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ABSTRACT
Jamin-Lebedeff interference microscopy is a powerful technique for measuring the refractive index of microscopically-sized solid objects.
This method was classically used for transparent objects immersed in various refractive-index matching media by applying light of a certain
predesigned wavelength. In previous studies, we demonstrated that the Jamin-Lebedeff microscopy approach can also be utilized to determine
the refractive index of pigmented media for a wide range of wavelengths across the visible spectrum. The theoretical basis of the extended
method was however only precise for a single wavelength, dependent on the characteristics of the microscope setup. Using Jones calculus, we
here present a complete theory of Jamin-Lebedeff interference microscopy that incorporates the wavelength-dependent correction factors of
the half- and quarter-wave plates. We show that the method can indeed be used universally in that it allows the assessment of the refractive
index dispersion of both unpigmented and pigmented microscopic media. We illustrate this on the case of the red-pigmented wing of the
damselfly Hetaerina americana and find that very similar refractive indices are obtained whether or not the wave-plate correction factors are
accounted for.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5113485., s

I. INTRODUCTION

Understanding the physical basis of object colors crucially relies
on quantitative knowledge of the refractive index of the constituent
materials. This not only holds for structurally colored tissue in ani-
mal displays, often consisting of regularly arranged structures made
up of materials with different refractive indices, but also for scat-
tering media with irregularly organized tissue, as scattering cru-
cially depends on the material’s refractive index.1–5 Accurate knowl-
edge of the refractive index of small biological objects has remained
limited, however, due to the difficulty to perform refractive index
measurements on microscopically-sized objects.

A sensitive method for measuring the refractive index of bio-
logical tissue is Jamin-Lebedeff interference microscopy. The instru-
ment, essentially a Jamin interferometer, was adopted by Lebedeff to

a transmission optical microscope.6 By using a birefringent crystal,
the incident light beam is split into two perpendicularly polarized,
spatially separated beams, one of which propagates through the test
object and the other, the reference beam, bypasses the object and
propagates through a medium of known refractive index. A sec-
ond birefringent crystal recombines the beams. With a half-wave
plate in between the beam splitter and combiner, and an additional
quarter-wave plate, the phase shift induced by the test object can be
determined with a rotatable linear analyzer.7–11 The Jamin-Lebedeff
interference microscope was originally designed for measuring the
refractive index of transparent, i.e. absorptionless, media at a single,
fixed wavelength (usually λ = 546 nm; the mercury green line). To
determine the wavelength-dependent refractive index (the disper-
sion) approximative procedures using Cauchy’s formula have been
devised.12
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We measured the refractive index and dispersion of insect
chitin and bird keratin in unpigmented butterfly scales and bird
feathers.13 We furthermore developed a formalism for apply-
ing Jamin-Lebedeff interference microscopy on pigmented tissue
and investigated insect wings and wing scales and bird feath-
ers that contained common biological pigments, such as melanin,
ommochromes, and pterins.5,14–17 In these studies, we assumed
that the retardation of wave-plates were wavelength-independent,
which may create erroneous results at wavelengths remote from the
instrument’s central wavelength where the retardation of the plates
strongly deviates from that at the designed wavelength. Here, we
critically review our approach for refractive index measurements
across the entire visible wavelength range. We present an extensive
theoretical basis that takes the wavelength-dependent limitations
of the instrument into account and demonstrate that the Jamin-
Lebedeff interference microscope can be used for measuring the
complex refractive index at any given wavelength for micro-sized,
pigmented media.

II. THE OPTICAL COMPONENTS OF A
JAMIN-LEBEDEFF INTERFERENCE MICROSCOPE
SETUP

A Jamin-Lebedeff interference microscopy setup consists of a
number of carefully designed optical components (Fig. 1). A light
beam, delivered via the condenser of the microscope, first passes a
linear polarizer (P) and is subsequently divided and spatially sep-
arated by a birefringent beam splitter (S) into an extra-ordinary
(a) and ordinary ray (b). A half-wave plate (H) then rotates the
polarization of both beams by 90○. Ray a travels through the object

FIG. 1. Diagrams of the Jamin-Lebedeff interference microscope. a An object with
thickness d is immersed in a reference medium (grey box). The extra-ordinary
and ordinary beams are marked with the letters a and b, respectively. P, polarizer;
S, beam splitter; H, half-wave plate; O, object; C, beam combiner; Q, quarter-
wave plate; A, analyzer. Large numbers 0-6 indicate different levels of the light
beams in the microscope; small numbers 1-3 indicate the three beams result-
ing after the beam combiner. b Propagation of the polarized beams through the
microscope (from Ernst Leitz: Pol interference device according to Jamin/Lebedeff
LINK).

FIG. 2. Image of the three beams of the Jamin-Lebedeff interference microscope
obtained with white light at level 6 of Figure 1 in the absence of an object and
with analyzer angle α = 0○. The two purple-colored side beams (1 and 3) are
due to the wavelength-dependent retardation of the wave plates present in the
setup.

(O; Fig. 1, grey), which is immersed in a transparent fluid cho-
sen so that it has approximately the refractive index of the object.
Ray b proceeds through the immersion fluid, past the object. The
two rays then enter a beam combiner (C) and subsequently pass
a quarter-wave plate (Q; a Sénarmont compensator). The two rays
combine into one ray for only one, ideal wavelength; at all other
wavelengths three beams result due to the wavelength-dependence
of the employed retarders (Fig. 2; beams 1-3 at level 4 of Fig. 1).
The beams finally pass a rotatable linear polarizer, the analyzer
(A). The half- and quarter-wave plates are oriented at 45○ with
respect to the polarization axes of the ordinary and extra-ordinary
beams.

III. JONES FORMALISM FOR JAMIN-LEBEDEFF
MICROSCOPY

The propagation of the light beams in a Jamin-Lebedeff micro-
scope can be usefully treated with the Jones matrix formalism, where
a vector describes the two components of a (linearly) polarized
light beam and a matrix operation is equivalent to a polarization-
changing optical element.18 This approach has been previously
applied to insect wings and bird feathers, but in these papers the
wavelength-dependence of the half- and quarter-wave plates was
neglected.5,14–17 To specifically address this approximation will be
the theme of the present paper.

We assume that the incident beam, after having passed the
polarizer, has a unit power of light intensity at all wavelengths, and
that the beam splitter divides the incident beam into two beams of
equal intensity (a and b; Fig. 1). Taking a convenient coordinate sys-
tem, we assume that the X-axis is parallel to the polarization of the
extra-ordinary ray of the beam splitter, so that the Y-axis is parallel
to the polarization of the ordinary ray.

IV. RETARDER CHARACTERISTICS
The half-wave plate H and the quarter-wave plate Q are

retarders, for which the general Jones matrix is given by18
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J(ϕ, θ) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

eiϕ/2 cos2 θ + e−iϕ/2 sin2 θ (eiϕ/2 − e−iϕ/2)sin(θ)cos(θ)

(eiϕ/2 − e−iϕ/2)sin(θ)cos(θ) eiϕ/2 sin2 θ + e−iϕ/2cos2 θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

cos(ϕ/2) + i sin(ϕ/2)cos(2θ) i sin(ϕ/2)sin(2θ)

i sin(ϕ/2)sin(2θ) cos(ϕ/2) − i sin(ϕ/2)cos(2θ)

⎤
⎥
⎥
⎥
⎥
⎦

(1)

with ϕ being the retardation angle and θ being the rotation angle.
For the Jamin-Lebedeff setup presented here, the rotation angle for
both H and Q is θ = -45○ = -π/4, or, cos(2θ) = 0 and sin(2θ) = -1. It
follows that

J(ϕ,−
π
4
) = [

cos(ϕ/2) −isin(ϕ/2)
−isin(ϕ/2) cos(ϕ/2)

] (2)

A retarder with optical pathlength difference Δp between
the ordinary and extra-ordinary ray introduces a phase difference
ϕ = 2πΔp/λ = kΔp, where λ is the wavelength and k the wavenumber
of the applied illumination. At the wavelength where the pathlength
difference is Δph = λh/2, the retarder acts as a half-wave plate (h), i.e.,
the retardation angle then is ϕh = π = 180○, or,

Jh = −i [
0 1
1 0

] (3a)

At the wavelength where the pathlength difference is
Δpq = λq/4, the retarder acts as a quarter-wave plate (q), i.e.,
ϕq = π/2 = 90○, or,

Jq =
1
2

√

2 [
1 −i
−i 1

] (3b)

(Note that for reasons of clarity we have chosen here a rotation angle
θ different from the previous used value.15)

The half- and quarter-wave plates of a Jamin-Lebedeff micro-
scope are generally designed so that λh = λq, or, Δph = 2Δpq and
ϕh = 2ϕq. In our previous studies, we assumed that Eqs. 3a,b are
approximately valid for all wavelengths.13,17 However, the retarda-
tion angles are wavelength-dependent due to dispersion of the bire-
fringent material of the retarders. For a more general treatment we
therefore we have to use Eq. 2, which then yields for the half-wave
plate (H), with β = ϕh/2,

Jh = [
cosβ −i sinβ
−i sinβ cosβ

] (4a)

and for the quarter-wave plate (Q), with γ = ϕq/2,

Jq = [
cos γ −i sin γ
−i sin γ cos γ

] (4b)

The Jones matrix for the analyzer (A) positioned at rotation
angle ρ is given by:18

JA =
⎡
⎢
⎢
⎢
⎣

cos2 ρ sin ρ cos ρ
sin ρ cos ρ sin2 ρ

⎤
⎥
⎥
⎥
⎦

= [

cos ρ 0
sin ρ 0

][

cos ρ sin ρ
0 0

] (5)

V. LIGHT PROPAGATION INSIDE THE
JAMIN-LEBEDEFF MICROSCOPE

The transmission axis of the linear polarizer (P) is oriented at
45○ with respect to the X-axis, and hence, with unit power for the
incident beam, the light beam after the polarizer is described by

EP =
1
2

√

2( 1
1) (6)

i.e., the intensity of the incident light beam, at level 0 (see Fig. 1 for
level descriptions), is I0 = E∗PEP = 1. At level 1, after the beam splitter
(S), the extra-ordinary (a, Fig. 1) and ordinary (b, Fig. 1) rays are
then

E1a =
1
2

√

2( 1
0) (7a)

and

E1b =
1
2

√

2( 0
1) (7b)

At level 2, after the half-wave plate (H), Eqs. 4a and 7 yield

E2a = JhE1a =
1
2

√

2( cosβ
−i sinβ) (8a)

and

E2b = JhE1b =
1
2

√

2(−i sinβ
cosβ ) (8b)

The two light beams subsequently travel through a reference
medium with an immersed object; beam a travels through the object
and beam b through the reference medium only. At level 3, both
beams will be phase shifted with respect to level 2, by δa and δb,
respectively. Accordingly, the two beams are given by

E3a =
1
2

√

2eiδa
(

cosβ
−i sinβ) (9a)

and

E3b =
1
2

√

2eiδb
(
−i sinβ

cosβ ) (9b)

At level 4, the beam combiner combines the beams, but at
wavelengths outside the ideal wavelength in total three beams will
emerge

E41 = Eaa =
1
2

√

2eiδa cosβ( 1
0) (10a)

E42 = Eab + Eba = −
1
2

√

2i sinβ( e
iδb

eiδa
) = −

1
2

√

2i sinβeiδb
(

1
e−iδ )

(10b)
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E43 = Ebb =
1
2

√

2eiδb cosβ( 0
1) (10c)

where the phase difference δb − δa = δ will be generally complex,
with real (R) and imaginary (I) components δR and δI, or

δ = δR + iδI (11)

At level 5, after the quarter-wave plate,

E51 = JqE41 =
1
2

√

2eiδa cosβ( cos γ
−i sin γ) (12a)

E52 = JqE42 = −
1
2

√

2ieiδb sinβ( cos γ − i sin γe−iδ

−i sin γ + cos γe−iδ
) (12b)

E53 = JqE43 =
1
2

√

2eiδb cosβ(−i sin γ
cos γ ) (12c)

so that at level 6, the light is split into three beams described by:

E61 = JAE51 =
1
2

√

2ei(δb−δR)eδI cosβ(cos ρ cos γ − i sin ρ sin γ)(cos ρ
sin ρ)

(13a)

E62 = JAE52 = −
1
2

√

2ieiδb sinβ[cos ρ(cos γ − i sin γe−iδ)

+ sin ρ(−i sin γ + cos γe−iδ)]( cos ρ
sin ρ ) (13b)

E63 = JAE53 =
1
2

√

2eiδb cosβ(−i cos ρ sin γ + sin ρ cos γ)( cos ρ
sin ρ )

(13c)

VI. LIGHT INTENSITY AFTER THE ANALYZER
The intensities of the three light beams that leave the ana-

lyzer follow from Eq. 13 with I = E∗E. After some derivations (see
Appendix A), it follows, with t = eδI , that

I61 = t2 cos2 β[(cos ρ cos γ)2 + (sin ρ sin γ)2
]/2

= cos2 β[1 + cos 2γ cos 2ρ]/4 (14a)

I62 = sin2 β[(1 + t2
) + (1 − t2

)cos 2γ cos 2ρ

+ 2t(cos δR sin 2ρ − sin δR sin 2γ cos 2ρ)] (14b)

I63 = cos2 β[(sin ρ cos γ)2 + (cos ρ sin γ)2
]/2

= cos2 β(1 − cos 2γ cos 2ρ)/4 (14c)

Using β = ϕh/2, γ = ϕq/2, ρ = α + π/4, and

c = sin2 β = (1 − cos 2β)/2 = (1 − cosϕh)/2 (15a)

t cos δR = a cos(2Δα) (15b)

t sin δR sinϕq − (1 − t2
)cosϕq/2 = a sin(2Δα) (15c)

b = (1 + t2
− 2a)/4 (15d)

a = {[t cos δR]
2 + [t sin δR sinϕq − (1 − t2

)cosϕq/2]
2
}

1/2
(15e)

we obtain that the light intensities of the three beams after passing
the analyzer are described by

I61 = t2
(1 − c)(1 − cosϕq sin 2α)/4 (16a)

I62 = c{2a cos[2(a − Δα)] + (1 + t2
)}/4

= c[a cos2
(a − Δα) + b] (16b)

I63 = (1 − c)(1 + cosϕq sin 2α)/4 (16c)

VII. MEASURING THE REFRACTIVE INDEX OF AN
OBJECT AS A FUNCTION OF WAVELENGTH

The refractive index of an object can be determined by compar-
ing the light intensity measured at a location within the object image
and at a location outside that image as a function of wavelength λ.
Yet, in experimental practice, the incident light beam at level 0, I0,
does not have unit power, or, the expressions for the intensity of the
three light beams at level 6 have to be multiplied with I0 = I0(λ).
Accordingly, the light intensity in the object (o) area is I62,o = I0 I62,
where I62 is given by Eq. 16b. Outside the object area, the phase dif-
ference δ = δR = δI = 0, a = 1, t = 1, b = 0, and Δα = 0, so that in the
reference (r) area Eq. 16b yields

I62,r = I0c cos2 α = I0c(1 + cos 2α)/2 (17a)

or its peak value is

I0
62,r = I62,r(α = 0) = I0c (17b)

The ratio of the object and reference intensity is, with Eq. 16b,

Irel = I62,o/I0
62,r = a cos2

(α − Δα) + b (17c)

By measuring I62,o and I0
62,r as a function of the rotation angle α

at various wavelengths λ, the values of the parameters a and b as well
as the phase shift Δα are experimentally obtained. We thus obtain
the value of t, with Eq. 15d,

t =
√

2a + 4b − 1 (18a)

The real and imaginary parts of the phase difference δ = δR + iδI
(Eq. 11) of beam a with respect to beam b (Fig. 1) are then derived
with Eq. 15b as

δR = cos−1
[(a/t)cos(2Δα)] (18b)

and with t = eδI

δI = ln(t) (18c)

We note here that in the general, non-ideal situation only
the quarter-wave plate affects the object’s parameters, via ϕq (e.g.
Eq. 15e). In other words, they are independent of the properties
of the half-wave plate since the parameter c is divided out. If the

AIP Advances 9, 085107 (2019); doi: 10.1063/1.5113485 9, 085107-4

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

quarter-wave plate would have been ideal at all wavelengths, then
ϕq = π/2, or a = t (Eq. 15e), δR = 2Δα (Eq. 15b) and b = (1 − a)2/4
(Eq. 15d); this case is treated in Ref. 15. Furthermore, for a fully
transparent object, a = t = 1 and b = 0; the case treated in Ref. 13.

VIII. ESTIMATING THE THICKNESS OF THE OBJECT
For an object of thickness d (Fig. 1), the optical pathlength is

given by

p = nod = (noR + inoI)d (19a)

where no is the object’s complex refractive index and noR and noI
are its real and imaginary components. If the transparent reference
medium has a refractive index nr, the phase difference

δ = k(nr − no)d = k(nr − noR − inoI)d (19b)

so that the real component of the phase difference becomes

δR = kd(nr − noR) = s(nr − noR) (20a)

which is a linear function of the refractive index of the reference fluid
with slope

s = kd = 2πd/λ (20b)

The thickness of the object follows from the slope of the linear
fit by

d = s/k (20c)

which must be the same for all experimental wavelengths λ.
The real part of the object’s refractive index follows from

Eq. 20a,

noR = nr − δR/(kd) = nr − δR/s (20d)

and is equal to the refractive index of the immersion fluid when
δR = 0. The imaginary component of the phase difference is (Eqs. 11
and 19b)

δI = −noIkd (21a)

and the object’s imaginary refractive index thus is, with Eqs.
18c, 20b,

n0I = −δI/(kd) = −ln(t)/s (21b)

The transmittance of a homogeneous object with thickness
d and absorption coefficient κ is given by T = exp(-κd), and the
absorbance is D(λ) = -log10[T(λ)]. Since the absorption coefficient
κ = (4π/λ)noI = 2knoI, it follows with Eq. 11 and 19b that 2δI = −κd
and thus

t = exp(δI) = exp(−κd/2) = T1/2 (21c)

so that the transmittance is, with Eq. 18a

T = t2
= 2a + 4b − 1 (21d)

Furthermore

n0I = (0.5 ln 10)D/(kd) (21e)

Not surprisingly, the imaginary part of the object’s phase difference
is intimately linked to the absorbance.

The above treatment shows that even without detailed knowl-
edge of the retarders’ dispersion properties, the refractive index of a
microscopically-sized object can be reliably assessed as a function of
wavelength by Jamin-Lebedeff microscopy for both transparent and
absorbing media.

IX. THE CASE OF THE RED PIGMENTED WINGS OF
THE DAMSELFLY HETAERINA AMERICANA

In a previous study, we investigated the optical properties of
the wings of the damselfly Hetaerina americana and determined the
refractive index dispersion by applying Jamin-Lebedeff microscopy,
however, while neglecting possible imperfections due to the wave
plates’ dispersion.15 For the measurements, we used a Zeiss Univer-
sal Microscope equipped with a Zeiss Pol-Int I 10x/0.22 objective
and a Coolsnap ES monochrome camera (Photometrics, Tucson,
AZ).

To assess the effects of the wavelength-dependent retardation
of the wave plates, we reanalyzed the data with the formalism pre-
sented above. Fig. 3a presents an example measurement of a red
wing piece immersed in a reference fluid with refractive index 1.55
(at 589 nm; due to dispersion the value slightly varies with the wave-
length; Series A, Cargille Labs, Cedar Grove, NJ). The light intensi-
ties were measured as a function of the analyzer position and then
divided by the maximum intensity measured in the reference area.
Fig. 3a shows that the red wing part clearly exerts a considerable
phase shift Δα as well as causes a strongly reduced amplitude a, due
to the presence of an absorbing pigment.

We performed similar measurements to that of Fig. 3a on red
wing pieces immersed in three different immersion fluids for a series
of wavelengths. For each wavelength, we assessed the values of Δα, a
and b, and accordingly obtained the parameter t (Eq. 18a) and phase
difference δR as a function of the immersion fluid’s refractive index
nr (Eq. 18b), yielding the data points in Fig. 3b. The slope s of the
linear functions (Eq. 20a,b) fitted to the data of each wavelength,
together with the wavenumber k of the data points, yielded the thick-
ness of the wing piece (Eq. 20c), with average d = 2.5 μm (c.f. Figs. 3,
4 of Ref. 15).

The imaginary part of the refractive index, noI, subsequently
followed from Eq. 21b for the three immersion fluids (Fig. 3c, JL).
We independently derived the imaginary component from mea-
surements of the wing absorbance with a microspectrophotometer,
together with the wavenumber and the thickness (Eq. 21e; Fig. 3c,
MSP). The noI-spectrum thus obtained corresponds well to the data
extracted from the JL measurements.

For each wavelength, the real part of the refractive index, noR,
followed from the zero-crossing of the linear fits of Fig. 3b (Eq. 20a),
i.e. when δR = 0 (Eq. 20d). Being obtained with the wave plate cor-
rection factors, these data are presented in Fig. 3d as ‘corr’ (the blue
triangles). They only slightly differ from the ‘uncorr’ data (Fig. 3d,
red circles with error bars), which were previously obtained with
the procedure neglecting the wavelength dependence of the wave
plates. In fact, the corrected data fall within the measurement errors
of the uncorrected data,15 indicating that the analysis of data with the
simplified procedure previously applied is of similar validity as that
with the more involved procedure outlined in the present paper. The
reasons for this are discussed in Appendix B.
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FIG. 3. Refractive index measurement of a wing of the damselfly Hetaerina americana. a Light intensity as a function of the analyzer angle in a red wing area (arrow in inset
in b) compared to the reference area (wavelength 546 nm). The wing piece was immersed in a reference fluid with refractive index 1.55 at 589 nm. b Phase differences
δR induced at a series of wavelengths λ by wing pieces in three reference fluids, with refractive indices nr = 1.51, 1.55 and 1.60 at 589 nm. The data were calculated with
Eq. 18a,b using the measured phase shift Δα, amplitude a and background value b (inset, scale bar 5 mm). For each wavelength, the phase differences were fitted with
a linear function (Eq. 20a); for clarity only 4 lines are shown. c Wavelength dependence of the imaginary part of the refractive index calculated with Eq. 21b for the three
immersion cases (JL: Jamin-Lebedeff) together with the spectrum derived from absorbance measurements with a microspectrophotometer (MSP). d Wavelength dependence
of the real part of the refractive index following from the zero crossings of the lines in b (corr; see Eq. 20d), together with the data derived with a simplified formalism (uncorr;
from Ref. 15). The red curve (KK) was calculated with the Kramers-Kronig dispersion relation using the MSP spectrum extended into the UV, added to the refractive index
spectrum of chitin (from Ref. 13; see text). The measurement data were taken from Ref. 15.

The noR-spectrum shows a clear anomalous dispersion in the
450-550 nm wavelength range, which is due to the strongly peaking
imaginary refractive index in that wavelength region. The close rela-
tionship between the imaginary and real components of the refrac-
tive index are given by the Kramers-Kronig dispersion relations,19

and we therefore calculated the contribution of the strongly blue-
green absorbing, red transmitting pigment to the refractive index
of chitin, the main wing material. To bring the measured data to
match with the Kramers-Kronig data, we added the contribution of
a hypothetical, strong-absorption band in the far-UV (Fig. 3d, KK;
for details see Ref. 15). We thus confirm our previous finding that
the red pigment considerably enhances the local refractive index of
the damselfly wings.

X. EPILOGUE
The Jamin-Lebedeff interference microscopy method has

received little attention in the recent decades, although several stud-
ies have shown that it allows the detailed measurement of the refrac-
tive index of microscopic bodies.7–11 Exquisite instrumentation was
produced and marketed by the major optical companies Zeiss as well

as Leitz in the second half of the 20th century, but as the equip-
ment has since gone out of production it can presently be only
obtained second hand, unfortunately. One of the reasons may well
have been that the measurements have become considered to be
only suitable for a limited wavelength range and be restricted to
transparent media. Furthermore, the manual execution and pro-
cessing of the data may have been experienced to be somewhat
cumbersome.

In the present paper we have demonstrated the validity of the
method for transparent as well as pigmented media and for a broad
wavelength range. Recently we have motorized the analyzer and
equipped our microscope with a light source connected to a motor-
ized monochromator. This enables a rapid, automatized analysis of
the refractive index of interesting media, e.g. the wing scales of pierid
butterflies.5
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APPENDIX A: PROOF OF EQUATION 14b
Eq. 13b is

E62 = −
1
2

√

2ieiδb sinβ[cos ρ(cos γ − i sin γe−iδ)

+ sin ρ(−i sin γ + cos γe−iδ)]( cos ρ
sin ρ )

= −
1
2

√

2ieiδb sinβS( cos ρ
sin ρ ) (A1)

where

S = cos ρ(cos γ − i sin γe−iδ) + sin ρ(−i sin γ + cos γe−iδ) (A2)

It follows with t = eδI and A = t cos δR, B = t sin δR, C = cos ρ,
D = sin ρ, E = cos γ, F = sin γ, that

S = C[E − iF(A − iB)] + D[−iF + E(A − iB)]
= CE − BCF + ADE − i(DF + ACF + BDE) (A3)

The intensity of light beam 62 is

I62 = E∗62E62 = sin2 βS∗S/2 (A4)

Now

S∗S = ∣S∣2 = (CE − BCF + ADE)2 + (DF + ACF + BDE)2

= (CE)2 + (BCF)2 + (ADE)2 + (DF)2 + (ACF)2 + (BDE)2
− 2BC2EF + 2ACDE2

− 2ABCDEF + 2ACDF2 + 2BD2EF + 2ABCDEF

= (C2E2 + D2F2
) + (A2 + B2

)(C2F2 + D2E2
) − 2BEF(C2

−D2
) + 2ACD(E2 + F2

) − 2BEF(C2
−D2
) + 2ACD(E2 + F2

) (A5)

Here A2 + B2 = t2, E2 + F2 = 1, 2EF = sin 2γ and 2CD = sin 2ρ. With G = cos 2ρ and H = cos 2γ it follows that C2 = (1 + G)/2,
D2 = (1 − G)/2, E2 = (1 + H)/2, F2 = (1 − H)/2, C2

− D2 = G, C2E2 + D2F2 = (1 + GH)/2, and (C2F2 + D2E2) = (1 − GH)/2, so that

S∗S = (1 + GH)/2 + t2
(1 −GH)/2 − 2BEFG + 2ACD = (1 + t2

)/2 + (1 − t2
)GH/2 + 2ACD − 2BEFG

= (1 + t2
)/2 + (1 − t2

)cos 2ρ cos 2γ/2 + t(cos δR sin 2ρ − sin δR sin 2γ cos 2ρ)

= {(1 + t2
) + [(1 − t2

)cos 2γ − 2t sin δR sin 2γ]cos 2ρ + 2t cos δR sin 2ρ}2 (A6)

With ρ = α + π/4 and 2γ = ϕq we derive

S∗S = {(1 + t2
) + 2t cos δR cos 2α

+ [2t sin δR sinϕq − (1 − t2
)cosϕq]sin 2α}/2 (A7)

Using

t cos δR = a cos(2Δα) (A8a)

and

t sin δR sinϕq − (1 − t2
)cosϕq/2 = a sin(2Δα) (A8b)

we obtain

S∗S = (1 + t2
)/2 + a cos 2(α − Δα) (A9)

so that finally follows, with c = sin2 β and b = [1 + t2
− 2a]/4,

I62 = sin2 β[2a cos 2(α − Δα) + (1 + t2
)]/4

= c[a cos2
(α − Δα) + b] (A10)

At each wavelength, ϕq has a certain value, dependent on the
characteristics of the quarter-wave plate, which sets the values of
sinϕq and cosϕq in Eq. A8b. The phase difference between the ordi-
nary and extra-ordinary beam induced by the investigated object,
δ = δR + iδI, with real and imaginary components δR and δI (where

δI = ln t), thus determines the values of the experimental parameters
a and Δα, via Eqs. A8a and A8b, as well as the value of the experi-
mental parameter b, via Eq. 15b. (In the derivations, we have used
the trigonometric expressions cos(2x) = 2 cos2x - 1 = 1 - 2 sin2x,
cos(x+π/2) = - sin(x), and sin(x+π/2) = cos(x).)

APPENDIX B: ASSESSMENT OF THE HALF-WAVE
PLATE RETARDATION

According to the above derivation, it is not essential to know
the wavelength dependence of the wave-plate retardation quantita-
tively, but it is nevertheless informative to assess this experimentally.
To determine the parameter c = (1 − cosϕh)/2 by which the half-
wave plates affect the light intensities (Eq. 15a), we performed mea-
surements without an object (t = 1) and with the quarter-wave plate
taken out, i.e., we removed the Sénarmont compensator. Consider-
ing that then E6i = JAE5i = JAE4i (i = 1-3), with δ = 0, the intensities
of the three beams become

I61 = (1 − c)(1 − sin 2α)/4 (B1a)
I62 = c(1 + cos 2α)/2 (B1b)
I63 = (1 − c)(1 + sin 2α)/4 (B1c)

For analyzer angle α = 0, Eq. B1 yields I61 = I63 = (1 − c)/4,
I62 = c. By measuring the intensities of the side and central
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beams and calculating their ratio, to again rule out the wavelength-
dependence of the light beam intensity I0 = I0(λ), we obtain

rh = I61/I62 = (1 − c)/(4c) (B2a)

so that

c(λ) = 1/[4rh(λ) + 1] (B2b)

The wavelength-dependence of the retardation angle of the
half-wave plate, ϕh, then is obtained with Eq. 15a

ϕh(λ) = cos−1
[1 − 2c(λ)] = cos−1

{1 − 2/[4rh(λ) + 1]} (B2c)

Figure 4a show measurements of the half-wave plate ratio rh
(Eq. B2a). Implementing these data in Eq. B2c, the ϕh-values fitted
with ϕh = P + Q λ-2 yield P = 1.47 and Q = 4.71⋅105 nm2, with λ in
nm (Fig. 4a). Accordingly, a retardation angle of π = 180○ occurs at
λ = 531 nm, somewhat below the green mercury line of 546 nm, the
design wavelength of the Zeiss Jamin-Lebedeff system. This devia-
tion appears to be unimportant when considering the very broad
valley of the rh(λ)-function in the green wavelength range, or, the
half-wave plate correction factor c, resulting with Eq. 15a from the
fit (Fig. 3b), is c ≈ 1 in a wide wavelength range.

The retardation angle of the half-wave plate, ϕh = kΔph, yields
the pathlength difference between the ordinary and extra-ordinary
rays, Δph = dh Δn, where dh is the half-wave plate thickness and Δn
the refractive index difference for the two rays. The wave plate is
made of quartz, which has a birefringence described by.20

Δn = H + Iλ2
/(λ2
−G) + Jλ2

/(λ2
− L) (B3)

whereH = 0.78890253⋅10-3, I = 8.04095323⋅10-3,G= 1.37254429⋅10-2

μm2, J = 10.1933186⋅10-3, L = 64 μm2, λ in μm (Fig. 4a). By using
this estimate of Δn, together with ϕh = 2πdhΔn/λ and rh = (1
+ cosϕh)/[4(1 − cosϕh)], the thickness of the half-wave plate can
be calculated, yielding dh = 30 μm. This plate causes a retardation
angle of π = 180○ at λ = 550 nm.

The wavelength dependence of the retardation angle of the
quarter-wave plate, made of the same material as the half-wave plate,
follows from ϕq(λ) = ϕh(λ)/2. A quartz quarter-wave plate with
thickness dq = 15 μm thus causes a retardation angle of π = 90○

at λ = 550 nm. As expressed by Eq. 15c,e, the quarter-wave plate
may play a crucial role in the Jamin-Lebedeff microscope measure-
ments via the factors sinϕq and cosϕq. Fig. 4c presents these factors
where ϕq = (P + Q λ-2)/2, with the values derived above, P = 1.47 and
Q = 4.71⋅105 nm2.

The effect of the quarter-wave plate on the value of the ampli-
tude a is illustrated in Fig. 4d for a few values of the transmittance
parameter t = exp(δI) and the real part of the phase difference δR. In
a simplified view, where the wavelength dependence of the quarter-
wave plate is neglected, the amplitude a equals t.15 The calculations
show that deviations from this idealized case exist in wavelength
regions remote from the central wavelength (531 nm). These devi-
ations increase when t decreases, i.e. when the absorbance of the
measured object increases.

When the absorbance D is negligible, or the transmittance
T = t = 1, then a ≈ t in a broad (visible) wavelength range (Fig. 4d,
t =1.00), so that the classical Jamin-Lebedeff procedure as applied
by Leertouwer et al.13 is accurate. When absorption becomes notice-
able, i.e. t < 1, then for δR = -0.5 and δR = 0.5 the values of a-t become
opposite. Consequently, the slope of the linear fits, and thus the

FIG. 4. Correction factors for the wave-
length dependence of the half- and
quarter-wave plates. a Experimentally
determined intensity ratio rh (Eq. B2a) fit-
ted using the birefringence of a 30 μm
thick quartz half-wave plate (Ref. 20
= Ghosh) and Eq. 15a. b The associ-
ated correction factor c (Eq. B2b). c Cor-
rection factors sinϕq and cosϕq of a
15 μm thick quartz quarter-wave plate.
d Amplitude a for a few values of the
parameter t and phase difference δR
using the quarter-wave plate factors of c,
calculated with Eq. 15e.
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object’s thickness will be underestimated, but the zero-crossings will
not be severely affected. The example of the red wing of Hetaerina
americana is a case in point. The maximal value of the imaginary
part of the refractive index (0.033 at 500 nm, Fig. 3c) together with
a thickness of 2.5 μm yields t = 0.35. At wavelengths deviating from
the peak wavelength, t has higher values. Fig. 4d shows that with
t = 0.25 the amplitude spectra for δR = -0.5 and δR = 0.5 are about
symmetrical around the t-value; the situation for t = 0.35 will be sim-
ilar. Due to the symmetry, as explained above, the noR values result-
ing from the zero-crossings of the linear fits will be little affected, so
that the deviations between the ‘corr’ and ‘uncorr’ refractive indices
are minor (Fig. 3d).
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