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Abstract
We consider Bernoulli bond percolation on oriented regular

trees, where besides the usual short bonds, all bonds of a cer-

tain length are added. Independently, short bonds are open

with probability p and long bonds are open with probability

q. We study properties of the critical curve which delimits the

set of pairs (p, q) for which there are almost surely no infinite

paths. We also show that this curve decreases with respect to

the length of the long bonds.

KEYWORDS

critical curve, long range percolation, monotonicity of connec-

tivity

1 INTRODUCTION

Consider the graph having Z𝑑 as vertex set and all edges of the form {x, x ± ei} and {x, x ± k ⋅ ei} for

some k ⩾ 2. It was shown in [9] that the critical probability for Bernoulli bond percolation on this

graph converges to that of Z2𝑑 as k → ∞. This result, later generalized in [15], is a particular instance

of Schramm’s conjecture [7] that the percolation threshold for transitive graphs is a local property.

The convergence proved in [9] is conjectured to be monotone, that is, the percolation threshold for the

above graph should be decreasing in the length k of long edges.1

1In support of this conjecture, simulations [5] confirm that increasing k decreases the critical parameter, and the proof of [9,

Lemma 2] shows that replacing k by a multiple of k does not increase it.

Random Struct Alg. 2019;55:160–172. wileyonlinelibrary.com/journal/rsa © 2018 Wiley Periodicals, Inc. 160
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FIGURE 1 Phase space and critical curve separating the percolative region k from the non-percolative region k. (a) The

curve stays between the three dotted lines. In the gray region, infinite paths necessarily use both short and long edges.

(b) Critical curves for different ranges k meet at one point

Monotonicity questions are often intriguing for being extremely simple to ask and hard to answer.

A good example [18] is the following: for Bernoulli bond percolation on the usual graph Z𝑑 , prove that

the probability of the origin being connected to (n, 0,… , 0) monotone in n. This problem is still open,

except when the parameter is close to 0 or 1 [10]. For oriented percolation on Z2
+, the probability of

the origin being connected to (m − n,m + n) is decreasing in n ∈ {0,… ,m} for fixed m; this may be

obvious but the proof is not straightforward [4]. In the same spirit, for unoriented percolation on Z2
+,

if the parameter is smaller for horizontal edges than for vertical ones, the above probability should be

larger than the probability of the origin being connected to (m + n,m − n). This has only been proved

under the assumption that the ratio between horizontal and vertical parameters is small enough [8].

For first-passage percolation, it was conjectured [12] that the expected minimum travel time from

(0, 0) to (n, 0) along paths contained in the strip {(x, y) ∶ 0 ⩽ x ⩽ n} is nondecreasing in n. This ques-

tion is still open, with a number of partial results [1,3,11,13]. In the negative direction, for first-passage

percolation on Z+ ×Z, there is a counter-example [17] where the expected passage time from the ori-

gin to (2, 0) is less than the expected passage time from the origin to (1, 0). Another context where

strict monotonicity is expected to happen is in the case of essential enhancements as introduced in [2],

see also [6].

In this paper we consider percolation on T𝑑,k, the graph given by the oriented rooted 𝑑-ary tree

(𝑑 ⩾ 2) with a root at the top, bearing the usual “short” downward edges plus the addition of all

downward edges of length k, called “long” edges. This is an oriented version of Trofimov’s grandfather

graph for k = 2, or the greatk-grandfather graph for larger k. We let short and long edges be open

independently with probability p and q, respectively. The phase space [0, 1]2 is decomposed in two

regions: a set k of pairs (p, q) for which a.s. there are infinite open paths, and a set k of pairs for

which a.s. there are none, see Figure 1a.

For p >
1

𝑑
there are a.s. infinite open paths of short edges, and for q >

1

𝑑k there are a.s. infinite open

paths of long edges. For 𝑑p + 𝑑kq ⩽ 1, a simple comparison with a branching process (to be given in

section 3) shows that a.s. there are no infinite open paths. By monotonicity of the process with respect

to p and q, there is a critical curve 𝛾k joining the points ( 1

𝑑
, 0) and (0, 1

𝑑k ) which separates k and k,

as depicted in Figure 1a. Define

qc(p, k) = inf{q ∶ (p, q) ∈ k} and pc(q, k) = inf{p ∶ (p, q) ∈ k}. (1)
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Let k be fixed. We show that qc is continuous and strictly decreasing in p (equivalent formulations are

that pc is strictly decreasing and continuous in q, that both pc and qc are continuous, or that 𝛾 contains

neither vertical nor horizontal segments). In particular, 𝛾k is described by q = qc(p, k) as well as by

p = pc(q, k), and there is a non-trivial subregion of k at which infinite open paths necessarily use

both long and short edges, see Figure 1a. A similar description is given in [14] for percolation with a

defect plane.

We also show that 𝛾k+1 stays strictly below 𝛾k for p < 𝑑−1, and they meet only at the critical point

(𝑑−1, 0). This means that qc(p, k) is strictly decreasing in k for as long as it is positive, and analogously

for pc(q, k), see Figure 1b.

In section 2, we present the model and the above statements more formally.

In section 3, we prove that qc(k, p) is continuous and decreasing in p. In the proof, we tile T𝑑,k by

layers and consider a construction of the process where the state of tiles are sampled independently. We

then couple configurations with different values of p and q so that some advantage in q compensates for

small decreases in p and vice-versa. Each comparison is done by finding one particular tile that makes

no useful connections without extra open edges and at the same time makes all possible connections

with their help. We learned this idea from [16].

In section 4, we show that qc(p, k+1) < qc(p, k) for p < 𝑑−1. Together with the results of section 3,

this inequality completes the previous description illustrated by Figure 1b. The proof involves a joint

exploration of a percolation “cluster” in T𝑑,k and a percolation cluster in T𝑑,k+1. The joint exploration

is an algorithm in which parts of both clusters are revealed simultaneously using the same random vari-

ables. After each step of the algorithm is concluded, there is an injective function from the revealed

portion of the cluster in T𝑑,k to the one in T𝑑,k+1. When trying to ensure this, one might run into

collisions, that is, situations where an edge that could potentially grow the cluster in T𝑑,k has as a coun-

terpart an edge which does not grow the cluster in T𝑑,k+1. The challenge is thus to design the algorithm

so that collisions do not occur. We succeed in doing so by introducing a recursive procedure which

alternately reveals clusters of short edges and then groups long edges, in a way that allows the compar-

ison between the k and k + 1 scenarios. This gives qc(p, k + 1) ⩽ qc(p, k). Strict inequality is obtained

by extending the idea mentioned in the previous paragraph to a dynamic, hybrid construction. When

revealing the state of a whole batch of long edges at once we can use the increase in k to compensate

for a small decrease in q.

As a final remark, there seems to be no obvious way to adapt the argument just described to the

graph with the vertices in Z𝑑 and edges of the form {x, x ± ei} and {x, x ± k ⋅ ei}. A similar joint

exploration would lead to collisions as illustrated in Figure 2. Proving the inequality pc(k + 1) ⩽ pc(k)
mentioned in the previous footnote remains open, let alone strict inequality.

2 DEFINITIONS AND RESULTS

Let 𝑑 ∈ {2, 3, 4,…} be fixed. We denote [𝑑] = {1,… , 𝑑}, and we will make frequent use of the set

[𝑑]⋆ =
⋃

0⩽n<∞
[𝑑]n;

the set [𝑑]0 is understood to consist of a single point o. Points of [𝑑]⋆∖{o} are represented as sequences

u = (u1,… , un). In case u = (u1,… , um) and v = (v1,… , vn), we define the concatenation u ⋅ v =
(u1,… , um, v1,… , vn).
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FIGURE 2 Situation where the natural coupling of explorations which maps short edges to short edges and long edges to

long edges leads to a “collision” in the graphs given by adding edges of length 3 and 4 to Z. Dashed lines represent closed

edges and full lines represent open edges. The bold edge being open increases the cluster of the first graph by one vertex, but

has no effect on the cluster of the second graph

Given k ∈ N = {1, 2, 3,…}, we define the oriented graph T𝑑,k as the graph with vertex set

V𝑑,k = [𝑑]⋆ and edge set E𝑑,k = E
𝓈
𝑑,k ∪ E

𝓁
𝑑,k, where

E
𝓈
𝑑,k = {⟨u, u ⋅ a⟩ ∶ u ∈ V𝑑,k, a ∈ [𝑑]},

E
𝓁
𝑑,k = {⟨u, u ⋅ r⟩ ∶ u ∈ V𝑑,k, r ∈ [𝑑]k}.

These will be referred to as the sets of short and long edges of T𝑑,k.

As the above notation suggests, we will normally use the letters a, b for elements of [𝑑], the letters

r, s for elements of [𝑑]k and the letters u, v,w, x for general vertices of T𝑑,k.

Consider the process in which, independently, short edges are open with probability p and long

edges are open with probability q. Let Pp,q denote the corresponding probability measure.

We define the event u ⇝ v that there exist u0, u1,… , un−1, un such that u0 = u, un = v and the

edge ⟨uj, uj+1⟩ is open for all j < n. The event u ⇝ ∞ means that u ⇝ v for infinitely many v. Let

k = {(p, q) ∶ Pp,q(o ⇝ ∞) > 0}, k = [0, 1]2 ⧵ k, and let pc(q, k) and qc(p, k) be given by (1).

We prove the following monotonicity property.

Theorem 2.1 The inequality qc(p, k + 1) < qc(p, k) holds unless qc(p, k) = 0.

This says that 𝛾k+1 stays under 𝛾k, and they can only intersect each other at the boundary {pq =
0}, except maybe where one of them contains a vertical segment. The next result rules out the latter

possibility, thus completing the picture provided in Figure 1b.

Theorem 2.2 For each fixed k ∈ N, the function p → qc(p, k) is continuous on [0, 1] and strictly
decreasing on [0, 𝑑−1].

We observe that, as a consequence of the above results, defining

pc(k) = inf{p ∶ (p, p) ∈ k},

we have pc(k + 1) < pc(k), as the diagonal {(p, p) ∶ 0 ⩽ p ⩽ 1} intersects the critical curves 𝛾k at

distinct points for different values of k. However, for k ⩾ 2 this conclusion can be drawn from the

simpler observation that the curves 𝛾k are delimited by the dotted lines in Figure 1b.

The next result says that there is no percolation along the critical curves 𝛾k.
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Theorem 2.3 For (p, q) on the critical curve 𝛾k, Pp,q(o ⇝ ∞) = 0.

Proof It is enough to prove that k is an open set in [0, 1]2. Define

Nn = #
{

u ∈ [𝑑]kn ∶ there exists v ∈ ∪k−1
i=0

[𝑑]i with o ⇝ u ⋅ v
}
, n ∈ N.

We claim that Nn → ∞ a.s. on the event o ⇝ ∞. Indeed, assuming p < 1 and q < 1, for each j ∈ N

we have

Pp,q
(
Nm = 0 for all m > n ||N1,… ,Nn

)
> 𝜎j

on the event that Nn ⩽ j, where 𝜎j is a positive constant depending on j and also on p, q, 𝑑, k, but not

on n. This shows that Pp,q(Nn = j i.o.) = 0 thus a.s. either Nn → 0 or Nn → ∞. The case p = 1 or

q = 1 being trivial, the claim is proved.

Suppose 𝜃p,q ∶= Pp,q(o ⇝ ∞) > 0 and let 𝜁 < 𝜃p,q. By the previous claim, there exists n∗ such that

Pp,q(Nn∗ >
2k2

𝜁
) > 𝜁 . Now observe that this probability is continuous in (p, q), thus for (p′, q′) close

enough to (p, q) it is still larger than 𝜁 . From this observation, using the definition of Nn and reverse

union bound, there is 𝓁 ∈ {kn∗,… , kn∗ + k − 1} such that, with probability larger than
𝜁

k
, there are at

least
2k
𝜁

sites u ∈ [𝑑]𝓁 such that o ⇝ u.

Therefore, the process (N𝓁i)i∈N dominates a supercritical branching process with offspring assum-

ing values on {0, ⌈ 2k
𝜁
⌉} and mean larger than 2. This implies that Pp′,q′ (o ⇝ ∞) > 0, proving that

(p′, q′) ∈ k. ▪

3 LONG AND SHORT EDGE COMPENSATION

The goal of this section is to prove Theorem 2.2. We will need the following elementary fact.

Lemma 3.1 Let P𝛼 denote probability measures on a given finite space S, parametrized by 𝛼 ∈ [0, 1],
and such that P𝛼(x) is continuous in 𝛼 for every x ∈ S. Let 𝜅 and y be such that P𝜅(y) > 0. Then for
any 𝛼, 𝛽 close enough to 𝜅, there exists a coupling (X,Y) such that X ∼ P𝛼 , Y ∼ P𝛽 and such that,
almost surely, X = Y unless X = y or Y = y.

Proof Sample the pair (X,Y) as

(X,Y) =
⎧⎪⎨⎪⎩
(z, z) w.p. P𝛼(z) ∧ P𝛽(z),

(y, z) w.p. [P𝛽(z) − P𝛼(z)]+,

(z, y) w.p. [P𝛼(z) − P𝛽(z)]+,

for z ≠ y, and

(X,Y) = (y, y) w.p. 1 −
∑
z≠y

P𝛼(z) ∨ P𝛽(z).

The last term is positive for 𝛼 and 𝛽 are close to 𝜅 because it is positive when 𝛼 = 𝛽 = 𝜅. This

sampling only include pairs for which X = Y unless X = y or Y = y. From the first equation we

have P(X = z) = P𝛼(z) for all z ≠ y, which all together imply P(X = y) = P𝛼(y), and similarly

for Y . ▪
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We define the progeny of a vertex u ∈ V𝑑,k as the set

prog(u) = {u ⋅ v ∈ V𝑑,k ∶ v ∈ [𝑑]⋆},

that is, it is the subtree started at u. The progeny of an edge is defined as the progeny of its endpoint,

that is, if e = ⟨u, v⟩, then prog(e) = prog(v).
We now turn to the proof of Theorem 2.2. Recall that k is fixed, qc(0) = 𝑑−k and qc(p) = 0 for

p > 𝑑−1. Let 𝒞p,q,k denote the percolation cluster of the root in T𝑑,k under the measure Pp,q. (We use

the word “cluster” to denote the set of sites which can be reached from the root, so unlike unoriented

percolation it does not define an equivalence class.) We observe that, under this measure, the expected

number of open edges having o as an extremity is equal to 𝑑p+𝑑kq. If such expectation is less than one,

we can embed 𝒞p,q,k in a subcritical branching process to conclude that Pp,q(o ⇝ ∞) = 0. Therefore,

qc(p, k) ⩾ 𝑑−k − 𝑑−k+1p. This implies that qc(p, k) > 0 for p < 𝑑−1. Since qc(p, k) ⩽ qc(0, k) = 𝑑−k,

we also conclude that p → qc(p, k) is continuous at p = 0.

The proof of Theorem 2.2 will thus be complete once we establish the following two facts:

for all p0, q, q′ ∈ (0, 1) with q < q′, there exist p, p′ with p′ < p0 < p

such that Pp′,q′ (o ⇝ ∞) ⩾ Pp,q(o ⇝ ∞);
(2)

for all q0, p, p′ ∈ (0, 1) with p < p′, there exist q, q′ with q′ < q0 < q

such that Pp′,q′ (o ⇝ ∞) ⩾ Pp,q(o ⇝ ∞).
(3)

Indeed, condition (2) rules out jump discontinuities in the curve q = qc(p, k) for p > 0, and

condition (3) rules out horizontal segments in this curve for p < 𝑑−1.

We start the proof of (2) by introducing some notation. We let Ē𝑑,k = Ē
𝓈
𝑑,k ∪ Ē

𝓁
𝑑,k, where

Ē
𝓈
𝑑,k =

{
e = ⟨u, v⟩ ∈ E

𝓈
𝑑,k ∶ u ∈ ∪2k−1

n=0
[𝑑]n

}
,

Ē
𝓁
𝑑,k =

{
e = ⟨u, v⟩ ∈ E

𝓁
𝑑,k ∶ u ∈ ∪2k−1

n=0
[𝑑]n

}
.

Configurations in Ω̄ = Ω̄𝓈 × Ω̄𝓁 = {0, 1}Ē
𝓈

𝑑,k∪Ē
𝓁

𝑑,k are written as �̄� = (�̄�𝓈, �̄�𝓁).
Given A ⊆ ∪k−1

n=0
[𝑑]n and �̄� = (�̄�𝓈, �̄�𝓁), we define

J�̄�(A) =
⋃

u∈[𝑑]2k

{ v ∈ prog(u) ∶ ∃u0,… , un ∈ V𝑑,k so that u0 ∈ A,

un = v and ⟨ui, ui+1⟩ ∈ Ē𝑑,k, �̄�(⟨ui, ui+1⟩) = 1 ∀i

}
. (4)

That is, J�̄�(A) is the set of vertices in ∪u∈[𝑑]2k prog(u) that are reachable by paths started from A
and consisting only of open edges of Ē𝑑,k. Note that in such a path, all edges have both extremities in

∪2k−1
n=0

[𝑑]n except for the last one, which has only one extremity in ∪2k−1
n=0

[𝑑]n. In particular, J�̄�(A) ⊆
∪3k−1

n=2k[𝑑]
n.

Now, define the deterministic configurations �̄�∗
𝓈 ∈ Ω̄𝓈 and �̄�∗

𝓁,1, �̄�
∗
𝓁,2 ∈ Ω̄𝓁 by setting

�̄�∗
𝓁,1 ≡ 0, �̄�∗

𝓁,2 ≡ 1 and �̄�∗
𝓈(⟨u, v⟩) = 1 if and only if u ∉ [𝑑]2k−1.
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Let 0 < p0 < 1 and 0 < q < q′ < 1. By Lemma 3.1, if p and p′ with p′ < p0 < p are chosen

sufficiently close to p0, then there exists a coupling of configurations

X = (X𝓈,X𝓁,1,X𝓁,2) and Y = (Y𝓈,Y𝓁,1,Y𝓁,2)

in Ω̄𝓈 × Ω̄𝓁 × Ω̄𝓁 so that the following holds:

• the values of X𝓈, X𝓁,1 and X𝓁2
in all edges are independent;

• X𝓈, X𝓁,1 and X𝓁,2 assign each edge to be open with respective probabilities p, q and
q′−q
1−q

;

• the values of Y𝓈, Y𝓁,1 and Y𝓁2
in all edges are independent;

• Y𝓈, Y𝓁,1 and Y𝓁,2 assign each edge to be open with respective probabilities p′, q and
q′−q
1−q

;

• the following event has probability one:

{X = Y} ∪ {X = (�̄�∗
𝓈, �̄�

∗
𝓁,1, �̄�

∗
𝓁,2)} ∪ {Y = (�̄�∗

𝓈, �̄�
∗
𝓁,1, �̄�

∗
𝓁,2)}. (5)

Now take �̄�𝓈 = X𝓈, �̄�𝓁 = X𝓁,1, �̄�′
𝓈 = Y𝓈, �̄�′

𝓁 = Y𝓁,1 ∨ Y𝓁,2.

The main observation is that each of the three events in (5) implies that, for every A ⊆ ∪k−1
n=0

[𝑑]n,

J�̄�(A) ⊆ J�̄�′ (A). (6)

Indeed, on the first event we have �̄�′ ⩾ �̄�, on the second event we have J�̄�(A) = ∅, and on the third

event J�̄�′ (A) contains the set of sites y ∈ ∪3k−1
n=2k[𝑑]

n that are in prog(x) for some x ∈ A, which always

contains J�̄�(A).
Finally, with this coupling at hand, we can sample configurations 𝜔,𝜔′ ∈ {0, 1}E𝑑,k such that the

restrictions of 𝜔 and 𝜔′ to sets of the form{⟨u ⋅ v,w⟩ ∈ E𝑑,k ∶ v ∈ ∪2k−1
n=0

[𝑑]n
}

with u ∈ ∪m∈2N[𝑑]mk are independent and sampled from the (appropriately translated) coupling mea-

sure. Then 𝜔 and 𝜔′ are distributed as Pp,q and Pp′,q′ respectively, and the cluster of the root in 𝜔 is a

subset of the cluster of the root in 𝜔′. This concludes the proof of (2).

We now turn to the proof of (3). As the two proofs are very similar, we now only outline the main

steps of the argument.

We let Ē
𝓈
𝑑,k, Ē

𝓁
𝑑,k, Ē𝑑,k, Ω̄𝓈, Ω̄𝓁 and J�̄�(A) be the same as before. A special configuration �̄�∗ ∈

Ω̄𝓈 × Ω̄𝓈 × Ω̄𝓁 is defined as follows:

�̄�∗
𝓈,1 ≡ 0, �̄�∗

𝓈,2 ≡ 1, �̄�∗
𝓁(⟨r, s⟩) = 1 if and only if r ∈ ∪2k−1

n=k [𝑑]n.

Using Lemma 3.1, we obtain q′ < q0 < q and a coupling of X = (X𝓈,1,X𝓈,2,X𝓁) and Y =
(Y𝓈,1,Y𝓈,2,Y𝓁) so that the following hold. The values of X𝓈,1, X𝓈,2 and X𝓁 in all edges are independent;

X𝓈,1, X𝓈,2 and X𝓁 assign each edge to be open with respective probabilities p,
p′−p
1−p

and q; the values

of Y𝓈,1, Y𝓈,2 and Y𝓁 in all edges are independent; Y𝓈,1, Y𝓈,2 and Y𝓁 assign each edge to be open with

respective probabilities p,
p′−p
1−p

and q′; the following event has probability one:

{X = Y} ∪ {X = (�̄�∗
𝓈,1, �̄�

∗
𝓈,2, �̄�

∗
𝓁)} ∪ {Y = (�̄�∗

𝓈,1, �̄�
∗
𝓈,2, �̄�

∗
𝓁)}.

We then let �̄�𝓈 = X𝓈,1, �̄�𝓁 = X𝓁 , �̄�′
𝓈 = Y𝓈,1 ∨ Y𝓈,2 and �̄�′

𝓁 = Y𝓁 . This coupling then guarantees (6)

as before, which concludes the proof of Theorem 2.2.
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4 COMPARISON OF DIFFERENT RANGES

In this section we prove Theorem 2.1. The general idea behind the proof is to explore short edges until

reaching a dead end, then use a coupling construction to show that one has a better chance to proceed

from each dead end when k is larger.

Let u ∈ V𝑑,k and r = (r1,… , rk) ∈ [𝑑]k, so that e = ⟨u, u ⋅ r⟩ ∈ E
𝓁
𝑑,k. We define the trace of e to be

the set of short edges

trace(e) = {⟨u, u ⋅ r1⟩, ⟨u ⋅ r1, u ⋅ (r1, r2)⟩,… , ⟨u ⋅ (r1,… , rk−1), u ⋅ r⟩}.
Fix 𝜔 = (𝜔𝓈, 𝜔𝓁), with 𝜔𝓈 ∈ {0, 1}E𝓈

𝑑,k and 𝜔𝓁 ∈ {0, 1}E𝓁
𝑑,k , and a set A ⊆ V𝑑,k. We let Π(A) be the

cluster of A in 𝜔, that is, the set of vertices of T𝑑,k which can be reached by a path started from some

vertex of A and consisting of directed edges which are open in 𝜔 (note that Π(A) depends on A and 𝜔

but we omit 𝜔 from the notation; this will also be the case for further notation that we introduce). We

also let 𝜋(A) be the cluster of A in 𝜔𝓈, that is, the set of vertices of T𝑑,k that can be reached by a path

started from some vertex of A and consisting of short edges, all of which are open in 𝜔𝓈. Note that

A ⊆ 𝜋(A) ⊆ Π(A).
We say a short edge e = ⟨u, v⟩ ∈ E

𝓈
𝑑,k is a hub for A (in 𝜔) if the following two conditions hold:

prog(v) ∩ 𝜋(A) = ∅ and prog(u) ∩ 𝜋(A) ≠ ∅. (7)

We let 𝜎(A) denote the set of hubs for A in 𝜔.

Lemma 4.1 Let 𝜔 ∈ {0, 1}E𝑑,k and A ⊆ V𝑑,k. Then,

the progenies prog(e) for e ∈ 𝜎(A) are disjoint. (8)

Further assuming that

there exists w ∈ V𝑑,k such that A ⊆
{

w ⋅ v ∶ v ∈ ∪k
n=0

[𝑑]n
}
, (9)

we also have

for any e = ⟨u, u ⋅ r⟩ ∈ E
𝓁
𝑑,k such that u ∈ 𝜋(A) and u ⋅ r ∉ 𝜋(A),

there exists a unique e′ ∈ trace(e) ∩ 𝜎(A)
(10)

and

Π(A) is the disjoint union of 𝜋(A) and the sets
Π(A) ∩ prog(e) for e ∈ 𝜎(A). (11)

Proof To prove (8), assume that there are two distinct hubs

e = ⟨u, v⟩, e′ = ⟨u′, v′⟩ ∈ 𝜎(A) ∶ prog(e) ∩ prog(e′) ≠ ∅.

Then either u ∈ prog(v′) or u′ ∈ prog(v). Without loss of generality we assume the latter. Together

with (7) applied to e′, this implies that

prog(v) ∩ 𝜋(A) ⊇ prog(u′) ∩ 𝜋(A) ≠ ∅,

which contradicts (7) applied to e.
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Now fix an edge e = ⟨u, u ⋅ r⟩ as in (10). Consider the k short edges in the trace of e. By the first

statement, we know that at most one of these short edges is in 𝜎(A). In order to show that one of them

is in 𝜎(A), it suffices to show that

prog(u) ∩ 𝜋(A) ≠ ∅ and prog(u ⋅ r) ∩ 𝜋(A) = ∅. (12)

The first claim of (12) follows from the fact that u ∈ 𝜋(A); let us prove the second. We are given

that u⋅r ∉ 𝜋(A), so it suffices to prove that prog(u⋅r)∩A = ∅. For vertices u′, v′ with v′ ∈ prog(u′), let

dist(u′, v′) denote the length of the unique path of short edges from u′ to v′. Then, (9) gives dist(w, v) ⩽
k for all v ∈ A. If v ∈ prog(u ⋅ r) and v ≠ u ⋅ r, then

dist(w, v) > dist(w, u ⋅ r) = dist(w, u) + k,

so v ∉ A. We also have u ⋅ r ∉ A, so the proof of (12) is complete.

Statement (11) is an immediate consequence of (8) and (10). ▪

Again fix 𝜔 ∈ {0, 1}E𝑑,k and A ⊆ V𝑑,k satisfying (9). For each hub e ∈ 𝜎(A), we define

R(A, e) = {e′ = ⟨u′, v′⟩ ∈ E
𝓁
𝑑,k ∶ u′ ∈ 𝜋(A) and e ∈ trace(e′)},

S̄(A, e) = {v′ ∈ V𝑑,k ∶ ⟨u′, v′⟩ ∈ R(A, e) for some u′ ∈ V𝑑,k},

S(A, e) = {v′ ∈ V𝑑,k ∶ 𝜔(⟨u′, v′⟩) = 1 for some ⟨u′, v′⟩ ∈ R(A, e)}.

Note that S(A, e) ⊆ S̄(A, e) ⊆ prog(e). Also note that, if e1, e2 ∈ 𝜎(A) are distinct, then R(A, e1)
and R(A, e2) are disjoint, by (8). Finally, note that for every e ∈ 𝜎(A), we have

Π(A) ∩ prog(e) = Π(S(A, e)),

so that (11) can be restated as

Π(A) = 𝜋(A) ∪
(
∪e∈𝜎(A)Π(S(A, e))

)
, (13)

where the union is disjoint.

For A satisfying (9), we now let 𝒞p,q,k(A) be the random set Π(A) when 𝜔 is sampled from the

measure Pp,q on percolation configurations on T𝑑,k. Note that 𝒞p,q,k = 𝒞p,q,k({o}).
We observe that, conditioning on 𝜋(A), 𝜎(A) is determined and the sets Π(S(A, e)) are independent

over e ∈ 𝜎(A). Indeed, Π(S(A, e)) is determined by 𝜋(A) and 𝜔(e′) for all

e′ = ⟨u′, v′⟩ with v′ ∈ prog(e).

The sets of edges displayed above are disjoint for distinct choices of e ∈ 𝜎(A). Indeed, assume

e, f ∈ 𝜎(A), e ≠ f , and e′ = ⟨u′, v′⟩, f ′ = ⟨w′, x′⟩ are long edges with v′ ∈ prog(e), x′ ∈ prog(f ). Then,

since (8) gives prog(e) ∩ prog(f ) = ∅, we obtain v′ ≠ x′, so e′ ≠ f ′.
Guided by this consideration, we now present a recursive exploration algorithm to reveal 𝒞p,q,k(A).

The algorithm starts by applying the following two steps to the set A:

Step 1. Explore 𝜋(A) by revealing only the edges in 𝜔𝓈 that are necessary. More precisely, grow

𝜋(A) progressively by starting from A and querying the open/closed-state of short edges one by one,
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each time selecting a short edge e = ⟨u, v⟩ such that u is already included in 𝜋(A) and v is not (and also

following some lexicographic-type priority rule that guarantees that the full 𝜋(A) is explored). Note

that this also determines 𝜎(A), hence S̄(A, e) for each e ∈ 𝜎(A).
Step 2. For each e ∈ 𝜎(A), reveal S(A, e). This is the same as revealing the value of 𝜔𝓁(e′) for each

long edge e′ ∈ R(A, e).
Note that, if e = ⟨u, v⟩ ∈ 𝜎(A), then S(A, e) ⊆ {v ⋅ w ∶ w ∈ ∪k−1

n=0
[𝑑]n}, so that property (9) holds

with A replaced by S(A, e). The algorithm then proceeds by applying Steps 1 and 2 to each of the sets

S(A, e), which take the role of A. That is: in Step 1 it explores 𝜋(S(A, e)), which also reveals 𝜎(S(A, e)),
and in Step 2, for each e′ ∈ 𝜎(S(A, e)), it reveals S(S(A, e), e′). The recursion then continues to further

levels. By (13), this reveals the whole cluster 𝒞p,q,k(A).
We now want to look at the distributions of S(A, e) and Π(S(A, e)) for e ∈ 𝜎(A). Although these

distributions are easily understood, they are somewhat clumsy to describe, so we will need some more

notation.

First, fix e = ⟨u, v⟩ ∈ 𝜎(A) with v = (v1,… , vn). Define

𝛽(A, e) = {i ∈ {1,… , k} ∶ (v1,… , vn−i) ∈ 𝜋(A)},

it describes which ancestors of e have been reached from A using short edges and could reach prog(e)
using long edges (the 𝜔-state of which is not looked at). Note that

R(A, e) = {⟨(v1,… , vn−i), v ⋅ w⟩ ∶ i ∈ 𝛽(A, e), w ∈ [𝑑]k−i},

so that

S̄(A, e) = {v ⋅ w ∶ i ∈ 𝛽(A, e), w ∈ [𝑑]k−i}.

Second, we define some shift mappings in T𝑑,k. Given u ∈ V𝑑,k, we let τu ∶ prog(u) → V𝑑,k be

the function

τu(u ⋅ v) = v, v ∈ [𝑑]𝓈tar.

If e = ⟨u, v⟩ ∈ E
𝓈
𝑑,k, we let τe = τv.

Third, given b ⊆ {1,… , k}, we let 𝒜q,k(b) denote the distribution of the random subset of

∪i∈b[𝑑]k−i in which, independently, each point is included with probability q.

Let A ⊆ V𝑑,k satisfy (9). Conditioning on 𝜋(A), for each e ∈ 𝜎(A) we have

τe(S(A, e))
(𝑑)
= 𝒜q,k(𝛽(A, e)) (14)

and the law of τe(Π(S(A, e))) is equal to the law of the cluster of B in T𝑑,k, where B is chosen according

to 𝒜q,k(𝛽(A, e)).
We finally turn to the desired comparison between 𝒞p,q,k for different values of the parameters.

Given A,B ⊆ V𝑑,k, let us write A ⪯ B in case there exist u, v ∈ [𝑑]𝓈tar such that A ⊆ prog(u) and

τu(A) ⊆ τv(B ∩ prog(v)).

Lemma 4.2 For any k ∈ N and q ∈ (0, 1), there exists q′ < q such that the following holds. Let
b′ ⊆ {1,… , k+1} and b = b′ ∩{1,… , k}. There exists a coupling (A,B) of random sets A,B ⊆ [𝑑]𝓈tar
such that

A ⪯ B, A
(𝑑)
= 𝒜q,k(b) and B

(𝑑)
= 𝒜q′,k+1(b′).
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With this lemma at hand, we are ready to conclude the proof of Theorem 2.1. Fix p, q ∈ (0, 1) and

k ∈ N, and choose q′ corresponding to k and q in Lemma 4.2. The idea is to compare the explorations

of 𝒞p,q,k and 𝒞p,q′,k+1 using coupling. Recall that our algorithm to explore a cluster proceeds by the

iterative application of two steps. Step 1 grows a portion of the cluster using only short edges, so it

can be taken as the same for both explorations, since short edges have the same probability of being

open in both. Step 2 inspects “exit routes", using long edges, from the portion of cluster revealed in

Step 1; Lemma 4.2 guarantees that this is better (in the sense of ⪯-domination) for 𝒞p,q′,k+1 than for

𝒞p,q,k.

Let us now present the coupling of explorations more formally. Note that we are dealing with

percolation in the two graphs T𝑑,k and T𝑑,k+1 simultaneously; these graphs have the same set of ver-

tices (namely, [𝑑]𝓈tar) and same set of short edges, but the long edges differ. A set A ⊆ [𝑑]𝓈tar
satisfying condition (9) for k also satisfies it when k is replaced by k + 1. For such a set, and for

e ∈ 𝜎(A), instead of S(A, e) we will now write Sk(A, e) and Sk+1(A, e) to distinguish this set in the two

graphs.

The coupled exploration of 𝒞p,q,k and 𝒞p,q′,k+1 starts with revealing 𝜋({o}), which we can take as

the same in both clusters. Thus, 𝜎({o}) is also the same in both graphs, and we enumerate

𝜎({o}) = {e1,… , eN}.

Also write

Ai = Sk({o}, ei), Bi = Sk+1({o}, ei), i = 1,… ,N.

By Lemma 4.2, these can be sampled with Ai ⪯ Bi, so there exist ui, vi ∈ [𝑑]𝓈tar and B̃i ⊆ Bi such that

Ai ⊆ prog(ui), B̃i ⊆ prog(vi), τui(Ai) = τvi (B̃i).

The second level of the exploration then proceeds as follows. For each i ∈ {1,… ,N}, take 𝜋(τui(Ai))
and 𝜋(τvi(B̃i)) as the same in both clusters, enumerate

𝜎(τui(Ai)) = 𝜎(τvi(B̃i)) = {ei,1,… , ei,Ni},

and let

Ai,j = Sk(τui(Ai), ej), Bi,j = Sk+1(τvi(B̃i), ej), j = 1,… ,Ni,

which can be sampled with Ai,j ⪯ Bi,j for each j. Further levels are then carried out in the same way.

The construction guarantees that 𝒞p,q,k is embedded in 𝒞p,q′,k+1, concluding the proof of Theorem 2.1.

It remains only to prove the previous lemma.

Proof of Lemma 4.2 We can assume that k + 1 ∉ b′, so that b = b′. In that case, for q̂ ∈ (0, 1) and

B̂ a random subset of [𝑑]𝓈tar,

B̂ ∼ 𝒜q̂,k+1(b) if and only if
τ(1)(B̂),… , τ(𝑑)(B̂) i.i.d.
and distributed as 𝒜q̂,k(b).

(15)

We now define sets S∗
1
,… , S∗

𝑑
⊆ [𝑑]𝓈tar by

S∗
1
= ∅, S∗

2
,… , S∗

𝑑
=
⋃
i∈b

[𝑑]k−i.
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By Lemma 3.1, there exists q′ < q and a coupling of random sets X1,… ,X𝑑 , Y1,… ,Y𝑑 ⊆ [𝑑]𝓈tar so

that X1,… ,X𝑑 are independent and distributed as 𝒜q,k(b), Y1,… ,Y𝑑 are independent and distributed

as 𝒜q′,k(b) and the following event has probability 1:

{(X1,… ,X𝑑) = (Y1,… ,Y𝑑)} ∪ {(X1,… ,X𝑑) = (S∗
1
,… , S∗

𝑑
)}

∪ {(Y1,… ,Y𝑑) = (S∗
1
,… , S∗

𝑑
)}. (16)

The desired conclusion now follows by setting

A = X1, B = ∪a∈[𝑑]{a ⋅ u ∶ u ∈ Ya}. ▪
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