘‘eliminate’’ the entangling gates.

A simple, effective method to express controlled phase shifts
and CNOT gates in terms of single-qubit gates is to make use
of the discrete Hubbard–Stratonovich transformation, originally
introduced to perform quantum Monte Carlo simulations of the
Hubbardmodel [10]. Consider the controlled phase shift operation
defined by the unitary matrix

U01(a) =

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eia

⎞⎟⎠ = eia(1+σ
z
0σ

z
1−σ

z
0−σ

z
1 )/4, (11)

where σ z
0 and σ z

1 are the z-components of the Pauli matrices rep-
resenting qubit 0 and 1, respectively. Note that by convention, the
computational basis is built from eigenstates of the z-components
of the Pauli matrices [1]. When a takes values±2π/2k, the matrix
in Eq. (11) is exactly the one which performs the conditional phase
shifts in the quantum Fourier transform circuit; and when a = π ,
we have H1U01(π )H1 = CNOT01 such that all CNOT gates can
be expressed as a product of Hadamard gates and U01(π ). Thus,
without loss of generality, it is sufficient to consider U01(a) only.

Denoting the eigenvalues of σ z
0 and σ z

1 by σ0 and σ1, respec-
tively, we note that eiaσ0σ1/4 can only take two values and can be
written as

eiaσ0σ1/4 =
e−ia/4

2

∑
s=±1

eix(σ0+σ1)s , σ0, σ1 = ±1, (12)

where x is given by cos 2x = eia/2. Therefore, we have

U01(a) = eia(1+σ
z
0σ

z
1−σ

z
0−σ

z
1 )/4

=
1
2

∑
s=±1

ei(σ
z
0+σ

z
1 )(xs−a/4), (13)

andwe have accomplished the task of writing the controlled phase
shift Eq. (11) as a sum of products of two single-qubit operations
each.

The final step is to introduce auxiliary variables sp = ±1
for each of the p = 1, . . . , P controlled phase shifts (including
those that originate from rewriting the CNOTs) that appear in the
quantum circuit. Then, the result of applying the whole circuit to
the initial state |0⟩ can be written as

|ψ⟩ =
1
2P

∑
s1...sP=±1

N∏
j=1

Wj(s1, . . . , sP )|0⟩, (14)

where Wj(s1, . . . , sp) is a concatenation of single-qubit operations
on qubit j. The action of Wj(s1, . . . , sp) can be computed inde-
pendently (and in parallel if desired) of the action of all other
Wj′ (s1, . . . , sp)’s. In practice, for largeN , the advantage of the auxil-
iary variable approach in terms of memory usage disappears if the
application requires knowledge of the full state |ψ⟩ but can be very
substantial if knowledge of only a few of the 2N amplitudes of |ψ⟩
suffices.

5. Validation and benchmarking

The first step in validating the operation of JUQCS is to ex-
ecute all kinds of quantum circuits, including circuits randomly
generated from the set of all the gates in the instruction set, for
a small (N = 2) to moderate (N ≈ 30) number of qubits on PCs
runningWindows (7,10) and on Linuxworkstations. Validating the
operation of JUQCS when it makes use of MPI, OpenMP or both
is less trivial, in particular if the number of qubits is close to the
limit of what can be simulated on a particular hardware platform.
Of course, validation of real quantum computing devices is much
more difficult. In contrast to a simulation on a digital computer
where the full state of the quantum computer is known with high
accuracy, the correct operation of real quantum computing devices
must be inferred by sampling the amplitudes of the computational
basis states, a daunting task if the number of qubits increases.

On a PC/workstation with, say 16 GB of memory, one can run
small problems, i.e. those that involve not more than 29 (32 when
JUQCS-A is used) qubits. Quantum circuits involving 45 or more
qubits can only be tested on supercomputers such as the IBM Blue
Gene/Q of the Jülich Supercomputing Center in Germany, the K
computer of the RIKEN Center for Computational Science in Kobe,
Japan, or the Sunway TaihuLight at the National Supercomputer
Center in Wuxi in China.

Validating the operation of JUQCS requires circuits for which
the exact input–output relation is known such that the correctness
of the outcome can be easily verified. This section presents JUQCS
results obtained by executing quantumcircuits forwhich this is the
case and, at the same time, illustrates the scaling and performance
of JUQCS on the supercomputers listed in Table 1.

5.1. Uniform superposition

A common first step of a gate-based quantum algorithm is to
turn the initial state (all qubits in state |0⟩) into a uniform super-
position by a sequence of Hadamard operations. Such a sequence
has the nice feature that it can be trivially extended to more and
more qubits and is therefore well-suited to test the weak scaling
behavior of a universal quantum computer simulator. Note that
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Table 2
The expectation values of the individual qubits, measured after performing a
Hadamard operation on each of the N qubits as obtained by JUQCS-A and JUQCS-E.
Recall that JUQCS-A uses a factor of 8 less memory than JUQCS-E but still yields the
same numerically exact results as those produced by JUQCS-E for these tests. The
JUQCS-A calculations were performed on JUQUEEN (up to N = 46 qubits), Sunway
TaihuLight (up toN = 48qubits), theK computer (up toN = 48qubits), and JURECA
(up to N = 43 qubits). The JUQCS-E calculations were performed on JUQUEEN (up
to N = 43 qubits), Sunway TaihuLight (up to N = 45 qubits), the K computer (up
to 45 qubits), JURECA (up to N = 40 qubits), and JUWELS (up to N = 40 qubits).
The line beginning with ‘. . .’ is a placeholder for the results of measuring qubits
1, . . . ,N − 2.

JUQCS-A JUQCS-E

qubit ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩ ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩

0 0.000 0.500 0.500 0.000 0.500 0.500
. . . 0.000 0.500 0.500 0.000 0.500 0.500
N − 1 0.000 0.500 0.500 0.000 0.500 0.500

Fig. 1. The elapsed time per gate operation (normalized by the values 1.2 s
(JUQUEEN), 1.0 s (K), 7.7 s (Sunway TaihuLight), 1.9 s (JURECA), and 1.3 s (JUWELS)
for running the 32 qubit circuit) as a function of the number of qubits, as obtained
by JUQCS-E executing a Hadamard operation on each qubit. This weak scaling plot
shows that JUQCS-E beats the exponential scaling of the computational work by
doubling the size of the machine with each added qubit.

independent of the number of qubits and computer architecture
used, it is possible to construct the uniform superposition without
any form of communication between nodes (a technique used by
the SHORBOX instruction, see Section 5.4) but, as explained in
Section 1, one of the design objectives of JUQCS was to test and
benchmark the MPI communication, not to construct the most
efficient simulator of a universal quantum computer tuned to
specific hardware. Therefore, on purpose, we do not ‘‘optimize’’ the
quantum circuit at this level.

Table 2 summarizes the results of executing such sequences of
Hadamard operations on JUQCS-E for N ≤ 45 and on JUQCS-A for
N ≤ 48.

In Figs. 1 and 2we present the results of a weak scaling analysis
of the elapsed times required to execute a Hadamard operation on
each of the N qubits. Clearly, by doubling the size of the machine
with each added qubit, JUQCS beats the exponential scaling of the
computational work with the number of qubits.

5.2. Sequence of CNOT gates

Table 3 and Figs. 3 and 4 summarize the results obtained by
executing the sequence of gate operations (H 0), (CNOT 0 1), (CNOT
1 2), . . . , (CNOT N-2, N-1). The result of this quantum circuit is
to put the quantum computer in the maximally entangled state
(|0 . . . 0⟩ + |1 . . . 1⟩)/

√
2. Also for these circuits, by doubling the

size of the machine with each added qubit, JUQCS beats the ex-
ponential scaling of the computational work with the number
of qubits, the salient feature of a gate-based universal quantum
computer.

Fig. 2. The elapsed time per gate operation (normalized by the values 10.7 s
(JUQUEEN), 30.8 s (K), 101.2 s (Sunway TaihuLight), 9.7 s (JURECA) and 4.7 s
(JUWELS) for running the 35 qubit circuit) as a function of the number of qubits,
as obtained by JUQCS-A executing a Hadamard operation on each qubit. This weak
scaling plot shows that JUQCS-A beats the exponential scaling of the computational
work by doubling the size of themachinewith each qubit added. Note that JUQCS-A
not only uses a factor of 8 less memory than JUQCS-E but also uses a factor of 8 less
cores to run the same circuit.

Fig. 3. The elapsed time per gate operation (normalized by the values 0.98 s
(JUQUEEN), 5.1 s (Sunway TaihuLight), 1.4 s (JURECA), and 0.9 s (JUWELS) to run
the 32 qubits circuit) as a function of the number of qubits, as obtained by JUQCS-E
executing a Hadamard operation on qubit 0 and the sequence (CNOT 0 1), (CNOT 1
2), . . . , (CNOT N-2, N-1), followed by a measurement of the expectation values of all
the qubits. This weak scaling plot shows that JUQCS-E beats the exponential scaling
of the computational work by doubling the size of the machine with each added
qubit.

Fig. 4. The elapsed time per gate operation (normalized by the values 2.7 s
(JUQUEEN), 3.8 s (K) , 19.9 s (Sunway TaihuLight), 2.4 s (JURECA), and 2.2 s (JUWELS)
to run the 35 qubits circuit) as a function of the number of qubits, obtained by
JUQCS-A executing a Hadamard operation on qubit 0 and the sequence (CNOT 0
1), (CNOT 1 2), . . . , (CNOT N-2, N-1). This weak scaling plot shows that JUQCS-A
beats the exponential scaling of the computational work by doubling the size of the
machine with each added qubit.
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Table 3
The expectation values of the individual qubits, measured after performing the
sequence (H 0), (CNOT 0 1), (CNOT 1 2), . . . , (CNOT N-2, N-1), followed by a
measurement of all N qubits. Recall that JUQCS-A uses a factor of 8 less memory
than JUQCS-E but, for these tests, also yields the same numerically exact results as
those produced by JUQCS-E. The JUQCS-A calculationswere performed on JUQUEEN
(up to N = 46 qubits), Sunway TaihuLight (up to N = 48 qubits), the K computer
(up to N = 48 qubits), and JURECA (up to N = 43 qubits). The JUQCS-E calculations
were performed on JUQUEEN (up to N = 43 qubits), Sunway TaihuLight (up to
N = 45 qubits), the K computer (up to 45 qubits), JURECA (up to N = 40 qubits),
and JUWELS (up to N = 40 qubits). The line beginning with ‘. . .’ is a place holder
for the results of measuring qubits 1, . . . ,N − 2.

JUQCS-A JUQCS-E

qubit ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩ ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩

0 0.500 0.500 0.500 0.500 0.500 0.500
. . . 0.500 0.500 0.500 0.500 0.500 0.500
N − 1 0.500 0.500 0.500 0.500 0.500 0.500

Performing single- and two-qubit gates requires only a little
amount of computation per two or four basis states, respectively.
Some gates, such as CNOT and X, only perform a permutation of
the elements of the state. In otherwords, the arithmetic intensity of
these operations is very low and the performance ismainly limited
by the memory bandwidth. This explains that the weak scaling
behavior of the circuit with themany CNOT’s is slightly worse than
that of the circuit involving Hadamard gates only. One strategy
to overcome this limitation is to increase the arithmetic intensity
by combining single- and two-qubit gates to multi-qubit (say
5-qubit) gates. As JUQCS is also a test bed for the simulator SPI12MPI
for spin-1/2 models, we refrained from implementing this rather
specialized strategy in the present version of JUQCS. While the
weak scaling behavior on JURECA and JUWELS is rather good by
itself, it is not as good as the ones on the other supercomputers
used. This suggests that there may be some limitations in the
bandwidth to the memory and network on JURECA and JUWELS.

The 2-byte encoding/decoding used by JUQCS-A to reduce the
amount of required memory comes at the cost of larger computa-
tion time, affecting the ratio between computation and commu-
nications. This extra time depends on the type of quantum gate
and ranges from almost zero (e.g. CNOT gate) to a factor of 3–4 (e.g
Hadamard gate). As a result, comparing elapsed times of JUQCS-A
and JUQCS-E only makes sense if we execute the same quantum
circuit and even then, because of the factor-of-eight difference in
memory usage, interpreting the differences in these elapsed times
is not straightforward.

5.3. Adder circuit

The quantum circuit that performs the addition (modulo 2K )
of M integers [2,19,20], each represented by K qubits, provides a
simple, scalable, and easy-to-verify algorithm to validate universal
quantum computer simulators [20]. It involves a quantum Fourier
transform [1] and primarily performs controlled-phase gates. We
have constructed and executed quantum circuits that add up to
five 9-bit integers and have run a sample of these circuits on the
K computer and BG/Q.

Table 4 shows some representative results of a quantum circuit
that adds two 19-bit integers. These results have been obtained by
JUQUEENusing 8192 cores and 8192MPI processes and took 1446 s
for JUQCS-A and 388 s for JUQCS-E to complete. In this example, the
values of the integers (210018 and 314269) are chosen such that
their sum (219

− 1) corresponds to a binary number with 19 bits
equal to one, which makes it very easy to verify the correctness of
the result. If the quantum circuit works properly, the expectation
values of the corresponding qubits should be equal to one. Clearly,
Table 4 confirms that JUQCS-E works properly and also shows
that the results of JUQCS-A are close but, in contrast to what the

Fig. 5. Schematic diagram of Shor’s algorithm.

examples presented earlier might suggest, not always equal to the
numerically exact results.

5.4. Shor’s algorithm on a 48 qubit quantum computer

For a detailed description of this algorithm, see Ref. [1,21].
Briefly, Shor’s algorithm finds the prime factors p and q of a com-
posite integer G = p× q by determining the period of the function
f (x) = yx mod G for x = 0, 1, . . . Here, 1 < y < G should
be coprime (greatest common divisor of y and G is 1) to G. If, by
accident, y and Gwere not coprimes then y = p or y = q and there
is no need to continue with the algorithm. Let r denote the period
of f (x), that is f (x) = f (x+ r). If the chosen value of y yields an odd
period r , we repeat the algorithm with another choice for y, until
we find an r that is even. Once we have found an even period r , we
compute yr/2 mod G. If yr/2 ̸= ±1 mod G, then we find the factors
of G by calculating the greatest common divisors of yr/2 ± 1 and G.

The schematic diagram of Shor’s algorithm is shown in Fig. 5.
The quantumcomputer hasN qubits. There are twoqubit registers:
An x-register with X qubits to hold the values of x and a f -register
with F = N − X qubits to hold the values of f (x) = yx mod G.

What is the largest number Shor’s original algorithm can factor-
ize on a quantumcomputerwithN qubits? The number of qubits to
represent yx mod G is F = ⌈log2 G⌉. For Shor’s algorithm to work
properly, that is to find the correct period r of f (x), the number
of qubits X in the x-register should satisfy G2

≤ 2X < 2G2 [21].
Omitting numbers G that can be written as a power of two (which
are trivial to factorize), the minimum number of qubits of the x-
register is X = ⌈log2 G2

⌉, so N = X + F is either 3F or 3F − 1. It
follows that the maximum number of qubits that can be reserved
for the f -register is given by F = ⌊(N + 1)/3⌋, which determines
the largest value of G. For example, on a 45-, or 46-qubit quantum
computer G = 32765 is the largest integer composed of two
primes that can be factorized by Shor’s algorithm.

The SHORBOX instruction of JUQCS takes G and y as input,
performs the Hadamard operations on all qubits of the x-register
and also computes f (x) = yx mod G conditional on the qubits in
the x-register and stores the result in the f -register. Application
of the quantum Fourier transform on the x-register and sampling
the state in the x-register produces numbers of basis states which
can then be used to determine the period r and the factors p and
q [1,21]. The task of JUQCS is to execute SHORBOX and perform the
quantum Fourier transform.

In Table 5, we present the results for the case G = 1007 and
y = 529, using 30 qubits, as obtained by running the JUQCS-A on a
LenovoW520 notebook. For comparison, we show the expectation
values of the three components of the qubits as given by JUQCS
together with the exact results calculated from the exact closed-
form expression [2]. The results of JUQCS-A agree very well with
the exact ones.

In Table 6, we present the results for the case G = 32399 and
y = 4295, using 45 qubits, as obtained by running the JUQCS-A
on JUQUEEN. For comparison, we show the expectation values of
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Table 4
Results of summing two 19-bit integers (210018 and 314269) using a quantum adder circuit [2,19]. The BIT ASSIGNMENT instruction is used to interchange qubits (0–18)
and (19–37) such that the sum of the integers (all 19 bits equal to one) is returned in qubits (0–18). This operation also reduces the amount ofMPI communication. Recall that
JUQCS-A uses a factor of 8 less memory than JUQCS-E and, as some of the numbers in the left three columns show, returns results that deviate slightly from the numerically
exact results produced by JUQCS-E. Calculations were performed on JUQUEEN using 8192 cores and 8192 MPI processes and took 1446 s for JUQCS-A and 388 s for JUQCS-E
to complete.

JUQCS-A JUQCS-E

qubit ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩ ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩

0 0.500 0.500 0.999 0.500 0.500 1.000
1 0.500 0.504 0.999 0.500 0.500 1.000
2 0.504 0.502 0.999 0.500 0.500 1.000
3 0.500 0.500 0.999 0.500 0.500 1.000
4 0.504 0.501 0.999 0.500 0.500 1.000
5 0.504 0.499 1.000 0.500 0.500 1.000
6 0.500 0.500 0.999 0.500 0.500 1.000
7 0.500 0.500 1.000 0.500 0.500 1.000
8 0.500 0.500 1.000 0.500 0.500 1.000
9 0.500 0.500 1.000 0.500 0.500 1.000
10 0.500 0.500 1.000 0.500 0.500 1.000
11 0.500 0.500 1.000 0.500 0.500 1.000
12 0.500 0.500 1.000 0.500 0.500 1.000
13 0.500 0.500 1.000 0.500 0.500 1.000
14 0.500 0.500 1.000 0.500 0.500 1.000
15 0.500 0.500 1.000 0.500 0.500 1.000
16 0.489 0.497 1.000 0.500 0.500 1.000
17 0.500 0.500 1.000 0.500 0.500 1.000
18 0.500 0.500 1.000 0.500 0.500 1.000
19 0.500 0.500 0.000 0.500 0.500 0.000
20 0.500 0.500 1.000 0.500 0.500 1.000
21 0.500 0.500 1.000 0.500 0.500 1.000
22 0.500 0.500 0.000 0.500 0.500 0.000
23 0.500 0.500 0.000 0.500 0.500 0.000
24 0.500 0.500 1.000 0.500 0.500 1.000
25 0.500 0.500 1.000 0.500 0.500 1.000
26 0.500 0.500 0.000 0.500 0.500 0.000
27 0.500 0.500 1.000 0.500 0.500 1.000
28 0.500 0.500 0.000 0.500 0.500 0.000
29 0.500 0.500 0.000 0.500 0.500 0.000
30 0.500 0.500 0.000 0.500 0.500 0.000
31 0.500 0.500 1.000 0.500 0.500 1.000
32 0.500 0.500 1.000 0.500 0.500 1.000
33 0.500 0.500 0.000 0.500 0.500 0.000
34 0.500 0.500 0.000 0.500 0.500 0.000
35 0.500 0.500 0.000 0.500 0.500 0.000
36 0.500 0.500 1.000 0.500 0.500 1.000
37 0.500 0.500 0.000 0.500 0.500 0.000

Table 5
Representative results of running Shor’s algorithm with JUQCS-A for a 30 qubit QC, G = 1007 = 19 × 53 and y = 529, yielding a period r = 18. The three rightmost
columns give the exact results, obtained from the closed-form expression [2] of the expectation values of the individual qubits. The expectation values produced by JUQCS-E
are numerically exact and are therefore not shown. The number of qubits in the x-register is 20. The calculation used all 8 cores of a Lenovo W520 notebook (Windows 10)
and took 348 s (elapsed time) to complete.

JUQCS-A Exact

qubit ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩ ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩

0 0.504 0.495 0.500 0.500 0.500 0.500
1 0.502 0.497 0.500 0.500 0.500 0.500
2 0.502 0.499 0.500 0.500 0.500 0.500
3 0.502 0.499 0.445 0.500 0.500 0.445
4 0.504 0.500 0.445 0.500 0.500 0.445
5 0.506 0.500 0.445 0.500 0.500 0.445
6 0.501 0.500 0.444 0.500 0.500 0.444
7 0.500 0.500 0.444 0.500 0.500 0.444
8 0.500 0.500 0.444 0.500 0.500 0.444
9 0.500 0.500 0.444 0.500 0.500 0.444
10 0.500 0.500 0.444 0.500 0.500 0.444
11 0.500 0.500 0.444 0.500 0.500 0.444
12 0.500 0.500 0.444 0.500 0.500 0.444
13 0.501 0.500 0.444 0.500 0.500 0.444
14 0.501 0.500 0.444 0.500 0.500 0.444
15 0.500 0.500 0.444 0.500 0.500 0.444
16 0.501 0.500 0.444 0.500 0.500 0.444
17 0.500 0.500 0.444 0.500 0.500 0.444
18 0.501 0.499 0.444 0.500 0.500 0.444
19 0.500 0.500 0.500 0.500 0.500 0.500
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the three components of the qubits as given by JUQCS together
with the exact results calculated from the exact closed-form ex-
pression [2]. The results of JUQCS-A agree very well with the exact
ones. We conjecture that a comparable accuracy of about 3 digits
on the expectation values of single qubits (⟨Qz(i)⟩) is beyond the
reach of present [20] and future hardware realizations of gate-
based quantum computers.

On a 48- or 49-qubit quantum computer, the largest composite
integer G = p × q that can be factorized with Shor’s original
algorithm is G = 65531 = 19 × 3449. We employed JUQCS-
A to run Shor’s algorithm on a 48 qubit universal quantum com-
puter (simulator) for G = 64507 and G = 65531, requiring 32
qubits for the x-register and 16 qubits for the F register. On the
Sunway TaihuLight, we made a run with y = 21587 and, after
about 347 min of elapsed time, obtained a result that shows a
period r = 2, which according to Shor’s algorithm, yields the
factorization 64507 = 251 × 257. On the K computer, a run with
y = 34888 yielded, after 299 min of elapsed time, a result with
period r = 4. According to Shor’s algorithm this implies that
64507 = 251 × 257, in concert with the result obtained on the
Sunway TaihuLight. Running Shor’s algorithmwithG = 65531 and
y = 1122 on the K computer returned after 300 min of elapsed
time, a result with period r = 4, in agreement with G = 65531 =
19× 3449.

6. Conclusion

The revised version of the massively parallel quantum com-
puter simulator has been used to run a variety of quantum circuits
on the Sunway TaihuLight, on the K computer, on an IBM Blue
Gene/Q, and on Intel Xeon based clusters. Close-to-linear weak
scaling of the elapsed time as a function of the number of qubits
was observed on all computers used. This implies that the combi-
nation of software, many cores, and a fast communication network
beats the exponential increase in memory and CPU time that
is the characteristic of simulating quantum systems on a digital
computer.

Two techniques for alleviating the memory problem have been
discussed. The first employs an adaptive coding scheme to rep-
resent the quantum state in terms of 2-byte instead of 16-byte
numbers. Benchmarks including Shor’s algorithm, adders, quan-
tum Fourier transforms, Hadamard and CNOT operations show
that the factor-of-eight reduction in memory has no significant
impact on the accuracy of the outcomes. This version can simulate a
32-qubit universal quantum computer on a notebook with 16 GB
of memory.

The second technique resorts to awell-knownmethod of Quan-
tum Monte Carlo simulations to express two-qubit gates in terms
of single-qubit gates and auxiliary variables. The worst case run
time and memory usage of this algorithm was shown to be
O(NM2P ) and O(N + M), respectively, where N is the number of
qubits, P is the number of two-qubit gates andM is the number of
output amplitudes desired. Although the reduction in memory can
be huge if M ≪ N , the technique is of limited practical use unless
one knows how to chooseM basis states of interest.

Through the specification of the sequence of quantumgates, the
input to JUQCS can easily be tailored to put a heavy burden on the
communication network, memory, processor or any combination
of them. Therefore, the simulator described in this paper may
be a useful addition to the suite of benchmarks for new high-
performance computers. As mentioned in the introduction, the
current version was designed to be portable over a wide range
of computing platforms. However, the new generation of high-
performance computers rely on accelerators or GPUs to deliver
higher performance. For instance, the Sunway TaihuLight requires
machine-specific programming to make use of the accelerator
hardware. Adapting the code tomake efficient use of GPUs or other

kinds of accelerators is a challenging project that we leave for
future work.

Acknowledgments

The authors thank Koen De Raedt for his help in improving the
simulation code. The authors acknowledge the computing time
granted by the JARA-HPC Vergabegremium and provided on the
JARA-HPC Partition part of the supercomputer JUQUEEN [3] at the
Forschungszentrum Jülich. D.W. is supported by the Initiative and
Networking Fund of the Helmholtz Association, Germany through
the Strategic Future Field of Research project ‘‘Scalable solid state
quantum computing (ZT-0013)’’. Part of the simulations reported
in this paper were carried out on the K computer at RIKEN. S.
Yuan gratefully acknowledges financial support from the Thousand
Young Talent Plan and computational resources provided by Na-
tional Supercomputing Center in Wuxi (China).

Appendix A. Instruction set

This appendix gives a detailed specification of each of the gate
operations that are implemented in JUQCS. JUQCS will become
accessible through a Jülich cloud service in 2019. A dockerized ver-
sion of the four executables (JUQCS-E and JUQCS-A, MPI/OpenMP
and MPI only) is available on request.

I gate

Description the I gate performs an identity operation on qubit
n.

Syntax I n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation I =
(

1 0
0 1

)
Graphical symbol I

Note The I gate is implemented as a ‘‘no operation’’ and is
provided for compatibility with some other assembler-like lan-
guage only.

H gate

Description the H gate performs a Hadamard operation on
qubit n.

Syntax H n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation H = 1
√
2

(
1 1
1 −1

)
Graphical symbol H

X gate

Description the X gate performs a bit flip operation on qubit n.

Syntax X n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.
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Table 6
Representative results of running Shor’s algorithm with JUQCS-A for a 45 qubit QC, G = 32399 = 179 × 181 and y = 4295, yielding a period r = 6. The three rightmost
columns give the exact results, obtained from the closed-form expression [2] of the expectation values of the individual qubits. The number of qubits on the x-register is 30.
The calculation was performed on JUQUEEN, using 262144 cores, and took 5669 s of elapsed time to complete.

JUQCS-A Exact

qubit ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩ ⟨Qx(i)⟩ ⟨Qy(i)⟩ ⟨Qz(i)⟩

0 0.499 0.480 0.502 0.500 0.500 0.500
1 0.579 0.486 0.375 0.500 0.500 0.375
2 0.494 0.494 0.345 0.500 0.500 0.344
3 0.518 0.498 0.336 0.500 0.500 0.336
4 0.496 0.498 0.335 0.500 0.500 0.334
5 0.503 0.500 0.333 0.500 0.500 0.333
6 0.499 0.499 0.335 0.500 0.500 0.333
7 0.502 0.500 0.333 0.500 0.500 0.333
8 0.500 0.500 0.334 0.500 0.500 0.333
9 0.500 0.500 0.333 0.500 0.500 0.333
10 0.500 0.500 0.334 0.500 0.500 0.333
11 0.501 0.500 0.333 0.500 0.500 0.333
12 0.500 0.500 0.335 0.500 0.500 0.333
13 0.499 0.500 0.333 0.500 0.500 0.333
14 0.501 0.500 0.335 0.500 0.500 0.333
15 0.499 0.500 0.333 0.500 0.500 0.333
16 0.501 0.500 0.335 0.500 0.500 0.333
17 0.499 0.500 0.333 0.500 0.500 0.333
18 0.500 0.500 0.335 0.500 0.500 0.333
19 0.499 0.500 0.333 0.500 0.500 0.333
20 0.501 0.500 0.335 0.500 0.500 0.333
21 0.499 0.500 0.333 0.500 0.500 0.333
22 0.501 0.500 0.335 0.500 0.500 0.333
23 0.499 0.500 0.333 0.500 0.500 0.333
24 0.500 0.500 0.335 0.500 0.500 0.333
25 0.499 0.500 0.332 0.500 0.500 0.333
26 0.501 0.500 0.335 0.500 0.500 0.333
27 0.500 0.500 0.332 0.500 0.500 0.333
28 0.500 0.500 0.335 0.500 0.500 0.333
29 0.500 0.500 0.500 0.500 0.500 0.500

Operation X =
(

0 1
1 0

)
Graphical symbol X

Y gate

Description the Y gate performs a bit and phase flip operation
on qubit n.

Syntax Y n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation Y =
(

0 −i
i 0

)
Graphical symbol Y

Z gate

Description the Z gate performs a phase flip operation on qubit
n.

Syntax Z n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation Z =
(

1 0
0 −1

)
Graphical symbol Z

S gate

Description the S gate rotates qubit n about the z-axis by π/4.

Syntax S n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation S =
(

1 0
0 i

)
Graphical symbol S

S† gate

Description the S† gate rotates qubit n about the z-axis by
−π/4

Syntax S+ n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation S†
=

(
1 0
0 −i

)
Graphical symbol S†

T gate

Description the T gate rotates qubit n about the z-axis by π/8

Syntax T n
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Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation T =
(

1 0
0 (1+ i)/

√
2

)
Graphical symbol T

T† gate

Description the T† gate rotates qubit n about the z-axis by
−π/8

Syntax T+ n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation T †
=

(
1 0
0 (1− i)/

√
2

)
Graphical symbol T †

U1 gate

Description the U1 gate performs a U1(λ) operation [16] on
qubit n.

Syntax U1 n λ

Arguments n is an integer in the range 0, . . . ,N − 1 where
N is the number of qubits and λ is a number (floating point or
integer) that represents an angle expressed in radians.

Operation U1(λ) =
(

1 0
0 eiλ

)
Graphical symbol U1(λ)

U2 gate

Description the U2 gate performs a U2(φ, λ) operation [16] on
qubit n.

Syntax U2 n φ λ

Arguments n is an integer in the range 0, . . . ,N − 1 where N
is the number of qubits and φ and λ are numbers (floating point
or integer) that represent angles expressed in radians.

Operation U2(φ, λ) = 1
√
2

(
1 −eiλ

eiφ ei(φ+λ)

)
Graphical symbol U2(φ, λ)

U3 gate

Description the U3 gate performs a U3(θ, φ, λ) operation [16]
on qubit n.

Syntax U3 n θ φ λ

Arguments n is an integer in the range 0, . . . ,N−1whereN is
the number of qubits and θ , φ and λ are numbers (floating point
or integer) that represent angles expressed in radians.

Operation U3(θ, φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(φ+λ) cos(θ/2)

)
Graphical symbol U3(θ, φ, λ)

+X gate

Description the +X gate rotates qubit n by −π/2 about the
x-axis.

Syntax +X n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation +X = 1
√
2

(
1 i
i 1

)
Graphical symbol +X

-X gate

Description the -X gate rotates qubit n by +π/2 about the
x-axis.

Syntax -X n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation −X = 1
√
2

(
1 −i
−i 1

)
Graphical symbol −X

+Y gate

Description the +Y gate rotates qubit n by −π/2 about the
y-axis.

Syntax +Y n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation +Y = 1
√
2

(
1 1
−1 1

)
Graphical symbol +Y

-Y gate

Description the -Y gate rotates qubit n by +π/2 about the
y-axis.

Syntax -Y n

Argument n is in the range 0, . . . ,N−1whereN is the number
of qubits.

Operation −Y = 1
√
2

(
1 −1
1 1

)
Graphical symbol −Y

R(k) gate

Description the R(k) gate changes the phase of qubit n by an
angle 2π/2k.

Syntax R n k

Arguments n is in the range 0, . . . ,N − 1 where N is the
number of qubits and k is a non-negative integer.
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Operation R(k) =
(

1 0
0 e2π i/2

k

)
Graphical symbol R(k)

R†(k) gate

Description the inverse R(k) gate changes the phase of qubit n
by an angle−2π/2k.

Syntax R n−k

Arguments n is in the range 0, . . . ,N − 1 where N is the
number of qubits and k is a non-negative integer.

Operation R†(k) =
(

1 0
0 e−2π i/2

k

)
Graphical symbol R†(k)

CNOT gate

Description the controlled-NOT gate flips the target qubit if
the control qubit is 1.

Syntax CNOT control target

Arguments control ̸= target are integers in the range 0, . . . ,
N − 1 where N is the number of qubits.

Operation CNOT =

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠ ; in the computa-

tional basis |control, target⟩.

Graphical symbol •

U(k) gate

Description the controlled-phase gate shifts the phase of the
target qubit by an angle 2π/2k if the control qubit is 1.

Syntax U control target k

Arguments control ̸= target are integers in the range 0, . . . ,
N − 1 where N is the number of qubits and k is a non-negative
integer.

Operation U(k) =

⎛⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2π i/2

k

⎞⎟⎠ ; in the computa-

tional basis |control, target⟩.

Graphical symbol •

U(k)

U†(k) gate

Description the U† gate shifts the phase of the target qubit by
an angle−2π/2k if the control qubit is 1.

Syntax U control target −k

Arguments control ̸= target are integers in the range 0, . . . ,
N − 1 where N is the number of qubits and k is a non-negative
integer.

Operation U†(k) =

⎛⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−2π i/2

k

⎞⎟⎠ in the compu-

tational basis |control, target⟩.

Graphical symbol •

U†(k)

Toffoli gate

Description the TOFFOLI gate flips the target qubit if both
control qubits are 1.

Syntax TOFFOLI control1 control2 target

Arguments control1 ̸= control2 ̸= target ̸= control1 are
integers in the range 0, . . . ,N − 1 where N is the number of
qubits.

Operation TOFFOLI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in

the computational basis |control1, control2, target⟩.

Graphical symbol •
•

BEGIN MEASUREMENT

Description BEGIN MEASUREMENT computes and prints out
the expectation values of all N qubits. This operation does not
change the state of the quantum computer.

Syntax BEGIN MEASUREMENT

Arguments None

Operation In terms of their representation in terms of Pauli
matrices, JUQCS computes ⟨Qx(n)⟩ = ⟨Ψ |(1− σ x

n )|Ψ ⟩/2, ⟨Qy(n)⟩
= ⟨Ψ |(1− σ y

n )|Ψ ⟩/2, and ⟨Qz(n)⟩ = ⟨Ψ |(1− σ z
n )|Ψ ⟩/2 for

n = 0, . . . ,N − 1, where |Ψ ⟩ is the state of the quantum
computer at the time that BEGIN MEASUREMENT was issued.

Graphical symbol ⟨.⟩

GENERATE EVENTS

Description GENERATE EVENTS computes the probabilities of
each of the basis states. It then uses random numbers to gen-
erate and print out the states according to these probabilities.
This operation destroys the state of the quantum computer. It
will force JUQCS to exit.

Syntax GENERATE EVENTS events seed

Arguments events is a positive integer, determining the num-
ber of events that will be generated and seed is an integer that
is used as the initial seed for the random number generator if
seed > 0. If seed ≤ 0, JUQCS uses as seed the value provided by
the operating system.

Operation GENERATE EVENTS produces a list of events states,
all sampled from the probability distribution computed from
the current state of the quantum computer.
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Graphical symbol none

M

Description Mperforms a projective measurement on qubit n.

Syntax M n

Arguments n is in the range 0, . . . ,N − 1 where N is the
number of qubits.

Operation JUQCS first computes the probabilities p0 and p1
to observe qubit n in the state |0⟩ and |1⟩, respectively, Then
JUQCS selects the measurement outcome 0 or 1 at random
according to these probabilities and projects the qubit onto the
corresponding state.

Graphical symbol

QUBITS

Description QUBITS specifies the number of qubits of the uni-
versal quantum computer.

Syntax QUBITS N

Arguments N is an integer which must be larger than 1 and
smaller than 64 (the actual number is limited by the available
memory).

Note QUBITS N must be the first instruction.

BIT ASSIGNMENT

Description Applications that require MPI to run JUQCS on a
distributed memory machine may benefit from renumbering
the qubits such that the amount of MPI communications is
reduced. The box below shows how this can be done without
changing the original quantum circuit, for a simulation involv-
ing 4 qubits.

Syntax BIT ASSIGNMENT Permutation(0,1,. . . ,N-1), see Exam-
ple 3.

Arguments A list of integers in the range 0, . . . ,N − 1 that is
a permutation of the set {0, 1, . . . ,N − 1}.

QUBITS 4
BIT ASSIGNMENT 2 3 1 0

Note This instruction should appear after QUBITSN and before
the first gate instruction.

SHORBOX

Description SHORBOX initializes the x-register and the
f -register in Shor’s algorithm [1] to the state of uniform su-
perposition and yx mod G, respectively. Here G is the number
to be factorized and 1 < y < G is chosen to be coprime to
G. Subsequent application of the quantum Fourier transform to
the x-register allows for the determination of the period of the
function f (x) = yx mod G from which the factors of G may be
calculated [1,2].

Syntax SHORBOX nx G y

Arguments nx < N is the number of qubits reserved for the
x-register, and G and y are integers. See Ref. [2] for details.

Operation SHORBOX = 2−nx/2
∑2nx−1

x=0 |x⟩|y
x mod G⟩.

Graphical symbol example for nx = 4

Shor

CLEAR

Description The CLEAR instruction projects the state of qubit
n to |0⟩.

Syntax CLEAR n

Arguments n is in the range 0, . . . ,N − 1 where N is the
number of qubits.

Operation CLEAR = |0⟩n⟨0|n

Graphical symbol 0

Note This instruction fails if the projection results in to a state
with amplitude zero.

SET

Description The SET instruction projects the state of qubit n to
|1⟩.

Syntax SET n

Arguments n is in the range 0, . . . ,N − 1 where N is the
number of qubits.

Operation SET = |1⟩n⟨1|n

Graphical symbol 1

Note This instruction fails if the projection results in to a state
with amplitude zero.

DEPOLARIZING CHANNEL

Description Insert X, Y, or Z gates with specified probabilities
to mimic gate errors.

Syntax DEPOLARIZING CHANNEL P_X = px , P_Y = py ,
P_Z = pz , SEED = k.

Arguments may appear in any order and any of them is op-
tional. Missing arguments are assumed to have value zero. The
values of the arguments should satisfy 0 ≤ px, py, pz ≤ 1 and
0 ≤ px+py+pz ≤ 1 and kmust be anumber smaller than231

−1.
If k is zero or negative, JUQCS takes the value provided by the
operating system as the seed for the randomnumber generator.

Operation After each gate operation, JUQCS performs anX gate
on each qubit with probability px, a Y gate on each qubit with
probability py, and a Z gate on each qubit with probability pz .

Graphical symbol example for N = 4

DPC

Note 1 This instruction should appear after QUBITS N and be-
fore the first gate instruction.

Note 2 For an example see ‘‘Example: input’’. Removing ‘! ’
from the second line instructs JUQCS to insert X, Y, or Z gates
with specified probabilities.
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EXIT

Description EXIT instruction terminates execution.

Syntax EXIT

Arguments None.

Operation The EXIT instruction forces JUQCS to measure all
qubits and terminate. It can appear at any point in the instruc-
tion list. It is useful for debugging.

Appendix B. Illustrative example

In this section, we give a simple example that shows how
JUQCS processes the input file with assembler-like instructions
representing the quantum-gate circuit, in Fig. B.6we show a circuit
that uses qubits 3 and 4 to perform error-correction [1,22] on the
logical qubit encoded in the qubits 0, 1, and 2. The list of JUQCS
instructions is given in box ‘‘Example: input’’. For the definition of
the mnemonics see Appendix A.

Example: input
1 QUBITS 5
2 ! DEPOLARIZING CHANNEL p_X =0.01 , p_Y =0.01
3
4 H 0 ! i n i t i a l s t a t e
5 T 0
6 H 0 ! i n i t i a l s t a t e
7
8 CNOT 0 1 ! encode
9 CNOT 0 2

10 BEGIN MEASUREMENT
11
12 ! x 1 ! e r ro r
13 x 0 ! e r ro r
14
15 CNOT 0 3 ! co r r e c t
16 CNOT 1 3
17 CNOT 0 4
18 CNOT 2 4
19 M 3
20 M 4
21 TOFFOLI 3 4 0
22 X 4
23 TOFFOLI 3 4 1
24 X 3
25 X 4
26 TOFFOLI 3 4 2
27 X 3
28
29 H 3
30 CLEAR 3 ! must be preceeded by Hadamard
31 H 4
32 SET 4 ! must be preceeded by Hadamard
33
34 BEGIN MEASUREMENT
35 GENERATE EVENTS 8192 1

Lines 4 to 6 prepare (starting from the state with all qubits in
state |0⟩) a nontrivial input state to the error-correction circuit.
Lines 8 and 9 encode the two physical qubits into logical ones. Line
10 instructs JUQCS tomeasure and print out the expectation values
of the three components of the qubit (i.e. the expectation values of
the Pauli matrices). Line 13 introduces a single-qubit error. Lines
19 and 20 instruct JUQCS to perform a projective measurement
on qubits 3 and 4, respectively. Lines 15 to 27 are the instructions
to detect and correct the error, if any. Lines 29 (31) and 30 (32)
show the instructions to prepare qubit 3 (4), which has undergone
a projective measurement in line 19 (20), for later re-use. Line

35 instructs JUQCS to generate an output file with 8192 events,
meaning bit strings representing basis states, sampled from the
final state of the quantum computer.

The relevant parts of the output, i.e. the expectation values of
the three components of the five qubits in the initial and final
state, when JUQCS is run with the file ‘‘Example: input’’ as input,
(i) with line 13 commented out (no single-qubit error), (ii) with
one single-qubit error on qubit 0, and (iii) with the ‘!’ in line
12 removed (errors on qubits 0 and 1), are shown in ‘‘Example:
output (i)’’, ‘‘Example: output (ii)’’, and ‘‘Example: output (iii)’’,
respectively. Box ‘‘Example: output (ii)’’ demonstrates that the
error-correction code indeed detects and corrects a single-qubit
error while ‘‘Example: output (iii)’’ shows that it fails to correct
two-qubit errors.

Example: output (i)
1 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−
2 0 0.500E+00 0.500E+00 0.146E+00
3 1 0.500E+00 0.500E+00 0.146E+00
4 2 0.500E+00 0.500E+00 0.146E+00
5 3 0.500E+00 0.500E+00 0.000E+00
6 4 0.500E+00 0.500E+00 0.000E+00
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8
9 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−

10 0 0.500E+00 0.500E+00 0.146E+00
11 1 0.500E+00 0.500E+00 0.146E+00
12 2 0.500E+00 0.500E+00 0.146E+00
13 3 0.500E+00 0.500E+00 0.000E+00
14 4 0.500E+00 0.500E+00 0.100E+01
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Example: output (ii)
1 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−
2 0 0.500E+00 0.500E+00 0.146E+00
3 1 0.500E+00 0.500E+00 0.146E+00
4 2 0.500E+00 0.500E+00 0.146E+00
5 3 0.500E+00 0.500E+00 0.000E+00
6 4 0.500E+00 0.500E+00 0.000E+00
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8
9 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−

10 0 0.500E+00 0.500E+00 0.146E+00
11 1 0.500E+00 0.500E+00 0.146E+00
12 2 0.500E+00 0.500E+00 0.146E+00
13 3 0.500E+00 0.500E+00 0.000E+00
14 4 0.500E+00 0.500E+00 0.100E+01
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Example: output (iii)
1 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−
2 0 0.500E+00 0.500E+00 0.146E+00
3 1 0.500E+00 0.500E+00 0.146E+00
4 2 0.500E+00 0.500E+00 0.146E+00
5 3 0.500E+00 0.500E+00 0.000E+00
6 4 0.500E+00 0.500E+00 0.000E+00
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8
9 −−−i−−−<Qx( i)>−−−−<Qy( i)>−−−−<Qz( i )>−

10 0 0.500E+00 0.500E+00 0.854E+00
11 1 0.500E+00 0.500E+00 0.854E+00
12 2 0.500E+00 0.500E+00 0.854E+00
13 3 0.500E+00 0.500E+00 0.000E+00
14 4 0.500E+00 0.500E+00 0.100E+01
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Fig. B.6. Quantum circuit performing error correction on the top three qubits. The corresponding JUQCS input file is listed in Example: input. Qubits are numbered from
zero (top) to four (bottom). Reading from left to right, the first three gates prepare the initial state, the next two (CNOT) gates perform the encoding, the X gate on qubit 0
introduces a spin flip error, the next 11 gates detect and correct the error and the last 3 (2) gates on qubit 3 (4) illustrate how to reset a qubit to 0 (1).
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