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Chapter 6

Energy-saving policies for

temperature-controlled production

Abstract. Numerous practical examples exist of production systems with servers

that require heating in order to process jobs. Such production systems may realize

considerable energy savings by temporarily switching off the heater and building up

a queue of jobs to be processed later, at the expense of extra queueing costs. In this

chapter, we optimize this trade-off between energy and queueing costs. We model

the production system as an M/G/1 queue with a temperature controlled server that

can only process jobs if a minimum production temperature is satisfied. The time

and energy required to heat a server depend on its current temperature, hence the

setup times and setup costs for starting production are state dependent. We derive the

optimal policy structure for a fluid queue approximation, called a wait-heat-clear policy.

Building upon these insights, for the M/G/1 queue we derive exact and approximate

costs for various intuitive types of wait-heat-clear policies. Numerical results indicate

that the optimal wait-heat-clear policy yields average cost savings of over 40% compared

to always keeping the server at the minimum production temperature. Furthermore, an

encouraging result for practice is that simple heuristics, depending on the queue length

only, have near-optimal performance.

This chapter is based on Uit het Broek et al. (2019d): Uit het Broek, M. A. J., G. van der
Heide, N. D. van Foreest. Energy-saving policies for temperature-controlled production systems with
state-dependent setup times and costs. Revision.



136 Chapter 6

6.1 Introduction

The motivating case for this chapter is a circuit board manufacturer that uses a tin

bath in their production process. This tin bath has to operate at a high temperature

to yield a satisfactory production quality. Jobs arrive sporadically and the specialized

nature of the jobs prohibits production in advance, i.e., jobs are make-to-order, and as

a result, periods of idle time of the tin bath are unavoidable. Currently, the company

continually keeps the tin bath at the minimum production temperature in anticipation

of arriving jobs. However, in order to save on energy costs, an interesting option is

to switch the heater off when production is idle and switch it on as soon as a certain

number of jobs is available. In general, the decision to switch on the heater may

even depend on both the queue length and the current temperature of the tin bath.

An appropriate control of the heater may result in significant energy savings at the

expense of higher queuing costs. This same trade-off applies to various other types of

production processes involving high temperatures, such as galvanization, forging of

metal, and high-temperature electrolysis.

The commonality in all these production processes is a server that only works at a

minimum production temperature and that cools down when the heater is switched off.

Therefore, the time and energy required to heat up depend on the current temperature

of the bath, in other words, the setup time and setup costs are state dependent.

This property makes the control of a heat bath significantly different from regular

production processes, in which the setup times or costs depend only on the (sequence

of) jobs to be processed. Many different policies to control the heater can be potentially

useful, and for cost-effective production, it is important to understand the impact of

such state-dependent setup times and costs.

To our knowledge, this chapter is the first to consider control policies for production

systems with such state-dependent setup times and costs. We consider an M/G/1

queue with a temperature-controlled server that can only process jobs when the

temperature is above the minimum production temperature. In order to understand

the dynamics of the system, we first develop a deterministic fluid queue approximation

of the stochastic process. For this system, we prove that the optimal control policy

has a so-called wait-heat-clear structure: when the heater is off it is optimal to wait

until the queue of jobs reaches a threshold, then heat up at the maximum rate until

the minimum production temperature is reached, and then clear the queue while

maintaining this temperature. We then consider the M/G/1 queue and derive exact

and approximate costs for various classes of wait-heat-clear policies, and numerically

determine (near-)optimal policies for each class. In numerical experiments, we show

that policies whose decisions depend only on the queue length are typically very

effective, i.e., on average within 1% of the overall optimal policy. However, there

are some problem instances where an additional 10% can be saved by using control
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policies that also take into account the temperature. Furthermore, we show in which

cases it is reasonable to continually keep the heat bath at the production temperature.

The impact of the cost and time of setups in queueing systems has received

considerable attention. A classical example is the M/G/1 queue with a setup cost (see

e.g., Yadin and Naor, 1963; Balachandran, 1973; Feinberg and Kella, 2002). Other

common examples include M/G/1 queues with setup times and/or server vacations

(Welch, 1964; Heyman, 1977; Doshi, 1986; Bischof, 2001; Zhang et al., 2011). The

combination of setup costs and times has only been considered by a few authors

(Reddy et al., 1998; Lan and Olsen, 2006). In all of the above literature, setup costs

and times are exogenously given (e.g., constant or exponentially distributed) while we

consider setup times and costs that depend on the duration that the server is idle.

Others have studied policies for queueing systems that focus on minimizing energy

usage while providing an acceptable service level to customers. Gandhi et al. (2010a)

consider a server with high energy usage and constant setup times. Analytical results

are derived for the single server case and simulation is used to study the multi-server

system. Gandhi et al. (2010b) extend the system with exponentially distributed

setup times. Closed-form approximations are derived for the on/off policy that turns

off servers once they are idle. Phung-Duc (2017) considers the same system and

derives explicit expressions for the queue length distribution. Many extensions such

as generally distributed setup times, delayed off policies, and steady-state analysis

have been considered (see e.g., Gandhi et al., 2014; Doroudi et al., 2017; Maccio and

Down, 2018). The aforementioned studies do consider energy aware policies as we do,

however, most immediately switch on a server upon arrival of a job, whereas we allow

jobs to wait in a queue while the server is idle. Furthermore, these studies assume

exogenously given setup times.

In the context of scheduling, the influence of state-dependent setup times is a

well-studied topic (Allahverdi et al., 2008; Allahverdi, 2015). In typical scheduling

problems, a prespecified set of jobs with known processing times is to be allocated to

one or several machines with the objective to minimize some function of the schedule

such as the makespan (see, e.g, Pinedo, 2016). An important class of problems features

sequence-dependent setup times, i.e., the setup time of a job depends on the previous

job (see, e.g., Nesello et al., 2018; Shen et al., 2018). An important assumption

is that setup times are deterministic for a given job sequence. In contrast, setup

times/costs for a heat bath are random when the decision to start heating involves

the queue length. Thus far, Liu et al. (2017b) are the only to consider scheduling

with machines that can be turned off and that require heating before processing starts.

The authors approximate state-dependent setup times by using look-up tables with

a limited number of values. We instead consider a queueing system and we exactly

model the state-dependency of the setups.
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The outline of this chapter is as follows. Section 6.2 introduces the production

system with state-dependent setup times. In Section 6.3, we derive the optimal policy

structure for the fluid queue approximation and we compute the optimal control

parameters. In Section 6.4, we develop numerical procedures to determine exact and

approximate costs of several control policies for the M/G/1 queue. The efficacy of

these different policies are compared in numerical experiments in Section 6.5. Finally,

Section 6.6 concludes the chapter.

6.2 Model formulation

In this section, we introduce a stochastic model for serving jobs in a production system

with a heat bath acting as a single server. In the simplest terms, this system behaves

as follows. Jobs arrive at a queue according to a Poisson process with rate λ, have

generally distributed processing times, and are served on a FCFS basis. The heat bath

is only in a condition to serve jobs when its temperature is high enough.

We are interested in policies to control the temperature of the bath such that the

average queueing and energy costs per time unit are minimized. Below we model this

process as an M/G/1 queue with a server whose temperature is controlled by a heater.

We first introduce the state of the system and the control variable. Then we show how

the temperature and queue evolve under a given control process. Finally, we introduce

the cost structure and formulate an average cost minimization problem.

We represent the state of the system at time t by (x(t), q(t)), where x(t) is the

temperature of the heat bath and q(t) the number of jobs in the system. The control

variable u(t) ∈ [0, β] specifies the power provided by the heater at time t, where β is

the maximum heating power. We write the control process as u = {u(t)}.
The temperature process {x(t)} depends on the power provided under the control

process u and on dissipation of heat to the environment. Without loss of generality, we

scale the temperature such that the ambient temperature is 0. Using the fact of nature

that objects warmer than their environment cool down to the ambient temperature,

the heat bath dissipates energy according to Newton’s law of cooling at rate αx(t),

where α > 0 is the heat transfer coefficient. Hence, the temperature evolves according

to the differential equation

d

dt
x(t) = u(t)− αx(t), (6.1)

with x(t) ≥ 0 for all t.

The server can only process jobs when x(t) ≥ x̄, where x̄ is the minimum production

temperature. Thus, if at time t the temperature of the server is x(t) = x̄ and the heater

is switched off, i.e., u(t) = 0, then the temperature decreases below x̄, processing stops,
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and a queue starts building up. Note that the setup time, i.e., the time required to

reach x̄, depends on x(t), and the longer the heater has been off, the longer it takes

to reach x̄. In order to ensure that x̄ can be reached, we require that the maximum

power of the heater exceeds the dissipation rate at the production temperature, that is,

β > αx̄. In particular, keeping the temperature steadily at x̄ requires power u(t) = αx̄,

and the temperature x(t) cannot increase any further when αx(t) = β.

In this chapter, we will often use the heating time `(x) needed to increase the

temperature from x to x̄ when applying the maximal control u(t) = β. From (6.1),

this can be found to be

`(x) =
1

α
log

(
β − αx
β − αx̄

)
. (6.2)

In order to construct a queueing process, we assume that jobs arrive according to

a Poisson process {N(t)} with rate λ. The job processing times {Si} form a set of

independent random variables identically distributed as a common random variable S

with mean E [S] = µ−1 and with squared coefficient of variation c2S . As in any queueing

system, it is required that the server load ρ ≡ λ/µ is less than 1.

Now we describe how the queueing process {q(t)} evolves under a given control

process u. Let N(t) and D(t) be the number of jobs that have arrived to and departed

from the system up to time t, then the queue length at time t is

q(t) = N(t)−D(t). (6.3)

Note that N(t) is a Poisson process, so it remains to construct D(t). For this, we need

to account for the fact that the server is operational only when the temperature is

high enough and work is available. In terms of indicator functions1, we can write this

condition at time t as

Ix(t)≥x̄ IN(t)>D(t) = 1,

hence, the total busy time of the server up to time t is given by

S(t) =

∫ t

0

Ix(s)≥x̄ IN(s)>D(s) ds.

Now, starting with N(0) = 0 and D(0) = 0, we can iteratively construct D(t) from

D(t) = max

{
k :

k∑
i=1

Si ≤ S(t)

}
. (6.4)

1The indicator function IA = 1 if condition A is true and IA = 0 otherwise
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Here,
∑k
i Si is the total processing time required to complete the first k jobs. Hence,

D(t) corresponds exactly to the number of jobs that can be completed with the total

offered service up to time t. Observe that we assume that service is not lost when a

job is interrupted whenever the temperature decreases below x̄. We remark in passing

that this assumption is not restrictive; in fact, it is easy to show that job interruptions

will never happen under an optimal control.

The cost structure is such that each job in the system incurs a queueing cost p > 0

per time unit, and there is a cost c > 0 per unit energy so that heating at power u(t)

costs cu(t) per time unit. The total expected cost for queueing and heating during

[0, t] is, therefore, given by

J(u, t) = E
[
p

∫ t

0

q(s) ds+ c

∫ t

0

u(s) ds

]
. (6.5)

We define the long-run average cost of control u as

J(u) = lim sup
t→∞

J(u, t)

t
.

Let C be a class of admissible stationary control policies; we discuss various policy

classes in more detail in Section 6.4. We have two goals. The first is to compute the

minimal long-run average cost

J∗ = inf
u∈C

J(u). (6.6)

The second is to determine the optimal stationary policy u∗ ∈ C that attains J∗.

6.3 Deterministic fluid queue approximation

In this section, we consider an easy-to-analyze fluid queue approximation of our heat

bath model, and we show that the optimal control policy for this system satisfies a

wait-heat-clear policy structure. The idea behind the fluid queue approximation is to

let the arrival rate λ go to infinity and E [S] to zero such that λE [S] remains constant.

For notational ease, we write λ and µ for the rate at which work arrives and is served

in the fluid setting, respectively. It turns out that, even though the approximation is

deterministic, it provides significant insight into sound control rules for the stochastic

setting.

In Section 6.3.1, we sketch the system dynamics of the fluid queue under wait-

heat-clear policies. Then, in Section 6.3.2, we prove the optimality of wait-heat-clear

policies. Finally, we derive expressions for the average cost under such policies in

Section 6.3.3.
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Figure 6.1: Schematic overview of the temperature, control variable, queue length as function
of time, and a phase plot, when the system is controlled by a wait-heat-clear policy.

6.3.1 System dynamics under wait-heat-clear policies

Assume, without loss of generality, that a cycle starts at t = 0 with temperature

x(0) = x̄, queue length q(0) = 0, and the heater has just been switched off. The

temperature then decreases and the queue length increases until the heater is switched

on at time t1, see Figure 6.1. We let the heater work at its maximum power β until

the temperature reaches the processing temperature x̄ at time t2. Now the server is

operational and starts serving jobs. The heater keeps the temperature at x̄ up to

time t3, at which the queue is cleared. Since the system state at t3 is back at (x̄, 0),

the heater switches off and a new cycle starts.

Thus, a wait-heat-clear policy satisfies

u(t) =


0 for 0 ≤ t < t1,

β for t1 ≤ t < t2,

αx̄ for t2 ≤ t ≤ t3,
(6.7a)



142 Chapter 6

with 0 < t1 < t2 < t3. Under this policy, the queue increases with rate λ before t2
and decreases with rate µ− λ after t2, hence

q(t) =

{
λt for 0 ≤ t < t2,

λt− µ(t− t2) t2 ≤ t ≤ t3.
(6.7b)

Finally, we introduce the αx̄-policy that continually maintains the system at the

processing temperature by applying control u(t) = αx̄ for all t. Observe that the

αx̄-policy is also contained in the class of wait-heat-clear policies, obtained by setting

t3 =∞ and letting t2 → 0 and, consequently, t1 → 0.

6.3.2 The optimal policy structure

With optimal control theory (see e.g., Sethi and Thompson, 2000), we can prove that

a wait-heat-clear policy is optimal for the fluid queue approximation. We will derive

some preliminary lemmas before stating this result.

In order to avoid infinite queueing costs, it is evident that any optimal policy

should achieve the production temperature x̄ at some point. Lemma 6.1 shows that

to reach temperature x̄ at a given time t2 > 0, it is optimal to keep the heater off as

long as possible, and once on, heat up with the maximum power β.

Lemma 6.1. Suppose, without loss of generality, that the process starts at time t = 0

in state x(0) ≤ x̄, and t2 is so large that x̄ can be reached, i.e., t2 ≥ `(x(0)) with `

given by (6.2). Then the optimal control to reach temperature x(t2) = x̄ at t2 is given

by

u∗(t) =

{
0 for 0 ≤ t < t1,

β for t1 ≤ t ≤ t2,

and the time t1 to switch on can be obtained from solving t1 = t2 − `(x(t1)).

Proof. See appendix.

Once the server has reached the production temperature x̄ and we want to process

jobs, then it is optimal to keep the temperature constant at x̄. In other words, it is

never optimal to heat up to a temperature above x̄.

Lemma 6.2. During the clearing phase t ∈ [t2, t3], the optimal heating policy is

u∗(t) = αx̄.

Proof. See appendix.
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It remains to prove that once the temperature is x̄, it is optimal to completely

clear the queue, rather than switching off the heater while there is still work in the

system.

Lemma 6.3. While the server is working, it is optimal to keep the temperature at x̄

until the queue is empty.

Proof. Suppose that during each cycle, policy (t2, q̄) starts processing at time t2 and

stops as soon as q(t) ≤ q̄ for some q̄ > 0 and t ≥ t2. Now consider the policy (t2, 0).

In steady state, policy (t2, 0) has the same cycle length and the same heating cost

as (t2, q̄), however, the average queueing cost per time unit under policy (t2, 0) is pq̄

lower. As we constructed a strictly better policy, a policy (t2, q̄) with q̄ > 0 cannot be

optimal, hence q̄ ≤ 0.

The optimality of wait-heat-clear policies follows by combining the above lemmas.

Theorem 6.1. The average-cost optimal policy for the fluid queue is a wait-heat-clear

policy, i.e., of the form (6.7).

6.3.3 Costs under wait-heat-clear policies

We next derive expressions for the average cost under a wait-heat-clear policy. To

determine the cycle cost and time, we move backwards in time, step-by-step, from the

clearing phase [t2, t3], to the heating phase [t1, t2], up to the waiting phase [0, t1]. We

label these phases such that phase 1 is the waiting phase, phase 2 the heating phase,

and phase 3 the clearing phase. For each phase i, we determine the time Ti(.) and

cost Vi(.) from the start of phase i until the end of the cycle.

We start with the clearing phase [t2, t3]. If (x(t2), q(t2)) = (x̄, q), the time to clear

the queue must be T3(q) = q/(µ− λ), as the net drain rate is µ− λ. Next, there is

a heating cost cαx̄ per unit time to keep the system at temperature x̄. The total

queueing cost must be equal to p times the area of the triangle with height q and

base T3(q) (since at time T3(q) the queue is empty). Thus, the time and cost to reach

(x̄, 0) starting from (x̄, q) are given by

T3(q) =
q

µ− λ
,

V3(q) =
(
cαx̄+ p

q

2

)
T3(q) =

cαx̄q

µ− λ
+

pq2

2(µ− λ)
.

Next we consider the heating phase [t1, t2], which starts in state (x(t1), q(t1)) =

(x, q). The heating time `(x) to heat the bath from temperature x to x̄ follows

from (6.2). As the queue increases by λ`(x) during the heating time `(x), the time
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T2(x, q) and cost V2(x, q) to heat and clear when the system starts in state (x, q) thus

equals

T2(x, q) = `(x) + T3(q + λ`(x)) =
q + µ`(x)

µ− λ
,

V2(x, q) = p

(
q +

λl(x)

2

)
`(x) + cβ`(x) + V3(q + λ`(x))

=
p

2

q2

µ− λ
+
cαx̄q

µ− λ
+
pq`(x)

µ− λ

+ c

(
αx̄

µ− λ
+ β

)
`(x) +

p

2

λµ

µ− λ
(`(x))2.

The final phase is the waiting phase [0, t1]. Starting from (x(0), q(0)) = (x̄, 0), we

wait until the queue length equals q, so that the waiting time is t1 = q/λ. From the

ODE ẋ(t) = −αx(t) with initial condition x(0) = x̄, it follows that the temperature

at t1 is x(t1) = x̄e−αt1 . So, when the heater switches on when the queue length is q,

the cycle time T1(q) and cycle cost V1(q) are

T1(q) = t1 + T2 (x(t1), q) ,

V1(q) = p
q

2
t1 + V2 (x(t1), q) .

All in all, the average cost under a policy that starts heating when the queue

length is equal to q > 0 is therefore J(q) = V1(q)/T1(q). The critical points of J(q)

can be found by equating the derivative J ′(q) to 0 and solving for the optimal q∗. A

simple closed-form solution does not exist; in Section 6.5 we deal with this problem

numerically. Finally, consider the αx̄-policy. Because there is no queue when the bath

always satisfies the production temperature, the average cost under the αx̄-policy is

J(αx̄) = cαx̄.

6.4 Wait-heat-clear policies for the M/G/1 queue

The structural results from the fluid queue approximation are the main motivation

to also analyze wait-heat-clear policies for the M/G/1 queue with a temperature-

controlled server. We will restrict the analysis to three intuitive types of wait-heat-clear

policies, illustrated in Figure 6.2. All policies wait, with the heater off, until a specified

threshold level is reached, and then trigger the heating and clearing phase. The

Q-policy switches on the heater when the queue length reaches Q, irrespective of

the temperature. The X-policy switches on when the heat bath cools down to X,

irrespective of the queue length. The Q- and X-policy are typically not capable of

reacting to sudden events. For example, when more customers arrive than expected
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x
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(a) Q-policy
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x̄X

on off

(b) X-policy

x

q

x̄

off

on

(c) B-policy

Figure 6.2: Three different policies for deciding when to start heating and clearing.

while the heat bath is still rather warm, it may be worthwhile to turn on the heater

and quickly clear the queue. Therefore, we also consider the B-policy, which depends

on both the queue length and the temperature, and switches on when a temperature-

dependent threshold for the queue length is reached.

We do not formally prove that wait-heat-clear policies are optimal. However, for

states on the boundary x = x̄, we can show that it is optimal to keep the temperature

at x̄ until all jobs are cleared, using the same line of proof as in Lemmas 6.2 and 6.3.

For all other states, we use some simplifying assumptions to formulate a Markov

decision process to determine optimal actions. Without any exception, we find that

the optimal policy of the MDP has a wait-heat-clear structure for every considered

instance in our numerical analysis. Thus, there is numerical support for the optimality

of wait-heat-clear policies.

The remainder of this section is organized as follows. In Section 6.4.1, we derive the

exact expected cost for the heating and clearing phase, which apply to all our policies.

Then, we derive the exact average costs for the Q- and X-policy in Section 6.4.2. Since

the B-policy is numerically difficult to evaluate exactly, we propose an approximation

for its expected average cost in Section 6.4.3. Moreover, we provide a heuristic

for determining near-optimal B-policies in Section 6.4.4. Finally, we formulate the

aforementioned Markov decision process in Section 6.4.5.

6.4.1 Expected cost and time for heating and clearing

Recall that under a wait-heat-clear policy, once the system enters a state in which the

heater is switched on, the heater stays on until the system is completely cleared. Thus,

for any such policy, we need to know the expected cost of heating and clearing when

the heater switches on in some state (x, q). Similar to the analysis in Section 6.3.3, we

therefore first compute V3(q) and T3(q), i.e., the expected cost and time to clear the

system once state (x̄, q) is reached and the processing of jobs can start. Then we find

expressions for V2(x, q) and T2(x, q), i.e., the expected cost and time for heating and

clearing until the end of a cycle when the heater is switched on in state (x, q).
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The clearing phase starts at (x̄, q) and process all jobs until (x̄, 0). Interestingly,

the analysis of an M/G/1 queue under an N -policy without setup times involves the

same phase: once the queue hits level N , the server switches on and, as there is no

setup-time, processing can start right away. This model is analyzed in Tijms (1994,

Example 1.3.4), which, after incorporating heating costs, leads to the following result.

Lemma 6.4. If the queue length is q when the production temperature x̄ is reached,

the expected time and cost to clear the system are

T3(q) =
q

µ− λ
,

V3(q) =
p

2(µ− λ)
q2 +

(
p
λc2S + µ

2(µ− λ)2
+

cαx̄

µ− λ

)
q.

Proof. Tijms (1994, Eq. 1.3.3–1.3.4) directly implies that T3(q) = q/(µ− λ) and

V3(q) =

(
p
q + 1

2
+ p

λ

2

1 + c2S
µ− λ

+ cαx̄

)
T3(q)

.

We next consider the expected cost and time for heating the bath and clearing

the queue when the heater is switched on in state (x, q). Recall that the heating

time `(x) is deterministic, the number of arrivals during time `(x) is the Poisson

random variable N(`(x)) with mean λ`(x). Thus, the queue length at the start of the

clearing phase becomes q +N(`(x)). This idea underlies the proof of the next lemma.

Lemma 6.5. Starting at (x, q) with x ≤ x̄, the expected time and cost for heating and

clearing until the end of the cycle is

T2(x, q) = `(x) + T3(q + λ`(x)) =
q

µ− λ
+

µ

µ− λ
`(x),

V2(x, q) =

(
pq + p

E [N(`(x))]

2
+ cβ

)
`(x) + E [V3(q +N(`(x)))]

= V3(q) +
pλµ

µ− λ
`(x)2 +

pµ

µ− λ
`(x)q

+

(
pλ+ cαx̄λ

µ− λ
+ p

λ2(1 + c2S)

2(µ− λ)2
+ cβ

)
`(x).

Here, `(x) is given by (6.2), and V3 and T3 are given by Lemma 6.4. All involved

constants are positive, hence V2(x, q) is a quadratic, strictly increasing function of q

and `(x), and T2(x, q) is linear.

Proof. See appendix.
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Finally, we are interested in the expected cost and duration of a cycle under the

condition that the system switches on at a given state (x, q). With these expressions

we can easily evaluate the expected average cost for the Q-, X- and B-policies.

Lemma 6.6. For cycles whose sample paths enter state (x, q) and then switch on the

heater, the expected cycle time is

T1(x, q) = t1(x) + T2(x, q),

where t1(x) = 1
α log (x/x̄) is the deterministic time to cool down from x̄ to x. For

cycles whose sample paths enter (x, q) due to an arrival, the expected cost is

V1(x, q) = (q − 1)t1(x)/2 + V2(x, q).

Otherwise, for cycles whose sample paths enter (x, q) due to a temperature decrease,

the expected cost is

V1(x, q) = qt1(x)/2 + V2(x, q).

Proof. It is evident that the expected cycle time is the waiting time t1 plus the time

T2 to entirely clear all jobs from the system once the heater is switched on. For the

cost, suppose the sample path enters state (x, q) due to an arrival. Just prior to

entering (x, q) the state was (x, q− 1), hence the average queue length until the heater

is switched on equals (q − 1)t1(x)/2. Otherwise, the state just prior to entering (x, q)

must have been (x+ ε, q) for ε ↓ 0. In that case, the average queue length must be

qt1(x)/2.

It is important to observe that the Q- and B-policy switch on only due to arrivals,

and the X-policy only due to decreases in temperature. The expected cost and time

of a given policy follow by determining the combined probability of all sample paths

entering state (x, q) and then taking the corresponding expectations over all (x, q)

where the policy switches on the heater.

6.4.2 Exact costs of Q- and X-policies

We continue by deriving the exact costs of the Q- and X-policy. Recall that in the

Q-policy, the heating phase starts as soon as the queue length hits Q, and, since jobs

arrive as single units, the queueing process can not ‘jump’ over Q. As the cycle starts

with an empty queue, we have to wait for Q arrivals. Since the interarrival times of

the jobs are exponentially distributed, the time t1 is Erlang(λ,Q) distributed. Since,

evidently, q(t1) = Q, we obtain the following.
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Lemma 6.7. Provided Q > 0, the expected average cost of a Q-policy is given by

J(Q) = V1(Q)/T1(Q), where

T1(Q) =
Q

λ
+ E [T2(x(t1), Q)]

V1(Q) = p
Q(Q− 1)

2λ
+ E [V2(x(t1), Q)] .

Here, x(t1) = x̄e−αt1 and t1 is an Erlang(λ,Q) distributed random variable with mean

E [t1] = Q/λ, and T2 and V2 are given in Lemma 6.5.

Note that, by following the reasoning of Lemma 6.6, the queueing costs in V1(Q)

are incurred only for the first Q− 1 arrivals, as the Q-th arrival occurs exactly at t1.

The X-policy starts the heating phase when the temperature equals X. The time

t1 to cool down from x̄ to x is deterministic, hence the number of arrivals N(t1) during

t1 is Poisson(λt1) distributed. Consequently, we obtain the following.

Lemma 6.8. Provided X < x̄, the expected average cost of an X-policy is J(X) =

V1(X)/T1(X), where

T1(X) = t1 + E [T2(X,N(t1))] =
µ

µ− λ
(t1 + `(X)),

V1(X) = p
λt21
2

+ E [V2(X,N(t1))] .

Here, t1 = 1
α log (x̄/X) is the solution for X = x̄e−αt.

Simple closed-form expressions for the average costs do not exist. We therefore

evaluate the expressions in Lemmas 6.7 and 6.8 numerically.

In case Q = 0 or X = x̄, we need to use the average cost J(αx̄) of the αx̄-policy. In

this case the server is always operational, hence the queue length process is the same

as for the M/G/1 queue. Using Little’s law and the Pollaczek-Khintchine equation for

the average sojourn time of a job in the system, c.f., Tijms (1994), the average cost is

J(αx̄) = pρ+ p
1 + c2S

2

ρ2

1− ρ
+ cαx̄. (6.8)

Here, the first term corresponds to the cost of having a job in service, the second term

to the average time in queue, and the last term to the heating costs.

Remark 6.1. Typically, the coefficient of variation of an Erlang random variable is

quite small, so it makes sense to replace the random variable t1 by its mean. For the

Q-policy we then obtain from Lemma 6.7,

T1 ≈ Q/λ+ T2(x(Q/λ), Q),
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V1 ≈ pQ(Q− 1)/2λ+ V2(x(Q/λ), Q),

which are closed-form because the expressions in Lemmas 6.4 and 6.5 are closed-form.

6.4.3 Approximate costs of B-policies

As it is numerically challenging to determine exact costs of B-policies, we propose an

approximation of the cycle time and cycle costs that can be evaluated efficiently. Let

us first explain the numerical challenge with exact costs. Ideally, we would like to

determine the combined probability of all sample paths entering state (x, q) and then

use Lemma 6.6 to calculate the expected time and cost. In order to enter (x, q), a

sample path should not visit any other state where the heater is switched on. For the

Q- and X-policy this is automatically the case: the heater switches on only when Q

or X is reached. However, for the B-policy sample paths may exist where the heater

is switched on because the queue exceeds the temperature-dependent threshold for

some temperature higher than x. Hence, we need to condition on the sample paths

being below this threshold for all temperatures higher than x. This conditioning gives

rise to integral expressions that are difficult to evaluate.

For the above reason, we discretize the temperature scale and assume exponential

interarrival times for temperature changes. The temperature is discretized with a step

size δ, so that x ∈ {0, δ, 2δ, . . . , x̄− δ, x̄}. With step size δ, the temperature decreases

from x to x− δ at rate αx/δ. This exponential approximation is reasonable when δ

is small. We can now apply finite Markov chain theory (see, e.g., Kemeny and Snell,

1976) in order to evaluate the expected cycle time and cycle costs of B-policies.

We define a B-policy in terms of a stopping set and a continuation set. Let B be a

decreasing step-function of the temperature, such as in Figure 6.2c. Then define the

stopping set D as

D = {(x, q) : q ≥ B(x)},

and the continuation set C as the complement of D, i.e.,

C = {(x, q) : q < B(x)}.

For instance, in Figure 6.2a, C is the set of points below the line Q, while in Fig-

ure 6.2c, C is the set of points below the decreasing step-function. As long as the

system is in C, the heater stays off, but when the stopping set D is hit, the heater

switches on. Note that this analysis makes sense only when B(x̄) ≥ 1, because when

B(x̄) = 0, the continuation set is not reachable from state (x̄, 0). In that case, we

should use the results from the αx̄-policy. For the numerical evaluation, we remark in

passing that there must be some qmax, perhaps large, at which it is optimal to switch

on for any x = 0, . . . , x̄− δ.
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Suppose that we know the expected time N(x, q) spent in state (x, q) ∈ C when

the process starts in (x̄, 0) and the heater just switched off. Suppose, furthermore,

that we have the probability P (x, q) of being absorbed in (x, q) ∈ D. The expected

cycle time under a B-policy is then

T1(B) =
∑

(x,q)∈C

N(x, q) +
∑

(x,q)∈D

P (x, q)T2(x, q),

which is simply the time until reaching D plus the time spent on heating/clearing

after switching on. Similarly, the expected cycle cost is

V1(B) =
∑

(x,q)∈C

pqN(x, q) +
∑

(x,q)∈D

P (q, x)V2(x, q).

As before, we define the average cost as J(B) = V1(B)/T1(B). For the computation

of N , observe first that the time spent in state (x̄, 0) is

N(x̄, 0) =
1

λ+ αx̄/δ
.

The other values for N(x, q), (x, q) ∈ C\{(x̄, 0)}, can be obtained recursively by using

the ‘rate in = rate out’ principle. Applying this at state (x, q) gives straightaway(
λ+

αx

δ

)
N(x, q) = λN(x, q − 1) +

α(x+ δ)

δ
N(x+ δ, q).

For this to be properly defined everywhere, we take N(x,−1) = 0 for all x, N(x̄+δ, q) =

0 for all q, and N(x, q) = 0 for all (x, q) ∈ D.

It remains to determine the probability of being absorbed in state (x, q) ∈ D.

However, this is straightforward when we know N(x, q). Since jobs come in one-by-one,

we only have to deal with points on the boundary of D and C, that is, points such

that (x, q) ∈ D and (x, q − 1) ∈ C. For such points, then,

P (x, q) = λN(x, q − 1),

since D can only be entered by a job arrival.

Remark 6.2. The above expression for P (x, q) cannot be used to evaluate the costs

of the X-policy, as for such a policy, the stopping set is entered by a decrease in

temperature, not by a job arrival. However, it is straightforward to analyze X-policies

using a similar approach.
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Algorithm 4 Local improvement heuristic

Set B′0(0) = x̄+ δ and B′0(q) = 0 for q = 1, . . . , qmax.
i = 0
repeat

i = i+ 1
B′i = B′i−1
for q = 1, . . . , qmax − 1 do

x∗ = arg min
B′i(q+1)≤x≤B′i(q−1)

J(fq(B
′
i, x)).

B′i(q) = x∗

end for
until B′i = B′i−1 or i ≥ imax

6.4.4 Improvement heuristic for B-policies

We propose a simple local improvement heuristic to obtain effective B-policies. The

heuristic is easiest expressed in terms of the queue, so we first carry out a policy

transformation. We define B′(q) be the threshold temperature when the queue is q,

so that the heater switches on when x ≥ B′(q). In order to start in the continuation

set and to reach the stopping set with probability 1, we require that B′(0) > x̄

and B′(qmax) = 0 for some large qmax. Since B′(q) decreases in q, we can uniquely

transform a policy B′ into an equivalent policy B using B(x) = arg minq{B′(q) ≤ x}.
Therefore, the costs J(B′) of policy B′ follow by first transforming it and then using

the costs from Section 6.4.3.

The pseudocode in Algorithm 4 conveys the main idea of the heuristic. As starting

policy B′0, we use the Q = 1 policy. The heuristic iteratively improves B′ until either

a local optimum is reached or the maximum number of iterations imax is exceeded.

The function fq(B
′, x) gives the policy where the q-th threshold of B′ is changed to x.

During each iteration i, we sequentially update B′i(q) for each q to the temperature x∗

that minimizes costs, given the current values for all other thresholds. The reason to

search between B′i(q + 1) and B′i(q − 1) is to ensure B′i stays decreasing. We need

to carry out several iterations, because when B′i(q) is changed for some q > q′, the

current value for B′i(q
′) need no longer be cost-minimizing.

Remark 6.3. Note that q is an integer. When δ is sufficiently small, there are typically

multiple values of x for which B(x) = q and mostly one value of q for which B′(q) = x.

Thus, by formulating the heuristic in terms of q, we set the correct thresholds for

multiple values of x simultaneously.

Remark 6.4. In our experiments, we determine x∗ for each q by enumerating the costs

of all policies in the specified range. This requires a considerable number of policy

cost evaluations, especially if δ is small. A faster alternative is using bisection search

in the specified range to obtain x∗ heuristically.
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6.4.5 Markov decision process formulation

To study the optimal policy structure, we formulate a Markov decision process (MDP)

under some simplifying assumptions. We apply a similar approximation as for B-

policies in Section 6.4.3, i.e., we discretize time into intervals of δ and let the time

between temperature changes be exponentially distributed. Furthermore, we let the

processing times of jobs also be exponentially distributed.

We allow the heating intensity u to be changed in any system state, but based on the

insights obtained from the fluid queue, we limit the possible actions to u ∈ {0, αx, β}.
Hence, the heater is either off (u = 0), maintains the current temperature (u = ax), or

heats at maximum intensity (u = β). Clearly, this MDP contains all wait-heat-clear

policies. Hence, the minimal average cost for this MDP is at least as low as that of

the best B-policy, provided the processing times are exponential in both cases. We

remark that this neglects minor numerical differences because the heating time in the

MDP is discretized, while it is exact in the B-policy.

We apply uniformization to convert the continuous-time MDP to an equivalent

discrete-time MDP. Hence, we convert transition rates to probabilities by dividing by

the fastest transition rate and we include self-transitions so that the total transition

probability of each state-action pair is 1. Since the fastest transition rate out of any

state-action pair is

K = λ+ max(µ+ αx̄/δ, β/δ),

the transition probabilities for each state-action pair are given by

Pu(x, q; x, q + 1) =
λ

K
Iq<qmax , for u ∈ {0, αx, β},

Pu(x, q; x, q − 1) =
µ

K
Ix=x̄ Iq>0, for u ∈ {αx, β},

Pu(x, q; x− δ, q) =
αx

Kδ
, for u = 0,

Pu(x, q; x+ δ, q) =
β − αx
Kδ

Ix<x̄, for u = β.

Here, jobs arrive with the same probability for all actions, up to a maximum of qmax

jobs in total. Jobs depart the system only when x = x̄, q > 0, and u 6= 0. The

temperature can decrease when u = 0 and increase when u = β, to at most x̄. Since

temperature is discretized by δ, we need to divide the rates by δ to let the temperature

change at the correct rate. For each state-action pair, the self-transition probability

Pu(x, q;x, q) contains the remaining probability.

The costs for action u in state (x, q) are Cu(x, q) = pq+cu. We use policy iteration

to find average cost optimal policy, see Tijms (1994).
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Table 6.1: Overview of the considered policies

Policy Description Reference

αx̄ Always maintain the production temperature Eq. (6.8)
B Wait-heat-clear policy with a threshold involving both queue

length and temperature
Section 6.4.4

Bmdp Optimal policy from the MDP Section 6.4.5
Q Wait-heat-clear policy with a queue length threshold Lemma 6.7
Qf Approximate Q by using the optimal parameter of the fluid

queue approximation
Section 6.3.3

Qm Approximate Q by replacing the expectation by its mean Remark 6.1
X Wait-heat-clear policy with a temperature threshold Lemma 6.8

6.5 Numerical Results

In this section, we provide numerical insights into the performance of the various

policies developed in this chapter. The policies are summarized in Table 6.1 for quick

reference; details on the numerical implementation are given in Appendix 6.B.

We focus mainly on the Q-policy since it is simple to execute in practice and

it turns out to be effective in many instances. In Section 6.5.1, we shortly discuss

the costs savings that can be obtained in a real-life case by using a Q-policy. In

Section 6.5.2, we study optimal policies in two problem instances to illustrate the

impact of state-dependent setup times and to explain when the Q-policy performs

well and when not. Finally, in Section 6.5.3, we carry out a full-factorial experiment

in order to obtain statistical insights into the effect of parameters on the performance

of all policies.

6.5.1 Real-life case

As starting point for our numerical analysis, we take the real-life case of a circuit board

manufacturer at which some of our students did an internship. The company currently

uses a policy resembling the αx̄-policy: the heater is switched on in the morning,

irrespective of the presence of jobs, and switched off at the end of the working day.

The manufacturer estimates its yearly energy expenses for the heat bath at around

e50 000. Based on estimates for the parameter values, which we derive in 6.C, we find

that a Q-policy with Q = 20 has the potential to save around e15 000 yearly compared

to the αx̄-policy—roughly one third of a yearly employee salary. However, using a

threshold of Q = 20 may be too long, as the daily order demand is λ = 5. Setting

Q = 5 so that the bath switches on once a day, on average, already results in a cost

saving of about e10 000. Thus, simple wait-heat-clear policies can lead to considerable

cost savings.
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6.5.2 Optimal policy structure

To provide insights into the optimal policy structure, we examine two particular

problem instances that are solved with the Markov decision process formulation

discussed in Section 6.4.5. Both instances have a low server load (ρ = 0.1) and share

the same parameters except for the heat transfer coefficient and the energy costs. We

select these two particular instances from our full-factorial experiment because for

these instances the Q-policy achieves its best and worst performance.

Figure 6.3 shows results for the instance where Q-policy achieves its best perfor-

mance. Here, the heat transfer coefficient and energy costs are high, so that the heat

bath cools down fast and heating up is expensive. The left graph shows the structure

of the optimal policy, which consists of three regions: in the black area the heater is

switched off, in the white area the heater is switched on at maximum power, and in

the gray area (on the right border) the production temperature is maintained if the

queue is non-empty. Thus, the optimal policy is a B-policy. The border of the black

and white area defines the threshold of the B-policy, and it is clear that this threshold

decreases in the temperature. Most notably, the longer the system cools down, the

longer the queue should be before the heater is switched on. This is a consequence of

the fact that the setup costs (energy costs) to heat up the server are higher for lower

temperatures. We are only willing to incur these setup costs if the number of jobs to

be processed is large enough, similar to what we observe for the order quantity in an

economic order quantity model when the fixed order costs increase, see e.g., Tijms

(1994, Section 1.5.1).

The right graph in Figure 6.3 shows a heat map of the stationary distribution of

the temperature-queue process {(x(t), q(t))} under the optimal policy. Dark states

are visited most often, while white states are essentially never visited. Each cycle of

the process starts in the lower-right corner state. When comparing the stationary

distribution with the threshold in the right graph, we see that when the heater is off,

the process is mostly in states far below the threshold. Because the process remains

below the threshold, in almost all cases it drifts to the left boundary x = 0. At this

boundary, we observe that the heating phase starts once the queue length becomes 44.

The dark horizontal line indicates that the heating phase finishes quite fast; typically

between 0 and 2 jobs arrive during heating. After heating, the process remains at the

right boundary x = 100 until the queue is cleared. Since heating almost always starts

in state x = 0 and q = 44, the optimal policy is practically identical to a Q-policy

with Q = 44, explaining why the Q-policy is near-optimal in this instance.

On the other hand, the instance in Figure 6.4 has a low heat transfer coefficient

and energy cost. Since the heat bath cools down slowly and setups are relatively

inexpensive, we can see that threshold levels in Figure 6.4 are much lower than in

Figure 6.3. Comparing the left and right graph in Figure 6.4, we see that now relatively
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Figure 6.3: Optimal policy (left) and heat map of its stationary distribution (right). Parame-
ters: λ = 1, µ = 10, c2S = 1, x̄ = 100, α = 0.7, β = 1000, p = 1, c = 10.
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Figure 6.4: Optimal policy (left) and heat map of its stationary distribution (right). Parame-
ters: λ = 1, µ = 10, c2S = 1, x̄ = 100, α = 0.3, β = 1000, p = 1, c = 0.5.
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much time is spent in states around the threshold for any temperature. This implies

that the temperature-dependency of the setup time plays a very important role in

this instance. The B-policy is able to exploit the fact that the heating time is short

when the temperature is still high. In contrast with this, since the Q-policy neglects

the temperature in its decision, it cannot adequately react to events where more jobs

than expected arrive after the heater has been switched off. However, even in these

unfavorable conditions, the costs of the optimal Q-policy are only 8.27% higher than

the optimal B-policy.

6.5.3 Full-factorial experiment

In order to obtain further insights, we want to answer the following questions by

carrying out a full-factorial experiment. First, how do the policies in Table 6.1 perform

compared to the optimal policy? Second, in which types of instances is the always-on

policy optimal? Third, which parameters have the largest effect on the performance

of the Q-policies? And, finally, how can we easily determine an effective queue length

threshold for the Q-policy? The answers to these questions help to provide simple

guidelines for determining when and when not to use a certain policy, which is also of

importance for our real-life case, as there is considerable variation in the values of the

parameters, for instance in average monthly demand, electricity prices, and so on.

In the full-factorial experiment, we vary various parameters from very small to

very large, with values as shown in Table 6.2. In all instances, we scale the queueing

cost to p = 1. Furthermore, we set the squared coefficient of variation at c2S = 1, so

that the policies can be compared with the optimal policy from the MDP. All in all,

this results in 56 instances in total. We remark that µ follows from µ = λ/rho and β

from β = rx̄.

As a first major point, we observe from the experiment that for every individual

instance the costs are ordered as

J∗(B) ≤ J∗(Bmdp) ≤ J∗(Q) ≤ J∗(X) ≤ J(αx̄),

where J∗ is the cost of the optimal policy in the specified policy class. This shows that

the best Q-policy performs at least as good as the best X-policy. The inequalities also

show the evident fact that a policy with a threshold based on queue and temperature,

i.e., a B-policy, is better than policies that depend on a single threshold.

A second major point is that, in every instance, the optimal Bmdp-policy from the

MDP satisfies the wait-heat-clear policy structure. This provides numerical support

for the optimality of wait-heat-clear policies. Furthermore, we find that the costs of

the B-policy are essentially equal to those of the Bmdp-policy in every instance, hence

our improvement heuristic seems to return optimal solutions.
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Table 6.2: Parameter values in the full-factorial experiment.

Parameter Symbol Very low Low Medium High Very high

Energy cost c 0.1 0.5 1 2 10
Arrival rate λ 0.1 0.5 1 2 10
Server load ρ 0.1 0.3 0.5 0.7 0.9
Heat transfer coefficient α 0.1 0.3 0.5 0.7 0.9
Production temperature x̄ 50 100 200 500 1000
Heating power ratio r = β/x̄ 1 2 3 5 10

Table 6.3: Summary statistics of the relative cost increase compared to the B-policy.

Average Min. 1st Quartile Median 3rd Quartile Max.

αx̄ 86.43 0.00 5.32 29.88 92.63 854.37
X 11.19 0.00 1.06 3.60 10.86 230.89
Q 0.55 0.00 0.00 0.07 0.49 8.27
Qf 0.59 0.00 0.00 0.07 0.52 11.29
Qm 0.60 0.00 0.00 0.07 0.53 11.29
Bmdp 0.00 0.00 0.00 0.00 0.00 0.06

To get a better idea of the effectiveness of the different policies, Table 6.3 shows

summary statistics for the percentage increase in costs of the policies compared to the

B-policy. Here, we see that Q-policies perform in general much better than X-policies,

and αx̄-policies should be used cautiously as they can be (very) costly. In most

instances, the Q-policy is within 1% of the B-policy, showing that a rather simple

policy based only on the queue length is remarkably effective.

The results for the αx̄-policy indicate that the cost of never turning off the heater

can vary from excellent to extremely poor. In order to understand this in more detail,

Figure 6.5 depicts, for each parameter value in the experiment, the average percentage

increase in costs of the αx̄-policy compared to B-policy. In order to show all effects

in the same graph, we rescaled all parameters from Table 6.2 between 0 (very low)

and 1 (very high). As could be expected, the αx̄-policy performs comparatively best

when the system is busy (large values of ρ and λ) and when heating is inexpensive

(low values of α, x̄, and c). The parameter ρ has the strongest impact: the αx̄-policy

is expensive when ρ is low (about 300% higher than optimal), but it is reasonable

when ρ is high. On the other hand, the heating power ratio r seems to have almost no

impact.

Next, we want to understand which parameters influence the effectiveness of the

Q-policy. Figure 6.6 shows the percentage increase in cost for the most interesting

parameters, with lines shown for several values of ρ. We observe in all graphs that the
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Q-policy becomes better as ρ increases, because both the Q- and B-policies become αx̄-

policies when the server load is high. Interestingly, the effect of the energy cost c

can be decreasing, increasing, or both, depending on the server load. In the graphs

for λ, we see that the Q-policy is relatively worst for intermediate values of λ, because

when λ is very low, the heat bath is typically already cooled down when the first

customers arrive, and when λ is very high, it is typically optimal to remain at the

processing temperature. Combining all graphs, we see the Q-policy has the largest

difference with the B-policy in instances with low server load and inexpensive heating

(very low α, x̄ and c). These are instances for which it makes most sense to quickly

turn on the heater and clear all jobs when more jobs than expected arrive. However,

even in such instances the Q-policy is well within 10% from the optimal policy.

Finally, given that Q-policies perform well, it is important for practice to have a

simple method to determine effective thresholds. In principle, it is not difficult to

calculate the average cost of the Q-policy, but it does involve taking an expectation.

A simpler alternative is to use an approximation with a closed-form expression for

the average cost, as is the case for the Qf- and Qm-policies. These approximations

are easy to implement in spreadsheet software and optimal parameters can be found

by inspecting a graph. Interestingly, the costs of Qf- and Qm-policies are equal to

those of the Q-policy in nearly every instance. Therefore, we can use these simple

approximations to obtain satisfactory policy parameters.

Remark 6.5. To study the impact of variance in the service time distribution, we

repeated the full-factorial experiment with c2S = 0.5 and c2S = 2. Although the average

costs increase in c2S , we find that variance has a negligible effect on optimal policy

parameters and the relative performance of policies. This result is intuitive because a

similar insensitivity holds for the closely related M/G/1 queue without setups, where

the optimal Q-policy does not depend on c2S (Tijms, 1994, Example 1.3.4).

6.6 Conclusion

We considered a production system with a server that requires heating in order to

process jobs. Considerable cost savings may be realized by temporarily switching off

the heater and queuing up arriving jobs until sufficient work is available. We model

the production system as an M/G/1 queue with a temperature controlled server that

can only process jobs if a minimum production temperature is satisfied. The time

and energy required to heat a server depend on the current temperature of the server,

hence the setup times and setup costs are state dependent. Our main contribution is

optimizing the trade-off between energy costs and queuing costs, while accounting for

state-dependent setup costs and times.
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Analytical results are derived for a fluid queue approximation of the production

system. We show that the optimal control policy satisfies a wait-heat-clear structure,

that is, first the heater is off and new jobs wait in a queue, then the server heats at

the maximum rate, and once the minimum production temperature is reached, all

jobs are served until the queue is cleared. For the approximation, it is straightforward

to numerically obtain the optimal queue length to start heating by using closed-form

expressions for the average cost.

A numerical analysis, based on a Markov decision process formulation of the

system, suggests that the optimal policy in the stochastic case also satisfies the

wait-heat-clear structure. The optimal policy leads to considerable cost savings (on

average over 40%) compared to the situation where the server always stays at the the

minimum production temperature. Based on this and on the insights provided by the

fluid queue approximation, we analyze various intuitive wait-heat-clear policies for

the M/G/1 queue. The Q-policy, that starts heating at a given queue length while

neglecting temperature, has near-optimal performance in most cases. However, in

several cases it is important to base the heating decision on both the queue length

and the temperature, in particular when the server load is low and when the server

cools down slowly.

For practice we recommend to use a Q-policy since it is simple to execute and

effective in many cases. Furthermore, a near-optimal threshold for the Q-policy can

be obtained straightforwardly from the fluid queue approximation of the system.

Further research could extend the analysis into two directions. First, one can allow

for batch arrivals by studying the MX/M/1 queue with a temperature controlled

server. This is relevant for systems where the number of items in a job have a large

variability. Second, one can study the M/G/1 queue where the control of the heater

depends on the waiting time rather than the queue length. For both extensions, it is

interesting to prove that wait-hear-clear policies are optimal, and to clarify how the

optimal policy can be efficiently computed.
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Appendix

6.A Proofs of lemmas

Lemma 6.1. Suppose, without loss of generality, that the process starts at time t = 0

in state x(0) ≤ x̄, and t2 is so large that x̄ can be reached, i.e., t2 ≥ `(x(0)) with `

given by (6.2). Then the optimal control to reach temperature x(t2) = x̄ at t2 is given

by

u∗(t) =

{
0 for 0 ≤ t < t1,

β for t1 ≤ t ≤ t2,

and the time t1 to switch on can be obtained from solving t1 = t2 − `(x(t1)).

Proof. We can obtain the policy until time t2 by solving the following optimal control

problem

maximize

∫ t2

0

−cu(t) dt

subject to x(0) = x0,

x(t2) = x̄,

ẋ = u− αx,
u ∈ [0, β].

This is a fixed-end-point problem, so we follow the approach from Sethi and

Thompson (2000, Ch. 3). The Hamiltonian H = (λ− c)u− λαx is maximized by a

control policy of the type u = bang[0, β;λ− c]. The adjoint should satisfy

λ̇ = −Hx = λα.

The transversality condition is λ(t2) = c1, where c1 is a constant to be determined.

The solution of this differential equation is

λ(t) = c1e
−α(t2−t),

which is positive and strictly increasing if c1 > 0. Provided c1 > c, there exists a t1 so

that λ(t) < c for all t < t1 and λ(t) ≥ c for all t1 ≤ t ≤ t2. Hence, the optimal control

is u(t) = 0 for 0 ≤ t < t1 and u(t) = β for t1 ≤ t ≤ t2. Using this optimal control in

the differential equation with boundary condition x(t2) = x̄, we obtain

t1 = t2 +
1

α
log

(
1− αx̄

β

(
1− e−αt2

))
.
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The value of c1 then follows from λ(t1) = c, i.e.,

c1 =
cβ

β − αx̄+ αx0e−αt2
> c.

Hence, we have obtained an optimal control that satisfies all conditions.

Lemma 6.2. During the clearing phase t ∈ [t2, t3], the optimal heating policy is

u∗(t) = αx̄.

Proof. Starting at x(t2) = x̄, we solve the following optimal control problem between

t2 and t3.

maximize

∫ t3

t2

−cu(t) dt

subject to x ≥ x̄,
x(t2) = x̄,

ẋ = u− αx,
u ∈ [0, β],

The pure state constraint x ≥ x̄ ensures that processing continues. The Hamiltonian is

H = (λ− c)u− λαx

which implies the optimal control to be

u∗ =

{
bang[0, β, λ− c], if x > x̄,

bang[αx̄, β, λ− c], if x = x̄.

Because of the constraint x ≥ x̄, we need to set u∗ ≥ αx̄ when x = x̄.

As we have mixed inequality constraints and a pure state inequality constraint,

we follow Sethi and Thompson (2000, Ch.4). The mixed inequality constraints are

g1(x, u, t) = u ≥ 0, g2(x, u, t) = β − u ≥ 0. The pure state inequality constraint is

h(x, t) = x− x̄ ≥ 0 with h1(x, u, t) = u− αx. Writing this in Lagrangian form gives

L = −cu+ λ(u− αx) + µ1u+ µ2(β − u) + η(u− αx),
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with complementary slackness conditions

µ1 ≥ 0, µ1u = 0,

µ2 ≥ 0, µ2(β − u) = 0,

η ≥ 0, η(x− x̄) = 0, η̇ ≤ 0.

The adjoint has to satisfy

λ̇ = −Lx = α(λ+ η)

and λ(t3) = 0. Solving this gives

λ(t) = η(e−α(t3−t) − 1).

Clearly, λ(t) ≤ 0 for all t ∈ [t2, t3]. This implies that the optimal policy is u(t) = 0

when x > x̄ and u(t) = αx̄ when x = x̄. With such a control policy it is evident that

when starting at x(t2) = x̄ we will have x(t) = x̄ for all t ∈ [t2, t3].

Lemma 6.5. Starting at (x, q) with x ≤ x̄, the expected time and cost for heating and

clearing until the end of the cycle is

T2(x, q) = `(x) + T3(q + λ`(x)) =
q

µ− λ
+

µ

µ− λ
`(x),

V2(x, q) = V3(q) +
pλµ

µ− λ
`(x)2 +

pµ

µ− λ
`(x)q

+

(
pλ+ cαx̄λ

µ− λ
+ p

λ2(1 + c2S)

2(µ− λ)2
+ cβ

)
`(x).

Here, `(x) is given by (6.2), and V3 and T3 are given by Lemma 6.4. All involved

constants are positive, hence V2(x, q) is a quadratic, strictly increasing function of q

and `(x), and T2(x, q) is linear.

Proof. Write, for convenience, ` = `(x). The number of arrivals during heating,

N = N(`) is Poisson distributed with parameter λ`. This implies that for N given, the

job arrival epochs are uniformly distributed over the time interval [0, h]. Thus, since

we start with a queue length q, the expected queueing costs during heating become

pE

[∫ `

0

q(t) dt

∣∣∣∣∣N
]

= p`

(
q +

N

2

)
.

Taking the expectation and using that E [N ] = λ`, we obtain for the total expected
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cost during [0, `],

(pq + cβ)`+ p
λ

2
`2.

Next, consider the expected cost to clear the queue. Note from Lemma 6.4 that

V3(q) has the form V3(q) = aq2 + bq, with

a =
p

2(µ− λ)
, b = p

λc2s + µ

2(µ− λ)2
+ c

αx̄

µ− λ
.

We obtain

E [V3(q +N)] = aE
[
(q +N)2

]
+ bE [q +N ]

= a
(
q2 + 2qλ`+ E

[
N2
])

+ b(q + λ`)

= V3(q) + aλ2`2 + (a+ 2aq + b)λ`,

since E
[
N2
]

= λ2`2 + λ`. Adding both cost components gives V2(x, q) after some

algebra.

6.B Implementation details

In our computations, we restrict all policy parameters to integers. For a fair comparison,

we use the approximation from Section 6.4.3 to evaluate the time and cost of all

policies. Specifically, the time and cost during the waiting phase are approximated

using exponentially distributed temperature decreases (step size δ = 1), while the

time and cost during heating and clearing are calculated exactly using the expressions

in Section 6.4.1. The costs of the Bmdp-policy from the MDP – a B-policy in every

instance – have been recomputed using the costs expressions for B-policies. All policies

have the αx̄-policy as special case, e.g., set Q = 0 or X = x̄, however, the average cost

cannot be evaluated using the approximation since the cycle time is 0. Therefore, in

such cases we use the exact average cost J(αx̄) of the αx̄-policy.

For the different policies, we limited the maximum queue length qmax in the

following ways. For the Q-, Qf-, Qm-, and B-policies, we set qmax = 1000, which

by far exceeded the optimal parameters found in all instances. For the X-policy,

we need to make sure that all arriving customers can still enter the queue before

the temperature drops to 0. Therefore, we set qmax as the 99.9999% quantile of the

Poisson number of arrivals during twice the expected time to cool down to 0 (assuming

exponentially distributed temperature decreases with step size δ = 1). For the MDP, it

is possible to never use the heater and incur cost pqmax each time unit. Therefore, we

set qmax = max(1000, dJ(αx̄)/pe), ensuring that at least the αx̄-policy is better than
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never heating. Finally, for policy iteration we need an initial policy. Experimentally,

we found that a good initial policy is a B-policy with B(0) = Qf and B(x̄) = 1, with

the thresholds B(x) for all intermediate temperatures 0 < x < x̄ based on linear

interpolation between these two values and rounded up to the nearest integer.

We implemented all policies in Python and compiled performance-intensive parts

in C using the Numba package. We used a computing cluster to solve all instances of

the MDP, because the computation time per instance can be up to 24 hours in the

worst case. In comparison, the B-policy has an average solution time of approximately

20 seconds per instance. All other policies have negligibly small computation times.

6.C Real-life case parameter estimates

We measure all parameters in time units of a day. The manufacturer receives about

1000 orders a year and the shop floor is open for 200 days a year, hence λ = 5/d. A job

contains on average about 50 items, and each item spends about 1 minute in the bath.

Typically an operator requires an additional amount of 10 minutes to position the

carriers for the items and some other activities. As job sizes vary quite considerably,

we model job service times as exponential with a mean duration of 1 per hour. A

working day contains typically 10 hours so that µ = 10, from which it follows that

ρ = 1/2.

The working temperature of the bath is slightly above the melting temperature

of tin; we take x̄ = 250 ◦C. The bath switches off at 6 pm, and switches on at 8

am. After cooling down for 14 hours—neglecting weekends—the bath is about 100 ◦C,

which is still somewhat higher than the room temperature θ = 20 ◦C. By solving for α

in x(t1) = (x̄− θ)e−αt1 = 100 with t1 = 14, we find that α = 1.4. Furthermore, since

it takes about 3 hours to heat up the bath, we solve for β in `(100) = 3 in (6.2) to

obtain β = 1450 ◦C/d.

Currently the company keeps the heater on the entire day, corresponding to the

αx̄-policy. The yearly heating cost is about e50, 000, hence the heating costs per day

are cαx̄ = 50, 000/200 = e250. As α and x̄ are known from the above, c follows.

Finally, for the queueing cost p, as the yearly revenue is around e20M and the

number of orders is 1000, the average order value is e20K. Assuming that half of the

value is spent on raw materials and the bank lending rate is 5%,

p =
10Ke · 5%

200d
= 2.5e/d.



If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is

John von Neumann
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