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Controllability and Stabilizability of Networks of Linear Systems
Jochen Trumpf , Senior Member, IEEE, and Harry L. Trentelman , Fellow, IEEE

Abstract—We provide necessary and sufficient conditions for
the node systems, the graph adjacency matrix, and the input ma-
trix such that a heterogeneous network of multi-input multi-output
linear time-invariant (LTI) node systems with constant linear cou-
plings is controllable or stabilizable through the external input. We
also provide specializations of these general conditions for homo-
geneous networks. Finally, we give a very simple, necessary and
sufficient condition under which a homogeneous network of single-
input single-output LTI node systems is stable in the absence of the
external input.

Index Terms—Behavioral approach, controllability and stabiliz-
ability, linear systems, network analysis.

I. INTRODUCTION

In this paper, we study system theoretic properties of interconnec-
tions of linear systems. Given is a collection of linear time-invariant
(LTI) input/state/output systems, together with an interconnection
topology represented by a weighted directed graph. The systems are
interconnected through their inputs and outputs, as prescribed by the
given graph, and at the same time new external input and output chan-
nels are specified for the interconnected system. The systems that are
being interconnected are called the node systems, and the system re-
sulting after interconnection will be called the network. In this paper,
we will deal with finding conditions on the node systems, the adjacency
matrix of the graph, and the new input matrix such that the network
is controllable or stabilizable through the new external input. We also
discuss stability in the absence of the external input. Of course, similar
questions arise concerning observability and detectability through the
new external output. By dualization, however, results on controllabil-
ity and stabilizability immediately lead to results on observability and
detectability. Therefore, in this paper, we will not discuss the latter
issues.

The problem of finding conditions under which these basic system
theoretic properties hold for interconnected systems has been studied
before, and dates back to work presented by Gilbert [1], who stud-
ied controllability and observability of systems in parallel, series, and
feedback interconnections. Other earlier references on this topic are:
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the work of Callier et al. [2] and the work of Fuhrmann [3]. Obvi-
ously, interconnection structures in general are more complex than
those treated in these references, and therefore need to be described
by means of weighted directed graphs. This has resulted in more re-
cent contributions to system theoretic properties of interconnections.
Among these, we mention the work of Hara et al. [4], the recent text-
book by Fuhrmann et al. [5], as well as recent works by Zhou [6] and
Wang et al. [7].

In the work of Hara et al. [4], controllability and observability were
studied for networks in which every node system is a copy of the same
single-input single-output (SISO) system (such networks are called ho-
mogeneous). Using an argument based on the control canonical form
for controllable single-input systems, it was shown that such a network
is controllable if and only if the node system is controllable and observ-
able, and the interconnection structure is represented by a controllable
pair. In the work of Fuhrmann et al. [5], the more general framework
of heterogeneous networks consisting of possibly distinct multi-input
multi-output (MIMO) node systems was studied. In this more gen-
eral framework, a necessary and sufficient condition was established
for controllability of the network, reminiscent of the classical Popov–
Belevitch–Hautus (PBH) test. This result was, however, established
under the restrictive condition that all node systems are observable.
Zhou [6] provides a necessary and sufficient condition for controlla-
bility of heterogeneous networks where certain transfer matrices asso-
ciated with the node systems have full column normal rank. This can
only occur if each node system has at least as many external inputs
as internal outputs. Wang et al. [7] provide a necessary and sufficient
condition for the controllability of a homogeneous network of MIMO
LTI node systems where the interconnection structure is given at the
level of node systems rather than at the level of individual node system
inputs and outputs.

The main contributions of this paper are the following.
1) We will generalize the result of Fuhrmann et al. [5] to the case

that the node systems are not necessarily observable and obtain
a PBH-like test for network controllability applicable to general
linear networks.

2) The result of Hara et al. [4] on homogeneous networks of SISO
systems will be generalized to MIMO systems.

3) We will extend both of the above results to stabilizability of net-
works.

Although this paper deals with systems in input-state-output form,
an important role in our analysis will be played by elements and ideas
from the behavioral approach [8]. This approach will provide us with
flexibility in using the most suitable system representations for the prob-
lems at hand. In the end, however, our final results will be formulated
in terms of classical concepts involving state-space representations and
polynomial matrices.

This paper deals with controllability and stabilizability of networks
of linear systems. It does not deal with problems of weak or strong
structural controllability of systems on graphs, as studied, for example,
in [9]–[12] and the references therein. Note that in the literature on
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weak or strong structural controllability, conditions are usually given
in terms of graph theoretical concepts (cactus graphs, matchings, color
change rules, etc.), whereas, in this paper, conditions involve system
theoretic properties of the coupling matrices and the node systems.
A further related but significantly different area of work concerns the
study of controllability of networks of single integrator systems. Here,
controllability conditions are given in terms of graph theoretical con-
cepts (almost equitable partitions) but the node systems have trivial
dynamics. See the work of Aguilar et al. [13] for a recent represen-
tative contribution to that line of work and also the work of Camlibel
et al. [14] for a good explanation of a common misconception in the
related classical literature.

The outline of this paper is as follows. In Section II, we introduce
the problem formulation of this paper together with some notation
that we will use. Section III will deal with finding a convenient kernel
representation of the network that will reveal which properties should be
satisfied for controllability. Then, in Section IV, we will formulate our
results on network controllability. The general scheme is that we start
with the most general heterogeneous MIMO case, and then gradually
specialize to the homogeneous SISO case. In Section V, we will extend
our results to stabilizability and stability. Concluding remarks can be
found in Section VI. In order to enhance readability, some technicalities
are deferred to the Appendix.

II. PROBLEM FORMULATION

We study networks of (finite dimensional) LTI node systems of the
form

ẋ(i) = α(i)x(i) + β(i)v(i)

w(i) = γ(i)x(i) (1)

where x(i) (t) ∈ Rn i denotes the internal state of the ith node system
at time t, v(i) (t) ∈ Rm i its input, and w(i) (t) ∈ Rp i its output. We
assume that there are N > 0 nodes, i.e., i = 1, . . . , N . Our notation
mostly follows [5].

The special case where α(i) = α(0) , β(i) = β(0) , and γ(i) = γ(0)

for all i = 1, . . . , N , i.e., where all node system dynamics are the same,
is called a homogeneous network, while the general case of different
node system dynamics is referred to as a heterogeneous network. A
SISO network is a network where mi = pi = 1 for all i = 1, . . . , N ,
i.e., a network consisting of SISO node systems. We will see that
homogeneous SISO networks have very special properties.

We consider static linear couplings between the node systems as well
as between the external inputs and outputs and the nodes (see Fig. 1).
In general, such couplings can be modeled as

v(i) =
N∑

j=1

Aij w
(j ) + Biu (2)

where u(t) ∈ Rm is the external network input, and

y =
N∑

i=1

Ciw
(i) (3)

where y(t) ∈ Rp is the external network output. We will not consider
external network outputs for the remainder of this paper.

Fig. 1. Example network with two node systems with internal states
x(1) resp. x(2) . The network has one external input u1 and two external
outputs y1 and y2 . The external inputs are connected to node inputs
v

(k )
l

, while the node outputs w
(i)
j can be connected to external outputs

or to node inputs.

By introducing the block diagonal matrices

α =

⎛

⎜⎜⎜⎜⎜⎜⎝

α(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 α(N )

⎞

⎟⎟⎟⎟⎟⎟⎠
, β =

⎛

⎜⎜⎜⎜⎜⎜⎝

β(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 β(N )

⎞

⎟⎟⎟⎟⎟⎟⎠

and γ =

⎛

⎜⎜⎜⎜⎜⎜⎝

γ(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 γ(N )

⎞

⎟⎟⎟⎟⎟⎟⎠

and the block matrices

A =

⎛

⎜⎜⎝

A11 . . . A1N

...
...

AN 1 . . . AN N

⎞

⎟⎟⎠ and B =

⎛

⎜⎝
B1
...

BN

⎞

⎟⎠

the network (without the external network output) can be compactly
represented as

ẋ = αx + βv

w = γx

v = Aw + Bu. (4)

Here, we have stacked the individual node system states, inputs, and
outputs in the obvious way to obtain x(t) ∈ RΣN

i = 1 n i , v(t) ∈ RΣN
i = 1 m i ,

and w(t) ∈ RΣN
i = 1 p i .

The transfer matrix γ(i) (sI − α(i) )−1β(i) of node system i from
v(i) to w(i) will be denoted by g(i) (s). The transfer matrix γ(sI −
α)−1β from the joint input vector v to the joint output vector w is then
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equal to

G(s) =

⎛

⎜⎜⎜⎜⎝

g(1) (s) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 g(N ) (s)

⎞

⎟⎟⎟⎟⎠
.

Our goal in this paper is to study controllability and stabilizability of
the state x of the network (4) through the external control input u and
to give characterizations of controllability and stabilizability in terms
of properties of the node systems (1) and the coupling matrices (A, B).
Considering the special case B = 0 (or, equivalently, u = 0) we will
also obtain characterizations of stability of the network.

III. SYSTEM REPRESENTATIONS OF NETWORKS

We will use elements of the behavioral approach [8] in our analysis.
The first step in a behavioral analysis is always the choice of a conve-
nient system representation. To this end, it is imperative to think clearly
about the selection of variables in the representation. The full behavior
B of the network (4), i.e., the linear space of C∞ solutions of (4), has
variables (x, v, w, u). However, controllability of the network through
the external control input u obviously only depends on the behavior
of the variables (x, u), i.e., formally, on the projected behavior B(x,u )

[8]. This behavior can be obtained by the elimination of the variables
(v, w) and, by inspection, is given by

ẋ = (α + βAγ) x + βBu. (5)

Together with the output equation

w = γx (6)

this is nothing but a standard LTI input/state/output system with be-
havior B(x,u ,w ) , where the system matrices (α + βAγ, βB, γ) have
special structure.

The following proposition shows that controllability of the in-
put/state behavior B(x,u ) is equivalent to controllability of the in-
put/output behavior B(u ,w ) , provided that the state x of system (5)
and (6) is observable from (u, w), i.e., if system (5) and (6) is observ-
able in the classical sense. Here, controllability of B(x,u ) and B(u ,w )

is to be understood in the behavioral sense, but note that behavioral
controllability of B(x,u ) is the same as classical controllability [8].
Similarly, the input/state behavior B(x,u ) is stabilizable in the behav-
ioral sense if and only if the input/output behaviorB(u ,w ) is stabilizable
in the behavioral sense, provided that system (5) and (6) is observable.
Also, behavioral stabilizability of B(x,u ) is the same as classical sta-
bilizability [8]. Note, however, that controllability of B(u ,w ) is not the
same as classical output controllability.

Proposition 1 (Example 6.25 in [8]): Let B be the full behavior of
the input/state/output system

ẋ = Ax + Bu

y = Cx (7)

with variables (x, u, y). Then, the following holds.
1) If B(x,u ) is controllable, equivalently (A, B) is a controllable pair,

then B(u ,y ) is also controllable.
2) If B(x,u ) is stabilizable, equivalently (A, B) is a stabilizable pair,

then B(u ,y ) is also stabilizable.
Moreover, if (7) is observable, then both in 1) and 2) the converse

holds.
Proof: A proof can be found in the Appendix. �

The following lemma shows that observability of the node systems
implies observability of system (5) and (6).

Lemma 2: (γ, α) observable implies (γ, α + βAγ) observable.
Proof: This follows from the dual of the well-known result that

controllability is invariant under constant state feedback, see, e.g., [15,
Example 3.9]. �

In order to apply Proposition 1 via Lemma 2, we start with an
unobservable/observable Kalman decomposition of each node system

α(i) =

(
α

(i)
11 α

(i)
12

0 α
(i)
22

)
, β(i) =

(
β

(i)
1

β
(i)
2

)

γ(i) =
(

0 γ
(i)
2

)

such that
(
γ

(i)
2 , α

(i)
22

)
is observable. Recall that α(i) ∈ Rn i ×n i . Let

ni,1 and ni,2 be the sizes of α
(i)
11 and α

(i)
22 , respectively, so that ni,1 +

ni,2 = ni . By stacking all the unobservable node system states into
a vector x1 and separately stacking all the observable node system
states into a vector x2 , we can rewrite the collection of the node system
dynamics (the uncoupled network dynamics) as

(
ẋ1

ẋ2

)
=
(

α11 α12

0 α22

)(
x1

x2

)
+
(

β1

β2

)
v

w = γ2x2

where the block system matrices are reordered versions of the block
matrices (α, β, γ) in (4) and (γ2 , α22 ) is observable. Note that α11

has size
∑N

i=1 ni,1 . The joint node transfer matrix is then G(s) =
γ(sI − α)−1β = γ2 (sI − α22 )−1β2 .

The following trick allows us to apply Proposition 1 via Lemma 2.
We introduce additional “virtual” outputs

w′ = x1 (8)

of the node systems to obtain the observable augmented uncoupled
network dynamics

(
ẋ1

ẋ2

)
=
(

α11 α12

0 α22

)(
x1

x2

)
+
(

β1

β2

)
v

(
w′

w

)
=
(

I 0
0 γ2

)(
x1

x2

)
. (9)

We now augment the network coupling matrices to

A =
(
0 A

)
and B = B (10)

and obtain the new coupling equation

v = A

(
w′

w

)
+ Bu = Aw + Bu. (11)

Observe that the (x, v, w, u) behavior B(x,v ,w ,u ) of the augmented
network (9) and (11) is equal to the full behavior B of the original
network as the “virtual” outputs w′ are not connected to any node
system inputs. Here, xT = (xT

1 , xT
2 ). But then B(x,u ) = B(x,u ) .

In the following, we derive a kernel representation of B(w ′ ,w ,u ) . By
definition, B = B(x 1 ,x 2 ,v ,w ′ ,w ,u ) = KerR( d

dt
) where

R(s) =

⎛

⎜⎜⎜⎜⎝

sI − α11 −α12 −β1 0 0 0
0 sI − α22 −β2 0 0 0
−I 0 0 I 0 0
0 −γ2 0 0 I 0
0 0 I 0 −A −B

⎞

⎟⎟⎟⎟⎠
.
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By observability of (γ2 , α22 ), there exist polynomial matrices X(s)
and Y (s) such that

(
X(s) Y (s)

)( sI − α22

γ2

)
= I. (12)

Choose a left coprime factorization

Dso(s)−1Nso(s) = γ2 (sI − α22 )
−1

where the subscript “so” refers to the fact that it is a factorization of the
transfer matrix from the (observable parts of) the states to the outputs
of all node systems. Compute
⎛

⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
I α12X(s) sI − α11 −α12Y (s) 0
0 Nso(s) 0 Dso(s) 0
0 0 0 0 I

⎞

⎟⎟⎟⎟⎠
R(s)

=

⎛

⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 Z(s) sI − α11 −α12Y (s) 0
0 0 −Nso(s)β2 0 Dso(s) 0
0 0 I 0 −A −B

⎞

⎟⎟⎟⎟⎠

where Z(s) = −β1 − α12X(s)β2 and the entries marked with “*” in
the first two rows of the first matrix have been chosen such that the re-
sulting matrix is unimodular; this is possible since

(
Nso(s) Dso(s)

)

is left coprime. Observe that the matrix formed from the first two block
columns of R(s) has full column rank and, hence, the upper left block
of the last matrix in the preceding equation has full column rank; it,
hence, also has full row rank as it is a square matrix. The elimination
theorem [8, Th. 6.2.6] now implies that the lower right block in the last
matrix provides a kernel representation of B(v ,w ′ ,w ,u ) . We continue by
also eliminating v. Compute
⎛

⎜⎝
I 0 −Z(s)
0 I Nso(s)β2

0 0 I

⎞

⎟⎠

⎛

⎜⎝
Z(s) sI − α11 −α12Y (s) 0

−Nso(s)β2 0 Dso(s) 0
I 0 −A −B

⎞

⎟⎠

=

⎛

⎜⎝
0 sI − α11 −α12Y (s) + Z(s)A Z(s)B
0 0 Dso(s) − Nso(s)β2A −Nso(s)β2B

I 0 −A −B

⎞

⎟⎠

then the elimination theorem yields B(w ′,w ,u ) = KerP ( d
dt

) where

P (s) =
(

sI − α11 −α12Y (s) + Z(s)A Z(s)B
0 Dso(s) − Nso(s)β2A −Nso(s)β2B

)
.

Recall that here Z(s) = −β1 − α12X(s)β2 , the polynomial ma-
trices X(s) and Y (s) are given by (12), and Dso(s)−1Nso(s) =
γ2 (sI − α22 )

−1 is a left coprime factorization.

IV. NETWORK CONTROLLABILITY

The following is our key result on network controllability. Please
refer to Section III for the notation used in the theorem statement.

Theorem 3: The network (4) is controllable if and only if the poly-
nomial matrix

P (s) =

(
sI − α11 −α12Y (s) + Z(s)A Z(s)B

0 Dso (s) − Nso (s)β2A −Nso (s)β2B

)

is left prime.
Proof: The input/state/output system obtained by plugging (11)

into (9) has behaviorB(x,w ′,w ,u ) and is observable by Lemma 2. Hence,

controllability of B(x,u ) = B(x,u ) is equivalent to controllability of
B(w ′ ,w ,u ) by Proposition 1. A full row rank kernel representation of
B(w ′ ,w ,u ) is given by the matrix P (s) and the result now follows from
[8, Th. 5.2.10]. �

Note that the matrix P (s) in the previous theorem is in general
significantly smaller than the matrix in a classical, directly applied
PBH test would be. In the sequel, we will obtain several consequences
of the key result of Theorem 3. However, before embarking on this,
we first formulate a basic result that establishes a relation between
our special factorization D−1

so (s)Nso (s)β2 of the joint node transfer
matrix γ(sI − α)−1β = γ2 (sI − α22 )−1β2 and any arbitrary left co-
prime factorization of this transfer matrix.

Lemma 4: Let D(s)−1N (s) be any left coprime factorization
of γ(sI − α)−1β. Assume that (α, β) is a controllable pair. Then,
D−1

so (s)Nso (s)β2 is also a left coprime factorization and there exists a
unimodular polynomial matrix U (s) such that

(Dso (s) − Nso (s)β2 ) = U (s) (D(s) − N (s)) .

Proof: This follows immediately from Lemmas 22 and 23 in the
Appendix. �

Then, as a first consequence of Theorem 3, we recover a result by
Fuhrmann et al. [5, Th. 9.8] that is reminiscent of the classical PBH
test for controllability. The result deals with the special case where all
node systems are controllable and observable.

Corollary 5 [Fuhrmann-Helmke test]: Assume that all node sys-
tems are controllable and observable. Let D(s)−1N (s) be any left
coprime factorization of γ (sI − α)−1 β. Then, the network (4) is con-
trollable if and only if the polynomial matrix

(
D(s) − N (s)A −N (s)B

)
(13)

is left prime.
Proof: By observability, the first block row in P (s) is not

present. The result then follows immediately from Theorem 3 and
Lemma 4. �

Before proceeding, we make the trivial observation that controlla-
bility of all node systems is a necessary condition for controllability of
the network (4).

Lemma 6: If the network (5) is controllable, then all pairs
(α(i) , β(i ), i = 1, 2, . . . , N , are controllable.

Proof: Let η ∈ CΣN
i = 1 n i and λ ∈ C be such that η∗β = 0 and

η∗α = λη∗. Then, η∗(α + βAγ) = η∗α = λη∗ and controllability of
the network implies η = 0. It follows that the pair (α, β) is controllable
and, hence, all pairs (α(i) , β(i ), i = 1, 2, . . . , N , are controllable. �

Returning now to the general case that not all node systems are
required to be observable, the following result gives a necessary con-
dition on the rank of the external input matrix B for the network to be
controllable. The result gives a necessary lower bound on the rank of
B in terms of the number of unobservable agents that share a common
unobservable eigenvalue.

Theorem 7: Assume that among the N node systems (1) there
are k unobservable ones, indexed by, say i1 , i2 , . . . ik . Moreover, as-
sume these have at least one unobservable eigenvalue in common,
i.e., there exists λ ∈ C such that λ is an unobservable eigenvalue of
the pair (γ(j ) , α(j ) ) for j = i1 , i2 , . . . , ik with geometric multiplici-
ties �1 , . . . , �k , respectively. Then, the network is controllable only if
rank(B) ≥∑k

i=1 �i ≥ k.
Proof: Let P (s) be given by (3). Obviously, for any λ ∈ C, we

must have rank(P (λ)) ≤ rowdim(P ), where “rowdim” denotes the
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number of rows. Counting this number of rows we find

rowdim(P ) =
N∑

i=1

ni,1 +
N∑

i=1

pi . (14)

Now, let λ be a joint unobservable eigenvalue of k node systems with
respective multiplicities �1 , . . . , �k . Then, λ must be at least a

∑k
i=1 �i -

fold eigenvalue of α11 and, hence, rank(λI − α11 ) ≤
∑N

i=1 ni,1 −∑k
i=1 �i . Now, looking at the column space of P (λ), we estimate

rank(P (λ)) ≤
N∑

i=1

ni,1 −
k∑

i=1

�i +
N∑

i=1

pi + rank(B). (15)

Now, assume that the network is controllable. Then, by Theorem 3,
P (λ) has full row rank, i.e., rank(P (λ)) = rowdim(P ). By combin-
ing (14) and (15), this implies rank(B) ≥∑k

i=1 �i ≥ k. �

A. Controllability of Homogeneous Networks

Note that the previous results were all concerned with the hetero-
geneous case. We will now specialize to the case that the network is
homogeneous, i.e., all node systems are identical, and given by the
triple (α(0) , β(0) , γ(0) ). If the node system is unobservable, then a nec-
essary condition for controllability of the network is that the rank of B
is at least equal to the number of nodes.

Corollary 8: Assume the network is homogeneous. Assume that
the node system is unobservable with an unobservable eigenvalue of
geometric multiplicity �. Then, the network is controllable only if
rank(B) ≥ N� ≥ N .

Proof: This follows immediately from Theorem 7. �
By collecting the above-mentioned results, we arrive at the following

consequence of Theorem 3, again concerning the homogeneous case.
Theorem 9: Assume the network is homogeneous. Let

D(s)−1N (s) be a left coprime factorization of γ (sI − α)−1 β.
Assume that rank(B) < N . Then, the network is controllable if and
only if the node system is controllable and observable, and

(
D(s) − N (s)A −N (s)B

)
(16)

is left prime.
Proof: If rank(B) < N , then by Corollary 8 the node system is

observable. Controllability of the node system follows from Lemma 6.
By applying Corollary 5, we then obtain that (16) is left prime. The
converse follows immediately from Corollary 5. �

Specializing even further, we now consider the case that the network
is homogeneous and the node system is a SISO system. Note that in
that case the input matrix B has N rows. Thus, either rank(B) = N or
rank(B) < N . In case that B has full row rank N , the corresponding
network turns out to be controllable if and only if the node system
is controllable, irrespective of the coupling matrix A. The case that
rank(B) < N is the main result of the work of Hara et al. [4, Propo-
sition 3.1]. We recover this result as a special case of our Theorem 9.

Corollary 10: Assume the network is homogeneous and the node
system is a SISO system. Then, the following holds.
1) If rank(B) = N , then the network is controllable if and only if

the node system is controllable.
2) If rank(B) < N , then the network is controllable if and only if the

node system is controllable and observable, and the pair (A, B) is
controllable.

Proof: A proof of 1) can be given using the PBH test. Assume the
node system is controllable and let η ∈ CΣN

i = 1 n i and λ ∈ C be such
that η∗βB = 0 and η∗(α + βAγ) = λη∗. Since B has full row rank,
this implies η∗β = 0 and, hence, η∗α = λη∗. Controllability of the

node system then implies η = 0, so the network is controllable. The
converse implication follows from Lemma 6.

We will now prove 2). First, note that a left coprime factorization
D(s)−1N (s) of γ (sI − α)−1 β is obtained by taking a left coprime

factorization d(s)−1n(s) of γ(0)
(
sI − α(0)

)−1
β(0) , and then putting

D(s) := d(s)I and N (s) = n(s)I , with I being the N × N identity
matrix. Then, (16) reduces to

(
d(s)I − n(s)A −n(s)B

)
. (17)

First, assume that the network is controllable. Lemma 6 then yields
controllability of the node system. Moreover, by Theorem 9, the node
system is observable and (17) is left prime. We want to prove that
for each μ ∈ C, the complex matrix (μI − A − B) has full row
rank. To prove this, let μ be given. Consider the polynomial equation
d(s) − μn(s) = 0 in the unknown s. Clearly, it has a solution, say
λ ∈ C. Note that n(λ) �= 0, for otherwise we would also have d(λ) = 0
which would contradict coprimeness of d(s) and n(s). Thus, we obtain
μ = d (λ)

n (λ) . Since

(
d(λ)I − n(λ)A −n(λ)B

)
(18)

has full row rank, the same now holds for (μI − A − B).
We will now prove the converse implication. Assume that the node

system is controllable and assume that (A, B) is controllable. Our aim
is to show that (18) has full row rank for all λ ∈ C. Take any λ. If
n(λ) �= 0, then define μ := d (λ)

n (λ) . Since (μI − A − B) has full row
rank, the same now holds for (18). On the other hand, if n(λ) = 0, then
necessarily d(λ) �= 0. This again follows from the fact that n(s) and
d(s) are coprime. Also in that case, (18) has full row rank and, hence,
(17) is left prime. Together with observability of the node system, an
application of Theorem 9 then completes the proof. �

Remark 11: For the homogeneous SISO case, Corollary 10 gives
a complete picture of how to express controllability of the network
in terms of conditions on the node system and the coupling matrices.
In particular, for the case rank(B) < N , these involve two condi-
tions on the node system only (controllability and observability) and a
condition on the coupling matrices only (controllability). For the case
rank(B) = N , there is only a condition on the node system (control-
lability). This is in contrast with the homogeneous MIMO case: for the
case rank(B) < N , we have conditions in terms of the node system
only (again controllability and observability), but the left primeness
condition on (16) involves both the node system and the coupling ma-
trices. In addition, it is not clear how to obtain similar necessary and
sufficient conditions for the case that rank(B) ≥ N . Note that in the
MIMO case, B has Nm0 rows, where m0 is the number of inputs of
the node system. Of course, if rank(B) = Nm0 (full row rank), then,
like in the SISO case, controllability of the network is equivalent to
controllability of the node system. A complete picture for the case that
N ≤ rank(B) < Nm0 remains unclear beyond the general condition
given in Theorem 3.

V. NETWORK STABILIZABILITY

We now turn to necessary and sufficient conditions for stabilizability
of the network. While doing this, we will also address the issue of
stability. In particular, we aim at finding conditions, preferably in terms
of conditions on the node systems and conditions on the coupling
matrices, under which the network (5) is stabilizable by means of the
external input u. The development will follow that of the controllability
case and, therefore, some of the details will be omitted.

Again, we will use results from the behavioral approach [8] when-
ever convenient. We refer to Section III for the notation used in the
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sequel. Recall that Dso(s)−1Nso(s) = γ2 (sI − α22 )
−1 is a left co-

prime factorization and that X(s) and Y (s) are polynomial matrices
such that (12) holds; these exist by observability. We now state neces-
sary and sufficient conditions for network stabilizability.

Theorem 12: The network (4) is stabilizable if and only if the com-
plex matrix

P (λ) =
(

λI − α11 −α12Y (λ) + Z(λ)A Z(λ)B
0 Dso (λ) − Nso (λ)β2A −Nso (λ)β2B

)

has full row rank for all λ ∈ C with Re(λ) ≥ 0.
Proof: Again, the input/state/output system obtained by plugging

(11) into (9) has behavior B(x,w ′ ,w ,u ) and is observable by Lemma 2.
Hence, stabilizability ofB(x,u ) = B(x,u ) is equivalent to stabilizability
of B(w ′,w ,u ) by Proposition 1. Since a full row rank kernel representa-
tion of B(w ′,w ,u ) is given by the matrix P (s), the result then follows
from [8, Th. 5.2.30]. �

We now turn to studying the consequences of this theorem. Before
doing this, we formulate the following lemma on coprime factorizations
of G(s) = γ(sI − α)−1β = γ2 (sI − α22 )−1β2 .

Lemma 13: Let D(s)−1N (s) be any left coprime factoriza-
tion of γ(sI − α)−1β. Assume that (α, β) is stabilizable. Then,
(Dso (λ) − Nso (λ)β2 ) has full row rank for all λ ∈ C with Re(λ) ≥ 0
and there exists a polynomial matrix W (s) such that W (λ) is nonsin-
gular for all λ ∈ C with Re(λ) ≥ 0 and

(Dso (s) − Nso (s)β2 ) = W (s) (D(s) − N (s)) .

Proof: This follows immediately from Lemmas 22 and 23 in the
Appendix. �

For the special case that all node systems are stabilizable and de-
tectable, we can now formulate an obvious Fuhrmann–Helmke test for
stabilizability, analogous to the test for controllability in Corollary 5.

Corollary 14: Assume that all node systems are stabilizable and
detectable. Let D(s)−1N (s) be a left coprime factorization of
γ (sI − α)−1 β. Then, the network (4) is stabilizable if and only if

(
D(λ) − N (λ)A −N (λ)B

)
(19)

has full row rank for all λ ∈ C with Re(λ) ≥ 0.
Proof: If the network is stabilizable, then by Theorem 12 the ma-

trix formed by the lower right blocks in P (λ) must have full row rank
for all λ ∈ C with Re(λ) ≥ 0. By Lemma 13, the same then holds
for (19). The converse follows similarly, with the additional observa-
tion that, by detectability, λI − α11 is nonsingular for all λ ∈ C with
Re(λ) ≥ 0. �

We now first make the observation that stabilizability of all node
systems is necessary for stabilizability of the network. Similar to the
controllability case in Lemma 6, a proof can be given using the PBH
test and will be omitted here.

Lemma 15: If the network (5) is stabilizable, then all pairs
(α(i) , β(i ), (i = 1, 2, . . . , N ), are stabilizable.

In the sequel, we will return to the general situation that not all node
systems are detectable. Then, we have the following lower bound on
the rank of the input matrix B for network stabilizability.

Theorem 16: Assume that among the N node systems (1) there are
k nondetectable ones, indexed by, say i1 , i2 , . . . ik . Moreover, assume
that there exists a common λ ∈ C with Re(λ) ≥ 0 such that λ is an
unobservable eigenvalue of the pair (γ(j ) , α(j ) ) for j = i1 , i2 , . . . , ik
with geometric multiplicities �1 , . . . , �k , respectively. Then, the net-
work is stabilizable only if rank(B) ≥∑k

i=1 �i ≥ k.
Proof: A proof runs along the same lines as the proof of Theorem 7,

where now λ ∈ C is a joint unobservable eigenvalue with Re(λ) ≥ 0.
The details are omitted. �

A. Stabilizability of Homogeneous Networks

Again, all previous results deal with the heterogeneous MIMO case.
We will now consider the case that the network is homogeneous. In
that case, we have the following result.

Corollary 17: Assume the network is homogeneous. Assume that
the node system is nondetectable with an unobservable eigenvalue
of geometric multiplicity �. Then, the network is stabilizable only if
rank(B) ≥ N� ≥ N .

The following analogue of Theorem 9 now follows.
Theorem 18: Assume the network is homogeneous. Let

D(s)−1N (s) be a left coprime factorization of γ (sI − α)−1 β. As-
sume that rank(B) < N . Then, the network is stabilizable if and only
if the node system is stabilizable and detectable, and

(
D(λ) − N (λ)A −N (λ)B

)
(20)

has full row rank for all λ ∈ C with Re(λ) ≥ 0.
Proof: Let rank(B) < N . If the network is stabilizable, then by

Corollary 17 the node system is detectable. By Lemma 15, the node
system is stabilizable. By Corollary 14, (20) then has full row rank
for all λ ∈ C with Re(λ) ≥ 0. The converse follows immediately from
Corollary 14. �

Finally, we specialize to the homogeneous SISO case to obtain an
extension of the controllability result of Hara et al. [4] dealing with
stabilizability. In the following, let

g(0) (s) = γ(0) (sI − α(0))−1
β(0) (21)

be the transfer function of the node system. We have the following
characterization of stabilizability of the network in terms of the node
system and the coupling matrices.

Theorem 19: Assume the network is homogeneous and the node
system is a SISO system with transfer function g(0) (s), cf. Eq. (21).
Then, the following holds.
1) If rank(B) = N , then the network is stabilizable if and only if the

node system is stabilizable.
2) If rank(B) < N , then the network is stabilizable if and only if the

node system is stabilizable and detectable, and
(

1
g ( 0 ) (λ)

I − A −B
)

(22)

has full row rank for all λ ∈ C with Re(λ) ≥ 0 and g(0) (λ) �= 0.
Proof: As in the proof of Corollary 10, let the polynomials d(s)

and n(s) be obtained by taking a coprime factorization d(s)−1n(s)
of g(0) (s). Assume that the network is stabilizable. By Lemma 15
and Theorem 18, we have that the node system is stabilizable and
detectable, and

(
d(λ)I − n(λ)A −n(λ)B

)
(23)

has full row rank for all λ ∈ C with Re(λ) ≥ 0. Take any such λ with
g(0) (λ) = d(λ)−1n(λ) �= 0. Then, n(λ) �= 0. Noting that 1

g ( 0 ) (λ)
=

d (λ)
n (λ) , the condition (22) then follows.

We now prove the converse. Assume the node system is stabilizable
and assume that (22) holds for all Re(λ) ≥ 0 with g(0) (λ) �= 0. For
such λ, we clearly have n(λ) �= 0, so (23) has full row rank. It remains
to show that this also holds for Re(λ) ≥ 0 with g(0) (λ) = 0. For such
λ, we have n(λ) = 0. By coprimeness of n(s) and d(s), we then have
that d(λ) �= 0 so also in this case we have that (23) has full row rank.
Thus, (20) has full row rank for all λ ∈ C with Re(λ) ≥ 0. Together
with detectability of the node system, the result then follows from
Theorem 18. �
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Unlike in the case of controllability, the full row rank condition on
(22) does not reduce to ordinary stabilizability of the pair (A, B). The
following example illustrates this.

Example 20: As node system takes the stabilizable and detectable
system ẋ(0) = ax(0) + v(0) , w(0) = x(0) with a ∈ R. Its transfer func-
tion is g(0) (s) = 1

s−a
. For given coupling matrices (A, B), network

stabilizability then holds if and only if ((λ − a)I − A − B) has full
row rank for all λ ∈ C with Re(λ) ≥ 0. This is equivalent with the
condition that (μI − A − B) has full row rank for all μ ∈ C with
Re(μ) ≥ −a, in other words: stabilizability with respect to the stabil-
ity domain {μ ∈ C |Re(μ) < −a}.

B. Stability of Autonomous Networks

Finally, we turn to the question under which conditions on the node
systems and coupling matrix A the autonomous network

ẋ = (α + βAγ) x (24)

is stable. Obviously, the network is stable if and only if it is stabilizable
with B = 0. Clearly then, in the (most general) heterogeneous MIMO
case, we obtain from Theorem 12 that the network is stable if and only
if

P (s) =
(

sI − α11 −α12Y (s) + Z(s)A
0 Dso(s) − Nso(λ)β2A

)
(25)

is Hurwitz. It follows that all eigenvalues of α11 must have negative
real part, so all node systems must be detectable. From Lemma 15 also
all node systems must be stabilizable.

In case the network is MIMO but homogeneous, it follows immedi-
ately from this that the network is stable if and only if the node system
is stabilizable and detectable and (D(s) − N (s)A) is Hurwitz, where
D(s)−1N (s) is a left coprime factorization of γ(sI − α)−1β.

We finally look at the homogeneous SISO case to obtain the follow-
ing immediate consequence of Theorem 19.

Corollary 21: Assume the network is homogeneous and the node
system is a SISO system with transfer function g(0) (s), cf. Eq. (21).
Then, the network is stable if and only if the node system is stabilizable
and detectable, and

1
g(0) (λ)

I − A (26)

is nonsingular for all λ ∈ C with Re(λ) ≥ 0 and g(0) (λ) �= 0.

VI. CONCLUSION

In this paper, we have studied controllability, stabilizability, and sta-
bility of networks of linear systems. In particular, we have established
necessary and sufficient conditions for controllability of heterogeneous
networks of MIMO node systems, generalizing a controllability condi-
tion of Fuhrmann et al. [5] to the case that the node system is not nec-
essarily observable. For the case of homogeneous networks of MIMO
nodes, we have shown that if the rank of the external input matrix is
strictly less than the number of nodes, then observability of the node
system is even a necessary condition for controllability. This result can
also be considered as a MIMO extension of a similar result of Hara
et al. [4] on SISO node systems. Finally, we have extended our results
on controllability to conditions for stabilizability and stability of net-
works. In particular, we have extended the celebrated result of Hara
et al. [4] to conditions for stabilizability of homogeneous networks of
SISO node systems.

APPENDIX

In this appendix we collect some technicalities needed in this paper.
Proof of Proposition 1: We prove 2). Let (u, y) be a trajectory

in B(u ,y ) . There exists x such that y = Cx and (x, u) ∈ B(x,u ) .
Since B(x,u ) is stabilizable, there exists (x′, u′) ∈ B(x,u ) such that
(x′(t), u′(t)) → 0 as t → ∞ and (x(t), u(t)) = (x′(t), u′(t)) for all
t ≤ 0. Define y′ = Cx′. Then, (u′, y′) ∈ B(u ,y ) , (u′(t), y′(t)) → 0 as
t → ∞ and (u(t), y(t)) = (u′(t), y′(t)) for all t ≤ 0. This shows that
B(u ,y ) is stabilizable.

Assume now that (7) is observable. Then, in particular, it is de-
tectable. Let (x, u) be a trajectory in B(x,u ) . Define y = Cx. Then,
(u, y) in B(u ,y ) . By stabilizability, there exists (u′, y′) ∈ B(u ,y ) with
(u′(t), y′(t)) → 0 as t → ∞ and (u(t), y(t)) = (u′(t), y′(t)) for all
t ≤ 0. Clearly, there exists x′ such that y′ = Cx′ and (x′, u′) ∈ B(x,u ) .
By observability, since (u, y) and (u′, y′) coincide on the nega-
tive halve line, this implies x(t) = x′(t) for t ≤ 0. Finally, since
(u′(t), y′(t)) → 0 as t → ∞, by detectability we have x′(t) → 0 as
well. Also, (x(t), u(t)) = (x′(t), u′(t)) for all t ≤ 0. This proves sta-
bilizability of B(x,u ) .

A proof of 1) uses similar ideas as mentioned above and will be
omitted here.

Lemma 22: Consider the system (7). Let D(s)−1N (s) =
C (sI − A)−1 be a left coprime factorization. Then, the following
statements hold.
1) If (A, B) is a controllable pair, then (D(s) − N (s)B) is left

prime.
2) If (A, B) is a stabilizable pair, then (D(λ) − N (λ)B) has full

row rank for all λ ∈ C with Re(λ) ≥ 0.
Proof: Let B be the full behavior of (7). The full behavior has a

kernel representation B = KerR( d
dt

), with

R(s) =
(

sI − A −B 0
−C 0 I

)
.

Note that if (A, B) is controllable, then the projected behavior B(u ,y )

is controllable by Proposition 1. If (A, B) is stabilizable, then the
projected behavior B(u ,y ) is stabilizable by Proposition 1. We derive a
kernel representation for this projected behavior. Compute

( ∗ ∗
N (s) D(s)

)
R(s) =

(
∗ ∗ ∗
0 −N (s)B D(s)

)
.

Here the *’s in the first row of the first matrix have been chosen
such that the resulting matrix is unimodular. This is possible due to
coprimeness of D(s) and N (s). Since the first block column of R(s)
has full column rank, the first block column of the matrix on the right-
hand side must have full column rank as well. Thus, the “*” in the
upper left corner of this matrix (being square) must have full row
rank. Hence, the projected behavior B(u ,y ) has a kernel representation
−N ( d

dt
)Bu + D( d

dt
)y = 0. If this behavior is controllable, we must

have that (D(λ) − N (λ)B) has full row rank for all λ ∈ C. If it
is stabilizable, then the same holds for all λ ∈ C with Re(λ) ≥ 0
(see [8]). �

Lemma 23: Let G(s) be a proper real rational matrix. Assume that
G(s) = D1 (s)−1N1 (s) = D2 (s)−1N2 (s) are two factorizations with
Di (s) and Ni (s) (i = 1, 2) polynomial matrices. Then, the following
holds.
1) If both factorizations are left coprime, then there exists a uni-

modular polynomial matrix U (s) such that (D2 (s) − N2 (s)) =
U (s)(D1 (s) − N1 (s)).

2) If (D1 (s) − N1 (s)) is left prime and (D2 (λ) − N2 (λ)) has
full row rank for all λ ∈ C with Re(λ) ≥ 0, then there ex-
ists a polynomial matrix W (s) such that (D2 (s) − N2 (s)) =
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W (s)(D1 (s) − N1 (s)) with the property that W (λ) is nonsingu-
lar for all λ ∈ C with Re(λ) ≥ 0.

Proof: For a proof of 1), consider the behaviors B1 and B2 that
are represented, respectively, by the kernel representations D1 ( d

dt
)y −

N1 ( d
dt

)u = 0 and D2 ( d
dt

)y − N2 ( d
dt

)u = 0. Since both are a factor-
ization of the same transfer matrix, by [8, Th. 8.2.7] the controllable
parts of B1 and B2 are equal. However, since (D1 (λ) − N1 (λ)) and
(D2 (λ) − N2 (λ)) both have full row rank for all λ ∈ C, both B1 and
B2 are in fact controllable. We conclude that B1 = B2 . It then follows
that a unimodular U (s) exists as claimed [8, Th. 3.6.2].

To prove 2), again consider the behaviors B1 and B2 . In this case,
only B1 is controllable, so B1 is equal to the controllable part of B2 .
Clearly, this implies that B1 ⊂ B2 . Then, there exists a polynomial
matrix W (s) such that (D2 (s) − N2 (s)) = W (s)(D1 (s) − N1 (s)).
Since for i = 1, 2, (Di (λ) − Ni (λ)) has full row rank for all λ ∈ C
with Re(λ) ≥ 0, we must have that W (λ) is nonsingular for all λ ∈ C
with Re(λ) ≥ 0. �
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