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Abstract: The effect of quench polish quench (QPQ) nitriding temperature on the microstructure and
wear resistance of SAF2906 duplex stainless steel was investigated. Results showed the surface of the
nitrided samples was composed of an oxidized layer, a loose compound layer, a compact compound
layer, and a diffusion layer. The oxidized layer was composed of Fe3O4. The main phases of the loose
compound layer were CrN, αN, Fe2–3N, and Fe3O4. The compact compound layer was composed of
CrN, αN, and Fe2–3N. In the diffusion layer, CrN and expanded austenite (S) were the main phases.
The nitrided layer thickness increased from 20 to 41 µm with an increasing temperature of 570 to
610 ◦C. When the nitriding temperature was above 590 ◦C, the precipitates in the diffusion layer
became coarsened, and their morphologies gradually changed from spherical particulate to rod-like
and flocculent-like. Tribotests showed the cumulative mass loss of QPQ-treated samples was much
lower than that of the substrate. The cumulative mass loss of the samples nitrided at 610 ◦C was
higher than that at 570 ◦C during the first 29 h. When the test time was over 29 h, the former was
lower than the latter.

Keywords: SAF2906 duplex stainless steel; nitriding temperature; microstructure; wear resistance

1. Introduction

Due to the excellent combination of mechanical properties and corrosion resistance, duplex
stainless steel has been widely used in various fields, such as petroleum-refining, chemical, and oceanic
industries [1–3]. SAF2906 duplex stainless steel, released by Sweden Sandvik in 2006, was developed
on the basis of the third-generation nitrogen-containing duplex stainless steel of 00Cr25Ni7Mo4N.
The pitting resistance equivalent number (PREN) of SAF2906 is more than 42, which makes it a hyper
duplex stainless steel. In comparison with the third-generation duplex stainless steel, SAF2906 duplex
stainless steel possesses higher strength and corrosion resistance, making it an ideal candidate used in
marine industries [4]. Moreover, as a substitute for 304 or 316L stainless steels, SAF2906 duplex stainless
steel can improve the service life and reduce the weight. However, the low hardness and, in particular,
the poor wear resistance limits its wide applications, which highlights the significance to enhance
the wear resistance. Quench polish quench (QPQ) is an environmentally friendly heat treatment
technology for metal surfaces which contributes to improving mechanical properties and corrosion
resistance at low cost and with low part distortion [5,6]. As a comprehensive method of metal surface
strengthening, its essence is the combination of nitriding and oxidation processes. The microstructure
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obtained in the nitriding layer also consists of both nitrides and oxides. After nitriding and oxidation
treatment, a high-hardness and compact infiltration layer will be formed on the surface of the
materials, which can significantly improve their wear resistance and thus also prolong the properties
comprehensively [7,8]. According to the process temperature, QPQ treatment can be classified into two
categories. One treatment is the ferritic nitrocarburizing, which is carried out at temperatures below
the eutectic point (590 ◦C) according to the Fe–N diagram, and the other is austenitic nitrocarburizing,
which is carried out above the eutectic point [9]. A considerable number of studies on the effect
of ferritic nitrocarburizing on the microstructure and wear resistance of stainless steels have been
reported [6,10–13]. It was found that the high wear resistance of stainless steels is mainly attributed to
the formation of hard and dispersed nitrides (e.g., CrN and Fe2–3N) on the surface after QPQ treatment.
However, both the thin layer of the nitrides and the low nitriding temperature (the latter leads to a
larger consumption of time and energy) would limit their applications, such as in high-speed or heavy
load services. Therefore, it is necessary to increase the surface nitriding layer thickness of stainless
steels. Cai and Wang et al. [14,15] reported that when the nitriding temperature increased over 590 ◦C,
austenitic nitrocarburizing occurred, and the surface layer thickness of stainless steels reached twice as
thick as that heat-treated below 590 ◦C. However, there are rare studies on the influence of austenitic
nitrocarburizing on stainless steels. At present, the QPQ technology is mainly used on single-phase
steels, and even less work has been devoted to the effect of QPQ treatment on SAF2906 duplex stainless
steel. In this paper, the microstructure, microhardness and wear resistance of the surface layer of both
ferritic nitrocarburizing and austenitic nitrocarburizing were studied, and the effect of QPQ nitriding
temperature on the microstructure and wear resistance of SAF2906 duplex stainless steel is discussed.

2. Materials and Methods

SAF2906 duplex stainless steel was prepared by investment casting. The raw material consisted
of 316L stainless steel, chromium metal, iron molybdenum, electrolytic nickel, and nitride alloy.
They were melted in a 300 kW/30 kg medium frequency induction furnace. Afterwards, the molten
steel was poured into a shell mold (Fuzhou Yingtuo Precise Metallurgy Industry Co., Ltd., Fuzhou,
China) that was preheated to about 900 ◦C. The chemical compositions of the as-cast ingot were
detected by ARL100 optical emission spectrometry (ARL Corp., Bern, Switzerland), as shown in Table 1.
The ingot was solution treated at 1050 ◦C for 2 h followed by water quenching. Several samples
of 10 mm × 10 mm × 10 mm were cut from the ingot for microstructure and hardness examinations.
Samples of 30 mm × 7 mm × 6 mm were also cut for wear resistance tests.

Table 1. Chemical compositions of SAF2906 DSS sample (wt %).

C Si Mn P S Ni Cr Mo Cu N Fe

0.03 0.72 0.81 0.02 0.02 6.61 29.19 2.11 0.79 0.26 Balance

The samples were cleaned with acetone and anhydrous ethanol in an ultrasonic instrument (Keer
Ulrasonec Cleaning Equipment Co., Ltd., Jinan, China) to remove oil stains on the surface of the
substrate, and the preheating was carried out at 400 ◦C for 30 min. Then, the samples were separately
nitrided at 550, 570, 590, and 610 ◦C for 150 min, followed by the same post-oxidation process with
a heating temperature at 400 ◦C for 30 min. The cyanate ion concentration in QPQ salt bath pit-type
furnace was 33%. Finally, the samples were cleaned for further characterization.

The cross-section microstructure of the QPQ-treated samples was observed by XJP-300 optical
microscope (OM) (Olympus Corporation, Tokyo, Japan) and S-3000N scanning electron microscope
(SEM) (Hitachi Co., Ltd., Tokyo, Japan) after metallographic preparation and etching in Murakami
reagent (10 g potassium hydroxide, 10 g potassium ferricyanide, and 100 mL distilled water). The phase
compositions of the surface layers were detected by X’Pert Pro MPD X-ray diffractometry (Royal Dutch
Philips Electronics Ltd., Amsterdam, The Netherlands) with Co Kα radiation in the 2θ range from
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20◦ to 100◦. Cross-sectional elemental depth profiles of the treated samples were obtained by energy
disperse spectroscopy (EDS) (Bruker Nano GmbH, Berlin, Germany). The hardness was measured by
MVC-1000D1 microhardness tester (Shanghai Jiming Measuring Equipment Co., Ltd., Shanghai, China)
using a load of 200 g for 15 s, taking 10 measurements to determine the average value. According to the
GB/T 12444.1 standard, dry sliding tribological tests were carried out on an MMS-2A tribometer (Jinan
Yihua Tribology Testing Technology Co., Ltd., Jinan, China) with GCr15 steel counterpart balls (40 mm
in diameter) rotated at a speed of 200 rpm and a load of 50 N against the surface of the samples. Before
tests, both the non-treated and treated samples were cleaned with alcohol. They were cleaned and
dried after a certain time interval, and were then measured using a FA2014 electron analytical balance
(Tianjin Tianma Hengji Instrument Co., Ltd., Tianjin, China) with an accuracy of 0.1 mg. The average
mass loss was calculated by three parallel experiments carried out under the same conditions.

3. Results and Discussion

3.1. Metallographic Observation

Figure 1 shows the cross-sectional microstructure of the samples of SAF2906 duplex stainless steel
nitrided at different temperatures of 550, 570, 590, and 610 ◦C. It is observed that the cross-sectional
microstructure of the samples after ferritic nitrocarburizing and austenitic nitrocarburizing are obviously
different. The surface layer of ferritic nitrocarburizing samples consists of an oxide layer, a compact
compound layer and a diffusion layer from the outermost surface to the center.

Metals 2019, 9, 848 3 of 10 

 

measured by MVC-1000D1 microhardness tester (Shanghai Jiming Measuring Equipment Co., Ltd., 
Shanghai, China) using a load of 200 g for 15 s, taking 10 measurements to determine the average 
value. According to the GB/T 12444.1 standard, dry sliding tribological tests were carried out on an 
MMS-2A tribometer (Jinan Yihua Tribology Testing Technology Co., Ltd., Jinan, China) with GCr15 
steel counterpart balls (40 mm in diameter) rotated at a speed of 200 rpm and a load of 50 N against the 
surface of the samples. Before tests, both the non-treated and treated samples were cleaned with 
alcohol. They were cleaned and dried after a certain time interval, and were then measured using a 
FA2014 electron analytical balance (Tianjin Tianma Hengji Instrument Co., Ltd., Tianjin, China) with 
an accuracy of 0.1 mg. The average mass loss was calculated by three parallel experiments carried out 
under the same conditions. 

3. Results and Discussion 

3.1. Metallographic Observation 

Figure 1 shows the cross-sectional microstructure of the samples of SAF2906 duplex stainless 
steel nitrided at different temperatures of 550, 570, 590, and 610 °C. It is observed that the 
cross-sectional microstructure of the samples after ferritic nitrocarburizing and austenitic 
nitrocarburizing are obviously different. The surface layer of ferritic nitrocarburizing samples 
consists of an oxide layer, a compact compound layer and a diffusion layer from the outermost 
surface to the center. 

  

  

Figure 1. Cross-sectional microstructure of the samples nitrided at different temperatures: (a) 550 °C; 
(b) 570 °C; (c) 590 °C; (d) 610 °C. 

However, the surface layer of austenitic nitrocarburizing samples consists of an oxidized layer, 
a loose compound layer, a compact compound layer and a diffusion layer. The oxidized layer is 
about 1–2 μm, as indicated by the pink arrows shown in Figure 1. The compound layer is composed 
of loose (as indicated by the yellow arrows in Figure 1) and compact (as indicated by the red arrows 

Figure 1. Cross-sectional microstructure of the samples nitrided at different temperatures: (a) 550 ◦C;
(b) 570 ◦C; (c) 590 ◦C; (d) 610 ◦C.

However, the surface layer of austenitic nitrocarburizing samples consists of an oxidized layer,
a loose compound layer, a compact compound layer and a diffusion layer. The oxidized layer is about
1–2 µm, as indicated by the pink arrows shown in Figure 1. The compound layer is composed of
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loose (as indicated by the yellow arrows in Figure 1) and compact (as indicated by the red arrows
in Figure 1) compound layers. The diffusion layer (see the region as indicated by the turquoise
arrows in Figure 1) is a transition zone between the compound layer and the substrate. Two parts
can be observed: one is in the dark region (denoted as region 1) and the other in the bright region
(denoted as region 2). The reason for the dark region is that the solubility of nitrogen in ferrite is
small, resulting in the diffusion of nitrogen into ferrite. The nitrogen later easily combines with a high
concentration of chromium to form chromium nitride (CrN). This subsequently leads to Cr-depleted
areas in the matrix and deteriorates its corrosion resistance. After the reagent etching, the region
appears dark. The brighter appearance of region 2 is mainly due to the original microstructure where
there is austenite, and more nitrogen atoms could be dissolved into austenite during the nitriding
process, which increases its corrosion resistance [16,17]. Therefore, the region appears bright after
reagent etching. The thicknesses of the nitrided layers are approximately 20, 25, 33, and 41 µm for
samples nitrided at 550, 570, 590, and 610 ◦C, respectively, indicating that the nitrided layer thickness
increases as the temperature increases. In addition, it can be seen that there is some loose microstructure
appearing in the compound layer in the samples nitrided at 590 and 610 ◦C. The higher the temperature,
the wider the loose microstructure.

To further study the effect of the nitriding temperature on the microstructure, typical samples of
ferritic nitrocarburizing (570 ◦C, see Figure 1b) and austenitic nitrocarburizing (610 ◦C, see Figure 1d)
were scrutinized for high-magnification SEM observations, as shown in Figure 2.
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Figure 2. Cross-sectional SEM images of microstructure of the samples nitrided at two temperatures:
(a) 570 ◦C; (b) 610 ◦C.

As can be seen, both the nitrided layer thickness and the compound layer morphology change,
and the precipitates exhibit different morphologies. In the sample heat-treated at 570 ◦C, the CrN
precipitates appear to be spherical and granular, while for that treated at 610 ◦C, they are spherical
granular as well as rod-like and flocculent-like, as indicated by the inset and arrow 3 marked in Figure 2b.
It is thus clear that this morphology difference is attributed to the different high nitriding temperature.

3.2. XRD Analysis

Microstructure observation shows that the morphology of the nitrided layer changes when the
nitriding temperature is higher than 590 ◦C. To evaluate the effect of the nitriding temperature on the
phase compositions of the surface layer, the substrate and typical samples of ferritic nitrocarburizing
(Figure 1b) and austenitic nitrocarburizing (Figure 1d) were selected for XRD tests. The results are
shown in Figure 3.
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Figure 3. X-ray diffraction patterns of the substrate (a) and two specimens: (b) 570 ◦C; (c) 610 ◦C.

It can be seen that the surface layer of these two typical samples consists of CrN, αN (expanded
martensite), Fe3O4, Fe2–3N, and S (expanded austenite). In addition, the diffraction peaks of α and γ

from the substrate are no longer observed because X-ray is unable to penetrate from the thick surface
layer to the substrate. Compared with the 2 θ of α and γ, the diffraction peaks of αN and S are shifted
towards low angles, indicating that nitrogen supersaturated in crystals causes the lattice expansion
and some increase in the lattice constant. This results in the formation of αN and S with the same
structure of α and γ, respectively [18–20]. It is generally believed that the carbides act as the nuclei
of Fe2–3N crystal. When the content of solution nitrogen reaches a certain degree, the Fe2–3N crystal
could form [21]. It is also found that the αN and CrN diffraction peak intensities of the sample treated
at 610 ◦C are higher than that at 570 ◦C. This indicates that there are more αN and CrN in the former
because the higher temperature facilitates nitrogen activities, leading to more nitrogen dissolved
into S phase. Ultimately, it also increases its lattice distortion and residual stress and leads to more
transformation of S phase to αN and CrN.

3.3. EDS Analysis

Figure 4 displays the EDS line scans of oxygen, nitrogen, iron, and chromium of the typical
samples of ferritic nitrocarburizing (Figure 2a) and austenitic nitrocarburizing (Figure 2b), from the
surface to the center (0–90 µm). From Figure 4a,b, it can be seen that the thickness of the oxidized layer
(characteristic of a high oxygen concentration) of the sample treated at 570 ◦C is about 3 µm, while it
increases to approximately 10 µm at 610 ◦C. The reason is that the loose compound layer at 610 ◦C is
thicker than that at 570 ◦C. It is a sponge-like or columnar porous structure that makes oxygen atoms
to diffuse easily into the inner layer through these micropores, promoting the formation of Fe3O4.

In contrast, the oxygen concentration in other layers closer to the substrate is rather low. This implies
that the existence of micropores promotes the oxygen diffusion.
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of 610 ◦C nitriding sample.

For nitrogen, it can be seen from Figure 4c,d that the nitrogen concentrations of the compact
compound layer both at 570 and 610 ◦C are significantly higher than those of the substrate. However,
the nitrogen concentration of the loose compound layer at 610 ◦C is close to the substrate. Schröter [22]
considered the less nitrogen in the loose compound layer as a result of the recombination and
escape of molecular nitrogen. In Figure 4c,d, peaks of nitrogen concentration in the nitrocarburizing
layer were found at layers with the thickness of about 7 and 15 µm at 570 and 610 ◦C, respectively.
Some studies [23,24] also reported the same phenomenon. Owing to the oxidation reaction at the
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surface after nitriding treatment, the diffusion of iron atoms from the nitride layer to the surface occurs
to form Fe3O4 and renders the nitrogen atoms redistributed underneath the oxide layer. The reason
for the larger thickness of the nitrogen concentration at 610 ◦C might be associated with more paths
for oxygen atoms to diffuse into the compound layer. On the contrary, the loose microstructure in
the sample treated at 610 ◦C aids oxygen atoms to diffuse into the inner of the compound layer and
promotes the scope of oxidation reaction, which makes the nitrogen accumulation position backward.

As shown in Figure 4e,f, the iron concentration of the compact compound layer at 570 and 610 ◦C
are both lower than that of the substrate. However, in the loose compound layer at 610 ◦C, it is close to
the substrate. This indicates that the loose compound layer is rich in iron. The chromium concentration
profiles of the two samples are presented in Figure 4g,h. Apart from the oxide layer, the surface layer
at 570 ◦C is rich in chromium, and the chromium concentration in the loose compound layer at 610 ◦C
is much less than that in the compact compound layer.

From the analysis above, it can be concluded that the loose compound layer is rich in iron and
oxygen, but deficient in chromium and nitrogen. For the compact compound layer, however, it is
opposite. This is consistent with the results analyzed above that the color of the loose compound
layer microstructure after etching is darker than the compact one, which verifies the difference in
the compositions.

Based on the cross-sectional microstructure analysis and the results by EDS and XRD, it can be
concluded that the oxide layer is composed of Fe3O4; the main phases of the loose compound layer are
CrN, αN, Fe2–3N, and Fe3O4, among which Fe3O4 and Fe2–3N are dominant; the compact compound
layer is mainly composed of CrN, αN, and Fe2–3N, and the amount of CrN is higher than that of the
other two. However, in the diffusion layer, CrN and S are the main phases.

3.4. Hardness Analysis

The substrate and four samples treated at 550, 570, 590, and 610 ◦C were selected for microhardness
tests, and the results are shown in Figure 5.
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The surface hardness of the samples after QPQ treatment is triple that of the substrate. This dramatic
increase in the hardness is due to the modifications of the surface microstructure of the sample after
QPQ treatment. The phase developed from soft phases α and γ into hard phases CrN, Fe2–3N, and αN.
It is observed that the hardness of the surface of the samples treated at 590 ◦C (1157 HV0.2) and 610 ◦C
(1085 HV0.2) is lower than that at 550 ◦C (1214 HV0.2) and 570 ◦C (1283 HV0.2). The explanation for
this phenomenon is as follows. Compared with the samples treated at 550 and 570 ◦C, the outside
surface layer at 590 and 610 ◦C has more low-hardness phases of Fe2–3N and Fe3O4, while the amount
of the high-hardness CrN is less. When the nitriding temperature reaches temperatures over 590 ◦C,
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the distinct loose microstructure appears in the compound layer, which leads to a lower hardness.
Moreover, at higher temperature, the grain of the compound layer and diffusion layer grows and
coarsens, which leads to the decrease of surface hardness as well [25].

3.5. Wear Resistance Analysis

To study the influence of QPQ nitriding temperature on wear resistance of SAF2906 duplex
stainless steel, the same samples as above were selected for dry sliding tribological test. Since the
surface layer structure is complicated, the wear resistance of QPQ nitrocarburizing samples may be
different in diverse periods of the tests, and it is difficult to comprehensively reflect its wear resistance
during a short test time. Therefore, the total test time was set as 38 h. Due to the loose compound
layer with low hardness and poor wear resistance, the time interval for test at the early stage was
selected to be 1 h. When the loose compound layer was worn off, the time interval for the test was 3 h.
The mass loss curves describing the wear resistance of the QPQ-treated samples are shown in Figure 6.
It can be seen that the cumulative mass loss in substrate increases linearly as the test time increases,
with a relatively stable wear rate of about 15 mg/h. The cumulative mass loss of the samples treated at
570 ◦C increases slowly until 23 h, and the wear rate is only 0.65 mg/h. When the test time exceeds
23 h, the wear rate and cumulative mass loss increase significantly. In the sample treated at 610 ◦C,
the cumulative mass loss increases gently before 29 h. The wear rate is 1.3 mg/h for the first 8 h and
then drops to 0.75 mg/h until 29 h. When the test time is longer than 29 h, the wear rate and cumulative
mass loss increase significantly. Throughout the test, the cumulative mass loss of the QPQ-treated
samples is much lower than that of the substrate. Obviously, this phenomenon is related to the surface
microstructural change of the samples. When the surface microstructure consists of hard phases (CrN,
Fe2–3N, or αN), the samples showed a good wear resistance. By contrast, when the sample is composed
of soft phases (α and γ), the wear resistance is low. Moreover, the cumulative mass loss of the two
samples show an intersection at 29 h, before which the cumulative mass loss of sample nitrided at
570 ◦C is lower than that at 610 ◦C, but the opposite trend starts after 29 h. This phenomenon is owed
to the distinct loose microstructures in the surface layer of the samples nitrided at 610 ◦C, and this
results in lower hardness value, as the curves with a testing time less than 29 h shown in Figure 6.
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With the increase of testing time, the loose compound layer at 610 ◦C is gradually worn off, and
the compact compound layer with higher hardness is exposed and starts to play a role. Consequently,
the wear rate decreases. When the testing time is over 11 h, the wear rate of the sample nitrided at
610 ◦C is lower than that at 570 ◦C. In the case of over 29 h, the cumulative mass loss of the former is
higher than the latter.
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4. Conclusions

This study aims to obtain an underlying understanding of the effect of QPQ nitriding temperature
on the microstructure and wear resistance of SAF2906 duplex stainless steel. The results are summarized
as follows:

1. The surface layer of the samples after ferritic nitrocarburizing was composed of an oxidized
layer, a compact compound layer, and a diffusion layer from the outmost surface to the center.
The surface layer after austenitic nitrocarburizing was composed of an oxidized layer, a loose
compound layer, a compact compound layer, and a diffusion layer. The oxidized layer was
primarily composed of Fe3O4. The main phase of the loose compound layer was CrN, αN, Fe2–3N,
and Fe3O4, among which Fe2–3N and Fe3O4 were dominant. The compact compound layer
mainly consisted of CrN, together with certain αN and Fe2–3N. However, in the diffusion layer,
CrN and S were the main phases.

2. With the increasing temperature, the thickness of the nitrided layer increased dramatically from
20 µm at 550 ◦C to 41 µm at 610 ◦C. When the temperature was above 590 ◦C, the precipitates of
the diffusion layer became coarsened, and their morphologies gradually changed from spherical
particle into rod-like and flocculent-like ones. The surface hardness of the QPQ-treated samples
was more than 1090 HV0.2 and 3 times that of the substrate.

3. The cumulative mass loss of QPQ-treated samples was much lower than that of the substrate.
The cumulative mass loss of samples nitrided at 610 ◦C was higher than that at 570 ◦C during the
first 29 h. When the test time was over 29 h, the former was lower than the latter. Overall, the
wear resistance of samples nitrided at 610 ◦C was higher than that at 570 ◦C.

4. In general, the sample nitrided at 610 ◦C with a deeper surface reinforced layer has better wear
resistance than that at 570 ◦C. The wear resistance of QPQ-treated samples depends not only
on the surface hardness, but also largely on the thickness and microstructure of the modified
surface layer.
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