

 University of Groningen

REI
Zozas, Ioannis; Ampatzoglou, Apostolos; Bibi, Stamatia; Chatzigeorgiou, Alexander;
Avgeriou, Paris; Stamelos, Ioannis
Published in:
Journal of software-Evolution and process

DOI:
10.1002/smr.2216

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zozas, I., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Avgeriou, P., & Stamelos, I. (2019). REI: An
integrated measure for software reusability. Journal of software-Evolution and process, 31(8), [2216].
https://doi.org/10.1002/smr.2216

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1002/smr.2216
https://research.rug.nl/en/publications/4b9cd804-9082-4807-b43b-a139832f44dc
https://doi.org/10.1002/smr.2216

Received: 16 September 2018 Revised: 19 May 2019 Accepted: 30 June 2019

DOI: 10.1002/smr.2216
S P E C I A L I S S U E P A P E R
REI: An integrated measure for software reusability
Ioannis Zozas1 | Apostolos Ampatzoglou2 | Stamatia Bibi1 |

Alexander Chatzigeorgiou2 | Paris Avgeriou3 | Ioannis Stamelos4
1Department of Informatics and

Telecommunications, University of Western

Macedonia, Kozani, Greece

2Department of Applied Informatics,

University of Macedonia, Thessaloniki, Greece

3Faculty of Science and Engineering,

University of Groningen, Groningen,

Netherlands

4School of Informatics, Aristotle University of

Thessaloniki, Thessaloniki, Greece

Correspondence

Ioannis Zozas, Department of Informatics and

Telecommunications, University of Western

Macedonia, Kozani, Greece.

Email: izozas@uowm.gr

Funding information

State Scholarships Foundation (IKY); European

Social Fund and the Greek public
1Pre‐print of article accepted to Journal of Software: Evolu

J Softw Evol Proc. 2019;31:e2216.

https://doi.org/10.1002/smr.2216
Abstract

To capitalize upon the benefits of software reuse, an efficient selection among

candidate reusable assets should be performed in terms of functional fitness

and adaptability. The reusability of assets is usually measured through reusability

indices. However, these do not capture all facets of reusability, such as structural

characteristics, external quality attributes, and documentation. In this paper, we

propose a reusability index (REI) as a synthesis of various software metrics and

evaluate its ability to quantify reuse, based on IEEE Standard on Software Metrics

Validity. The proposed index is compared with existing ones through a case study on

80 reusable open‐source assets. To illustrate the applicability of the proposed index,

we performed a pilot study,where real‐world reuse decisions have been comparedwith

decisions imposed by the use ofmetrics (including REI). The results of the study suggest

that the proposed index presents the highest predictive and discriminative power; it is

the most consistent in ranking reusable assets and the most strongly correlated to

their levels of reuse. The findings of the paper are discussed to understand the most

important aspects in reusability assessment (interpretation of results), and interesting

implications for research and practice are provided.1

KEYWORDS

metrics, quality model, reuseability, validation
1 | INTRODUCTION
Software reuse is considered as a key solution to increase software development productivity and decrease the number of bugs.1,2

The process of software reuse entails the use of existing software assets to implement new software systems or extend existing

ones.3 Reuse can take place at multiple levels of granularity, ranging from reusing a few lines of code (usually through the white‐box

reuse process) to reusing complete components/libraries (usually as black‐box reuse). The process of reusing software assets consists of

two major tasks:

• Reusable asset identification. The reuser has to identify an asset (ie, a piece of source code such as method, class, package, or a

component/library), which implements the functionality that he/she wants to reuse. This task is challenging because the available amount of

assets (either in‐house or open source) that can be reused is vast, offering a large variety of candidates. In many cases, the candidate reusable

assets are not well organized and documented. The assets that are identified as functionally fitting are then evaluated, based on some criteria,

and one is selected for reuse.
tion and Process

© 2019 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/smr 1 of 18

https://orcid.org/0000-0003-2159-1332
https://orcid.org/0000-0002-5764-7302
https://orcid.org/0000-0003-4248-3752
https://orcid.org/0000-0002-5381-8418
https://orcid.org/0000-0002-7101-0754
https://doi.org/10.1002/smr.2216
https://doi.org/10.1002/smr.2216
http://wileyonlinelibrary.com/journal/smr

2 of 18 ZOZAS ET AL.
• Reusable asset adaptation. After the asset has been selected for reuse, the reuser has to adapt it to fit the architecture of the target system. For

example, in white‐box reuse, source code needs to be changed, whereas in black‐box reuse, dependencies need to be handled, and the API

needs to be exploited and understood. If the asset is well structured, understandable, and maintainable, the effort required to adapt it is

significantly lower. The assessment of adaptability is a nontrivial task; although there are plenty adaptability indicators, a specific asset cannot

be safely characterized as easily adaptable or not, in isolation, due to the lack of well‐established metric thresholds.

To summarize the requirements for asset selection per task: during identification, the functional fitness of the asset needs to be considered;

during adaptation, the functionally equivalent assets must be evaluated based on the extent to which they enable ease of adaptation, eg, through

sound documentation and internal structure. To guide “reusers” in the selection of the most adaptable asset (among the functionally fitting ones),

reusability needs to be assessed, ie, the degree to which a certain asset can be reused in other systems. To this end, a wide range of reusability

indices have been proposed4,5; these indices are calculated as functions of metric scores that quantify factors that influence reusability. However,

several research efforts in the literature on reusability assessment (see Section 2) suffer from one or both of the following two limitations: (a) only

highlight the parameters that should be considered in reusability assessment, thus, not providing an aggregated reusability measure, or (b) only

consider structural aspects of the software asset, ignoring aspects such as documentation, external quality, etc. We note that the aforementioned

reusability indices are only relevant for comparing functionally equivalent assets, because the main characteristic that an asset must have so as

to be reused is to provide the necessary functionality. Additionally, the applicability of such indices is focusing on “in‐house” and/or “open‐source”

reuse artifacts, and not third‐party closed source code. The reason for this is that in‐house and OSS code are available prior to their usage for

comparison with competing assets, which is usually not the case for third‐party closed‐source code.

The goal of this study is to propose and validate a reusability index (REI) that overcomes these limitations by: synthesizing various metrics that

influence reusability (related to limitation‐a) and considering multiple aspects of reusability, such as structural quality, external quality, documentation,

availability, etc. (related to limitation‐b). The novelty of the proposed index lies in the fact that a holistic (ie, not only dependent on structural

aspects of software) and quantifiable measure of reusability is proposed. To validate the accuracy of the developed index, we have performed

a case study on 80 well‐known open source assets. In particular, we assess the reusability of the software assets, based on the proposed index

and then contrast it to their actual reuse, as obtained by the Maven repository.* We note that despite the fact that this accurate reuse metric

is available for a plethora of open source reusable assets (already stored in Maven repository), our proposed index can be useful for assessing

the reusability of assets that (a) are not deployed on Maven, (b) are developed in‐house, or (c) are of different levels of granularity (eg, classes,

packages, etc.) for which no actual reuse data can be found.

The rest of the paper is organized as follows: In Section 2, we present related work (focusing on existing reusability models), and in Section 3

we describe in detail the proposed REI. In Section 4, we present the case study design that we have used for evaluation purposes, whose results

we present in Section 5, and discuss in Section 7. In Section 6, we present an illustrative example discussing the applicability of REI in white‐box

artifact selection process. Finally, we present threats to validity in Section 8 and conclude the paper in Section 9. We note that this paper is an

extended and revised version of the study obtaining the best paper award in the ICSR 2018 conference.6 The main points of differentiation of

this study compared with the original one published in ICSR are as follows: (a) we have expanded the related work section so as to include a

detailed comparison to the state‐of‐the‐art; (b) we have expanded our validation dataset from 30 to 80 projects; (c) we have investigated the sixth

criterion of IEEE standard for metrics validation (namely tracking); and (d) we added two proof of concept pilot studies, which demonstrate the

applicability of the model in practice and provided an initial assessment of the gained benefits.
2 | RELATED WORK

In this section, we present previous studies that are related to this paper. First, we describe the context of this paper, ie, software reuse,

emphasizing on the main benefits and challenges of the domain. Subsequently, in Section 2.2, we present reusability models and indices that

are comparable to our work.
2.1 | Software reuse

Software reuse according to McIlroy7 is the “the process of creating software systems from existing software, rather than building software

systems from scratch.” Software reuse as a process targets in building software systems with lower development cost, increased efficiency and

maintainability, and improved quality as mentioned by Leach,8 who describes a variety of reuse types with respect to the level granularity. As

referred by Leach,8 reuse can be performed by utilizing a number of lines of code, functions, packages, subsystems, or even entire programs.

Furthermore, according to Krueger,9 software reuse may be applied to requirements, architectures, design documents, and design patterns, in
*Maven is one of the most popular reuse repositories because at this point it hosts more than 6 million projects. Because all Maven projects automatically download externally reused libraries

from this repository, we consider the Maven Reuse measure an accurate proxy of actual reuse.

ZOZAS ET AL. 3 of 18
order to apply during all phases of the software development lifecycle. While the potentials of software reuse are widely recognized, there are also

many challenges that software engineers face during the reuse process. Such difficulties include the differentiations in the requirements and

design between the reusable elements and the target system that rise the need of formal procedures for selecting the appropriate reusable

artifacts10 and handling reuse expenses.8 Concerning economic challenges, Jalender et al11 denoted the need for building economic and

organizational models within development process in order to implement the software reuse concept. Tripathy and Naik,12 to confront the

technical challenge of selecting reusable software artifacts, highlighted the need to establish a minimum quality level of certain properties, such

as reliability, adaptability, and platform independence according to which reusable artifacts can be prioritized. Furthermore, Sojer et al13 proposed

a development process model to support software reuse, including project management and tool distribution. The model aimed to provide

portable software artifacts without the need of rework, thus reducing related costs.
2.2 | Software reusability models and indices

In this section, we present the reusability models and indices that have been identified by a recent mapping study on design time‐quality attri-

butes.5 For each reusability model/index, we present (a) the aspects of the software that are considered (eg, structural quality, documentation,

etc.); (b) the way of synthesizing these aspects; and (c) the validation setup (ie, type of study, dataset, the way to quantify reuse as an independent

variable). A summary of the metrics that exist in the literature is presented in Table 1.

First, Bansiya and Davies14 proposed a hierarchical quality model, named QMOOD, for assessing the quality of object‐oriented artifacts. The

model provides functions that relate structural properties (eg, encapsulation, coupling, and cohesion) to high‐level quality attributes (eg, reusability,

flexibility, etc.). The metrics that QMOOD links to reusability are presented inTable 1. For evaluation purposes, Bansiya and Davis relied on human

evaluators for assessing the validity of the model. Furthermore, Nair et al15 assessed the reusability of a certain class based on the values of three

metrics defined in the Chidamber and Kemerer suite.16 Multifunctional regression was performed across metrics to define the REI which was eval-

uated in two medium‐sized java projects.

Additionally, Kakarontzas et al17 proposed an index for assessing the reuse potential of object‐oriented software modules. The authors used

the metrics introduced by Chidamber and Kemerer16 and developed a reuse index (named FWBR) based on the results of a logistic regression
TABLE 1 Metrics associated with reusability

Metrics 14 17 15 19 18 20 21 22 23

Direct class coupling X X X X

Coupling between objects X X X X

Lack of cohesion between methods X X X

Cohesion among methods of class X X X

Class interface size X

Response for a class X X X

Weighted methods for class X X X X X X

Design size in classes X X

Number of classes X X X

Depth of inheritance X X X

Number of properties X X X

Setter methods X

Interface complexity X X X

Number of external dependencies X X

Documentation quality X X

Existence of meta information X X X

Observability X X

Portability X X X X X

Number of open bugs X

Number of components X X

Aggregation of metrics Y Y Y N N Y Y Y N

4 of 18 ZOZAS ET AL.
performed on 29 OSS projects. Their validation compared FWBR with the two aforementioned indices (from Bansiya and Davis14 and Nair and

Selvarani15). As a proxy of reusability, the authors used classes D‐layer.17

From another perspective, Sharma et al utilized artificial neural networks (AAN) to estimate the reusability of software components.18 The

rationale of the proposed model is that structural metrics cannot be the sole predictors of components reusability, in the sense that reusability

can be performed at other levels of granularity as well. Thus, they proposed four factors and several metrics affecting component reusability,

namely, (a) customizability, measured as the number of setter methods per total number of properties; (b) interface complexity measured in scale

from low to high; (c) understandability, depending on the appropriateness of the documentation (demos, manuals, etc.); and (d) portability mea-

sured in scale from low to high. The authors developed a network from 40 Java components and tested their results in 12 components presenting

promising results.

Moreover, Washizak20 suggested a metric‐suite capturing the reusability of components, decomposed to understandability, adaptability, and

portability. The validity of the model was evaluated with 125 components against expert estimations. Fazal et al21 proposed a reusability model

based on novel and existing metrics from a series of project releases. A mathematical formula has been introduced to aggregate low level metrics

to a REI. The proposed index has been validated in eight open source software packages. Goel et al22 proposed a model based on object‐oriented

programming language metrics, which was validated on three C++ projects. The model utilized the Chidamber and Kemerer (CK) metrics suite,16 as

well as novel inheritance metrics. Finally, Hristov23 proposed a reusability model based on several reuse factors (namely reuse, adaptability, price,

maintainability, quality, availability, documentation, and complexity).
2.3 | Contributions compared with the state‐of‐the‐art

The main limitations identified in the state‐of‐the‐art reusability metrics are the following: (a) only a limited number of models provide an aggre-

gated index for the calculation of reusability; (b) the models that provide a REI (ie, they do not only present factors that influence reusability) are

considering only structural characteristics; (c) the used structural characteristics are usually concentrated at the lowest levels of hierarchical quality

models; and (d) the accuracy of existing reusability indices is quite low. Therefore, in this study, we aim to propose a reusability model that will lead

to an aggregated index, which will consist of high‐level and low‐level structural quality characteristics, but will also take into account other aspects

of the reused artifacts, such as external quality, documentation, etc. The performance of the obtained index will be compared with state‐of‐the‐art

models, and it will be investigated whether it can advance the levels of accuracy already achieved.
3 | PROPOSED REUSABILITY INDEX (REI)

In this section, we present the proposed REI. The proposed index is calculated as a function of a set of metrics, each one weighted with a specific

value. To perform candidate metric selection, we use a three‐level hierarchical reusability model (see Figure 1). The model decomposes reusability
FIGURE 1 Reusability measurement model

ZOZAS ET AL. 5 of 18
to seven factors and then proposes metrics for each one of them. In Section 3.1, we present the reuse factors, whereas in Section 3.2 we present

the metrics that we have selected for quantifying the quality subcharacteristics of the model.

3.1 | Reuse subcharacteristics

According to Hristov et al, reusability can be assessed by quantifying eight main factors: incurred reuse, adaptability, price, maintainability, external

quality, availability, documentation, and complexity,23 defined as follows:

• Incurred reuse indicates the extent to which a software asset is built upon reused components.

• Adaptability is reflecting the ease of asset adaptation, when reused in a new system.

• Price indicates how expensive or cheap an asset is.

• Maintainability represents the extent to which an asset can be extended after delivery (eg, during a new version). Maintainability is reflected in

the source code.

• External quality describes the fulfillment of the asset's requirements and could be quantified by different aspects: (a) bugs of the asset and (b)

rating from its users.

• Availability describes how easy it is to find an asset (eg, instantly, after search, unavailable, etc.).

• Documentation reflects the provision of documents related to an asset. The existence of such documents makes the asset easier to understand

and reuse.

• Complexity reflects the internal structure of the asset and is depicted into many aspects of quality (eg, the easiness to understand and adapt in a

new context). Component/System complexity is measured through size, coupling, cohesion, and method complexity.

We note that the relationship between reusability and these factors is not always positive. For example, the highest the complexity, the lower

the reusability. Additionally, from the aforementioned factors, we do not consider price, because both in‐house (assets developed by the same

company) and OSS reuse are, usually, not performed under a monetary transaction.
3.2 | Reuse metrics

In this section, we present the metrics that we selected for quantifying each of the reusability factors. We note that the metrics that we selected

for the quantification of the reuse factors are only few of the potential candidates. Therefore, we acknowledge the existence of alternative met-

rics, and we do not claim that the set we selected consists of optimal reusability predictors. However, the validity of the selected set will be eval-

uated in the conducted empirical study (see Section 5). The calculation of the proposed REI index is based on a synthesis of the most fitting among

metrics. The synthesis process is explained in detail in Section 4.5. We note that in some cases, more than one metrics are used for each factor.

The metrics are described inTable 2. Finally, although some repetition with Section 3.1 might exist here, the two subsections serve different goals:

Section 3.1 is focusing on the quality properties in which reusability is decomposed to, according to Hristov, whereas Section 3.2 aims at mapping

these properties to metrics that can be used for their quantification.
3.3 | Calculation of the REI

REI is calculated as an aggregation of the values of independent metrics (see Table 2) of the model, by performing backwards linear regression

(using as independent variable the actual reuse from the Maven repository). The decision to apply backward regression was based on our intention

to develop an index that depends on as few variables as possible: therefore, not all metrics in Table 2 will be used in the model, but the minimum

number of metrics that can lead to the best fitting model. The nature of the algorithm (ie, backward linear regression) removes any possible bias, or

convenience choice, for the selected metrics. This reduction is expected to be beneficial regarding its applicability in the sense that (a) it will be

easier to calculate and (b) it will depend upon fewer tools for automatic calculation. The end outcome of linear regression is a function, in which

independent variables contribute toward the prediction of the dependent variable, with a specific weight, as follows:

REI = Constant +

Σ (Bi × metrici), where Σ the summary of each metric i.

To perform the backward linear regression, we have developed a dataset from 15 open‐source reusable assets. The design of the dataset con-

struction is presented in detail in Section 4. Upon the execution of the backward linear regression, we ended up with a function of seven variables

(ie, metrics). The variables of the function accompanied with their weights are presented in the first and the second column of Table 3, respec-

tively. The third column of the table represents the standardized Beta of each factor, which can be used for comparing the importance of each

TABLE 3 Measure validation analysis

Criterion Test Variables

Predictability Linear regression Independent: Candidate assessors

Dependent: Actual reuse

Correlation Pearson correlation Independent: Candidate assessors

Dependent: Actual reuse

Consistency Spearman correlation Independent: Candidate assessors

Dependent: Actual reuse

Tracking Same as consistency, repeated along the existing project versions

Discriminative power Bayesian networks Independent: Candidate assessors

Dependent: Actual reuse

Reliability All the aforementioned tests

(separately for each reusable software type)

TABLE 2 Metrics of reusability model

Reuse Factor Metric Description

Incurred reuse NDEP Number of dependencies. As a way to quantify the extent to which the evaluated asset is based upon reuse,

we use the number of external libraries.

Adaptability AD_QMOOD As a proxy of adaptability, we use an index defined by Bansiya and Davies,14 as the ability of an asset to be

easily adapted from the source systems that it has been developed for, to a target system (ie, adaptation to

the new context)

Maintainability MD_QMOOD As a way to quantify maintainability, we use the metric for extendibility, as defined by Bansiya and Davies.14

According to QMOOD, extendibility can be calculated as a function of several object‐oriented
characteristics that either benefit or hinder the easy maintenance of the system.

External quality OP_BUGS External quality can be quantified by measuring the number of open bugs reported in the issue tracker of each

asset. The number of open bugs may represent the maturity of a certain software asset and the

communities interest in that asset.

CL_BUGS The number of closed/resolved bugs as reported in the issue tracker of each asset is also an indicator of

external quality. The number of closed/resolved bugs may represent the community's readyness and

interest in a certain software asset.

RATING The average rating by the users of the software is used as a proxy for independent rating and certification

Documentation DOC To assess the amount, completeness, and quality of documentation, we suggest a manual inspection of the

asset's website. We suggest a Likert‐scale defined as follows: H—Complete, rich, and easily accessible

documentation. M—One of the aforementioned characteristics is not at a satisfactory level. L—Two of the

previous characteristics are not at a satisfactory level.

Availability NCOMP Number of components. The number of independent components that have been identified for the specific

asset.

Complexity CBO Coupling between objects. CBO measures the number of classes that the class is connected to, in terms of

method calls, field accesses, inheritance, arguments, return types, and exceptions. High coupling is related

to low maintainability and understandability.

LCOM Lack of cohesion of methods. LCOM measures the dissimilarity of pairs of methods, in terms of the attributes

being accessed. High lack of cohesion is an indicator of violating the single responsibility principle,24 which

suggests that each class should provide the system with only one functionality

WMC Weighted method per class. WMC is calculated as the average cyclomatic complexity (CC) among methods of

a class. High WMC results in difficulties in maintaining and understanding the asset

NOC Number of classes provides an estimation of the amount of functionality offered by the asset.2 The size of the

asset needs to be considered, because smaller systems are expected to be less coupled, less complex, to

have less classes as leaves in hierarchies, and use less inheritance trees

6 of 18 ZOZAS ET AL.
metric in the calculation of REI. Finally, the sign of Beta denotes if the factor is positively or negatively correlated to the reusability of the asset.

The accuracy of the index is presented in Section 5.1, because it corresponds to the predictive power of the REI. The coefficients of the model as

presented in Table 3 can be used to assess the reusability of assets whose actual levels of reuse are not available (eg, OSS assets not deployed

through the Maven repository, or in‐house developed assets, or assets of lower level of granularity—eg, sets of classes, packages).

Based onTable 4, components availability (NCOMP) and size (NOC) of the software asset are the most important metrics that influence its reus-

ability, followed by number of dependencies (NDEP) and quality of documentation (DOC). From these metrics, size and number of dependencies are

TABLE 4 REI metric calculation coefficients

Metric (i) B (i) Standardized Beta

Constant 1267.909

NDEP −316.791 −0.524

OP_BUGS 2.661 0.202

NCOMP 5.858 0.736

DOC 2547.738 0.410

LCOM 7.477 0.280

WMC −1081.78 −0.212

NOC −11.295 −0.827

ZOZAS ET AL. 7 of 18
inversely proportional to reusability, whereas components availability and quality of documentation are proportional. The aforementioned struc-

tural metrics can be calculated with Percerons Client,† the number of bugs can be extracted from the Issue Tracker,‡ whereas documentation can

only be assessed with manual inspection. A more detailed discussion of the relationship among these factors and reusability is provided in Section

7.1. Finally, we need to note that although a different regression function could have been created for the different types of reusable artifacts

(ie, libraries and frameworks), we opted not to do so. Although such a decision would eliminate the need for reliability checking, it would hurt

the generalizability of the model, and its ability to be used outside the types of assets for which it has been trained. Moreover, setting up a dif-

ferent regression model for libraries and frameworks would pose a major threat to the validity of the index as the distinction between the two is

not sharp (eg, many frameworks act also as libraries of components).

REI can be calculated as a function of seven metrics, among which components availability, size, number of dependencies, and quality of doc-

umentation are the most important ones.
4 | CASE STUDY DESIGN

To empirically investigate the validity of the proposed REI, we performed a case study on 80 open source reusable assets (ie, libraries and frame-

works). In particular, we compare the validity of the obtained index (REI) to the validity of the two indices that produce a quantified assessment of

reusability: (a) QMOOD REI14 and (b) FWBM index proposed by Kakarontzas et al.17 The reusability obtained by each index is contrasted to the

actual reuse frequency of the asset, as obtained by the Maven repository. QMOOD_R and FWBR have been selected for this comparison, because

they provide clear calculation instructions, as well as a numerical assessment of reusability (similarly to REI), and their calculations can be easily

automated with tools. The case study has been designed and reported according to the guidelines of Runeson et al.19 In this section, we present

(a) the goal of the case study and the derived research questions, (b) the description of cases and units of analysis, (c) the data collection procedure,

and (d) the data analysis process. Additionally, we present the metric validation criteria.

4.1 | Metric validation criteria

To investigate the validity of the proposed REI and compare it with two other reusability indices, we employ the properties described in the 1061

IEEE Standard for Software Quality Metrics.25 The standard defines six metric validation criteria and suggests the statistical test that shall be used

for evaluating every criterion, as follows:

• Correlation assesses the association between a quality factor and the metric under study to warrant using the metric as a substitute for the

factor. The criterion is quantified by using a correlation coefficient.25

• Consistency assesses whether there is consistency between the ranks of the quality factor values (over a set of software components) and the

ranks of the corresponding metric values. Consistency determines if a metric can accurately rank a set of artifacts and is quantified with the

coefficient of rank correlation.25

• Tracking assesses if values of the metric under study can follow changes in the levels of the quality characteristic. Tracking is quantified by using

the coefficient of rank correlation for a set of project versions .25
†http://www.percerons.com

‡https://guides.github.com/features/issues/

http://www.percerons.com
https://guides.github.com/features/issues/

8 of 18 ZOZAS ET AL.
• Predictability assesses the accuracy with which a metric applied at a time point t1 is able to predict the levels of the quality factor at a time point

t2. The criterion is quantified through the standard estimation error for a univariate regression model.25

• Discriminative power assesses if the metric under study is capable of discriminating between high‐quality and low‐quality components. Discrim-

inative power can be quantified through the precision and recall26 of a classification approach, using categorical variables.

• Reliability assesses if the metric under study can fulfill all five aforementioned validation criteria, over a sufficient number of applications. This

criterion can offer evidence that a metric can perform its intended function consistently. This criterion can be assessed by replicating the pre-

vious tests (for each of the aforementioned criteria) to various software systems.25
4.2 | Research objectives and research questions

The aim of this study, expressed through a GQM formulation, is: to analyze REI and other reusability indices (ie, FWBM and QMOOD) for the purpose

of evaluation with respect to their validity when assessing the reusability of software assets, from the point of view of software engineers in the context of

software reuse. Driven by this goal, two research questions have been set:

RQ1:

What is the correlation, consistency, tracking, predictive, and discriminative power of REI compared with existing reusability indices?

RQ2:

What is the reliability of REI as an assessor of assets reusability, compared with existing reusability indices?

The first research question aims to investigate the validity of REI in comparison to the other indices, with respect to the first five validity

criteria (ie, correlation, consistency, tracking, predictability, and discriminative power). For the first research question, we employ a single dataset

comprising all examined projects of the case study. The second research question aims to investigate validity in terms of reliability. Reliability is

examined separately because, according to its definition, each of the other five validation criteria should be tested on different projects. In partic-

ular, for this research question, we created two groups of software projects (as explained in Section 4.4) and then the results are cross‐checked to

assess the metric's reliability.

4.3 | Cases and units of analysis

This study is a holistic multiple‐case study, ie, each case comprises a unit of analysis. Specifically, the cases of the study are open source reus-

able assets found in the widely known Maven repository. Thirty of the most reused software assets27 were selected to participate in the anal-

ysis, as well as 50 random assets. The ranking of these cases, based on reuse potential, was enabled by exploiting a previous work of

Constantinou et al27 that explored the Google Code repository and identified the most reused libraries from more than 1000 open source

projects.

Therefore, our study was performed on 80 Java open source software assets, as presented in Table 5. In particular, in Table 5, we present the

name of the software asset and its goal. The last two columns of the table correspond to the size of the asset in terms of number of classes and the

number of times that the asset has been reused through the Maven repository. This last column will be the proxy of actual reuse in our study. This

selection is sensible, in the sense that all Maven projects, worldwide, are automatically connecting to this repository for downloading the binary

files of the assets that they reuse. Some statistics describing our sample are presented in Figure 2. In particular, the bar chart illustrates the dis-

tribution of the size (NOC) of the selected projects.
4.4 | Data collection

For each case (ie, software asset), we have recorded 17 variables, as follows:

• Demographics: two variables (ie, project and type). As project type, we split the dataset in the middle by characterizing artifacts as frequently

reused or seldomly reused (cut‐off 50 reuses from Maven repository).

• Metrics for REI calculation: 12 variables (ie, the variables presented inTable 2). These variables are going to be used as the independent variables

for testing correlation, consistency predictability, and discriminative power.

• Actual reuse: We used Maven reuse (MR), as presented in Section 4.3, as the variable that captures the actual reuse of the software asset. This

variable is going to be used as the dependent variable in all tests.

• Compared indices: We compare the validity of the proposed index against two existing reusability indices, namely FWBR17 and QMOOD14 (see

Section 2). Therefore, we recorded two variables, each one capturing the score of these indices for the assets under evaluation.

TABLE 5 Reusable assets demographics

Project Goal Size (NOC) Maven Reuse (MR)

Apache Axis Web development 636 116

Apache Log4ja Logging 221 12.384

Apache wicket Web development 831 7.149

ASM Bytecode reader 23 1.145

Commons‐cli CMD line management 22 1.852

Commons‐ioa File management 115 11.935

Commons‐lang Text management 131 8.002

GeoToolKita Geospatial 204 848

Groovy Programming language 1659 3.979

Guva Parallel programming 467 13.986

ImageJ Visualization 374 487

iTexta Text management 553 242

JavaX XML/saaja XML management 28 149

jDom XML management 62 554

jFree Visualization 587 298

Joda‐timea Time, date library 166 7.128

Jopt simple CMD line management 50 293

Lucene Text management 731 6.031

Plexusa Software development 83 3.570

POI File management 1196 1.036

scala xml XML management 123 614

slf4ja Logging 29 21.484

Slick 2D Visualization 431 274

Spring frameworka Web development 276 240

Struts Web development 750 134

Superfly User authentication 20 248

WiQuerya Web development 66 24

Wiring Microcontrollers 76 5.498

Wro4ja Web development 243 127

Xstream XML management 325 1.732

Acyclic Code analyzers 3 15

Anta Build tools 80 479

Apache_Commons_Pool Objects pool 28 500

Apache_FtpServer_Corea FTP clients and servers 57 11

Bean_Scripting_Framework JVM languages 20 59

BoneCP_Core_Library JDBC pools 12 114

Common_Eclipse_Runtime OSGI frameworks 26 12

Concurrent Concurrency libraries 47 14

Dagger Dependency injection 15 29

Disk_LRU_Cache Cache implementations 1 96

EclipseLink_JPA JPA implementations 119 32

Exlipse_Xtend_Runtime_Library Language runtime 12 26

Expression_Language Expression languages 28 1

Grgit Git tools 17 10

(Continues)

ZOZAS ET AL. 9 of 18

TABLE 5 (Continued)

Project Goal Size (NOC) Maven Reuse (MR)

Hessian Distributed communication 72 61

HtmlUnit Web testing 123 60

Java_Native_Access Native acess tools 55 3

JavaMail_API Mail clients 253 24

Jaxen Xpath libraries 57 47

JBoss_AOP_Framework Aspect oriented 200 16

Jboss_Logging_Programming_Interface Logging frameworks 11 51

Jclouds_Compute_Core Cloud computing 29 64

Jedis Redis clients 13 1

Jettison JSON libraries 16 13

Jmock Mocking 24 291

JSch SSH libraries 61 175

JSP_API Java specifications 45 762

JUnitBenchmarks Microbenchmarks 15 9

Liferay_Util_Tagliba JSP tag libraries 71 209

Metrics_Core Application metrics 8 255

Mule_Core Enterprise integration 898 102

Neko_HTML HTML parsers 12 43

Nimbus_JOSE_JWT Encryption libraries 95 35

OAuth2_For_Spring_Security OAuth libraries 126 1

Okio I/O libraries 5 31

ORMLite_Android Object/relational mapping 50 79

Pig Hadoop query engines 293 10

ReflectASM Reflection libraries 1 164

REST_Assured Testing frameworks 51 122

Scala_Actors_Library Actor frameworks 10 15

Scala_Parser_Combinators Parser generators 7 6

Scopt Command line parsers 3 1

SLF4J_JCL_Binding Logging bridges 5 34

Snappy_Java Compression libraries 10 23

StAX_APIa XML processing 37 536

SwitchYard_Plugin Maven plugins 6 67

The_MongoDB_Asynchronous_Driver MongoDB clients 29 29

Unirest_Java HTTP clients 17 183

Value Annotation processing tools 5 2

aThe projects with an asterisk have been used as the training set for the analysis. Their selection was random, although an equal distribution between highly

reused and less reused projects was targeted. However, this cannot be supported with evidence, because there is no clear threshold for separating highly

from low reused assets.

10 of 18 ZOZAS ET AL.
The metrics have been collected in multiple ways: (a) the actual reuse metrics has been manually recorded based on the statistics provided by

the Maven Repository website; (b) opened and closed bugs have been recorded based on the issue tracker data of projects; (c) rating has been

recorded from the stars that each project has been assigned by the users in GitHub; (d) documentation was manually evaluated, based on the pro-

jects' webpages; and (e) the rest of the structural metrics have been calculated using the Percerons Client tool. Percerons is an online platform28

created to facilitate empirical studies.

FIGURE 2 Descriptive statistics on the size of the sample projects

ZOZAS ET AL. 11 of 18
4.5 | Data analysis

The collected variables (see previous section) will be analyzed against the five criteria of the 1061 IEEE Standard (see Section 4.9 of the 1061 IEEE

Standard) as shown in Table 5. As a pre‐step to the analysis, we perform backward linear regression to extract an equation that will be able to

calculate the REI index (see Section 3.3). We note that for the training of REI we have used 15 projects, whereas the rest 65 were used for testing

purposes. The use of backward regression will guarantee that nonsignificant variables are excluded from the equation. Next, to answer each

research question, we will use three variables as candidate assessors of actual reuse: REI, QMOOD_R, and FWBR. The reporting of the empirical

results will be performed, based on well‐known standards for each performed analysis. In particular, regarding:

• Predictability we present the level of statistical significance of the effect (sig.) of the independent variable on the dependent (how important is

the predictor in the model), and the accuracy of the model (ie, mean standard error). While investigating predictability, we produced a separate

linear regression model for each assessor (univariate analysis).

• Correlation, consistency, and tracking we use the correlation coefficients (coeff.) and the levels of statistical significance (sig.). The value of the

coefficient denotes the degree to which the value (or ranking for Consistency) of the actual reuse is in analogy to the value (or rank) of the

assessor.

• Discriminative power is represented as the ability of the independent variable to classify an asset into meaningful groups (as defined by the

values of the dependent variables). The values of the dependent variable have been classified into three mutually exclusive categories

(representing low, medium, and high metric values) adopting equal frequency binning.29 Then, Bayesian classifiers30 are applied in order to

derive estimates regarding the discrete values of the dependent variables. The positive predictive power of the model is then calculated (pre-

cision) along with the sensitivity of the model (recall) and the models accuracy (f‐measure).

• Reliability we present the results of all the aforementioned tests, separately for the two types of reusable software types (ie, frequently reused

and seldomly reused). The extent to which the results on the projects are in agreement (eg, is the same metric the most valid assessor asset

reusability for both types?) represents the reliability of the considered index.
5 | RESULTS

In this section,we present the results of the empirical validation of the proposedREI. The section is divided into two parts: In Section 5.1, the results of

RQ1 regarding the correlation, consistency, predictive, and discriminative power of the REI are presented. Finally, in Section 5.2, we summarize the

results of RQ2, ie, the assessment of REI reliability. We note that in this section we present the raw results of our analysis and answer the research

questions. Any interpretation of results and implications to researchers and practitioners are collectively discussed in Section 6.

12 of 18 ZOZAS ET AL.
5.1 | RQ1—Correlation, consistency, tracking, predictive, and discriminative power of REI

In this section, we answer RQ1 by comparing the relation of REI, QMOOD_R, and FWBR to actual reuse, in terms of correlation, consistency, pre-

dictive, and discriminative power. The results on correlation, consistency, and predictive power are cumulatively presented inTable 6. The rows of

Table 6 are organized/grouped by validity criterion. In particular, for every group of rows (ie, criterion), we present a set of success indicators. For

example, regarding predictive power, we present three success indicators, ie, R‐square, standard error, and significance of the model.26 Statistically

significant results are denoted with italic fonts.

Based on the results presented inTable 6, REI is the optimal assessor of software asset reusability, because: (a) it offers prediction significant at

the 0.10 level, (b) it is strongly correlated to the actual value of the reuse (Pearson correlation coefficient > 0.6), and (c) it ranks software assets

most consistently with respect to their reuse (Spearman correlation coefficient = 0.532). The second most valid assessor is QMOOD_R. Finally, we

note that the only index that produces statistically significant results for all criteria at the 0.10 level is REI. QMOOD_R is able to provide a statis-

tically significant ranking of software assets, however, with a moderate correlation.

To assess the discriminative power of the three indices, we employed Bayesian classifiers.30 Through Bayesian classifiers, we tested the ability

of REI to correctly classify software assets in three classes, with respect to their reuse (see Section 4.5). The accuracy of the classification is pre-

sented inTable 7, through three well‐known success indicators: namely precision, recall, and f‐measure.26 Precision quantifies the positive predic-

tive power of the model (ie, TP/ (TP + FP)), and recall evaluates the extent to which the model captures all correctly classified artifacts (ie, TP/

(TP + FN)). F‐measure is a way to synthesize precision and recall in a single measure, because in the majority of cases there are trade‐offs between

the two indicators. To calculate these measures, we split the dataset in a training and a test group in a random manner, using a two‐fold cross

validation.30

By interpreting the results presented in Table 7, we can suggest that REI is the index with the highest discriminative power. In particular, REI

has shown the highest precision, recall, and f‐measure. Therefore, it has the ability to most accurately classify software assets into reuse

categories.

REI has proven to be the most valid assessor of software asset reusability, when compared with the QMOOD REI and FWBR. In particular, REI

excels in all criteria (namely correlation, consistency, predictive, and discriminative power) being the only one providing statistically significant

assessments.

5.2 | RQ2—Reliability of of REI

In this section, we present the results of evaluating the reliability of the three indices that we have investigated. To assess reliability, we split our

dataset into two subsets: the first containing frequently reused artifacts, whereas the second seldomly reused artifacts. All the tests discussed in

Section 5.2 are replicated for both sets, and the results are compared. The outcome of this analysis is outlined in Table 8, which is organized by

validity criterion. For each validity criterion, we present all success indicators for both frequently (F) and seldomly (S) reused artifacts. With italic

fonts, we denote statistically significant results.
TABLE 6 Correlation, consistency, and predictive power

Validity Criterion Success Indicator REI QMOOD_R FWBR

Predictive power R‐square 38.4% 3.2% 2.4%

Standard error 5298.11 6270.36 6811.23

Significance 0.09 0.31 0.41

Correlation Coefficient 0.625 0.198 ‐0.148
Significance 0.00 0.22 0.38

Consistency Coefficient 0.532 0.378 0.035

Significance 0.01 0.08 0.79

Tracking AVG (coefficient) 0.425 0.233 0.042

%of cases sig < 0.05 75% 55% 35%

TABLE 7 Discriminative power

Success Indicator REI QMOOD_R FWBR

Precision 60% 44% 38%

Recall 70% 40% 14%

F‐measure 64% 41% 20%

TABLE 8 Reliability

Validity Criterion Asset Type Success Indicator REI QMOOD_R FWBR

Predictive power F R‐square 37.0% 5.3% 7.6%

Significance 0.00 0.33 0.25

S R‐square 68.9% 18.4% 1.4%

Significance 0.01 0.33 0.92

Correlation F Coefficient 0.551 0.192 ‐0.216
Significance 0.00 0.38 0.24

S Coefficient 0.795 0.344 0.11

Significance 0.01 0.37 0.87

Consistency F Coefficient 0.555 0.282 ‐0.132
Significance 0.02 0.25 0.42

S Coefficient 0.576 0.271 0.243

Significance 0.20 0.85 0.72

Discriminative power F Precision 55% 32% 18%

Recall 55% 30% 25%

F‐measure 55% 31% 21%

S Precision 82% 22% 29%

Recall 75% 38% 38%

F‐measure 78% 27% 32%

ZOZAS ET AL. 13 of 18
The results of Table 8 suggest that in most of the cases, the reusability indices are more accurate in the group of seldomly reused artifacts

rather than the frequently reused. Concerning reliability, REI has been validated as a reliable metric regarding correlation, consistence, predictive,

and discriminative power. In conclusion, compared with the other indices, REI achieves the highest levels of reliability.

The reliability analysis suggested that REI is consistently the most valid assessor of software asset reuse, regardless of the dataset. However,

the ranking ability of the proposed index needs further investigation. Nevertheless, REI is the most reliable assessor of reusability, compared with

the other indices.

6 | ILLUSTRATIVE EXAMPLE

In this section, we present two illustrative examples and the lessons that we have learned from using the proposed metrics for white‐box reuse

purposes. In particular, we examined (a) the reuse process that was introduced by Lambropoulos et al,10 in which a mobile application was devel-

oped, based to the best possible extent on open‐source software reuse; and (b) replicate the reuse process that was introduced by Ampatzoglou

et al4 for providing an implementation of the Risk game, based on reusable components. The first project was a movie management application

(see Figure 3) that reused artifacts from eight open‐source software systems from the same application domain, whereas the second project

was a re‐implementation of the famous Risk game that reused artifacts from four open‐source software systems.

In total, out of 25 requirements for both examples, the corresponding software engineer reused code while implementing 11 of them (44%). To

perform the artifact selection process for these reuse activities, in total 138 candidates for reuse have been compared. As mentioned in the intro-

duction, these candidate components are functionally equivalent, ie, offer exactly the same functionality (or more accurately a minimum common

functionality). To compare the reuse candidates, the software engineer used expert opinion and ended up in the most fitting artifacts for the target

application. The goal of these illustrative examples was to compare the ability of the three examined metrics (ie, REI, FWBR, QMOOD) to subsume

the expert's opinion and guide reuse artifact selection. We note that this analysis is a posteriori one; the decisions of Lambropoulos et al10 and

Ampatzoglou et al4 were not considering these metrics, but were only taken based on the subjective opinion of the developers. Out of the 11

reuse activities, only eight of them were involving the reuse of more than one alternative for reuse (ie, in the rest: the decision was only between

to reuse or to build from scratch). The reused components were either application‐domain specific entities (eg, Movie, Country, Continent entities,

etc.) or platform‐specific (eg, an Android pager, recycler view, etc.). The components that have been reused out of these activities were Retrofit,

RecyclerView, Pager, and the Movie Entity (for the Movie app) and the Country, Continent, Map, and Resources (for the Risk game). Some demo-

graphics on the reuse candidates (only the eight for which reuse alternatives existed) and actually reused classes are presented in Table 9. The

reusable assets have been identified through the Percerons Client that has been populated with OSS projects from the domains of movie man-

agement and risk games. We remind that Percerons components database is populated with sets of classes that are independent chunks of code

built around a central class, providing the target functionality.28 The most common reason for the rejection of a reusable asset for reuse was archi-

tectural nonconformance. For example, the mobile application was targeting the use of the Model‐View‐Presenter pattern.10 Therefore, any reus-

able asset that was identified, but was not fitting the target architecture, was rejected, although it offered the required functionality, and it might

have been of appropriate quality.

TABLE 9 Illustrative example reuse demographics

Reused Components #Projects with Reuse Candidates #Classes Reused #Classes Rejected for Reuse

Retrofit 8 1 10

RecyclerView 7 1 8

Pager 8 12 31

Movie entity 6 1 7

Country 4 2 11

Continent 4 4 13

Resources 4 5 28

Map 4 1 3

Total 12a 27 111

aSome projects in the rows are duplicated.

FIGURE 3 Movie management mock‐up and
final product

14 of 18 ZOZAS ET AL.
To investigate the ability of metrics to discriminate between reused and not‐reused classes, we have performed (a) Spearman correlation anal-

ysis and (b) independent sample t‐test analysis, separately for each requirement. The results for Spearman correlation are presented in Figure 4.

Based on the bar charts of Figure 4, we can observe that REI is consistently strongly correlated to the decision of the expert (mean value: 0.440,

standard deviation: 0.06), whereas FWBM (proposed by Kakarontzas et al17) which is in two cases very close to REI (in one case produced better

results) is showing larger deviation (mean value: 0.336, standard deviation: 0.13). In particular, we can observe that in two cases (retrofit and
FIGURE 4 Ability of metrics to guide reuse process

ZOZAS ET AL. 15 of 18
recyclerView) REI was the only metric strongly correlated to the expert's opinion. In four cases (ie, Pager, Continent, Country, and Map), REI and

FWBM were both strongly correlated, for another (Movie Entity) all three metrics were strongly correlated, whereas in one case (Resource) there

was no strong correlation.

To perform the independent sample t‐tests, the complete dataset has been treated as a whole, because the group of reused classes was having

only one member for some requirements. The results of the analysis suggested that both REI and FWBM are able to discriminate between reused

and non‐reused classes (sig. < 0.05) in the Mann‐Whitney test. Based on the aforementioned analysis in the illustrative example data, we can sug-

gest that REI is able to guide the artifact selection to reuse process. Nevertheless, this result should be treated with caution in the sense that it is

only based on two illustrative examples, of small size, and is based on the expert judgment of one developer in each case.
7 | DISCUSSION

In this section, we interpret the results obtained by our case study and provide some interesting implications for researchers and practitioners.
7.1 | Interpretation of results

The validation of the proposed REI on 80 open source software assets suggested that the associated REI is capable of providing accurate reus-

ability assessments. REI outperforms the other examined indices (ie, QMOOD_R and FWBR) and presents significant improvement in terms of

estimation accuracy and classification efficiency. We believe that the main advantage of REI, compared with state‐of‐the‐art indices, is the fact

that it synthesizes both structural aspect of quality (eg, source code complexity metrics) and nonstructural quality aspects (eg, documentation, cor-

rectness, etc.). This finding can be considered intuitive in the sense that nowadays, software development produces a large data footprint (eg,

commit records, bug trackers, and issue trackers), and taking the diversity of the collected data into account provides a more holistic and accurate

evaluation of software quality.

Although the majority of reusability models and indices emphasize on low‐level internal quality attributes (eg, cohesion, complexity, etc.—quan-

tified through source code structural metrics), the results of this study highlight the importance of evaluating nonstructural artifacts, while

assessing reusability. More specifically, the contribution of the different types of characteristics to the REI index is explained as follows:

• Low‐level structural characteristics (complexity cohesion, and size in classes). Low‐level structural quality attributes (ie, cohesion and complexity)

are very important when assessing software assets reusability, in the sense that they highly affect the understandability of the reusable

asset along its adaptation and maintenance. Although size can be related to reusability into two ways (ie, as the amount of code that you need

to understand before reuse or as the amount of offered functionality), we can observe that size is negatively affecting reuse (ie, smaller assets

are more probable to be reused). Therefore, the first interpretation of the relationship appears to be stronger than the second.

• High‐level structural characteristics (number of dependencies and available components). First, the number of dependencies to other assets (ie, an

architectural level metric) seems to outperform low‐level coupling metrics in terms of importance when assessing component reusability. This

observation can be considered intuitive because while reusing a software asset developers are usually not interfering with internal asset depen-

dencies, they are forced to “inherit” the external dependencies of the asset. Specifically, assets, whose reuse imply importing multiple external

libraries (and thus require more configuration time), seem to be less reused in practice by developers. Second, the number of available compo-

nents, as quantified in this study, provides an assessment of modularity, which denotes how well a software asset can be decomposed to sub-

components. This information is important while assessing reuse in the sense that modular software is easier to understand and modify.

• Nonstructural characteristics (quality of documentation and number of open bugs). First, documentation is an important factor that indicates the

level of help and guidance that a reuser may receive during the adoption of a component. As expected, assets with a lot of documentation are

more likely to be reused. Second, open bugs suggest the number of pending corrections for a particular asset. This number is indicative of the

maturity of the asset and also the level of user interest that this asset concentrates. The results show that average and high values of OP_BUGS

metric are indicators of higher reusability.

The multiple perspectives from which the REI index assesses reusability are further highlighted by the fact that from the seven factors that

affect reusability (according to Hristov et al23—see Section 3), only two are not directly participating in the calculation of REI (ie, maintainability

and adaptability). Although we did not originally expect this, we can interpret it as follows: either (a) the metrics that we have used for assessing

these parameters, ie, by borrowing equations from the QMOOD model, were suboptimal, or (b) the metrics are subsumed by the other structural

quality metrics that participate in the calculation of REI. In particular, in the literature it is very frequently mentioned that LCOM, WMC, and NOC

have a strong influence on maintainability and extendibility. Therefore, a synthesized index (like REI) does not seem to benefit from including extra

metrics in its calculation that are correlated to other metrics that participate in the calculation.

16 of 18 ZOZAS ET AL.
Finally, regarding the weights that are assigned to each metric based on the linear regression, we need to note they are not restrictive to the

software engineers. In particular, the goal of this paper is not to prevent the decision maker from fine‐tuning the weights of each variable, but to

provide a default model, trained and tested in a substantial corpus of reusable assets, and demonstrated through proof of concept studies. Nev-

ertheless, we highlight that the software engineer is free to fine‐tune the model if he/she wishes to do so and validate the model in more special-

ized data. However, in such a case, the validation that is performed as part of this manuscript is not applicable.
7.2 | Implications to researchers and practitioners

By taking into consideration the aforementioned results in this section, we summarize implications to researchers and practitioners. The major

findings of this study show that reusability models/indices for assessing the quality of a software asset need to further concentrate on the inclu-

sion of nonstructural factors. The following implications to researchers and practitioners have been derived:

• (research) An interesting extension for this study would be the cross validation of the model by trying different partitionings of the dataset (in

training and testing sets), so as to enhance the reliability of the obtained results. However, such an attempt would as a side‐effect produce

multiple models (one from each partitioning) and would require further investigation on the circumstances that constitute each model more

fitting. Therefore, we believe that this is a very intersting extension of this work.

• (research) Introduce formal metrics and procedures for quantifying quality aspects that till now are measured adopting ad‐hoc procedures. Attri-

butes like Documentation, External Quality, and Availability are underexplored and usually measured subjectively. More formal definitions of

these factors could further increase the accuracy and adoption of reusability metrics

• (research) Evaluate the proposed reusability model on inner source development (see Stol et al31). From such a study, it would be interesting to

observe differences in the parameters and the weight that will participate in the calculation of REI. A possible reason for deviation is the belief

that reusable assets that have been developed inside a single company might present similarities in terms of some factors (eg, documentation,

open bugs, etc.). In that case, it might it be interesting to investigate the introduction of new metrics customized to the specificities of each

software company. This is particularly important, because for in‐house components, it is not possible to obtain an external, objective reusability

measure such as Maven reusability (MR).

• (research) Further validate REI with the effort required to adopt the asset in a fully operating mode in new software. Clearly, it is important to

select the right asset that will require less time, effort, cost, and modifications while being reused.

• (research) Similarly to every empirical endeavor, we encourage the replication of REI validation in larger samples of reusable assets, examining

different types of applications. Through these replications, the research community will test the reliability of REI and lead to additional accuracy

enhancements.

• (practice) The proposed REI will be a useful tool for aiding practitioners to select the most important factors (and the associated metrics) to be

used when assessing in‐house reusable assets, or OSS assets that are not deployed on the Maven repository.

• (practice) The fact that the majority of metrics that are used for quantifying REI can be automatically calculated from available tools, in conjunc-

tion with its straightforward calculation, is expected to boost the adoption of the index, and its practical benefits.

• (practice) The two‐fold analysis that we adopt in this paper (ie, prediction and classification) enables practitioners to select the most fitting one

for their purposes. In particular, the classification of assets to low, medium, and high reusable one, provides a coarse‐grained, but more accurate

approach. Such an approach can be useful when software engineers are not interested in quantifying the actual value of reusability, but when

they are just interested in characterization purposes.

8 | THREATS TO VALIDITY

In this section, we discuss the threats to validity that we have identified for this study based on Runeson and Höst19 classification schema that

considers construct, internal, external, and reliability validity.

Construct validity defines how effectively a study measures what it intends to measure. In our case, this refers to whether all the relevant reus-

ability metrics have been explored in the proposed index. To mitigate this risk, we considered in the calculation of the index a plethora of reus-

ability aspects representing both internal and external quality, such as adaptability, maintainability, quality, availability, documentation,

reusability, and complexity, each of which synthesized by the values of 12 metrics as depicted in Figure 1. Furthermore, as already mentioned

in Section 3.2, the selected metrics are established metrics for the respective factors, although we do not claim they are the most optimal ones.

Internal validity is related to the examination of causal relations. Our results pinpoint particular quality metrics that affect significantly the reuse

potential of a certain project, but still we do not infer causal relationships.

ZOZAS ET AL. 17 of 18
Concerning generalizability of results, known as External validity, we should mention that different data sets, coming from different application

domains or contexts, could cause differentiations in the results. Still this risk is mitigated by the fact that the analysis was performed by selecting a

pool of diverse projects that are quite well‐known and popular in the practitioners community27 forming a representative sample for analysis.

However, a replication of this study in a larger project set and in an industrial setting would be valuable in verifying the current findings. Addition-

ally, we note that the method is only validated with open‐source components, and its validation with in‐house components is still pending. Nev-

ertheless, the method is not applicable to third‐party components, because their prior evaluation might not be possible. Regarding the

reproducibility of the study known as Reliability, we believe that the followed research process documented thoroughly in Section 4 ensures

the safe replication of our study by any interested researcher. However, researcher bias could have been introduced in the data collection phase,

while quantifying the metric value of the level of documentation provided for each project. In that case, the first two authors gathered data on the

documentation variable, adopting a manual recording process. The results were further validated by the third and fourth authors.
9 | CONCLUSIONS

The selection of the most fitting and adaptable asset is one of the main challenges of the software reuse process as it depends on the assessment

of a variety of quality aspects characterizing the candidate assets. In this study, we presented and validated the REI, which decomposes reusability

to seven quality factors quantifying each one of them with certain metrics. Nonstructural metrics along with low‐level and high‐level structural

metrics synthesize the proposed REI. Based on this model, REI is derived by applying backward regression. To investigate the validity of REI,

we have employed a two‐step evaluation process that validates the proposed index against (a) well‐known reusability indices found in literature

and (b) the metric validation criteria defined in the 1061‐1998 IEEE Standard for a Software Quality Metrics.25 The results from the holistic

multiple‐case study on 80 OSS projects suggested that REI is capable of providing accurate reusability assessments. REI outperforms the other

examined indices (ie, QMOOD_R and FWBR) and presents significant improvement in terms of estimation accuracy and classification efficiency.

Based on these results, implications for researchers and practitioners have been provided.
ACKNOWLEDGEMENTS

This work was financially supported by the action “Strengthening Human Resources Research Potential via Doctorate Research” of the Operational

Program “Human Resources Development Program, Education and Lifelong Learning, 2014‐2020,” implemented from State Scholarships Foundation

(IKY) and co‐financed by the European Social Fund and the Greek public (National Strategic Reference Framework [NSRF] 2014‐2020).
ORCID

Ioannis Zozas https://orcid.org/0000-0003-2159-1332

Apostolos Ampatzoglou https://orcid.org/0000-0002-5764-7302

Stamatia Bibi https://orcid.org/0000-0003-4248-3752

Alexander Chatzigeorgiou https://orcid.org/0000-0002-5381-8418

Paris Avgeriou https://orcid.org/0000-0002-7101-0754

REFERENCES

1. Baldassarre M. T., Bianchi A., Caivano D., Visaggio G. An industrial case study on reuse oriented development. 21st International Conference on Soft-

ware Maintenance (ICSM'05). IEEE Computer Society. 2005.

2. Morisio M., Romano D., Stamelos I. Quality, productivity, and learning in framework‐based development: an exploratory case study. Transactions on

Software Engineering, IEEE Computer Society, 28 9. pp. 876–888. September. 2002.

3. Mili H., Mili F., Mili A., Reusing software: issues and research directions. IEEE Transactions on Software Engineering. 21 6. pp. 528‐562. 1991.

4. Ampatzoglou A., Stamelos I., Gkortzis A., Deligiannis I. Methodology on extracting reusable software candidate components from open source games.

Proceeding of the 16th International Academic MindTrek Conference. ACM. pp. 93–100. Finland. 2012.

5. Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Galster M, Avgeriou P. A mapping study on design‐time quality attributes and metrics. J Syst Softw.

2017;127:52‐77.

6. Ampatzoglou A, Bibi S, Chatzigeorgiou A, Avgeriou P, Stamelos I. Reusability index: a measure for assessing software assets reusability. In: Capilla R,

Gallina B, Cetina C, eds. New Opportunities for Software Reuse, vol 10826. ICSR 2018. Lecture Notes in Computer Science. Cham: Springer; 2018:43‐58.

7. McIlroy, D. Mass‐produced software components. NATO Conference. pp. 88–98. 1968.

8. Leach R. Software Reuse: Methods, Models and Costs (2nd edition). New York. NY. USA: McGraw‐Hill Inc.; 2011:131‐165.

9. Krueger, C. Software reuse. ACM Comput. Surv. 24, 2. pp. 131‐183. June. 1992.

10. Lambropoulos A., Ampatzoglou A., Bibi S., Chatzigeorgiou A., Stamelos I., REACT: a process for improving open‐source software reuse. QUATIC. 11th

International Conference on the Quality of Information and Communications Technology. IEEE Computer Society. 2018.

https://orcid.org/0000-0003-2159-1332
https://orcid.org/0000-0002-5764-7302
https://orcid.org/0000-0003-4248-3752
https://orcid.org/0000-0002-5381-8418
https://orcid.org/0000-0002-7101-0754

18 of 18 ZOZAS ET AL.
11. Jalender B, Gowtham N, Kumar KP, Murahari K, Sampath K. Technical impediments to software reuse. Int J Eng Sci Technol. 2010;2(11):6136‐6139.

12. Tripathy P, Naik K. Reuse and Domain Engineering. Software Evolution and Maintenance. Hoboken, NJ: John Wiley & Sons. ISBN 978‐0‐470‐60341‐3;
2014:325‐357.

13. Sojer M, Henkel J. Code Reuse in Open Source Software Development: Quantitative Evidence, Drivers, and Impediments. Rochester: Social Science

Research Network; 2011.

14. Bansiya J., Davis C. G. A hierarchical model for object‐oriented design quality assessment. IEEE Transactions on software engineering. 28. 1. pp. 4‐17.
2002.

15. Nair TRG, Selvarani R. Estimation of software reusability: an engineering approach. SIGSOFT Softw Eng Notes. 2010;35(1):1‐6.

16. Chidamber S. R., Kemerer C. F. A metrics suite for object oriented design. IEEE Transactions on software engineering. 20 6. pp. 476‐493. 1994.

17. Kakarontzas G, Constantinou E, Ampatzoglou A, Stamelos I. Layer assessment of object‐oriented software: a metric facilitating white‐box reuse. J Syst

Softw. 2013;86(2):349‐366.

18. Sharma A, Grover PS, Kumar R. Reusability assessment for software components. SIGSOFT Softw Eng Notes. 2009;34(2):1‐6.

19. Runeson R, Host M, Rainer A, Regnell B. Case Study Research in Software Engineering: Guidelines and Examples. John Wiley & Sons; 2012:119‐162.

20. Washizaki H., Yamamoto H., Fukazawa Y. A metrics suite for measuring reusability of software components. Software Metrics Symposium, 2003. Pro-

ceedings. Ninth International. IEEE. 2003.

21. Fazal, E. A., Mahmood, A. K. Oxley, A. An evolutionary study of reusability in Open Source Software. Computer & Information Science (ICCIS), 2012

International Conference on 12‐14 June 2012. pp. 967‐972. 2012.

22. Goel BM, Bhatia PK. Analysis of reusability of object‐oriented systems using object‐oriented metrics. SIGSOFT Softw Eng Notes. 2013;38(4):1‐5.

23. Hristov D. Structuring software reusability metrics for component‐based software development. ICSEA. The Seventh International Conference on Soft-

ware Engineering Advances. 2012.

24. Martin RC. Agile Software Development: Principles, Patterns and Practices. New Jersey: Prentice Hall; 2003:85‐135.

25. IEEE Standard for a Software Quality Metrics Methodology. IEEE Standards 1061‐1998. IEEE Computer Society. 31 December 1998 (reaffirmed 9

December 2009).

26. Field A. Discovering Statistics Using IBM SPSS statistics. SAGE Publications Ltd; 2013:354‐356.

27. Constantinou E., Ampatzoglou A., Stamelos I. Quantifying reuse in OSS: a large‐scale empirical study. International Journal of Open Source Software

and Processes (IJOSSP). 5 3. pp. 1‐19. 2014.

28. Ampatzoglou A., Gkortzis A., Charalampidou S., Avgeriou P. An embedded multiple‐case study on OSS design quality assessment across domains, 7th

International Symposium on Empirical Software Engineering and Measurement (ESEM' 13). ACM/IEEE Computer Society. pp. 255‐258. Baltimore. USA.

Octomber. 2013.

29. Bibi S., Ampatzoglou A., Stamelos I. A Bayesian belief network for modeling open source software maintenance productivity. 12th International Con-

ference on Open Source Software Systems (OSS). Springer. pp. 32‐44. 2016.

30. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I. The WEKA data mining software: an update. ACM SIGKDD explo news.

2019;11(1):10‐18.

31. Stol KJ, Avgeriou P, Ali Babar M, Lucas Y, Fitzgerald B. Key factors for adopting inner source. Trans Softw Eng Methodol. 2014;23(2):18.
How to cite this article: Zozas I, Ampatzoglou A, Bibi S, Chatzigeorgiou A, Avgeriou P, Stamelos I. REI: An integrated measure for soft-

ware reusability. J Softw Evol Proc. 2019;31:e2216. https://doi.org/10.1002/smr.2216

https://doi.org/10.1002/smr.2216

